CINXE.COM
Geometry: Euclid and Beyond - Robin Hartshorne - Google Books
<!DOCTYPE html><html><head><title>Geometry: Euclid and Beyond - Robin Hartshorne - Google Books</title><link rel="stylesheet" href="/books/css/_ff77d0f0508c7e0bad470e7d6b7f28fa/kl_viewport_kennedy_full_bundle.css" type="text/css" /><link rel="stylesheet"href="https://fonts.googleapis.com/css2?family=Product+Sans:wght@400"><script src="/books/javascript/v2_ff77d0f0508c7e0bad470e7d6b7f28fa__en.js"></script><script>_OC_Hooks = ["_OC_Page", "_OC_SearchReload", "_OC_TocReload", "_OC_EmptyFunc", "_OC_SearchPage", "_OC_QuotePage" ];for (var _OC_i = 0; _OC_i < _OC_Hooks.length; _OC_i++) {eval("var " + _OC_Hooks[_OC_i] + ";");}function _OC_InitHooks () {for (var i = 0; i < _OC_Hooks.length; i++) {var func = arguments[i];eval( _OC_Hooks[i] + " = func;");}}</script><link rel="canonical" href="https://books.google.com/books/about/Geometry_Euclid_and_Beyond.html?id=EJCSL9S6la0C"/><meta property="og:url" content="https://books.google.com/books/about/Geometry_Euclid_and_Beyond.html?id=EJCSL9S6la0C"/><meta name="title" content="Geometry: Euclid and Beyond"/><meta name="description" content="In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And in the last chapter we provide what is missing from Euclid's treatment of the five Platonic solids in Book XIII of the Elements. For a one-semester course such as I teach, Chapters 1 and 2 form the core material, which takes six to eight weeks."/><meta property="og:title" content="Geometry: Euclid and Beyond"/><meta property="og:type" content="book"/><meta property="og:site_name" content="Google Books"/><meta property="og:image" content="https://books.google.com.sg/books/content?id=EJCSL9S6la0C&printsec=frontcover&img=1&zoom=1&edge=curl&imgtk=AFLRE72A1ZQ8I92WJlgBkWQC82BE4N3ZtXSeXHGG17GElefYVWw02TJwPA7zoK9-ZUqW12KglfAMen0qP0VKDIvujW17hxxccqTp80wzOObw2Vh5eG63m6JGNS1oTxm639xECKZX2i9P"/><link rel="image_src" href="https://books.google.com.sg/books/content?id=EJCSL9S6la0C&printsec=frontcover&img=1&zoom=1&edge=curl&imgtk=AFLRE72A1ZQ8I92WJlgBkWQC82BE4N3ZtXSeXHGG17GElefYVWw02TJwPA7zoK9-ZUqW12KglfAMen0qP0VKDIvujW17hxxccqTp80wzOObw2Vh5eG63m6JGNS1oTxm639xECKZX2i9P"/><script></script><style>#gbar,#guser{font-size:13px;padding-top:1px !important;}#gbar{height:22px}#guser{padding-bottom:7px !important;text-align:right}.gbh,.gbd{border-top:1px solid #c9d7f1;font-size:1px}.gbh{height:0;position:absolute;top:24px;width:100%}@media all{.gb1{height:22px;margin-right:.5em;vertical-align:top}#gbar{float:left}}a.gb1,a.gb4{text-decoration:underline !important}a.gb1,a.gb4{color:#00c !important}.gbi .gb4{color:#dd8e27 !important}.gbf .gb4{color:#900 !important} #gbar { padding:.3em .6em !important;}</style></head><body class=""><div id=gbar><nobr><a target=_blank class=gb1 href="https://www.google.com.sg/search?tab=pw">Search</a> <a target=_blank class=gb1 href="https://www.google.com.sg/imghp?hl=en&tab=pi">Images</a> <a target=_blank class=gb1 href="https://maps.google.com.sg/maps?hl=en&tab=pl">Maps</a> <a target=_blank class=gb1 href="https://play.google.com/?hl=en&tab=p8">Play</a> <a target=_blank class=gb1 href="https://www.youtube.com/?tab=p1">YouTube</a> <a target=_blank class=gb1 href="https://news.google.com/?tab=pn">News</a> <a target=_blank class=gb1 href="https://mail.google.com/mail/?tab=pm">Gmail</a> <a target=_blank class=gb1 href="https://drive.google.com/?tab=po">Drive</a> <a target=_blank class=gb1 style="text-decoration:none" href="https://www.google.com.sg/intl/en/about/products?tab=ph"><u>More</u> »</a></nobr></div><div id=guser width=100%><nobr><span id=gbn class=gbi></span><span id=gbf class=gbf></span><span id=gbe></span><a target=_top id=gb_70 href="https://www.google.com/accounts/Login?service=print&continue=https://books.google.com.sg/books%3Fid%3DEJCSL9S6la0C%26q%3DArchimedes%26source%3Dgbs_word_cloud_r%26hl%3Den&hl=en&ec=GAZACg" class=gb4>Sign in</a></nobr></div><div class=gbh style=left:0></div><div class=gbh style=right:0></div><div role="alert" style="position: absolute; left: 0; right: 0;"><a href="https://books.google.com.sg/books?id=EJCSL9S6la0C&q=Archimedes&source=gbs_word_cloud_r&hl=en&output=html_text" title="Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader."><img border="0" src="//www.google.com/images/cleardot.gif"alt="Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader."></a></div><div class="kd-appbar"><h2 class="kd-appname"><a href="/books">Books</a></h2><div class="kd-buttonbar left" id="left-toolbar-buttons"><a id="appbar-view-print-sample-link" href="https://books.google.com.sg/books?id=EJCSL9S6la0C&printsec=frontcover&vq=Archimedes&source=gbs_vpt_read"></a><a id="appbar-view-ebook-sample-link" href=""></a><a id="appbar-patents-prior-art-finder-link" href=""></a><a id="appbar-patents-discuss-this-link" href="" data-is-grant=""></a><a id="appbar-read-patent-link" href=""></a><a id="appbar-download-pdf-link" href=""></a></div><div class="kd-buttonbar right" id="right-toolbar-buttons"></div></div><div style="display: none"><ol id="ofe-gear-menu-contents" class="gbmcc"><li class="gbe gbmtc"><a class="gbmt goog-menuitem-content" id="" href="https://www.google.com/accounts/Login?service=print&continue=https://books.google.com.sg/books%3Fop%3Dlibrary&hl=en">My library</a></li><li class="gbe gbmtc"><a class="gbmt goog-menuitem-content" id="" href="http://books.google.com.sg/support/topic/4359341?hl=en-SG">Help</a></li><li class="gbe gbmtc"><a class="gbmt goog-menuitem-content" id="" href="https://books.google.com.sg/advanced_book_search">Advanced Book Search</a></li></ol></div><div id="volume-main"><div id="volume-left"><div id=menu_container ><div id="menu_scroll_wrapper"><div id="menu_scroll" role="navigation"><div id="gb-get-book-container"><a id="gb-get-book-content" href="https://books.google.com.sg/books?id=EJCSL9S6la0C&sitesec=buy&source=gbs_vpt_read">Get print book</a></div><p id="gb-get-book-not-available">No eBook available<p><h3 class=about_title><a name="buy_anchor"></a></h3><div id=buy class=about_content><div id=buy_v><ul style="list-style-type: none; padding-left: 0; margin: 0;"><li><a style="white-space:normal" href="http://www.springer.com/978-0-387-98650-0?utm_medium=referral&utm_source=google_books&utm_campaign=3_pier05_buy_print&utm_content=en_08082017" dir=ltr onMouseOver="this.href='http://www.springer.com/978-0-387-98650-0?utm_medium\x3dreferral\x26utm_source\x3dgoogle_books\x26utm_campaign\x3d3_pier05_buy_print\x26utm_content\x3den_08082017';return false" onMouseDown="this.href='/url?client\x3dca-print-springer-kluwer_academic\x26format\x3dgoogleprint\x26num\x3d0\x26id\x3dEJCSL9S6la0C\x26q\x3dhttp://www.springer.com/978-0-387-98650-0%3Futm_medium%3Dreferral%26utm_source%3Dgoogle_books%26utm_campaign%3D3_pier05_buy_print%26utm_content%3Den_08082017\x26usg\x3dAOvVaw2ovGpeusaBJYJmBdiegIyf\x26source\x3dgbs_buy_r';return true"><span dir=ltr>Springer Shop</span></a></li><li><a style="white-space:normal" href="http://www.amazon.com/gp/search?index=books&linkCode=qs&keywords=9780387986500" dir=ltr onMouseOver="this.href='http://www.amazon.com/gp/search?index\x3dbooks\x26linkCode\x3dqs\x26keywords\x3d9780387986500';return false" onMouseDown="this.href='/url?client\x3dca-print-springer-kluwer_academic\x26format\x3dgoogleprint\x26num\x3d0\x26id\x3dEJCSL9S6la0C\x26q\x3dhttp://www.amazon.com/gp/search%3Findex%3Dbooks%26linkCode%3Dqs%26keywords%3D9780387986500\x26usg\x3dAOvVaw1o1gpafHEJp6cfh9hxNlcX\x26source\x3dgbs_buy_r';return true"><span dir=ltr>Amazon.com</span></a></li><li><a style="white-space:normal" href="http://www.mphonline.com/books/nsearch.aspx?do=detail&pcode=9780387986500" dir=ltr onMouseOver="this.href='http://www.mphonline.com/books/nsearch.aspx?do\x3ddetail\x26pcode\x3d9780387986500';return