CINXE.COM

Search results for: residence time distribution

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: residence time distribution</title> <meta name="description" content="Search results for: residence time distribution"> <meta name="keywords" content="residence time distribution"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="residence time distribution" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="residence time distribution"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 22229</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: residence time distribution</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22229</span> Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alzeyadi">A. Alzeyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Loffill"> E. Loffill</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Alkhaddar"> R. Alkhaddar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title="filter media">filter media</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20loading%20rate" title=" hydraulic loading rate"> hydraulic loading rate</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution" title=" residence time distribution"> residence time distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer" title=" tracer "> tracer </a> </p> <a href="https://publications.waset.org/abstracts/34275/investigation-into-the-optimum-hydraulic-loading-rate-for-selected-filter-media-packed-in-a-continuous-upflow-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22228</span> Torrefaction of Spelt Husks to Increase Its Fuel Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Halidu">Abubakar Halidu</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20E.%20Bilsborrow"> Paul E. Bilsborrow</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20N.%20Phan"> Anh N. Phan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Torrefaction is a term that refers to the moderate pyrolysis of biomass at temperatures between 200 and 300oC in an oxygen-free environment to boost its heating value, grindability, and storability. This process can also be used as a pre-treatment for other thermochemical processes. The torrefaction of spelt husks was carried out at temperatures of 200, 250, and 300oC in an inert nitrogen environment with a heating rate of 20oC.min-1 and a residence time of 15–60 min, respectively. We examined the influence of torrefaction temperatures and residence time. The results indicated that increasing the torrefaction temperature increased the higher heating values (HHV) and improved grindability. Torrefied spelt husks at 300oC for 15 minutes exhibited the highest increase in HHV at 30.88 MJ kg-1, compared to non-torrefied spelt husks at 17.56 MJ kg-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grindability" title="grindability">grindability</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20heating%20value" title=" higher heating value"> higher heating value</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=torrefaction" title=" torrefaction"> torrefaction</a> </p> <a href="https://publications.waset.org/abstracts/142469/torrefaction-of-spelt-husks-to-increase-its-fuel-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22227</span> Predicting Mixing Patterns of Overflows from a Square Manhole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Modupe%20O.%20Jimoh">Modupe O. Jimoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During manhole overflows, its contents pollute the immediate environment. Understanding the pollutant transfer characteristics between manhole’s incoming sewer and the overflow is therefore of great importance. A square manhole with sides 388 mm by 388 mm and height 700 mm with an overflow facility was used in the laboratory to carry out overflow concentration measurements. Two scenarios were investigated using three flow rates. The first scenario corresponded to when the exit of the pipe becomes blocked and the only exit for the flow is the manhole. The second scenario is when there is an overflow in combination with a pipe exit. The temporal concentration measurements showed that the peak concentration of pollutants in the flow was attenuated between the inlet and the overflow. A deconvolution software was used to predict the Residence time distribution (RTD) and consequently the Cumulative Residence time distribution (CRTD). The CRTDs suggest that complete mixing is occurring between the pipe inlet and the overflow, like what is obtained in a low surcharged manhole. The results also suggest that an instantaneous stirred tank reactor model can describe the mixing characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRTDs" title="CRTDs">CRTDs</a>, <a href="https://publications.waset.org/abstracts/search?q=instantaneous%20stirred%20tank%20reactor%20model" title=" instantaneous stirred tank reactor model"> instantaneous stirred tank reactor model</a>, <a href="https://publications.waset.org/abstracts/search?q=overflow" title=" overflow"> overflow</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20manholes" title=" square manholes"> square manholes</a>, <a href="https://publications.waset.org/abstracts/search?q=surcharge" title=" surcharge"> surcharge</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20concentration%20profiles" title=" temporal concentration profiles"> temporal concentration profiles</a> </p> <a href="https://publications.waset.org/abstracts/97743/predicting-mixing-patterns-of-overflows-from-a-square-manhole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22226</span> Hydrodynamics of Dual Hybrid Impeller of Stirred Reactor Using Radiotracer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noraishah%20Othman">Noraishah Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20K.