CINXE.COM
Search results for: ac electrodeposition
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ac electrodeposition</title> <meta name="description" content="Search results for: ac electrodeposition"> <meta name="keywords" content="ac electrodeposition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ac electrodeposition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ac electrodeposition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 74</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ac electrodeposition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Nanowire by Ac Electrodeposition Into Nanoporous Alumina Fabrication of High Aspect Ratio Metalic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Beyzaiea">M. Beyzaiea</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammadia"> S. Mohammadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High aspect ratio metallic (silver, cobalt) nanowire arrays were fabricated using ac electrodeposition techniques into the nanoporous alumina template. The template with long pore dept fabricated by hard anodization (HA) and thinned for ac electrodeposition. Template preparation was done in short time by using HA technique and high speed thing process. The TEM and XRD investigation confirm the three dimensional nucleation growth mechanism of metallic nanowire inside the nanoporous alumina that fabricated by HA process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallic" title="metallic">metallic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20alumina" title=" nanoporous alumina"> nanoporous alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=ac%20electrodeposition" title=" ac electrodeposition"> ac electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/43733/nanowire-by-ac-electrodeposition-into-nanoporous-alumina-fabrication-of-high-aspect-ratio-metalic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahendran%20Samykano">Mahendran Samykano</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Mohan"> Ram Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Aravamudhan"> Shyam Aravamudhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to study the effect of two key factors-external magnetic field and applied current density during the template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size, and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anodic%20alumina%20oxide" title="anodic alumina oxide">anodic alumina oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel "> nickel </a> </p> <a href="https://publications.waset.org/abstracts/23704/structure-and-morphology-of-electrodeposited-nickel-nanowires-at-an-electrode-distance-of-20mm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Improving the Electrical Conductivity of Epoxy Coating Using Carbon Nanotube by Electrodeposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahla%20Zabet">Mahla Zabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Zanganeh"> Navid Zanganeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafez%20Balavi"> Hafez Balavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farbod%20Sharif"> Farbod Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrodeposition is a method for applying coatings with uniform thickness on complex objects. A conductive surface can be produced using the electrical current in this method. Carbon nanotubes are known to have high electrical conductivity and mechanical properties. In this report, NH2-multiwalled carbon nanotubes (MWCNTs) were used in epoxy resin with different weight percent. The weight percent of incorporated MWCNTS into the matrix was changed in the range of 0.6-3.6 wt% to obtain a series of electrocoatings. The electrocoats were then applied on steel substrates by a cathodic electrodeposition technique. Scanning electron microscopy (SEM) and optical microscopy were used to characterize the electrocoated films. The results illustrated the increase in conductivity by increasing of MWCNT load. However, at the percolation threshold, throwing power was dropped with increase in recoating ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=throwing%20power" title=" throwing power"> throwing power</a> </p> <a href="https://publications.waset.org/abstracts/17061/improving-the-electrical-conductivity-of-epoxy-coating-using-carbon-nanotube-by-electrodeposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Effect of Manganese Doping Percentage on Optical Band Gap and Conductivity of Copper Sulphide Nano-Films Prepared by Electrodeposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Okafor">P. C. Okafor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Ekpunobi"> A. J. Ekpunobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mn doped copper sulphide (CuS:Mn) nano-films were deposited on indiums coated tin oxide (ITO) glass substrates using electrodeposition method. Electrodeposition was carried out using bath of PH = 3 at room temperature. Other depositions parameters such as deposition time (DT) are kept constant while Mn doping was varied from 3% to 23%. Absorption spectra of CuS:Mn films was obtained by using JENWAY 6405 UV-VIS -spectrophotometer. Optical band gap (E_g ), optical conductivity (σo) and electrical conductivity (σe) of CuS:Mn films were determined using absorption spectra and appropriate formula. The effect of Mn doping % on these properties were investigated. Results show that film thickness (t) for the 13.27 nm to 18.49 nm; absorption coefficient (α) from 0.90 x 1011 to 1.50 x 1011 optical band gap from 2.29eV to 2.35 eV; optical conductivity from 1.70 x 1013 and electrical conductivity from 160 millions to 154 millions. Possible applications of such films for solar cells fabrication and optoelectronic devices applications were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20sulphide%20%28CuS%29" title="copper sulphide (CuS)">copper sulphide (CuS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Manganese%20%28Mn%29%20doping" title=" Manganese (Mn) doping"> Manganese (Mn) doping</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap" title=" optical band gap"> optical band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20conductivity" title=" optical conductivity"> optical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/19832/effect-of-manganese-doping-percentage-on-optical-band-gap-and-conductivity-of-copper-sulphide-nano-films-prepared-by-electrodeposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">722</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Potentiostatic Electrodeposition of Cu₂O Films as P-Type Electrode at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Moharam">M. M. Moharam</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Elsayed"> E. M. Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rashad"> M. M. Rashad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single phase Cu₂O films have been prepared via an electrodeposition technique onto ITO glass substrates at room temperature. Likewise, Cu₂O films were deposited using a potentiostatic process from an alkaline electrolyte containing copper (II) nitrate and 1M sodium citrate. Single phase Cu₂O films were electrodeposited at a cathodic deposition potential of 500mV for a reaction period of 90 min, and pH of 12 to yield a film thickness of 0.49 µm. The mechanism for nucleation of Cu₂O films was found to vary with deposition potential. Applying the Scharifker and Hills model at -500 and -600 mV to describe the mechanism of nucleation for the electrochemical reaction, the nucleation mechanism consisted of a mix between instantaneous and progressive growth mechanisms at -500 mV, while above -600 mV the growth mechanism was instantaneous. Using deposition times from 30 to 90 min at -500 mV deposition potential, pure Cu2O films with different microstructures were electrodeposited. Changing the deposition time from 30 to 90 min varied the microstructure from cubic to more complex polyhedra. The transmittance of electrodeposited Cu₂O films ranged from 20-70% in visible range, and samples exhibited a 2.4 eV band gap. The electrical resistivity for electrodeposited Cu₂O films was found to decrease with increasing deposition time from 0.854 x 105 Ω-cm at 30 min to 0.221 x 105 Ω-cm at 90 min without any thermal treatment following the electrodeposition process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu%E2%82%82O" title="Cu₂O">Cu₂O</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20thickness" title=" film thickness"> film thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/57827/potentiostatic-electrodeposition-of-cu2o-films-as-p-type-electrode-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Development of (Cu2o-Zno) Binary Oxide Anode for Electrochemical Degradation of Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Hajji">M. El Hajji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hallaoui"> A. Hallaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi"> L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benlhachemi"> A. Benlhachemi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Jbara"> O. Jbara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tara"> A. Tara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bakiz"> B. Bakiz</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi"> L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hilali"> M. Hilali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was the development of zinc-copper binary oxide "Cu2O-ZnO" thin films by the electrochemical method "cathodic electrodeposition" and their uses for the degradation of a basic dye "Congo Red" by direct anodic oxidation. The anode materials synthesized were characterized by X-ray diffraction "XRD" and by scanning electron microscopy "SEM" coupled to EDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu2O-ZnO%20thin%20films" title="Cu2O-ZnO thin films">Cu2O-ZnO thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition" title=" cathodic electrodeposition"> cathodic electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodegradation" title=" electrodegradation"> electrodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Congo%20Red" title=" Congo Red"> Congo Red</a>, <a href="https://publications.waset.org/abstracts/search?q=BDD" title=" BDD"> BDD</a> </p> <a href="https://publications.waset.org/abstracts/17657/development-of-cu2o-zno-binary-oxide-anode-for-electrochemical-degradation-of-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Pauport%C3%A9">Thierry Pauporté</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Koussi"> Sana Koussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrice%20Odobel"> Fabrice Odobel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiO" title="NiO">NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=p-type%20sensitized%20solar%20cells" title=" p-type sensitized solar cells"> p-type sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/66597/electrodeposition-of-nio-films-from-organic-solvent-based-electrolytic-solutions-for-solar-cell-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Template-Assisted Synthesis of IrO2 Nanopores Membrane Electrode Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuo-Xin%20Lu">Zhuo-Xin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Shi"> Yan Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Feng%20Yan"> Chang-Feng Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Huang"> Ying Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Gan"> Yuan Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Da%20Wang"> Zhi-Da Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With TiO2 nanotube arrays (TNTA) as template, a IrO2 nanopores membrane electrode assembly (MEA) was synthesized by a novel depositi-assemble-etch strategy. By analysing the morphology of IrO2/TNTA and cyclic voltammetry (CV) curve at different deposition cycles, we proposed a reasonable scheme for the process of IrO2 electrodeposition on TNTA. The current density of IrO2/TNTA at 1.5V vs RHE reaches 5.12mA/cm2 after 55 cycles deposition, which shows promising performance for its high OER activity after template removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=IrO2%20nanopores" title=" IrO2 nanopores"> IrO2 nanopores</a>, <a href="https://publications.waset.org/abstracts/search?q=MEA" title=" MEA"> MEA</a>, <a href="https://publications.waset.org/abstracts/search?q=OER" title=" OER"> OER</a> </p> <a href="https://publications.waset.org/abstracts/46915/template-assisted-synthesis-of-iro2-nanopores-membrane-electrode-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/Tio2 Nano-Composite Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahdavi">S. Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.R.%20Allahkaram"> S.R. Allahkaram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nano-particles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nano-particles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Cr%20alloy" title="Co-Cr alloy">Co-Cr alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-composite" title=" nano-composite"> nano-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20behavior" title=" tribological behavior"> tribological behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=trivalent%20chromium" title=" trivalent chromium"> trivalent chromium</a> </p> <a href="https://publications.waset.org/abstracts/24529/investigation-of-tribological-behavior-of-electrodeposited-cr-co-cr-and-co-crtio2-nano-composite-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Amiri">Mandana Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Nouhi"> Sima Nouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Azizan-Kalandaragh"> Yashar Azizan-Kalandaragh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H<sub>2</sub>O<sub>2</sub>. The presented electrode can be employed as sensing element for hydrogen peroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title="electrochemical sensor">electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanostructures" title=" silver nanostructures "> silver nanostructures </a> </p> <a href="https://publications.waset.org/abstracts/21938/electrodeposited-silver-nanostructures-a-non-enzymatic-sensor-for-hydrogen-peroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imene%20Atek">Imene Atek</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20M.%20Affoune"> Abed M. Affoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Girault"> Hubert Girault</a>, <a href="https://publications.waset.org/abstracts/search?q=Pekka%20Peljo"> Pekka Peljo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics%20diagrams" title=" kinetics diagrams"> kinetics diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/120819/establishment-of-kinetic-zone-diagrams-via-simulated-linear-sweep-voltammograms-for-soluble-insoluble-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Electrochemical Growth and Properties of Cu2O Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Azizi">A. Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Laidoudi"> S. Laidoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Schmerber"> G. Schmerber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dinia"> A. Dinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cuprous oxide (Cu2O) is a well-known oxide semiconductor with a band gap of 2.1 eV and a natural p-type conductivity, which is an attractive material for device applications because of its abundant availability, non toxicity, and low production cost. It has a higher absorption coefficient in the visible region and the minority carrier diffusion length is also suitable for use as a solar cell absorber layer and it has been explored in junction with n type ZnO for photovoltaic applications. Cu2O nanostructures have been made by a variety of techniques; the electrodeposition method has emerged as one of the most promising processing routes as it is particularly provides advantages such as a low-cost, low temperature and a high level of purity in the products. In this work, Cu2O nanostructures prepared by electrodeposition from aqueous cupric sulfate solution with citric acid at 65°C onto a fluorine doped tin oxide (FTO) coated glass substrates were investigated. The effects of deposition potential on the electrochemical, surface morphology, structural and optical properties of Cu2O thin films were investigated. During cyclic voltammetry experiences, the potential interval where the electrodeposition of Cu2O is carried out was established. The Mott–Schottky (M-S) plot demonstrates that all the films are p-type semiconductors, the flat-band potential and the acceptor density for the Cu2O thin films are determined. AFM images reveal that the applied potential has a very significant influence on the surface morphology and size of the crystallites of thin Cu2O. The XRD measurements indicated that all the obtained films display a Cu2O cubic structure with a strong preferential orientation of the (111) direction. The optical transmission spectra in the UV-Visible domains revealed the highest transmission (75 %), and their calculated gap values increased from 1.93 to 2.24 eV, with increasing potentials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu2O" title="Cu2O">Cu2O</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Mott%E2%80%93Schottky%20plot" title=" Mott–Schottky plot"> Mott–Schottky plot</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/15896/electrochemical-growth-and-properties-of-cu2o-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Electrodeposition of Nickel-Zinc Alloy on Stainless Steel in a Magnetic Field in a Chloride Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naima%20Benachour">Naima Benachour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Chouchane"> Sabiha Chouchane</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Paul%20Chopart"> J. Paul Chopart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to determine the appropriate conditions for a Ni-Zn deposit with good nickel content. The electrodeposition of zinc-nickel on a stainless steel is carried out in a chlorinated bath NiCl2.6H2O, ZnCl2, and H3BO3), whose composition is 1.1 M; 1.8 M; 0.1 M respectively. Studies show the effect of the concentration of NH4Cl, which reveals a significant effect on the reduction and ion transport in