false" onMouseDown="this.href='/url?client\x3dca-print-springer-kluwer_academic\x26format\x3dgoogleprint\x26num\x3d0\x26id\x3dEJCSL9S6la0C\x26q\x3dhttp://www.mphonline.com/books/nsearch.aspx%3Fdo%3Ddetail%26pcode%3D9780387986500\x26usg\x3dAOvVaw1tMnJ6z48nqrtgs7CiN-e_\x26source\x3dgbs_buy_r';return true"><span dir=ltr>MPH</span></a></li><li><a style="white-space:normal" href="https://www.popular.com.sg/catalogsearch/result/?q=9780387986500" dir=ltr onMouseOver="this.href='https://www.popular.com.sg/catalogsearch/result/?q\x3d9780387986500';return false" onMouseDown="this.href='/url?client\x3dca-print-springer-kluwer_academic\x26format\x3dgoogleprint\x26num\x3d0\x26id\x3dEJCSL9S6la0C\x26q\x3dhttps://www.popular.com.sg/catalogsearch/result/%3Fq%3D9780387986500\x26usg\x3dAOvVaw1TTE_EIe8FvQmsxM3o3Vc1\x26source\x3dgbs_buy_r';return true"><span dir=ltr>Popular</span></a></li><li><hr style="margin-right: 20%; color: #666;"></li><li><a style="white-space:normal" href="https://books.google.com.sg/url?id=EJCSL9S6la0C&pg=PA215&q=http://www.worldcat.org/oclc/1024941575&clientid=librarylink&usg=AOvVaw3Sz-DeMyQDxAUbtEJjLxGj&source=gbs_buy_r"><span dir=ltr>Find in a library</span></a></li><li><a class="secondary" style="white-space:normal" href="https://books.google.com.sg/books?id=EJCSL9S6la0C&sitesec=buy&source=gbs_buy_r" id="get-all-sellers-link"><span dir=ltr>All sellers</span> »</a></li></ul></div></div><div class=menu id=menu><div class="menu_content" style="margin-bottom:6px"><div style="margin-bottom:4px"><div class="sidebarnav"><table border="0" cellpadding="0" cellspacing="0"><tr><td><div class="sidebarcover"><a href="https://books.google.com.sg/books?id=EJCSL9S6la0C&printsec=frontcover&vq=Archimedes" onclick="_OC_Page('PP1',this.href); return false;"><img src="https://books.google.com.sg/books/content?id=EJCSL9S6la0C&printsec=frontcover&img=1&zoom=5&edge=curl&imgtk=AFLRE71B1jyC22_KDlw3Ep73X75piWZXMDnyhTmcpbPOlIXbVhrK1MYvQqf6qK7s9QbSY3yguR6Kl1fJSwFsCiFltVWZN-hoHEmtkm1GnrHPxE6uUbnUJTISbLKIc7R9m3LEFNnHI5Y5" alt="Front Cover" title="Front Cover" height=80 border=1 id=summary-frontcover ></a></div></td><td></td></tr></table></div><div style="clear:both"></div></div><div id="volume-info-sidebar"><h1 class="gb-volume-title" dir=ltr>Geometry: Euclid and Beyond</h1><span class="addmd">By Robin Hartshorne</span></div><div style="margin-bottom:3px"><form action=/books id=search_form style="margin:0px;padding:0px;" method=get> <input type=hidden name="id" value="EJCSL9S6la0C"><table cellpadding=0 cellspacing=0 class="swv-table"><tr><td class="swv-td-search"><span><input id=search_form_input type=text maxlength=1024 class="text_flat swv-input-search" aria-label="Search in this book" name=q value="" title="Go" accesskey=i></span></td><td class="swv-td-space"><div> </div></td><td><input type=submit value="Go"></td></tr></table><script type="text/javascript">if (window['_OC_autoDir']) {_OC_autoDir('search_form_input');}</script></form></div><div><p><a id="sidebar-atb-link" href="https://books.google.com.sg/books?id=EJCSL9S6la0C&vq=Archimedes&source=gbs_navlinks_s"><span dir=ltr>About this book</span></a></p></div></div></div><div><div id="navbarContainer" class="gb-navbar"></div><script>_OC_InitNavbar({"child_node":[{"title":"My library","url":"https://books.google.com.sg/books?uid=114584440181414684107\u0026source=gbs_lp_bookshelf_list","id":"my_library","collapsed":true},{"title":"My History","url":"","id":"my_history","collapsed":true}],"highlighted_node_id":""});</script><h3 class=about_title><a name="pub_info_anchor"></a></h3><div id=pub_info class=about_content><div id=pub_info_v><table cellspacing=0><tr><td><a href="https://books.google.com.sg/url?id=EJCSL9S6la0C&pg=PA215&q=http://www.springer.com/shop&clientid=ca-print-springer-kluwer_academic&linkid=1&usg=AOvVaw1djMqZiM66oJFNtLwbXjQ2&source=gbs_pub_info_r" style="text-decoration:none"><img width=128 height=35 border=0 src="https://pagead2.googlesyndication.com/pagead/imgad?id=CO7fk9CGmazKVRC3ARgyMghnyJwCmweo7A" alt="Springer Science & Business Media"></a><tr><td style="font-size:84.6%;color:#666666">Pages displayed by permission of <a class=link_aux href="https://books.google.com.sg/url?id=EJCSL9S6la0C&pg=PA215&q=http://www.springer.com/shop&clientid=ca-print-springer-kluwer_academic&linkid=1&usg=AOvVaw1djMqZiM66oJFNtLwbXjQ2&source=gbs_pub_info_r">Springer Science & Business Media</a>. <a style="color:#7777cc;white-space:normal" href="https://books.google.com.sg/books?id=EJCSL9S6la0C&printsec=copyright&vq=Archimedes&source=gbs_pub_info_r">Copyright</a>. </table></div></div></div></div></div></div></div><div id="volume-center"><div id="scroll_atb" role="main"><div id="toolbar_container"><div style="float:left;white-space:nowrap"><table cellpadding=0 cellspacing=0><tr><td id="l_toolbar"></td><td class=toolbar-pc-cell><table cellpadding=0 cellspacing=0><tr><td class=no-jump-cell align=right><span id=page_label style="margin-right:.5em">Page 215</span></td><td class=arrow style="padding-right:2px"><a href="https://books.google.com.sg/books?id=EJCSL9S6la0C&pg=PA214&lpg=PA215&focus=viewport&vq=Archimedes" onclick="_OC_EmptyFunc(this.href); return false;"><div class=pagination><div id=prev_btn alt="Previous Page" title="Previous Page" class="SPRITE_pagination_v2_left"></div></div></a></td><td class=arrow><a href="https://books.google.com.sg/books?id=EJCSL9S6la0C&pg=PA216&lpg=PA215&focus=viewport&vq=Archimedes" onclick="_OC_EmptyFunc(this.href); return false;"><div class=pagination><div id=next_btn alt="Next Page" title="Next Page" class="SPRITE_pagination_v2_right"></div></div></a></td></tr></table></td><td> </td><td id=view_toolbar></td><td id=view_new></td></tr></table></div><div style="float:right"><table cellpadding=0 cellspacing=0><tr><td></td><td id="r_toolbar" style="white-space:nowrap"></td></tr></table></div><div style="clear:both"></div></div><div id="search_bar"></div><div class="gback"><div id="viewport" class="viewport" tabindex="0"><a name="page" accesskey="c"></a><table class="viewport-table" id="container" align="center" cellpadding="0" cellspacing="0"><tr><td valign="top" align="center"><noscript><style type=text/css>.imgg { width:575px;height:803px;background:#eee;padding-bottom:25px}</style><div class=imgg><div align=center><table border=0 cellpadding=0 cellspacing=0 width=500 align=center style="margin-top:2em"><tr><td rowspan=2 valign=top style="width:9px;background:#fff url('/googlebooks/bbl_l.gif') top left repeat-y"><img src="/googlebooks/bbl_tl.gif" width=9 height=7 alt=""></td><td style="background:url('/googlebooks/bbl_t.gif') top left repeat-x"><img width=1 height=7 alt=""></td><td rowspan=2 valign=top style="width:10px;background:#fff url('/googlebooks/bbl_r.gif') top right repeat-y"><img src="/googlebooks/bbl_tr.gif" width=10 height=7 alt=""></td></tr><tr><td align=center style="background:#ff9;text-align:center;line-height:1.2em"><div style="margin:1em"><img width=60 height=60 align=absmiddle src="/googlebooks/restricted_logo.gif" alt=""> <span style="font-weight:bold;font-size:1.2em"><br>Restricted Page</span></div><div style="margin:1em" align=left>You have reached your viewing limit for this book (<a href=https://books.google.com.sg/support/answer/43729?topic=9259&hl=en>why?</a>).