%20Kamarudin"> Siti K. Kamarudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norinsan%20K.%20Othman"> Norinsan K. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20S.%20Takriff"> Mohd S. Takriff</a>, <a href="https://publications.waset.org/abstracts/search?q=Masli%20I.%20Rosli"> Masli I. Rosli</a>, <a href="https://publications.waset.org/abstracts/search?q=Engku%20M.%20Fahmi"> Engku M. Fahmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mior%20A.%20Khusaini"> Mior A. Khusaini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes hydrodynamics of mixing characteristics of two dual hybrid impeller consisting of, radial and axial impeller using radiotracer technique. Type A mixer, a Rushton turbine is mounted above a Pitched Blade Turbine (PBT) at common shaft and Type B mixer, a Rushton turbine is mounted below PBT. The objectives of this paper are to investigate the residence time distribution (RTD) of two hybrid mixers and to represent the respective mixers by RTD model. Each type of mixer will experience five radiotracer experiments using Tc99m as source of tracer and scintillation detectors NaI(Tl) are used for tracer detection. The results showed that mixer in parallel model and mixers in series with exchange can represent the flow model in mixer A whereas only mixer in parallel model can represent Type B mixer well than other models. In conclusion, Type A impeller, Rushton impeller above PBT, reduced the presence of dead zone in the mixer significantly rather than Type B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20impeller" title="hybrid impeller">hybrid impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution%20%28RTD%29" title=" residence time distribution (RTD)"> residence time distribution (RTD)</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotracer%20experiments" title=" radiotracer experiments"> radiotracer experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=RTD%20model" title=" RTD model"> RTD model</a> </p> <a href="https://publications.waset.org/abstracts/37495/hydrodynamics-of-dual-hybrid-impeller-of-stirred-reactor-using-radiotracer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22225</span> Growth of Struvite Crystals in Synthetic Urine Using Magnesium Nitrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reneiloe%20Seodigeng">Reneiloe Seodigeng</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Kabuba"> John Kabuba</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urine diversion toilets have become popular as a means of solving the challenges in sanitation. As a result, the source-separated urine must be adequately treated so that it can be disposed of safely and valuable struvite can be extracted for use as fertilizer. In this study, synthetic urine was prepared, and struvite crystallisation experiments carried out using magnesium nitrate. The effect of residence time on crystal growth was studied. At residence time of 10, 30 and 60 minutes, mean particle sizes were 17, 34 and 53 µm showing that with higher residence times, larger crystal sizes can be achieved. SEM analysis of the crystal showed that the resultant crystals had the typical morphology of struvite crystals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=struvite" title="struvite">struvite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20nitrate" title=" magnesium nitrate"> magnesium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallisation" title=" crystallisation"> crystallisation</a>, <a href="https://publications.waset.org/abstracts/search?q=urine%20treatment" title=" urine treatment"> urine treatment</a> </p> <a href="https://publications.waset.org/abstracts/111014/growth-of-struvite-crystals-in-synthetic-urine-using-magnesium-nitrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22224</span> Effects of Residence Time on Selective Absorption of Hydrogen Suphide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dara%20Satyadileep">Dara Satyadileep</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20S.%20Berrouk"> Abdallah S. Berrouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective absorption of Hydrogen Sulphide (H2S) using methyldiethanol amine (MDEA) has become a point of interest as means of minimizing capital and operating costs of gas sweetening plants. This paper discusses the prominence of optimum design of column internals to best achieve H2S selectivity using MDEA. To this end, a kinetics-based process simulation model has been developed for a commercial gas sweetening unit. Trends of sweet gas H2S & CO2 contents as function of fraction active area (and hence residence time) have been explained through analysis of interdependent heat and mass transfer phenomena. Guidelines for column internals design in order to achieve desired degree of H2S selectivity are provided. Also the effectiveness of various operating conditions in achieving H2S selectivity for an industrial absorber with fixed internals is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sweetening" title="gas sweetening">gas sweetening</a>, <a href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity" title=" H2S selectivity"> H2S selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=methyldiethanol%20amine" title=" methyldiethanol amine"> methyldiethanol amine</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20simulation" title=" process simulation"> process simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/21361/effects-of-residence-time-on-selective-absorption-of-hydrogen-suphide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22223</span> A Comparative Assessment of Membrane Bioscrubber and Classical Bioscrubber for Biogas Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Tilahun">Ebrahim Tilahun</a>, <a href="https://publications.waset.org/abstracts/search?q=Erkan%20Sahinkaya"> Erkan Sahinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bari%C5%9F%20Calli%CC%87"> Bariş Calli̇</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw biogas is a valuable renewable energy source however it usually needs removal of the impurities. The presence of hydrogen sulfide (H2S) in the biogas has detrimental corrosion effects on the cogeneration units. Removal of H2S from the biogas can therefore significantly improve the biogas quality. In this work, a conventional bioscrubber (CBS), and a dense membrane bioscrubber (DMBS) were comparatively evaluated in terms of H2S removal efficiency (RE), CH4 enrichment and alkaline consumption at gas residence times ranging from 5 to 20 min. Both bioscrubbers were fed with a synthetic biogas containing H2S (1%), CO2 (39%) and CH4 (60%). The results show that high RE (98%) was obtained in the DMBS when gas residence time was 20 min, whereas slightly lower CO2 RE was observed. While in CBS system the outlet H2S concentration was always lower than 250 ppmv, and its H2S RE remained higher than 98% regardless of the gas residence time, although the high alkaline consumption and frequent absorbent replacement limited its cost-effectiveness. The result also indicates that in DMBS when the gas residence time increased to 20 min, the CH4 content in the treated biogas enriched upto 80%. However, while operating the CBS unit the CH4 content of the raw biogas (60%) decreased by three fold. The lower CH4 content in CBS was probably caused by extreme dilution of biogas with air (N2 and O2). According to the results obtained here the DMBS system is a robust and effective biotechnology in comparison with CBS. Hence, DMBS has a better potential for real scale applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=bioscrubber" title=" bioscrubber"> bioscrubber</a>, <a href="https://publications.waset.org/abstracts/search?q=desulfurization" title=" desulfurization"> desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS%20membrane" title=" PDMS membrane"> PDMS membrane</a> </p> <a href="https://publications.waset.org/abstracts/84585/a-comparative-assessment-of-membrane-bioscrubber-and-classical-bioscrubber-for-biogas-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22222</span> Effects of Hydraulic Loading Rates and Porous Matrix in Constructed Wetlands for Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-Jun%20Ren">Li-Jun Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Pan"> Wei Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Li%20Xu"> Li-Li Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Qing%20An"> Shu-Qing An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated whether different matrix composition volume ratio can improve water quality in the experiment. The mechanism and adsorption capability of wetland matrixes (oyster shell, coarse slag, and volcanic rock) and their different volume ratio in group configuration during pollutants removal processes were tested. When conditions unchanged, the residence time affects the reaction effect. The average removal efficiencies of four kinds of matrix volume ratio on the TN were 62.76%, 61.54%, 64.13%, and 55.89%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20residence%20time" title="hydraulic residence time">hydraulic residence time</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20composition" title=" matrix composition"> matrix composition</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20ratio" title=" volume ratio"> volume ratio</a> </p> <a href="https://publications.waset.org/abstracts/30418/effects-of-hydraulic-loading-rates-and-porous-matrix-in-constructed-wetlands-for-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22221</span> Cracking of Tar Analogue in N₂ Carrier Gas Using Non-Thermal Plasma Dielectric Barrier Discharge Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Saleem">Faisal Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Kui%20Zhang"> Kui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Harvey"> Adam Harvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The role of N₂ carrier gas towards the conversion of tar analogue was studied in a non-thermal plasma dielectric barrier discharge (DBD) reactor. The important parameters such as power (5-40W), residence time (1.41-4.23 s), concentration (20-82 g/Nm³), and temperature (Ambient-400°C) were explored. The present study demonstrated that plasma power and residence time played a key role in the decomposition of toluene, and almost complete removal of toluene was observed at 40w and 4.23 s. H₂ is obtained as a major gaseous product with a maximum selectivity of 40% along with some lighter hydrocarbons (5.5%). The removal efficiency of toluene slightly decreases with increasing the concentration of toluene from 20 g/Nm³ to 82 g/Nm³. The solid residue formation takes place inside the plasma reactor. The selectivity of LHC (lower hydrocarbons) increased up to 15% by increasing the temperature to 400°C. Introducing H₂ to the gas at elevated temperature opens up new reaction routes to raise the selectivity to lower hydrocarbons. The selectivity to methane reaches to 42% using 35% H₂ at 400°C and total selectivity of LHC increases to 