the electrolyte. In order to highlight the influence of magnetic field on the chemical composition and morphology of the deposit, chronopotentiometry tests were conducted, the curves obtained inform us that the application of a magnetic field promotes stability of the deposit. Characterization developed deposits was performed by scanning electron microscopy coupled with EDX and specified by the X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-Ni%20alloys" title="Zn-Ni alloys">Zn-Ni alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electroplating" title=" electroplating"> electroplating</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=chronopotentiometry" title=" chronopotentiometry"> chronopotentiometry</a> </p> <a href="https://publications.waset.org/abstracts/21468/electrodeposition-of-nickel-zinc-alloy-on-stainless-steel-in-a-magnetic-field-in-a-chloride-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Microstructural and Optical Characterization of High-quality ZnO Nano-rods Deposited by Simple Electrodeposition Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somnath%20Mahato">Somnath Mahato</a>, <a href="https://publications.waset.org/abstracts/search?q=Minarul%20Islam%20Sarkar"> Minarul Islam Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Guillermo%20Gerling"> Luis Guillermo Gerling</a>, <a href="https://publications.waset.org/abstracts/search?q=Joaquim%20Puigdollers"> Joaquim Puigdollers</a>, <a href="https://publications.waset.org/abstracts/search?q=Asit%20Kumar%20Kar"> Asit Kumar Kar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanostructured Zinc Oxide (ZnO) thin films have been successfully deposited on indium tin oxide (ITO) coated glass substrates by a simple two electrode electrodeposition process at constant potential. The preparative parameters such as deposition time, deposition potential, concentration of solution, bath temperature and pH value of electrolyte have been optimized for deposition of uniform ZnO thin films. X-ray diffraction studies reveal that the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal (wurtzite) structure. Surface morphological studies show that the ZnO films are smooth, continuous, uniform without cracks or holes and compact with nanorod-like structure on the top of the surface. Optical properties reveal that films exhibit higher absorbance in the violet region of the optical spectrum; it gradually decreased in the visible range with increases in wavelength and became least at the beginning of NIR region. The photoluminescence spectra shows that the observed peaks are attributed to the various structural defects in the nanostructured ZnO crystal. The microstructural and optical properties suggest that the electrodeposited ZnO thin films are suitable for application in photosensitive devices such as photovoltaic solar cells photoelectrochemical cells and light emitting diodes etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20thin%20films" title=" ZnO thin films"> ZnO thin films</a> </p> <a href="https://publications.waset.org/abstracts/24761/microstructural-and-optical-characterization-of-high-quality-zno-nano-rods-deposited-by-simple-electrodeposition-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Investigating the Role of Combined Length Scale Effect on the Mechanical Properties of Ni/Cu Multilayer Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naresh%20Radaliyagoda">Naresh Radaliyagoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20M.%20Jennett"> Nigel M. Jennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong%20Lan"> Rong Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Parfitt"> David Parfitt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of length scale engineered multilayer material with temperature robust mechanical properties has been suggested. A range of polycrystalline copper sub-layers with the thickness varying from 1 to 25μm and buried in between two nickel layers was produced using electrodeposition dual bath technique. The structure of the multilayers was characterized using Electron Backscatter Diffraction and Scanning Electron Microscope. The interface effect on the hardness and elastic modulus was tested using Nano-indentation. Results of the grain size and layer thickness measurements, and indentation hardness have been compared. It is found that there is a combined length scale effect that improves mechanical properties in Ni/Cu multilayer structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-indentation" title="nano-indentation">nano-indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20effect" title=" size effect"> size effect</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayers" title=" multilayers"> multilayers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/107676/investigating-the-role-of-combined-length-scale-effect-on-the-mechanical-properties-of-nicu-multilayer-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Investigation of Microstructure, Mechanical Properties and Anti-Corrosive Behavior of Al2O3/Cr2O3 Nanocomposite on Zn Rich Bath</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Malatji">N. Malatji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20I.