</div></td></tr><tr><td><img src="/googlebooks/bbl_bl.gif" width=9 height=9 alt=""></td><td style="background:url('/googlebooks/bbl_b.gif') bottom left repeat-x"><img width=1 height=9 alt=""></td><td><img src="/googlebooks/bbl_br.gif" width=10 height=9 alt=""></td></tr></table></div></div></noscript></td></tr></table></div></div><script>_OC_addFlags({Host:"https://books.google.com.sg/", IsBrowsingHistoryEnabled:1, IsBooksRentalEnabled:1, IsBooksUnifiedLeftNavEnabled:1, IsZipitFolderCollectionEnabled:1});_OC_Run({"page":[{"pid":"PP1","flags":32,"order":0,"h":788},{"pid":"PR4","order":5,"title":"iv","h":779},{"pid":"PR9","order":10,"title":"ix","h":783},{"pid":"PR10","order":11,"title":"x","h":787},{"pid":"PR11","order":12,"title":"xi","h":783},{"pid":"PR12","order":13,"title":"xii","h":806},{"pid":"PA1","order":14,"title":"1","h":783},{"pid":"PA2","order":15,"title":"2","h":789},{"pid":"PA3","order":16,"title":"3","h":786},{"pid":"PA4","order":17,"title":"4","h":790},{"pid":"PA5","order":18,"title":"5","h":782},{"pid":"PA6","order":19,"title":"6","h":786},{"pid":"PA7","order":20,"title":"7","h":784},{"pid":"PA8","order":21,"title":"8","h":790},{"pid":"PA9","order":22,"title":"9","h":786},{"pid":"PA10","order":23,"title":"10","h":790},{"pid":"PA11","order":24,"title":"11","h":787},{"pid":"PA12","order":25,"title":"12","h":790},{"pid":"PA13","order":26,"title":"13","h":785},{"pid":"PA14","order":27,"title":"14","h":790},{"pid":"PA15","order":28,"title":"15","h":786},{"pid":"PA16","order":29,"title":"16","h":790},{"pid":"PA17","order":30,"title":"17","h":788},{"pid":"PA18","order":31,"title":"18","h":789},{"pid":"PA19","order":32,"title":"19","h":788},{"pid":"PA20","order":33,"title":"20","h":791},{"pid":"PA21","order":34,"title":"21","h":789},{"pid":"PA22","order":35,"title":"22","h":792},{"pid":"PA23","order":36,"title":"23","h":789},{"pid":"PA24","order":37,"title":"24","h":793},{"pid":"PA25","order":38,"title":"25","h":788},{"pid":"PA26","order":39,"title":"26","h":791},{"pid":"PA27","order":40,"title":"27","h":789},{"pid":"PA28","order":41,"title":"28","h":792},{"pid":"PA29","order":42,"title":"29","h":789},{"pid":"PA30","order":43,"title":"30","h":793},{"pid":"PA31","order":44,"title":"31","h":787},{"pid":"PA32","order":45,"title":"32","h":794},{"pid":"PA33","order":46,"title":"33","h":788},{"pid":"PA34","order":47,"title":"34","h":793},{"pid":"PA35","order":48,"title":"35","h":787},{"pid":"PA36","order":49,"title":"36","h":792},{"pid":"PA37","order":50,"title":"37","h":788},{"pid":"PA38","order":51,"title":"38","h":793},{"pid":"PA39","order":52,"title":"39","h":789},{"pid":"PA40","order":53,"title":"40","h":790},{"pid":"PA41","order":54,"title":"41","h":787},{"pid":"PA42","order":55,"title":"42","h":789},{"pid":"PA43","order":56,"title":"43","h":790},{"pid":"PA44","order":57,"title":"44","h":779},{"pid":"PA45","order":58,"title":"45","h":791},{"pid":"PA46","order":59,"title":"46","h":794},{"pid":"PA47","order":60,"title":"47","h":799},{"pid":"PA48","order":61,"title":"48","h":779},{"pid":"PA49","order":62,"title":"49","h":793},{"pid":"PA50","order":63,"title":"50","h":793},{"pid":"PA51","order":64,"title":"51","h":795},{"pid":"PA52","order":65,"title":"52","h":793},{"pid":"PA53","order":66,"title":"53","h":795},{"pid":"PA54","order":67,"title":"54","h":793},{"pid":"PA55","order":68,"title":"55","h":794},{"pid":"PA56","order":69,"title":"56","h":779},{"pid":"PA57","order":70,"title":"57","h":795},{"pid":"PA58","order":71,"title":"58","h":795},{"pid":"PA59","order":72,"title":"59","h":795},{"pid":"PA60","order":73,"title":"60","h":798},{"pid":"PA61","order":74,"title":"61","h":796},{"pid":"PA62","order":75,"title":"62","h":779},{"pid":"PA63","order":76,"title":"63","h":796},{"pid":"PA64","order":77,"title":"64","h":806},{"pid":"PA65","order":78,"title":"65","h":795},{"pid":"PA66","order":79,"title":"66","h":796},{"pid":"PA67","order":80,"title":"67","h":795},{"pid":"PA68","order":81,"title":"68","h":795},{"pid":"PA69","order":82,"title":"69","h":794},{"pid":"PA70","order":83,"title":"70","h":794},{"pid":"PA71","order":84,"title":"71","h":795},{"pid":"PA72","order":85,"title":"72","h":796},{"pid":"PA73","order":86,"title":"73","h":794},{"pid":"PA74","order":87,"title":"74","h":793},{"pid":"PA75","order":88,"title":"75","h":796},{"pid":"PA76","order":89,"title":"76","h":796},{"pid":"PA77","order":90,"title":"77","h":793},{"pid":"PA78","order":91,"title":"78","h":793},{"pid":"PA79","order":92,"title":"79","h":792},{"pid":"PA80","order":93,"title":"80","h":794},{"pid":"PA81","order":94,"title":"81","h":796},{"pid":"PA82","order":95,"title":"82","h":795},{"pid":"PA83","order":96,"title":"83","h":795},{"pid":"PA84","order":97,"title":"84","h":796},{"pid":"PA85","order":98,"title":"85","h":796},{"pid":"PA86","order":99,"title":"86","h":781},{"pid":"PA87","order":100,"title":"87","h":798},{"pid":"PA88","order":101,"title":"88","h":781},{"pid":"PA89","order":102,"title":"89","h":798},{"pid":"PA90","order":103,"title":"90","h":796},{"pid":"PA91","order":104,"title":"91","h":798},{"pid":"PA92","order":105,"title":"92","h":781},{"pid":"PA93","order":106,"title":"93","h":798},{"pid":"PA94","order":107,"title":"94","h":825},{"pid":"PA95","order":108,"title":"95","h":798},{"pid":"PA96","order":109,"title":"96","h":796},{"pid":"PA97","order":110,"title":"97","h":797},{"pid":"PA98","order":111,"title":"98","h":798},{"pid":"PA99","order":112,"title":"99","h":796},{"pid":"PA100","order":113,"title":"100","h":796},{"pid":"PA101","order":114,"title":"101","h":798},{"pid":"PA102","order":115,"title":"102","h":798},{"pid":"PA103","order":116,"title":"103","h":800},{"pid":"PA104","order":117,"title":"104","h":798},{"pid":"PA105","order":118,"title":"105","h":800},{"pid":"PA106","order":119,"title":"106","h":797},{"pid":"PA107","order":120,"title":"107","h":800},{"pid":"PA108","order":121,"title":"108","h":800},{"pid":"PA109","order":122,"title":"109"},{"pid":"PA110","order":123,"title":"110","h":798},{"pid":"PA111","order":124,"title":"111"},{"pid":"PA112","order":125,"title":"112"},{"pid":"PA113","order":126,"title":"113"},{"pid":"PA114","order":127,"title":"114"},{"pid":"PA115","order":128,"title":"115","h":796},{"pid":"PA116","order":129,"title":"116","h":796},{"pid":"PA117","order":130,"title":"117"},{"pid":"PA118","order":131,"title":"118","h":802},{"pid":"PA119","order":132,"title":"119","h":800},{"pid":"PA120","order":133,"title":"120","h":799},{"pid":"PA121","order":134,"title":"121","h":800},{"pid":"PA122","order":135,"title":"122","h":800},{"pid":"PA123","order":136,"title":"123","h":800},{"pid":"PA124","order":137,"title":"124"},{"pid":"PA125","order":138,"title":"125","h":798},{"pid":"PA126","order":139,"title":"126"},{"pid":"PA127","order":140,"title":"127","h":825},{"pid":"PA128","order":141,"title":"128","h":795},{"pid":"PA129","order":142,"title":"129","h":800},{"pid":"PA130","order":143,"title":"130"},{"pid":"PA131","order":144,"title":"131"},{"pid":"PA132","order":145,"title":"132","h":803},{"pid":"PA133","order":146,"title":"133","h":800},{"pid":"PA134","order":147,"title":"134"},{"pid":"PA135","order":148,"title":"135","h":803},{"pid":"PA136","order":149,"title":"136","h":804},{"pid":"PA137","order":150,"title":"137"},{"pid":"PA138","order":151,"title":"138","h":803},{"pid":"PA139","order":152,"title":"139"},{"pid":"PA140","order":153,"title":"140","h":803},{"pid":"PA141","order":154,"title":"141","h":800},{"pid":"PA142","order":155,"title":"142","h":803},{"pid":"PA143","order":156,"title":"143","h":800},{"pid":"PA144","order":157,"title":"144","h":800},{"pid":"PA145","order":158,"title":"145","h":803},{"pid":"PA146","order":159,"title":"146"},{"pid":"PA147","order":160,"title":"147","h":800},{"pid":"PA148","order":161,"title":"148","h":803},{"pid":"PA149","order":162,"title":"149","h":804},{"pid":"PA150","order":163,"title":"150","h":825},{"pid":"PA151","order":164,"title":"151"},{"pid":"PA152","order":165,"title":"152","h":803},{"pid":"PA153","order":166,"title":"153","h":800},{"pid":"PA154","order":167,"title":"154","h":825},{"pid":"PA155","order":168,"title":"155","h":800},{"pid":"PA156","order":169,"title":"156","h":803},{"pid":"PA157","order":170,"title":"157","h":800},{"pid":"PA158","order":171,"title":"158","h":799},{"pid":"PA159","order":172,"title":"159"},{"pid":"PA160","order":173,"title":"160","h":781},{"pid":"PA161","order":174,"title":"161","h":803},{"pid":"PA162","order":175,"title":"162","h":804},{"pid":"PA163","order":176,"title":"163"},{"pid":"PA164","order":177,"title":"164