57%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20gasification%20tar" title="biomass gasification tar">biomass gasification tar</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20barrier%20discharge" title=" dielectric barrier discharge"> dielectric barrier discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/94699/cracking-of-tar-analogue-in-n2-carrier-gas-using-non-thermal-plasma-dielectric-barrier-discharge-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22220</span> Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Singh">Prateek Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilshad%20Ahmad"> Dilshad Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title="design of experiments">design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression" title=" multiple linear regression"> multiple linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution" title=" residence time distribution"> residence time distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20quadratic%20programming%20optimization" title=" sequential quadratic programming optimization"> sequential quadratic programming optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tundish" title=" tundish"> tundish</a> </p> <a href="https://publications.waset.org/abstracts/80652/optimization-of-tundish-geometry-for-minimizing-dead-volume-using-openfoam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22219</span> Evaluation of Reliability Indices Using Monte Carlo Simulation Accounting Time to Switch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Asefi">Sajjad Asefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Afrakhte"> Hossein Afrakhte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the evaluation of reliability indices of an electrical distribution system using Monte Carlo simulation technique accounting Time To Switch (TTS) for each section. In this paper, the distribution system has been assumed by accounting random repair time omission. For simplicity, we have assumed the reliability analysis to be based on exponential law. Each segment has a specified rate of failure (λ) and repair time (r) which will give us the mean up time and mean down time of each section in distribution system. After calculating the modified mean up time (MUT) in years, mean down time (MDT) in hours and unavailability (U) in h/year, TTS have been added to the time which the system is not available, i.e. MDT. In this paper, we have assumed the TTS to be a random variable with Log-Normal distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title="distribution system">distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=repair%20time" title=" repair time"> repair time</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20switch%20%28TTS%29" title=" time to switch (TTS)"> time to switch (TTS)</a> </p> <a href="https://publications.waset.org/abstracts/75199/evaluation-of-reliability-indices-using-monte-carlo-simulation-accounting-time-to-switch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22218</span> Improving the Residence Time of a Rectangular Contact Tank by Varying the Geometry Using Numerical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yamileth%20P.%20Herrera">Yamileth P. Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20R.%20Gutierrez"> Ronald R. Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos"> Carlos</a>, <a href="https://publications.waset.org/abstracts/search?q=Pacheco-Bustos"> Pacheco-Bustos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims at the numerical modeling of a rectangular contact tank in order to improve the hydrodynamic behavior and the retention time of the water to be treated with the disinfecting agent. The methodology to be followed includes a hydraulic analysis of the tank to observe the fluid velocities, which will allow evidence of low-speed areas that may generate pathogenic agent incubation or high-velocity areas, which may decrease the optimal contact time between the disinfecting agent and the microorganisms to be eliminated. Based on the results of the numerical model, the efficiency of the tank under the geometric and hydraulic conditions considered will be analyzed. This would allow the performance of the tank to be improved before starting a construction process, thus avoiding unnecessary costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20tank" title="contact tank">contact tank</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20models" title=" numerical models"> numerical models</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20modeling" title=" hydrodynamic modeling"> hydrodynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/129266/improving-the-residence-time-of-a-rectangular-contact-tank-by-varying-the-geometry-using-numerical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22217</span> The Enlightenment of the Ventilation System in Chinese Traditional Residence to Architecture Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Xingchun">Wu Xingchun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Xi"> Chen Xi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, China's building energy consumption constitutes 25% of the total energy consumption, half of which was caused by air conditioning in both summer and winter. The ventilation system in Chinese traditional residence, which is totally passive and environmentally friendly, works effectively to create comfortable indoor environment. The research on the ventilation system in Chinese traditional residence can provide advancements to architecture design and energy savings to the society. Through