%20Popoola"> A. P. I. Popoola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zn-Al2O3 and Cr2O3 nanocomposite coatings were successfully produced by electrodeposition technique from chloride acidic bath. Particle loading of Al2O3 (50nm) particles were varied from 5-10 g/L and for Cr2O3(100nm) was 10-20 g/L. Scanning electron microscope (SEM) affixed with energy dispersive spectrometry was used to study the surface morphology and content of the nanoparticles incorporated into the coatings. Microhardness, thermal stability, wear and corrosion behavior of the coatings were also evaluated to study the effect of these nanoparticles on these properties. Zn-Al2O3 nanocomposite was found to exhibit good surface properties especially corrosion resistance. On the other side, Cr2O3 incorporation resulted in the improvement of only mechanical properties. Therefore, Zn-Al2O3 proved to be a better coating for most industrial applications where both chemical and mechanical properties are required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20coatings" title=" nanocomposite coatings"> nanocomposite coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/11749/investigation-of-microstructure-mechanical-properties-and-anti-corrosive-behavior-of-al2o3cr2o3-nanocomposite-on-zn-rich-bath" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Influence of Graphene Content on Corrosion Behavior of Electrodeposited Zinc–Graphene Composite Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Yang">Bin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofang%20Chen"> Xiaofang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangxin%20Wang"> Guangxin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc coating as a sacrificial protection plays an important role in the traditional steel anticorrosion field. Adding second-phase reinforcement particles into zinc matrix is an interesting approach to further enhance its corrosion performance. In this paper, pure Zn and Zn–graphene composite coatings of different graphene contents were prepared by direct current electrodeposition on 304 stainless steel substrate. The coatings were characterized by XRD, SEM/EDS, and Raman spectroscopy. Tafel polarization and electrochemical impedance spectroscopic methods were used to study their corrosion behavior. Result obtained have shown that the concentration of grapheme oxide (GO) in zinc sulfate bath has an important effect on textured structure and surface morphology of Zn–graphene composite coatings. The coating prepared with 1.0g/L GO has shown the best corrosion resistance compared to other coatings prepared in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-graphene%20coatings" title="Zn-graphene coatings">Zn-graphene coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20behavior" title=" corrosion behavior"> corrosion behavior</a> </p> <a href="https://publications.waset.org/abstracts/78729/influence-of-graphene-content-on-corrosion-behavior-of-electrodeposited-zinc-graphene-composite-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> The Effects of Addition of Chloride Ions on the Properties of ZnO Nanostructures Grown by Electrochemical Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Mentar">L. Mentar</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Baka"> O. Baka</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Azizi"> A. Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide as a wide band semiconductor materials, especially nanostructured materials, have potential applications in large-area such as electronics, sensors, photovoltaic cells, photonics, optical devices and optoelectronics due to their unique electrical and optical properties and surface properties. The feasibility of ZnO for these applications is due to the successful synthesis of diverse ZnO nanostructures, including nanorings, nanobows, nanohelixes, nanosprings, nanobelts, nanotubes, nanopropellers, nanodisks, and nanocombs, by different method. Among various synthesis methods, electrochemical deposition represents a simple and inexpensive solution based method for synthesis of semiconductor nanostructures. In this study, the electrodeposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate as TCO from chloride bath. We present a systematic study on the effects of the concentration of chloride anion on the properties of ZnO. The influence of KCl concentrations on the electrodeposition process, morphological, structural and optical properties of ZnO nanostructures was examined. In this research electrochemical deposition of ZnO nanostructures is investigated using conventional electrochemical measurements (cyclic voltammetry and Mott-Schottky), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The potentials of electrodeposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. SEM images shows different size and morphology of the nanostructures and depends greatly on the KCl concentrations. The morphology of ZnO nanostructures is determined by the corporated action between [Zn(NO3)2] and [Cl-].Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. XRD studies revealed that the all deposited films were polycrystalline in nature with wurtzite phase. The electrodeposited thin films are found to have preferred oriented along (002) plane of the wurtzite structure of ZnO with c-axis normal to the substrate surface for sample at different concentrations of KCl. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride%20ions" title=" chloride ions"> chloride ions</a>, <a href="https://publications.waset.org/abstracts/search?q=Mott-Schottky" title=" Mott-Schottky"> Mott-Schottky</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/23707/the-effects-of-addition-of-chloride-ions-on-the-properties-of-zno-nanostructures-grown-by-electrochemical-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nano Composite Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soroor%20Ghaziof">Soroor Ghaziof</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Gao"> Wei Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nano-composite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ-Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nano composite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-Ni-Al2O3%20composite%20coatings" title="Zn-Ni-Al2O3 composite coatings">Zn-Ni-Al2O3 composite coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-enhanced%20electroplating" title=" sol-enhanced electroplating"> sol-enhanced electroplating</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance "> corrosion resistance </a> </p> <a href="https://publications.waset.org/abstracts/34286/mechanical-and-chemical-properties-of-zn-ni-al2o3-nano-composite-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Effect of Al Particles on Corrosion Resistance of Electrodeposited Ni-Al Composite Coatings </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Adabi">M. Adabi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amadeh"> A. Amadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrodeposition is known as a relatively economical and simple technique commonly used for preparation of metallic and composite coatings. Electrodeposited composite coatings produced by dispersion of particles into the metal matrix show better properties than pure metallic coatings. In recent years, many researches were carried out on Ni matrix coatings reinforced by ceramic particles such as Ni-SiC, Ni-Al2O3, Ni-WC, Ni-CeO2, Ni-ZrO2, Ni-TiO2 to improve their corrosion and wear resistance. However, little effort has been made on incorporation of metal particles into Ni matrix. Therefore, the aim of this work was to produce Ni–Al composite coating on 6061 aluminum alloy by pulse plating and to investigate the effects of electrodeposition parameters, e.g. concentration Al particles in the electrolyte and current density, on composition and corrosion resistance of the composite coatings. The morphology and corrosion behavior of the coated 6061 Al alloys were studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and potentiodynamic polarization method, respectively. The results indicated that the addition of Al particles up to 50 g L-1 increased the amount of co-deposited Al particles in nickel matrix. It is also observed that the incorporation of Al particles decreased with increasing current density. Meanwhile, the corrosion resistance of the coatings shows an increment by increasing the content of Al particles into nickel matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni-Al%20composite%20coating" title="Ni-Al composite coating">Ni-Al composite coating</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20density" title=" current density"> current density</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance "> corrosion resistance </a> </p> <a href="https://publications.waset.org/abstracts/24363/effect-of-al-particles-on-corrosion-resistance-of-electrodeposited-ni-al-composite-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjali%20Vanpariya">Anjali Vanpariya</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Marathey"> Priyanka Marathey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakshum%20Khanna"> Sakshum Khanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Roma%20Patel"> Roma Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Indrajit%20Mukhopadhyay"> Indrajit Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20nanoparticles" title="silicon nanoparticles">silicon nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20battery" title=" Li-ion battery"> Li-ion battery</a> </p> <a href="https://publications.waset.org/abstracts/123797/electrodeposition-of-silicon-nanoparticles-using-ionic-liquid-for-energy-storage-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Experimental Uniaxial Tensile Characterization of One-Dimensional Nickel Nanowires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Mohan">Ram Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendran%20Samykano"> Mahendran Samykano</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Aravamudhan"> Shyam Aravamudhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metallic nanowires with sub-micron and hundreds of nanometer diameter have a diversity of applications in nano/micro-electromechanical systems (NEMS/MEMS). Characterizing the mechanical properties of such sub-micron and nano-scale metallic nanowires are tedious; require sophisticated and careful experimentation to be performed within high-powered microscopy systems (scanning electron microscope (SEM), atomic force microscope (AFM)). Also, needed are nanoscale devices for placing the nanowires; loading them with the intended conditions; obtaining the data for load–deflection during the deformation within the high-powered microscopy environment poses significant challenges. Even picking the grown nanowires and placing them correctly within a nanoscale loading device is not an easy task. Mechanical characterizations through experimental methods for such nanowires are still very limited. Various techniques at different levels of fidelity, resolution, and induced errors have been attempted by material science and nanomaterial researchers. The methods for determining the load, deflection within the nanoscale devices also pose a significant problem. The state of the art is thus still at its infancy. All these factors result and is seen in the wide differences in the characterization curves and the reported properties in the current literature. In this paper, we discuss and present our experimental method, results, and discussions of uniaxial tensile loading and the development of subsequent stress–strain characteristics curves for Nickel nanowires. Nickel nanowires in the diameter range of 220–270 nm were obtained in our laboratory via an electrodeposition method, which is a solution based, template method followed in our present work for growing 1-D Nickel nanowires. Process variables such as the presence of magnetic field, its intensity; and varying electrical current density during the electrodeposition process were found to influence the morphological and physical characteristics including crystal orientation, size of the grown nanowires1. To further understand the correlation and influence of electrodeposition process variables, associated formed structural features of our grown Nickel nanowires to their mechanical properties, careful experiments within scanning electron microscope (SEM) were conducted. Details of the uniaxial tensile characterization, testing methodology, nanoscale testing device, load–deflection characteristics, microscopy images of failure progression, and the subsequent stress–strain curves are discussed and presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20tensile%20characterization" title="uniaxial tensile characterization">uniaxial tensile characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain" title=" stress-strain"> stress-strain</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/26502/experimental-uniaxial-tensile-characterization-of-one-dimensional-nickel-nanowires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanheng%20Zhang">Yanheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Feng"> Lu Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilan%20Kang"> Yilan Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghui%20Fu"> Donghui Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhang"> Qian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiu%20Li"> Qiu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Qiu"> Wei Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-electrodeposition" title="co-electrodeposition">co-electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=glycine" title=" glycine"> glycine</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-diamond%20nanocomposite%20coatings" title=" Ni-diamond nanocomposite coatings"> Ni-diamond nanocomposite coatings</a> </p> <a href="https://publications.waset.org/abstracts/105213/mechanical-properties-of-diamond-reinforced-ni-nanocomposite-coatings-made-by-co-electrodeposition-with-glycine-as-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Ranjan%20Kumar">Shyam Ranjan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashikant%20Rajpal"> Shashikant Rajpal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annealing" title="annealing">annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnTe" title=" ZnTe"> ZnTe</a> </p> <a href="https://publications.waset.org/abstracts/72525/effect-of-annealing-on-electrodeposited-znte-thin-films-in-non-aqueous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Szklarz">Zbigniew Szklarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldona%20Garbacz-Klempka"> Aldona Garbacz-Klempka</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Bisztyga-Szklarz"> Magdalena Bisztyga-Szklarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloys" title="high entropy alloys">high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20behavior" title=" corrosion behavior"> corrosion behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/169489/the-microstructure-and-corrosion-behavior-of-high-entropy-metallic-layers-electrodeposited-by-low-and-high-temperature-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Electrodeposition and Selenization of Cuin Alloys for the Synthesis of Photoactive Cu2in1-X Gax Se2 (Cigs) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benaicha">Mohamed Benaicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Allam"> Mahdi Allam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new two stage electrochemical process as a safe, large area and low processing cost technique for the production of semi-conducting CuInSe2 (CIS) thin films is studied. CuIn precursors were first potentiostatically electrodeposited onto molybdenum substrates from an acidic thiocyanate electrolyte. In a second stage, the prepared metallic CuIn layers were used as substrate in the selenium electrochemical deposition system and subjected to a thermal treatment in vacuum atmosphere, to eliminate binary phase formation by reaction of the Cu2-x Se and InxSey selenides, leading to the formation of CuInSe2 thin film. Electrochemical selenization from aqueous electrolyte is introduced as an alternative to toxic and hazardous H2Se or Se vapor phase selenization used in physical techniques. In this study, the influence of film deposition parameters such as bath composition, temperature and potential on film properties was studied. The electrochemical, morphological, structural and compositional properties of electrodeposited thin films were characterized using various techniques. Results of Cyclic and Stripping-Cyclic Voltammetry (CV, SCV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray microanalysis (EDX) investigations revealed good reproducibility and homogeneity of the film composition. Thereby optimal technological parameters for the electrochemical production of CuIn, Se as precursors for CuInSe2 thin layers are determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=CIGS" title=" CIGS"> CIGS</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20alloys" title=" copper alloys"> copper alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/31570/electrodeposition-and-selenization-of-cuin-alloys-for-the-synthesis-of-photoactive-cu2in1-x-gax-se2-cigs-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Preparation of Chromium Nanoparticles on Carbon Substrate from Tannery Waste Solution by Chemical Method Compared to Electrokinetic Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Rabah">Mahmoud A. Rabah</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20El%20Sheikh"> Said El Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work shows the preparation of chromium nanoparticles from tannery waste solution on glassy carbon by chemical method compared to electrokinetic process. The waste solution contains free and soluble fats, calcium, iron, magnesium and high sodium in addition to the chromium ions. Filtration helps removal of insoluble matters. Diethyl ether successfully extracted soluble fats. The method started by removing calcium as insoluble oxalate salts at hot conditions in a faint acidic medium. The filtrate contains iron, magnesium, chromium ions and sodium chloride in excess. Chromium was separated selectively as insoluble hydroxide sol-gel at pH 6.5, filtered and washed with distilled water. Part of the gel reacted with sulfuric acid to produce chromium sulfate solution having 15-25 g/L concentration. Electrokinetic deposition of chromium nanoparticles on a carbon cathode was carried out using platinum anode under different galvanostatic conditions. The chemical method involved impregnating the carbon specimens with chromium hydroxide gel followed by reduction using hydrazine hydrate or by thermal reduction using hydrogen gas at 1250°C. Chromium grain size was characterized by TEM, FT-IR and SEM. Properties of the Cr grains were correlated to the conditions of the preparation process. Electrodeposition was found to control chromium particles to be more identical in size and shape as compared to the chemical method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=tannery%20waste%20solution" title=" tannery