","h":781},{"pid":"PA165","order":178,"title":"165"},{"pid":"PA166","order":179,"title":"166","h":804},{"pid":"PA167","order":180,"title":"167"},{"pid":"PA168","order":181,"title":"168","h":804},{"pid":"PA169","order":182,"title":"169","h":802},{"pid":"PA170","order":183,"title":"170","h":806},{"pid":"PA171","order":184,"title":"171","h":802},{"pid":"PA172","order":185,"title":"172","h":803},{"pid":"PA173","order":186,"title":"173","h":802},{"pid":"PA174","order":187,"title":"174","h":806},{"pid":"PA175","order":188,"title":"175","h":798},{"pid":"PA176","order":189,"title":"176","h":827},{"pid":"PA177","order":190,"title":"177","h":803},{"pid":"PA178","order":191,"title":"178","h":804},{"pid":"PA179","order":192,"title":"179","h":800},{"pid":"PA180","order":193,"title":"180"},{"pid":"PA181","order":194,"title":"181"},{"pid":"PA182","order":195,"title":"182","h":803},{"pid":"PA183","order":196,"title":"183"},{"pid":"PA184","order":197,"title":"184","h":803},{"pid":"PA185","order":198,"title":"185","h":803},{"pid":"PA186","order":199,"title":"186","h":804},{"pid":"PA187","order":200,"title":"187","h":803},{"pid":"PA188","order":201,"title":"188","h":804},{"pid":"PA189","order":202,"title":"189","h":803},{"pid":"PA190","order":203,"title":"190","h":804},{"pid":"PA191","order":204,"title":"191","h":802},{"pid":"PA192","order":205,"title":"192","h":804},{"pid":"PA193","order":206,"title":"193","h":803},{"pid":"PA194","order":207,"title":"194","h":803},{"pid":"PA195","order":208,"title":"195","h":800},{"pid":"PA196","order":209,"title":"196"},{"pid":"PA197","order":210,"title":"197","h":803},{"pid":"PA198","order":211,"title":"198"},{"pid":"PA199","order":212,"title":"199","h":803},{"pid":"PA200","order":213,"title":"200"},{"pid":"PA201","order":214,"title":"201","h":803},{"pid":"PA202","order":215,"title":"202","h":804},{"pid":"PA203","order":216,"title":"203","h":803},{"pid":"PA204","order":217,"title":"204","h":802},{"pid":"PA205","order":218,"title":"205"},{"pid":"PA206","order":219,"title":"206"},{"pid":"PA207","order":220,"title":"207","h":802},{"pid":"PA208","order":221,"title":"208","h":803},{"pid":"PA209","order":222,"title":"209","h":802},{"pid":"PA210","order":223,"title":"210"},{"pid":"PA211","order":224,"title":"211","h":804},{"pid":"PA212","order":225,"title":"212","h":804},{"pid":"PA213","order":226,"title":"213","h":800},{"pid":"PA214","flags":8,"order":227,"title":"214","h":799},{"pid":"PA215","flags":8,"order":228,"title":"215","h":803},{"pid":"PA216","flags":8,"order":229,"title":"216","h":802},{"pid":"PA217","flags":8,"order":230,"title":"217","h":803},{"pid":"PA218","flags":8,"order":231,"title":"218","h":827},{"pid":"PA219","order":232,"title":"219","h":803},{"pid":"PA220","order":233,"title":"220","h":800},{"pid":"PA221","order":234,"title":"221","h":799},{"pid":"PA222","order":235,"title":"222","h":799},{"pid":"PA223","order":236,"title":"223","h":803},{"pid":"PA224","order":237,"title":"224","h":804},{"pid":"PA225","order":238,"title":"225","h":800},{"pid":"PA226","order":239,"title":"226","h":798},{"pid":"PA227","order":240,"title":"227","h":805},{"pid":"PA228","order":241,"title":"228","h":804},{"pid":"PA229","order":242,"title":"229","h":802},{"pid":"PA230","order":243,"title":"230","h":804},{"pid":"PA231","order":244,"title":"231","h":803},{"pid":"PA232","order":245,"title":"232","h":803},{"pid":"PA233","order":246,"title":"233","h":803},{"pid":"PA234","order":247,"title":"234","h":784},{"pid":"PA235","order":248,"title":"235","h":803},{"pid":"PA236","order":249,"title":"236","h":804},{"pid":"PA237","order":250,"title":"237","h":802},{"pid":"PA238","order":251,"title":"238","h":806},{"pid":"PA239","order":252,"title":"239","h":803},{"pid":"PA240","order":253,"title":"240","h":784},{"pid":"PA241","order":254,"title":"241","h":803},{"pid":"PA242","order":255,"title":"242","h":804},{"pid":"PA243","order":256,"title":"243","h":803},{"pid":"PA244","order":257,"title":"244","h":784},{"pid":"PA245","order":258,"title":"245","h":804},{"pid":"PA246","order":259,"title":"246","h":804},{"pid":"PA247","order":260,"title":"247","h":802},{"pid":"PA248","order":261,"title":"248","h":803},{"pid":"PA249","order":262,"title":"249","h":803},{"pid":"PA250","order":263,"title":"250","h":784},{"pid":"PA251","order":264,"title":"251","h":802},{"pid":"PA252","order":265,"title":"252"},{"pid":"PA253","order":266,"title":"253","h":803},{"pid":"PA254","order":267,"title":"254","h":806},{"pid":"PA255","order":268,"title":"255","h":803},{"pid":"PA256","order":269,"title":"256","h":814},{"pid":"PA257","order":270,"title":"257","h":803},{"pid":"PA258","order":271,"title":"258","h":784},{"pid":"PA259","order":272,"title":"259","h":802},{"pid":"PA260","order":273,"title":"260","h":806},{"pid":"PA262","order":275,"title":"262","h":803},{"pid":"PA264","order":277,"title":"264","h":806},{"pid":"PA265","order":278,"title":"265","h":814},{"pid":"PA266","order":279,"title":"266","h":814},{"pid":"PA267","order":280,"title":"267","h":814},{"pid":"PA268","order":281,"title":"268","h":804},{"pid":"PA270","order":283,"title":"270","h":804},{"pid":"PA273","order":286,"title":"273","h":802},{"pid":"PA275","order":288,"title":"275","h":804},{"pid":"PA276","order":289,"title":"276","h":804},{"pid":"PA277","order":290,"title":"277","h":802},{"pid":"PA278","order":291,"title":"278","h":802},{"pid":"PA279","order":292,"title":"279","h":790},{"pid":"PA282","order":295,"title":"282","h":790},{"pid":"PA283","order":296,"title":"283","h":814},{"pid":"PA285","order":298,"title":"285","h":802},{"pid":"PA286","order":299,"title":"286","h":802},{"pid":"PA287","order":300,"title":"287","h":814},{"pid":"PA288","order":301,"title":"288"},{"pid":"PA289","order":302,"title":"289","h":803},{"pid":"PA290","order":303,"title":"290"},{"pid":"PA291","order":304,"title":"291","h":814},{"pid":"PA293","order":306,"title":"293","h":790},{"pid":"PA294","order":307,"title":"294","h":806},{"pid":"PA296","order":309,"title":"296","h":805},{"pid":"PA297","order":310,"title":"297","h":802},{"pid":"PA298","order":311,"title":"298","h":803},{"pid":"PA299","order":312,"title":"299","h":802},{"pid":"PA302","order":315,"title":"302","h":805},{"pid":"PA303","order":316,"title":"303","h":798},{"pid":"PA304","order":317,"title":"304"},{"pid":"PA306","order":319,"title":"306","h":806},{"pid":"PA307","order":320,"title":"307","h":802},{"pid":"PA308","order":321,"title":"308"},{"pid":"PA309","order":322,"title":"309","h":805},{"pid":"PA310","order":323,"title":"310","h":806},{"pid":"PA311","order":324,"title":"311","h":802},{"pid":"PA315","order":328,"title":"315","h":802},{"pid":"PA316","order":329,"title":"316","h":806},{"pid":"PA317","order":330,"title":"317"},{"pid":"PA319","order":332,"title":"319","h":802},{"pid":"PA321","order":334,"title":"321","h":802},{"pid":"PA322","order":335,"title":"322","h":803},{"pid":"PA323","order":336,"title":"323","h":803},{"pid":"PA324","order":337,"title":"324"},{"pid":"PA325","order":338,"title":"325","h":802},{"pid":"PA326","order":339,"title":"326","h":805},{"pid":"PA329","order":342,"title":"329","h":805},{"pid":"PA330","order":343,"title":"330","h":804},{"pid":"PA332","order":345,"title":"332","h":804},{"pid":"PA333","order":346,"title":"333","h":803},{"pid":"PA335","order":348,"title":"335","h":804},{"pid":"PA336","order":349,"title":"336","h":804},{"pid":"PA338","order":351,"title":"338","h":803},{"pid":"PA340","order":353,"title":"340","h":803},{"pid":"PA341","order":354,"title":"341","h":803},{"pid":"PA342","order":355,"title":"342","h":806},{"pid":"PA343","order":356,"title":"343","h":803},{"pid":"PA344","order":357,"title":"344","h":806},{"pid":"PA345","order":358,"title":"345"},{"pid":"PA347","order":360,"title":"347","h":804},{"pid":"PA348","order":361,"title":"348","h":800},{"pid":"PA350","order":363,"title":"350","h":803},{"pid":"PA351","