field investigation, case analysis, strategy proposing and other methods, it comes out that the location and layout, the structure system and the design of atrium are the most important elements for a good ventilation system. Taking every factor into consideration, techniques are deployed extensively such as the organization of draught, the design of the thermal pressure ventilation system and the application of modern materials. With the enlightenment of the ventilation system in Chinese traditional residence, we can take effective measures to achieve low energy consumption and sustainable architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ventilation%20system" title="ventilation system">ventilation system</a>, <a href="https://publications.waset.org/abstracts/search?q=chinese%20traditional%20residence" title=" chinese traditional residence"> chinese traditional residence</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a> </p> <a href="https://publications.waset.org/abstracts/30328/the-enlightenment-of-the-ventilation-system-in-chinese-traditional-residence-to-architecture-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">707</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22216</span> The Effect of Region of Residence on Fertility in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motlatso%20Rampedi">Motlatso Rampedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigeria has the fifth highest Total Fertility Rate in Sub-Saharan Africa at 5.5 children born to a woman. Some demographic research has found that there is an association between region of residence and fertility in Nigeria, with the Northern regions pertaining to high fertility and the Southern regions pertaining to low fertility levels. Even so, little attention has been given to understanding the effect of region of residence on fertility. Instead, a significant amount of research has been conducted on exploring the proximate determinants of fertility in Nigeria. The objective of this study was to test whether there is an association between region of residence and fertility in Nigeria. Using a sample size of 38 948 women aged 15-49 derived from the 2013 NDHS and the Poisson regression model for analysis, the study has found that region of residence has a significant effect on fertility. Moreover, the ANOVA test has shown that there is a socioeconomic disparity by region of residence in Nigeria. The Northern regions of Nigeria have shown to have higher levels of fertility as compared to the Southern regions. Therefore, while proximate determinants of fertility and socio-demographic characteristics of women are important, region of residence remains one of the fundamental determinants of fertility. Given these findings, it is recommended that government should not exhaust its resources or focus its fertility reduction policies and programmes at entire populations but target specific regions where fertility is most prevalent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20fertility" title="high fertility">high fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=region" title=" region"> region</a>, <a href="https://publications.waset.org/abstracts/search?q=socioeconomic%20disparity" title=" socioeconomic disparity"> socioeconomic disparity</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-demographic%20characteristics" title=" socio-demographic characteristics"> socio-demographic characteristics</a> </p> <a href="https://publications.waset.org/abstracts/47800/the-effect-of-region-of-residence-on-fertility-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22215</span> On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee">Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reheating%20furnace" title="reheating furnace">reheating furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slab" title=" steel slab"> steel slab</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20transfer" title=" radiative heat transfer"> radiative heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=WSGGM" title=" WSGGM"> WSGGM</a>, <a href="https://publications.waset.org/abstracts/search?q=emissivity" title=" emissivity"> emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/8145/on-the-thermal-behavior-of-the-slab-in-a-reheating-furnace-with-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22214</span> Optimization of Reaction Parameters&#039; Influences on Production of Bio-Oil from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in a Fluidized Bed Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chayanoot%20Sangwichien">Chayanoot Sangwichien</a>, <a href="https://publications.waset.org/abstracts/search?q=Taweesak%20Reungpeerakul"> Taweesak Reungpeerakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyaw%20Thu"> Kyaw Thu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil palm mills in Southern Thailand produced a large amount of biomass solid wastes. Lignocellulose biomass is the main source for production of biofuel which can be combined or used as an alternative to fossil fuels. Biomass composed of three main constituents of cellulose, hemicellulose, and lignin. Thermochemical conversion process applied to produce biofuel from biomass. Pyrolysis of biomass is the best way to thermochemical conversion of biomass into pyrolytic products (bio-oil, gas, and char). Operating parameters play an important role to optimize the product yields from fast pyrolysis of biomass. This present work concerns with the modeling of reaction kinetics parameters for fast pyrolysis of empty fruit bunch in the fluidized bed reactor. A global kinetic model used to predict the product yields from fast pyrolysis of empty fruit bunch. The reaction temperature and vapor residence time parameters are mainly affected by product yields of EFB pyrolysis. The reaction temperature and vapor residence time parameters effects on empty fruit bunch pyrolysis are considered at the reaction temperature in the range of 450-500˚C and at a vapor residence time of 2 s, respectively. The optimum simulated bio-oil yield of 53 wt.