waste solution"> tannery waste solution</a> </p> <a href="https://publications.waset.org/abstracts/6647/preparation-of-chromium-nanoparticles-on-carbon-substrate-from-tannery-waste-solution-by-chemical-method-compared-to-electrokinetic-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Recycling the Lanthanides from Permanent Magnets by Electrochemistry in Ionic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celine%20Bonnaud">Celine Bonnaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Billard"> Isabelle Billard</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Papaiconomou"> Nicolas Papaiconomou</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Chainet"> Eric Chainet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to their high magnetization and low mass, permanent magnets (NdFeB and SmCo) have quickly became essential for new energies (wind turbines, electrical vehicles…). They contain large quantities of neodymium, samarium and dysprosium, that have been recently classified as critical elements and that therefore need to be recycled. Electrochemical processes including electrodissolution followed by electrodeposition are an elegant and environmentally friendly solution for the recycling of such lanthanides contained in permanent magnets. However, electrochemistry of the lanthanides is a real challenge as their standard potentials are highly negative (around -2.5V vs ENH). Consequently, non-aqueous solvents are required. Ionic liquids (IL) are novel electrolytes exhibiting physico-chemical properties that fulfill many requirements of the sustainable chemistry principles, such as extremely low volatility and non-flammability. Furthermore, their chemical and electrochemical properties (solvation of metallic ions, large electrochemical windows, etc.) render them very attractive media to implement alternative and sustainable processes in view of integrated processes. All experiments that will be presented were carried out using butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Linear sweep, cyclic voltammetry and potentiostatic electrochemical techniques were used. The reliability of electrochemical experiments, performed without glove box, for the classic three electrodes cell used in this study has been assessed. Deposits were obtained by chronoamperometry and were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The IL cathodic behavior under different constraints (argon, nitrogen, oxygen atmosphere or water content) and using several electrode materials (Pt, Au, GC) shows that with argon gas flow and gold as a working electrode, the cathodic potential can reach the maximum value of -3V vs Fc+/Fc; thus allowing a possible reduction of lanthanides. On a gold working electrode, the reduction potential of samarium and neodymium was found to be -1.8V vs Fc+/Fc while that of dysprosium was -2.1V vs Fc+/Fc. The individual deposits obtained were found to be porous and presented some significant amounts of C, N, F, S and O atoms. Selective deposition of neodymium in presence of dysprosium was also studied and will be discussed. Next, metallic Sm, Nd and Dy electrodes were used in replacement of Au, which induced changes in the reduction potential values and the deposit structures of lanthanides. The individual corrosion potentials were also measured in order to determine the parameters influencing the electrodissolution of these metals. Finally, a full recycling process was investigated. Electrodissolution of a real permanent magnet sample was monitored kinetically. Then, the sequential electrodeposition of all lanthanides contained in the IL was investigated. Yields, quality of the deposits and consumption of chemicals will be discussed in depth, in view of the industrial feasibility of this process for real permanent magnets recycling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodissolution" title=" electrodissolution"> electrodissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanides" title=" lanthanides"> lanthanides</a>, <a href="https://publications.waset.org/abstracts/search?q=rcycling" title=" rcycling"> rcycling</a> </p> <a href="https://publications.waset.org/abstracts/57911/recycling-the-lanthanides-from-permanent-magnets-by-electrochemistry-in-ionic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Electrochemical Deposition of Pb and PbO2 on Polymer Composites Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Merzouki">A. Merzouki</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Haddaoui"> N. Haddaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers have a large reputation as electric insulators. These materials are characterized by weak weight, reduced price and a large domain of physical and chemical properties. They conquered new application domains that were until a recent past the exclusivity of metals. In this work, we used some composite materials (polymers/conductive fillers), as electrodes and we try to cover them with metallic lead layers in order to use them as courant collector grids in lead-acid battery plates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composites" title=" polymer composites"> polymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20black" title=" carbon black"> carbon black</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylene%20black" title=" acetylene black "> acetylene black </a> </p> <a href="https://publications.waset.org/abstracts/15588/electrochemical-deposition-of-pb-and-pbo2-on-polymer-composites-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohajeri">S. Mohajeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse-plating" title=" pulse-plating"> pulse-plating</a> </p> <a href="https://publications.waset.org/abstracts/26116/an-investigation-on-the-pulse-electrodeposition-of-ni-tio2tio2-multilayer-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ac%20electrodeposition&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ac%20electrodeposition&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ac%20electrodeposition&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>