order":364,"title":"351","h":803},{"pid":"PA352","order":365,"title":"352","h":803},{"pid":"PA353","order":366,"title":"353","h":803},{"pid":"PA354","order":367,"title":"354","h":804},{"pid":"PA358","order":371,"title":"358","h":804},{"pid":"PA359","order":372,"title":"359","h":803},{"pid":"PA360","order":373,"title":"360","h":804},{"pid":"PA361","order":374,"title":"361","h":802},{"pid":"PA362","order":375,"title":"362","h":806},{"pid":"PA363","order":376,"title":"363","h":790},{"pid":"PA364","order":377,"title":"364","h":806},{"pid":"PA366","order":379,"title":"366","h":804},{"pid":"PA367","order":380,"title":"367","h":804},{"pid":"PA368","order":381,"title":"368"},{"pid":"PA369","order":382,"title":"369","h":803},{"pid":"PA371","order":384,"title":"371","h":802},{"pid":"PA372","order":385,"title":"372","h":806},{"pid":"PA373","order":386,"title":"373","h":803},{"pid":"PA374","order":387,"title":"374","h":804},{"pid":"PA376","order":389,"title":"376","h":804},{"pid":"PA377","order":390,"title":"377","h":803},{"pid":"PA378","order":391,"title":"378","h":803},{"pid":"PA379","order":392,"title":"379","h":803},{"pid":"PA381","order":394,"title":"381","h":813},{"pid":"PA382","order":395,"title":"382","h":804},{"pid":"PA383","order":396,"title":"383","h":803},{"pid":"PA385","order":398,"title":"385","h":803},{"pid":"PA386","order":399,"title":"386","h":803},{"pid":"PA387","order":400,"title":"387","h":803},{"pid":"PA388","order":401,"title":"388","h":806},{"pid":"PA391","order":404,"title":"391"},{"pid":"PA392","order":405,"title":"392","h":813},{"pid":"PA394","order":407,"title":"394","h":806},{"pid":"PA395","order":408,"title":"395","h":788},{"pid":"PA396","order":409,"title":"396"},{"pid":"PA397","order":410,"title":"397","h":802},{"pid":"PA398","order":411,"title":"398"},{"pid":"PA399","order":412,"title":"399","h":803},{"pid":"PA403","order":416,"title":"403","h":803},{"pid":"PA404","order":417,"title":"404","h":806},{"pid":"PA406","order":419,"title":"406","h":806},{"pid":"PA408","order":421,"title":"408","h":802},{"pid":"PA409","order":422,"title":"409","h":803},{"pid":"PA412","order":425,"title":"412","h":806},{"pid":"PA414","order":427,"title":"414"},{"pid":"PA415","order":428,"title":"415","h":803},{"pid":"PA416","order":429,"title":"416","h":804},{"pid":"PA417","order":430,"title":"417","h":802},{"pid":"PA420","order":433,"title":"420","h":803},{"pid":"PA421","order":434,"title":"421","h":802},{"pid":"PA422","order":435,"title":"422"},{"pid":"PA424","order":437,"title":"424","h":806},{"pid":"PA427","order":440,"title":"427","h":800},{"pid":"PA429","order":442,"title":"429","h":813},{"pid":"PA430","order":443,"title":"430","h":803},{"pid":"PA431","order":444,"title":"431"},{"pid":"PA432","order":445,"title":"432","h":800},{"pid":"PA433","order":446,"title":"433","h":802},{"pid":"PA434","order":447,"title":"434","h":788},{"pid":"PA435","order":448,"title":"435","h":802},{"pid":"PA437","order":450,"title":"437","h":803},{"pid":"PA438","order":451,"title":"438","h":803},{"pid":"PA440","order":453,"title":"440","h":800},{"pid":"PA441","order":454,"title":"441"},{"pid":"PA442","order":455,"title":"442"},{"pid":"PA443","order":456,"title":"443","h":800},{"pid":"PA445","order":458,"title":"445","h":803},{"pid":"PA446","order":459,"title":"446"},{"pid":"PA447","order":460,"title":"447","h":800},{"pid":"PA449","order":462,"title":"449","h":797},{"pid":"PA450","order":463,"title":"450"},{"pid":"PA451","order":464,"title":"451","h":799},{"pid":"PA452","order":465,"title":"452","h":782},{"pid":"PA453","order":466,"title":"453","h":798},{"pid":"PA454","order":467,"title":"454","h":799},{"pid":"PA455","order":468,"title":"455","h":796},{"pid":"PA457","order":470,"title":"457","h":799},{"pid":"PA458","order":471,"title":"458","h":799},{"pid":"PA460","order":473,"title":"460","h":796},{"pid":"PA460-IA1","order":474,"title":"460","h":798},{"pid":"PA461","order":476,"title":"461","h":797},{"pid":"PA462","order":477,"title":"462","h":810},{"pid":"PA463","order":478,"title":"463"},{"pid":"PA464","order":479,"title":"464","h":810},{"pid":"PA465","order":480,"title":"465","h":797},{"pid":"PA466","order":481,"title":"466","h":810},{"pid":"PA467","order":482,"title":"467","h":800},{"pid":"PA468","order":483,"title":"468","h":782},{"pid":"PA469","order":484,"title":"469","h":797},{"pid":"PA471","order":486,"title":"471","h":800},{"pid":"PA472","order":487,"title":"472","h":810},{"pid":"PA473","order":488,"title":"473","h":797},{"pid":"PA474","order":489,"title":"474","h":810},{"pid":"PA475","order":490,"title":"475","h":798},{"pid":"PA479","order":494,"title":"479","h":798},{"pid":"PA480","order":495,"title":"480","h":782},{"pid":"PA481","order":496,"title":"481","h":797},{"pid":"PA483","order":498,"title":"483","h":800},{"pid":"PA485","order":500,"title":"485","h":798},{"pid":"PA486","order":501,"title":"486","h":796},{"pid":"PA488","order":503,"title":"488","h":782},{"pid":"PA489","order":504,"title":"489","h":794},{"pid":"PA490","order":505,"title":"490","h":793},{"pid":"PA494","order":509,"title":"494","h":782},{"pid":"PA495","order":510,"title":"495","h":782},{"pid":"PA502","order":517,"title":"502","h":782},{"pid":"PA503","order":518,"title":"503","h":796},{"pid":"PA504","order":519,"title":"504","h":810},{"pid":"PA505","order":520,"title":"505","h":782},{"pid":"PA506","order":521,"title":"506","h":810},{"pid":"PA507","order":522,"title":"507","h":810},{"pid":"PA508","order":523,"title":"508","h":810},{"pid":"PA509","order":524,"title":"509","h":782},{"pid":"PA510","order":525,"title":"510","h":794},{"pid":"PA511","order":526,"title":"511","h":782},{"pid":"PA512","order":527,"title":"512","h":810},{"pid":"PA513","order":528,"title":"513","h":782},{"pid":"PA514","order":529,"title":"514","h":810},{"pid":"PA515","order":530,"title":"515","h":782},{"pid":"PA516","order":531,"title":"516","h":810},{"pid":"PA517","order":532,"title":"517","h":810},{"pid":"PA518","order":533,"title":"518","h":782},{"pid":"PA519","order":534,"title":"519","h":782},{"pid":"PA520","order":535,"title":"520","h":782},{"pid":"PA521","order":536,"title":"521","h":782},{"pid":"PA522","order":537,"title":"522","h":810},{"pid":"PA523","order":538,"title":"523","h":782},{"pid":"PA524","order":539,"title":"524","h":810},{"pid":"PA525","order":540,"title":"525","h":782},{"pid":"PA526","order":541,"title":"526","h":782},{"pid":"PA527","order":542,"title":"527","h":790},{"pid":"PA528","order":543,"title":"528","h":791}],"prefix":"https://books.google.com.sg/books?id=EJCSL9S6la0C\u0026lpg=PA215\u0026vq=Archimedes"},{"fullview":false,"page_width":575,"page_height":801,"font_height":0,"first_content_page":14,"disable_twopage":true,"initial_zoom_width_override":0,"show_print_pages_button":false,"title":"Geometry: Euclid and Beyond","subtitle":"","attribution":"By Robin Hartshorne","additional_info":{"[JsonBookInfo]":{"BuyLinks":[{"Seller":"Springer Shop","Url":"http://www.springer.com/978-0-387-98650-0?utm_medium=referral\u0026utm_source=google_books\u0026utm_campaign=3_pier05_buy_print\u0026utm_content=en_08082017","TrackingUrl":"/url?client=ca-print-springer-kluwer_academic\u0026format=googleprint\u0026num=0\u0026id=EJCSL9S6la0C\u0026q=http://www.springer.com/978-0-387-98650-0%3Futm_medium%3Dreferral%26utm_source%3Dgoogle_books%26utm_campaign%3D3_pier05_buy_print%26utm_content%3Den_08082017\u0026usg=AOvVaw2ovGpeusaBJYJmBdiegIyf","IsPublisher":true},{"Seller":"Amazon.com","Url":"http://www.amazon.com/gp/search?index=books\u0026linkCode=qs\u0026keywords=9780387986500","TrackingUrl":"/url?client=ca-print-springer-kluwer_academic\u0026format=googleprint\u0026num=0\u0026id=EJCSL9S6la0C\u0026q=http://www.amazon.com/gp/search%3Findex%3Dbooks%26linkCode%3Dqs%26keywords%3D9780387986500\u0026usg=AOvVaw1o1gpafHEJp6cfh9hxNlcX"},{"Seller":"MPH","Url":"http://www.mphonline.com/books/nsearch.aspx?do=detail\u0026pcode=9780387986500","TrackingUrl":"/url?client=ca-print-springer-kluwer_academic\u0026format=googleprint\u0026num=0\u0026id=EJCSL9S6la0C\u0026q=http://www.mphonline.com/books/nsearch.aspx%3Fdo%3Ddetail%26pcode%3D9780387986500\u0026usg=AOvVaw1tMnJ6z48nqrtgs7CiN-e_"},{"Seller":"Popular","Url":"https://www.popular.com.sg/catalogsearch/result/?q=9780387986500","TrackingUrl":"/url?client=ca-print-springer-kluwer_academic\u0026format=googleprint\u0026num=0\u0026id=EJCSL9S6la0C\u0026q=https://www.popular.com.sg/catalogsearch/result/%3Fq%3D9780387986500\u0026usg=AOvVaw1TTE_EIe8FvQmsxM3o3Vc1"}],"AboutUrl":"https://books.google.com.sg/books?id=EJCSL9S6la0C","PreviewUrl":"https://books.google.com.sg/books?id=EJCSL9S6la0C","allowed_syndication_flags":{"allow_disabling_chrome":true},"TocLine":[{"Title":"Introduction ","Pid":"PA1","PgNum":"1","Order":14},{"Title":"Euclids Geometry ","Pid":"PA7","PgNum":"7","Order":20},{"Title":"Hilberts Axioms ","Pid":"PA65","PgNum":"65","Order":78},{"Title":"Geometry over Fields ","Pid":"PA117","PgNum":"117","Order":130},{"Title":"Congruence of Segments and Angles ","Pid":"PA140","PgNum":"140","Order":153},{"Title":"Rigid Motions and SAS ","Pid":"PA148","PgNum":"148","Order":161},{"Title":"NonArchimedean Geometry ","Pid":"PA158","PgNum":"158","Order":171},{"Title":"Segment Arithmetic ","Pid":"PA165","PgNum":"165","Order":178},{"Title":"Similar Triangles ","Pid":"PA175","PgNum":"175","Order":188},{"Title":"Introduction of Coordinates ","Pid":"PA186","PgNum":"186","Order":199},{"Title":"Area ","Pid":"PA195","PgNum":"195","Order":208},{"Title":"Area in Euclids Geometry ","Pid":"PA196","PgNum":"196","Order":209},{"Title":"Measure of Area Functions ","Pid":"PA205","PgNum":"205","Order":218},{"Title":"Dissection ","Pid":"PA212","PgNum":"212","Order":225},{"Title":"Quadratura Circuli ","Pid":"PA221","PgNum":"221","Order":234},{"Title":"Euclids Theory of Volume ","Pid":"PA226","PgNum":"226","Order":239},{"Title":"Hilberts Third Problem ","Pid":"PA231","PgNum":"231","Order":244},{"Title":"Construction Problems and Field Extensions ","Pid":"PA241","PgNum":"241","Order":254},{"Title":"Three Famous Problems ","Pid":"PA242","PgNum":"242","Order":255},{"Title":"The Regular 17Sided Polygon ","Pid":"PA250","PgNum":"250","Order":263},{"Title":"Constructions with Compass and Marked Ruler ","Pid":"PA259","PgNum":"259","Order":272},{"Title":"Cubic and Quartic Equations ","Pid":"PA270","PgNum":"270","Order":283},{"Title":"Finite Field Extensions ","Pid":"PA280","PgNum":"280","Order":293},{"Title":"NonEuclidean Geometry ","Pid":"PA295","PgNum":"295","Order":308},{"Title":"History of the Parallel Postulate ","Pid":"PA296","PgNum":"296","Order":309},{"Title":"Neutral Geometry ","Pid":"PA304","PgNum":"304","Order":317},{"Title":"Archimedean Neutral Geometry ","Pid":"PA319","PgNum":"319","Order":332},{"Title":"NonEuclidean Area ","Pid":"PA326","PgNum":"326","Order":339},{"Title":"Circular Inversion ","Pid":"PA334","PgNum":"334","Order":347},{"Title":"Circles Determined by Three Conditions ","Pid":"PA346","PgNum":"346","Order":359},{"Title":"The Poincaré Model ","Pid":"PA355","PgNum":"355","Order":368},{"Title":"Hyperbolic Geometry ","Pid":"PA373","PgNum":"373","Order":386},{"Title":"Hilberts Arithmetic of Ends ","Pid":"PA388","PgNum":"388","Order":401},{"Title":"Hyperbolic Trigonometry ","Pid":"PA403","PgNum":"403","Order":416},{"Title":"Characterization of Hilbert Planes ","Pid":"PA415","PgNum":"415","Order":428},{"Title":"Polyhedra ","Pid":"PA435","PgNum":"435","Order":448},{"Title":"The Five Regular Solids ","Pid":"PA436","PgNum":"436","Order":449},{"Title":"Eulers and Cauchys Theorems ","Pid":"PA448","PgNum":"448","Order":461},{"Title":"Brief Euclid ","Pid":"PA481","PgNum":"481","Order":496},{"Title":"References ","Pid":"PA495","PgNum":"495","Order":510}]}},"table_of_contents_page_id":"PR9","max_resolution_image_width":1280,"max_resolution_image_height":1783,"num_toc_pages":3,"quality_info":"We have no quality information about this book.","volume_id":"EJCSL9S6la0C","permission_info":"Pages displayed by permission of \u003ca class=link_aux href=\"https://books.google.com.sg/url?id=EJCSL9S6la0C\u0026pg=PA215\u0026q=http://www.springer.com/shop\u0026clientid=ca-print-springer-kluwer_academic\u0026linkid=1\u0026usg=AOvVaw1djMqZiM66oJFNtLwbXjQ2\u0026source=gbs_pub_info_r\"\u003eSpringer Science \u0026amp; Business Media\u003c/a\u003e","is_ebook":false,"volumeresult":{"has_flowing_text":false,"has_scanned_text":true,"can_download_pdf":false,"can_download_epub":false,"is_pdf_drm_enabled":false,"is_epub_drm_enabled":false},"publisher":"Springer Science \u0026 Business Media","publication_date":"2005.09.28","subject":"Mathematics","num_pages":528,"sample_url":"https://play.google.com/books/reader?id=EJCSL9S6la0C\u0026source=gbs_vpt_hover","synposis":"In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And in the last chapter we provide what is missing from Euclid's treatment of the five Platonic solids in Book XIII of the Elements. For a one-semester course such as I teach, Chapters 1 and 2 form the core material, which takes six to eight weeks.","my_library_url":"https://www.google.com/accounts/Login?service=print\u0026continue=https://books.google.com.sg/books%3Fop%3Dlibrary\u0026hl=en","is_magazine":false,"is_public_domain":false,"last_page":{"pid":"PA530","order":545,"title":"530","h":789}},{"enableUserFeedbackUI":true,"pseudocontinuous":true,"is_cobrand":false,"sign_in_url":"https://www.google.com/accounts/Login?service=print\u0026continue=https://books.google.com.sg/books%3Fid%3DEJCSL9S6la0C%26q%3DArchimedes%26source%3Dgbs_word_cloud_r%26hl%3Den\u0026hl=en","isEntityPageViewport":false,"showViewportOnboarding":false,"showViewportPlainTextOnboarding":false},{"page":[{"pid":"PA215","highlights":[{"X":105,"Y":193,"W":60,"H":13},{"X":76,"Y":324,"W":65,"H":11},{"X":73,"Y":628,"W":65,"H":12}],"flags":8,"order":228,"vq":"Archimedes"}]},null,{"number_of_results":49,"search_results":[{"page_id":"PA1","page_number":"1","snippet_text":"Robin Hartshorne. Introduction little after the time of Plato , but before \u003cb\u003eArchimedes\u003c/b\u003e , in ancient Greece , a man named Euclid wrote the Ele- ments , gathering and improving the work of his pre- decessors Pythagoras , Theaetetus , and\u0026nbsp;..."},{"page_id":"PA4","page_number":"4","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom , which states that given any two segments there is an integer multiple of the first that will exceed the second . Using the field of segment arithmetic men- tioned above we can give ( following Hilbert ) an\u0026nbsp;..."},{"page_id":"PA5","page_number":"5","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e , while others were found more recently , such as the Euler line and the nine - point circle associated to a triangle . The technique of circular inversion , which became popular in the second quarter of the nineteenth\u0026nbsp;..."},{"page_id":"PA56","page_number":"56","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e ( Oxford edition of 1792 ) . When the Socratic philosopher Aristippus was shipwrecked on the shores of Rhodes , he saw geometrical fig- ures in the sand and exclaimed to his comrades : \u0026quot; There is hope : I see traces of men\u0026nbsp;..."},{"page_id":"PA60","page_number":"60","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e . ) K 5.8 Show that the opposite angles α , y of a quadrilateral ABCD add to two right angles if and only if A , B , C , D lie on a circle . 5.9 Let AB be the diameter of a circle г. Show that a triangle ABC has a right angle\u0026nbsp;..."},{"page_id":"PA70","page_number":"70","snippet_text":"... . Therefore , we will almost never assume Dedekind\u0026#39;s axiom ( D ) , and we will only sometimes assume \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) , or the parallel axiom ( P ) . Finally , one can ask whether the axiom system is. 70 2. Hilbert\u0026#39;s Axioms."