% obtained at the reaction temperature and vapor residence time of 450˚C and 2 s, 500˚C and 1 s, respectively. The simulated data are in good agreement with the reported experimental data. These simulated data can be applied to the performance of experiment work for the fast pyrolysis of biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetics" title="kinetics">kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=empty%20fruit%20bunch" title=" empty fruit bunch"> empty fruit bunch</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20pyrolysis" title=" fast pyrolysis"> fast pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/107881/optimization-of-reaction-parameters-influences-on-production-of-bio-oil-from-fast-pyrolysis-of-oil-palm-empty-fruit-bunch-biomass-in-a-fluidized-bed-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22213</span> A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huashan%20Tai">Huashan Tai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hui%20Lung"> Chien-Hui Lung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20energy" title="biomass energy">biomass energy</a>, <a href="https://publications.waset.org/abstracts/search?q=orange" title=" orange"> orange</a>, <a href="https://publications.waset.org/abstracts/search?q=torrefaction" title=" torrefaction"> torrefaction</a> </p> <a href="https://publications.waset.org/abstracts/65085/a-feasibility-study-on-producing-bio-coal-from-orange-peel-residue-by-using-torrefaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22212</span> Study on Eco-Feedback of Thermal Comfort and Cost Efficiency for Low Energy Residence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Jin">Y. Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zhang"> N. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Luo"> X. Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Zhang"> W. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China with annual increasing 0.5-0.6 billion squares city residence has brought in enormous energy consumption by HVAC facilities and other appliances. In this regard, governments and researchers are encouraging renewable energy like solar energy, geothermal energy using in houses. However, high cost of equipment and low energy conversion result in a very low acceptable to residents. So what’s the equilibrium point of eco-feedback to reach economic benefit and thermal comfort? That is the main question should be answered. In this paper, the objective is an on-site solar PV and heater house, which has been evaluated as a low energy building. Since HVAC system is considered as main energy consumption equipment, the residence with 24-hour monitoring system set to measure temperature, wind velocity and energy in-out value with no HVAC system for one month of summer and winter. Thermal comfort time period will be analyzed and confirmed; then the air-conditioner will be started within thermal discomfort time for the following one summer and winter month. The same data will be recorded to calculate the average energy consumption monthly for a purpose of whole day thermal comfort. Finally, two analysis work will be done: 1) Original building thermal simulation by computer at design stage with actual measured temperature after construction will be contrastive analyzed; 2) The cost of renewable energy facilities and power consumption converted to cost efficient rate to assess the feasibility of renewable energy input for residence. The results of the experiment showed that a certain deviation exists between actual measured data and simulated one for human thermal comfort, especially in summer period. Moreover, the cost-effectiveness is high for a house in targeting city Guilin now with at least 11 years of cost-covering. The conclusion proves that an eco-feedback of a low energy residence is never only consideration of its energy net value, but also the cost efficiency that is the critical factor to push renewable energy acceptable by the public. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20efficiency" title="cost efficiency">cost efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-feedback" title=" eco-feedback"> eco-feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20energy%20residence" title=" low energy residence"> low energy residence</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/72802/study-on-eco-feedback-of-thermal-comfort-and-cost-efficiency-for-low-energy-residence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22211</span> Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Letizia%20Marchetti">Letizia Marchetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Annunzi"> Federica Annunzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Fiorini"> Federico Fiorini</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Nicolella"> Cristiano Nicolella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20shredder%20residue" title="automotive shredder residue">automotive shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20tests" title=" experimental tests"> experimental tests</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20yields" title=" product