},{"page_id":"PA112","page_number":"112","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e and of Dedekind , which will be used in some parts of later chapters . Definition A Euclidean plane is a Hilbert plane satisfying the additional axioms ( E ) , the circle - circle intersection property , and ( P )\u0026nbsp;..."},{"page_id":"PA115","page_number":"115","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom . A. Given line segments AB and CD , there is a natural number n such that n copies of AB added together will be greater than CD . This axiom is used implicitly in the theory of proportion developed in Book V , for\u0026nbsp;..."},{"page_id":"PA116","page_number":"116","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) . Hint : Given segments AB and CD , let T be the set of all points E on the ray CD for which there is no integer n with n AB \u0026gt; CE . Let S be the set of points of the line CD not in T , and apply ( D ) . 12.3\u0026nbsp;..."},{"page_id":"PA117","page_number":"117","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( Section 18 ) . We have seen that the geometry developed in Euclid\u0026#39;s Elements does not make use of numbers to measure lengths or angles or areas . It is purely geo- metric in that it deals with points , lines\u0026nbsp;..."},{"page_id":"PA120","page_number":"120","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( 18.4.2 ) . For these reasons we will preserve two separate logical tracks , the abstract axiomatic approach , and the analytic - geometric approach , until such time as we can prove that the two tracks converge\u0026nbsp;..."},{"page_id":"PA138","page_number":"138","snippet_text":"... are reduced to the previous case . To complete this section , we will discuss \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) and Dede- kind\u0026#39;s axiom ( D ) -cf . Section 12 . Proposition 15.4 Let F , P be an ordered field 138 3. Geometry over Fields."},{"page_id":"PA139","page_number":"139","snippet_text":"... ( \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom for a field ) . For any a \u0026gt; 0 in F , there is an integer n such that n \u0026gt; a . ( D \u0026#39; ) ( Dedekind\u0026#39;s axiom for a field ) . Suppose we can write the field F as the disjoint union of two nonempty subsets F = SUT , and\u0026nbsp;..."},{"page_id":"PA140","page_number":"140","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A \u0026#39; ) . Hint : If F did not satisfy ( A \u0026#39; ) , let S = { a e F3n e Z , with a \u0026lt; n } , and let T = F - S . Then apply ( D \u0026#39; ) . 15.5 In the proof of Proposition 15.5 , verify that ( aß ) = p ( a ) . ( B ) . 15.6 If F\u0026nbsp;..."},{"page_id":"PA158","page_number":"158","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) and Playfair\u0026#39;s axiom ( P ) from the axioms of a Hilbert plane . The other is to free our minds from the con- straints of habit by studying the properties of a logically constructed geometry in which \u003cb\u003eArchimedes\u003c/b\u003e\u0026nbsp;..."},{"page_id":"PA167","page_number":"167","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom . This is clear from Book V , Definition 4 , which says that magnitudes have a ratio to each other if each , when multiplied , is capable of exceeding the other . Without \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom , some quantities would be\u0026nbsp;..."},{"page_id":"PA173","page_number":"173","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) . Proposition 19.3 Given a Hilbert plane satisfying ( P ) , and a unit segment 1 having been chosen , there is a unique ( up to isomorphism ) ordered field F whose set of positive elements P is the set of\u0026nbsp;..."},{"page_id":"PA199","page_number":"199","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) in addition , are the notions of equidecomposable and equal content equiva- lent ? We will see that the answer is yes in any Hilbert plane with ( P ) and ( A ) , by using a measure of area function with values\u0026nbsp;..."},{"page_id":"PA204","page_number":"204","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) , give a direct proof of the ana- logue of ( 1.35 ) for equidecomposability : Two parallelograms on the same base and within the same parallels are equidecomposable . 22.11 Simple closed polygons . A simple\u0026nbsp;..."},{"page_id":"PA215","page_number":"215","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) . Given any rectangle ABCD and given any segment EF , there is a rectangle EFGH equivalent by dissection to ABCD . Proof Given any rectangle , by cutting it in half and reassembling the two halves along the\u0026nbsp;..."},{"page_id":"PA217","page_number":"217","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) one can improve Euclid\u0026#39;s results about parallelograms ( 1.35 ) and triangles ( 1.37 ) to hold also for dissection . Then Euclid\u0026#39;s proof will show that ( 1.47 ) holds for dissection assum- ing ( A ) . However\u0026nbsp;..."},{"page_id":"PA219","page_number":"219","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) give a direct proof of ( 1.37 ) by dissection . 24.2 Dissect a square into three equal smaller squares . 24.3 Use the accompanying diagram to provide another proof of the Pytha- gorean theorem ( 1.47 ) by\u0026nbsp;..."},{"page_id":"PA221","page_number":"221","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom , show that it is possible to dissect P into P \u0026#39; using translations and 180 ° rota- tions only . 24.16 Let T be a triangle whose smallest angle is greater than or equal to 45 ° . Then T can be dissected into a square\u0026nbsp;..."},{"page_id":"PA222","page_number":"222","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) , it can be made less than any preas- signed quantity . P\u0026#39;E A D B Approximating the circle by its inscribed and circumscribed polygons , Euclid could show that the ratio of the area of a circle to the square of\u0026nbsp;..."},{"page_id":"PA224","page_number":"224","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e proposed the values 22/7 and 223/71 , but even he acknowl- edged that they were not correct , while mine is the correct value . \u0026quot; Herr Leistner failed to notice that his value fell outside of the bounds proved by \u003cb\u003eArchimedes\u003c/b\u003e\u0026nbsp;..."},{"page_id":"PA228","page_number":"228","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom , because as Euclid says in the proof of ( XII.5 ) , if the two pyramids were different , let this exhaustion process be done until the remainder left over is less than the difference of the two pyramids . This is\u0026nbsp;..."},{"page_id":"PA270","page_number":"270","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e in his study of the heptagon . Let ABCD be a unit square with its diagonal BC . Rotate the ruler around the point A until the areas of the two triangles ABE and DFG are equal . If CG = a show that a satisfies the equation of\u0026nbsp;..."},{"page_id":"PA278","page_number":"278","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e makes use of the following construction : Given a circle I , given a chord 1 , given a point P on the circle , and given a segment d , to draw a line through P such that the segment AB cut off by the line and the circle is\u0026nbsp;..."},{"page_id":"PA297","page_number":"297","snippet_text":"... We will see that Aristotle\u0026#39;s axiom is a consequence of \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom , and does not imply the parallel postulate by itself ( 35.6 ) . The more serious flaw in Proclus\u0026#39;s argument is that he 33. History of the Parallel Postulate 297."},{"page_id":"PA302","page_number":"302","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) , implies ( P ) . ( d ) Show that Clavius\u0026#39;s axiom holds in the non - Archimedean plane of ( 18.4.3 ) even though ( P ) does not . 33.8 ( a ) Show that Aristotle\u0026#39;s axiom holds in the Cartesian plane over a field\u0026nbsp;..."},{"page_id":"PA319","page_number":"319","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom . To begin with , we show that the analogue of \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom holds for angles . Lemma 35.1 In a Hilbert plane with ( A ) , let a , ẞ be given angles . Then there exists an integer n \u0026gt; 0 such that na \u0026gt; ẞ , or else\u0026nbsp;..."},{"page_id":"PA321","page_number":"321","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; principle for angles ( 35.1 ) we see that for some n , Tn will have one angle less than \u0026amp; , which gives the desired contradiction to ( I.17 ) . Remark 35.2.1 In the above construction , two angles of the triangle Tn + 1 are\u0026nbsp;..."},{"page_id":"PA325","page_number":"325","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) . 35.1 Prove : Given any angle \u0026amp; \u0026gt; 0 , there exists a triangle with defect \u0026gt; \u0026lt; ε . 35.2 Discuss the following \u0026quot; proof , \u0026quot; due to Legendre , that the angle sum of a triangle is two right angles : We have seen\u0026nbsp;..."},{"page_id":"PA363","page_number":"363","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A \u0026#39; ) for the field F. Similarly , Dedekind\u0026#39;s axiom ( D ) will hold if we assume ( D \u0026#39; ) in the ... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom in the P - plane is equivalent to the following statement in F : Given c , de F , c , d \u0026gt; 1\u0026nbsp;..."},{"page_id":"PA366","page_number":"366","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom . 39.1 Verify that circular inversion preserves betweenness in the Poincaré model ( cf. proof of Proposition 39.5 ) . 39.2 Show that the angle sum of any triangle in the Poincaré model is less than 2RA so this\u0026nbsp;..."},{"page_id":"PA373","page_number":"373","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom . We have also seen the Poincaré model of a non - Euclidean geometry over a field . For the full development of the geometry of Bolyai and Lobachevsky , we need the limiting parallels . The existence of these limiting\u0026nbsp;..."},{"page_id":"PA374","page_number":"374","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( A ) . Instead , we use Hilbert\u0026#39;s axioms of incidence , betweenness , and congruence plus the fol- lowing hyperbolic axiom ( L ) : L. For each line I and each point A not on 1 , there are two rays Aa and Aa \u0026#39; from A\u0026nbsp;..."},{"page_id":"PA376","page_number":"376","snippet_text":"... 1 Note how different this proof is from the proof of the Saccheri - Legendre theorem ( 35.2 ) , which reaches the same conclusion under different hypotheses . There we made use of \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom and a. 376 7. Non - Euclidean Geometry."},{"page_id":"PA377","page_number":"377","snippet_text":"Robin Hartshorne. There we made use of \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom and a countable limiting process . Here we do not need ( A ) , but we use instead the powerful axiom ( L ) on the exis- tence of limiting parallels . This result says that a\u0026nbsp;..."},{"page_id":"PA396","page_number":"396","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom , one can define the radian measure of an angle by a limiting process using dyadic rational multiples of a right angle . Then , viewing the field F as a subfield of R ( 15.5 ) it is easy to prove that this tangent\u0026nbsp;..."},{"page_id":"PA461","page_number":"461","snippet_text":"Robin Hartshorne. Archimedean solids , because they were studied in a lost book of \u003cb\u003eArchimedes\u003c/b\u003e ( cf. Pappus ( 1876 ) , Book V , Sections 19 ff ) . They were rediscovered and classified by Kepler . Theorem 46.1 Aside from the five regular\u0026nbsp;..."},{"page_id":"PA495","page_number":"495","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e , Quae supersunt omnia cum Eutocii Ascalonitae commentariis . Ex re- censione Josephi Torelli , Clarendon , Oxford ( 1792 ) . [ 5 ] Artin , E. , Geometric Algebra , Interscience , New York ( 1957 ) . [ 6 ] Bachmann , F\u0026nbsp;..."},{"page_id":"PA500","page_number":"500","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e , Huygens , Lambert , Legendre . Vier Abhandlungen über die Kreismessung , Deutsch herausgegeben und mit einer Uebersicht über die Geschichte des Problems von der Quadratur des Zirkels von den ältesten Zeiten bis auf unsere\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=EJCSL9S6la0C\u0026pg=PA500\u0026vq=Archimedes"},{"page_id":"PA503","page_number":"503","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom ( Section 12 ) А EADZ L ( C6 ) . Dedekind\u0026#39;s axiom ( Section 12 ) de Zolt\u0026#39;s axiom ( Section 22 ) existence of limiting parallel rays ( Section 40 ) A Hilbert plane ( Section 10 ) is a geometry satisfying ( I1 ) - ( 13 )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=EJCSL9S6la0C\u0026pg=PA503\u0026vq=Archimedes"},{"page_id":"PA507","page_number":"507","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom AAA ( angle - angle - angle ) , 316 AAL ( angle - angle - limit ) , 377 AAS ( angle - angle - side ) , 36 abelian group , 232 ordered , 205 , 212 , 326 , 327 absolute length , 366 , 380 abstract fields , 128-135\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=EJCSL9S6la0C\u0026pg=PA507\u0026vq=Archimedes"},{"page_id":"PA508","page_number":"508","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom , 4 , 70 , 115 , 158 , 167 for a field , 139 for angles , 319 implies Aristotle\u0026#39;s axiom , 324 in Cartesian plane , 139 in dissections , 215 in Poincaré model , 363 in theory of area , 204 independence of , 161 used in\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=EJCSL9S6la0C\u0026pg=PA508\u0026vq=Archimedes"},{"page_id":"PA509","page_number":"509","snippet_text":"Robin Hartshorne. hyperbolic , 70 , 311 Lotschnitt , 431 of \u003cb\u003eArchimedes\u003c/b\u003e , 70 , 115 of Aristotle , 297 , 302 of Bolyai , 302 , 303 of Clairaut , 299 , 302 of Clavius , 299 , 302 of de Zolt , 201-206 , 210 , 211 of Dedekind , 70 , 115 of\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=EJCSL9S6la0C\u0026pg=PA509\u0026vq=Archimedes"},{"page_id":"PA511","page_number":"511","snippet_text":"... 206 , 210 , 211 , 328 Dedekind cut , 167 Dedekind\u0026#39;s axiom , 31 , 70 , 115 avoid use of , 116 for a field , 139 gives existence of limiting parallels , 317 implies ( E ) , 116 Dedekind\u0026#39;s axiom ( cont . ) implies \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom Index 511.","page_url":"https://books.google.com.sg/books?id=EJCSL9S6la0C\u0026pg=PA511\u0026vq=Archimedes"},{"page_id":"PA512","page_number":"512","snippet_text":"... \u003cb\u003eArchimedes\u003c/b\u003e \u0026#39; axiom , 116 , 140 in Cartesian plane , 139 in Poincaré model , 363 Dedekind , Richard , 4 , 167 , 488 defect as measure of area , 328 at vertex of polyhedron , 450 , 458 is additive , 311 of triangle , 311 , 324 , 325 , 326\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=EJCSL9S6la0C\u0026pg=PA512\u0026vq=Archimedes"}],"search_query_escaped":"Archimedes"},{});</script></div></div></div><script>(function() {var href = window.location.href;if (href.indexOf('?') !== -1) {var parameters = href.split('?')[1].split('&');for (var i = 0; i < parameters.length; i++) {var param = parameters[i].split('=');if (param[0] == 'focus') {var elem = document.getElementById(param[1]);if (elem) {elem.focus();}}}}})();</script>