yields"> product yields</a>, <a href="https://publications.waset.org/abstracts/search?q=two-step%20pyrolysis" title=" two-step pyrolysis"> two-step pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/174857/experimental-study-on-two-step-pyrolysis-of-automotive-shredder-residue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22210</span> Pharmacokinetics, Dosage Regimen and in Vitro Plasma Protein Binding of Danofloxacin following Intravenous Administration in Adult Buffaloes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Manzoor">Zahid Manzoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaukat%20Hussain%20Munawar"> Shaukat Hussain Munawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Iqbal"> Zahid Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Ahmad%20Khan"> Imran Ahmad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aziz"> Abdul Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Qasim"> Hafiz Muhammad Qasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was aimed to investigate the pharmacokinetics behavior and optimal dosage regimen of danofloxacin in 8 adult healthy buffaloes of local breed (Nili Ravi) following single intravenous administration at the dose of 2.5 mg/kg body weight. Plasma drug concentrations at various time intervals were measured by HPLC method. In vitro plasma protein binding was determined employing the ultrafiltration technique. The distribution and elimination of danofloxacin was rapid, as indicated by the values (Mean±SD) of distribution half-life (t1/2α = 0.25±0.09 hours) and elimination half life (t1/2β = 3.26±0.43 hours), respectively. Volume of distribution at steady state (Vss) was 1.14±0.12 L/kg, displaying its extensive distribution into various body fluids and tissues. The high value of AUC (9.80±2.14 µg/ml.hr) reflected the vast area of the body covered by drug concentration. The mean residence time was noted to be 4.78±0.52 hours. On the basis of pharmacokinetic parameters, a suitable intravenous regimen for danofloxacin in adult buffaloes would be 6.5 mg/kg to be repeated after 12 hours intervals. The present study is the foremost pharmacokinetic study of danofloxacin in the local species which would provide the valueable contribution in the local manufacturing of danofloxacin in Pakistan in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=danofloxacin" title="danofloxacin">danofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacokinetics" title=" pharmacokinetics"> pharmacokinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20protein%20binding" title=" plasma protein binding"> plasma protein binding</a>, <a href="https://publications.waset.org/abstracts/search?q=buffaloes" title=" buffaloes"> buffaloes</a>, <a href="https://publications.waset.org/abstracts/search?q=dosage%20regimen" title=" dosage regimen"> dosage regimen</a> </p> <a href="https://publications.waset.org/abstracts/21339/pharmacokinetics-dosage-regimen-and-in-vitro-plasma-protein-binding-of-danofloxacin-following-intravenous-administration-in-adult-buffaloes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22209</span> Design and Development of Sustained Release Floating Tablet of Stavudine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajj%20Sarode">Surajj Sarode</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vidya%20Sagar"> G. Vidya Sagar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Vadnere"> G. P. Vadnere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to prolong the gastric residence time of Stavudine by developing gastric floating drug delivery system (GFDDS). Moreover, to study influence of different polymers on its release rate using gas-forming agents, like sodium bicarbonate, citric acid. Floating tablets were prepared by wet granulation method using PVP K-30 as a binder and the other polymers include Pullulan Gum, HPMC K100M, six different formulations with the varying concentrations of polymers were prepared and the tablets were evaluated in terms of their pre-compression parameters like bulk density, tapped density, Haunsner ratio, angle of repose, compressibility index, post compression physical characteristics, in vitro release, buoyancy, floating lag time (FLT), total floating time (TFT) and swelling index. All the formulations showed good floating lag time i.e. less than 3 mins. The batch containing combination of Pullulan Gum and HPMC 100M (i.e. F-6) showed total floating lag time more than 12 h., the highest swelling index among all the prepared batches. The drug release was found to follow zero order kinetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suavudine" title="Suavudine">Suavudine</a>, <a href="https://publications.waset.org/abstracts/search?q=floating" title=" floating"> floating</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20floating%20time%20%28TFT%29" title=" total floating time (TFT)"> total floating time (TFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=gastric%20residence" title=" gastric residence"> gastric residence</a> </p> <a href="https://publications.waset.org/abstracts/13372/design-and-development-of-sustained-release-floating-tablet-of-stavudine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22208</span> Plasma-Assisted Decomposition of Cyclohexane in a Dielectric Barrier Discharge Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Dahiru">Usman Dahiru</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Saleem"> Faisal Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Kui%20Zhang"> Kui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Harvey"> Adam Harvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compounds (VOCs) are atmospheric contaminants predominantly derived from petroleum spills, solvent usage, agricultural processes, automobile, and chemical processing industries, which can be detrimental to the environment and human health. Environmental problems such as the formation of photochemical smog, organic aerosols, and global warming are associated with VOC emissions. Research showed a clear relationship between VOC emissions and cancer. In recent years, stricter emission regulations, especially in industrialized countries, have been put in place around the world to restrict VOC emissions. Non-thermal plasmas (NTPs) are a promising technology for reducing VOC emissions by converting them into less toxic/environmentally friendly species. The dielectric barrier discharge (DBD) plasma is of interest due to its flexibility, moderate capital cost, and ease of operation under ambient conditions. In this study, a dielectric barrier discharge (DBD) reactor has been developed for the decomposition of cyclohexane (as a VOC model compound) using nitrogen, dry, and humidified air carrier gases. The effect of specific input energy (1.2-3.0 kJ/L), residence time (1.2-2.3 s) and concentration (220-520 ppm) were investigated. It was demonstrated that the removal efficiency of cyclohexane increased with increasing plasma power and residence time. The removal of cyclohexane decreased with increasing cyclohexane inlet concentration at fixed plasma power and residence time. The decomposition products included H₂, CO₂, H₂O, lower hydrocarbons (C₁-C₅) and solid residue. The highest removal efficiency (98.2%) was observed at specific input energy of 3.0 kJ/L and a residence time of 2.3 s in humidified air plasma. The effect of humidity was investigated to determine whether it could reduce the formation of solid residue in the DBD reactor. It was observed that the solid residue completely disappeared in humidified air plasma. Furthermore, the presence of OH radicals due to humidification not only increased the removal efficiency of cyclohexane but also improves product selectivity. This work demonstrates that cyclohexane can be converted to smaller molecules by a dielectric barrier discharge (DBD) non-thermal plasma reactor by varying plasma power (SIE), residence time, reactor configuration, and carrier gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclohexane" title="cyclohexane">cyclohexane</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20barrier%20discharge%20reactor" title=" dielectric barrier discharge reactor"> dielectric barrier discharge reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency "> removal efficiency </a> </p> <a href="https://publications.waset.org/abstracts/115494/plasma-assisted-decomposition-of-cyclohexane-in-a-dielectric-barrier-discharge-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22207</span> Habitual Residence and the Hague Convention on the Civil Aspects of Child Abduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Molshree%20A.%20Sharma">Molshree A. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of globalization, it is increasingly common for people to live in different parts of the world. However there is a corresponding rise of international family law issues and competing jurisdictions. The Hague Convention on the Civil Aspects of Child Abduction is a multilateral treaty that provides an expeditious method to return a child to their country of habitual residence when ‘internationally abducted’ by a parent from one member country to another. Specifically, the Convention provides a protocol for expeditious return of the child to their habitual residence unless there is a valid exception, the most common being that return would result in an intolerable situation or cause grave risk of harm to the child. This paper analyzes case law from various signatory countries including the United States, highlighting the differences in interpretation of key terms under the Convention, as well as case law in non-Hague signatory countries, with a focus on India and the Middle East. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=best%20interest%20of%20the%20child" title="best interest of the child">best interest of the child</a>, <a href="https://publications.waset.org/abstracts/search?q=grave%20risk%20of%20harm" title=" grave risk of harm"> grave risk of harm</a>, <a href="https://publications.waset.org/abstracts/search?q=habitual%20residence" title=" habitual residence"> habitual residence</a>, <a href="https://publications.waset.org/abstracts/search?q=well-settled" title=" well-settled"> well-settled</a> </p> <a href="https://publications.waset.org/abstracts/84792/habitual-residence-and-the-hague-convention-on-the-civil-aspects-of-child-abduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22206</span> Joint Physical Custody after Divorce and Child Well-Being</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Kami%C5%84ska">Katarzyna Kamińska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Joint physical custody means that both parents after divorce or separation have the right and responsibility to take care of the child on the daily basis. In a joint physical custody arrangement, the child spends substantial, but not necessarily equal, time with both parents. Joint physical custody can be symmetric care arrangement or not. However, it is accepted in the jurisprudence that the best interests of the child is served when the child spends at least 35% of the time during a two-week period with each parent. Joint physical custody, also known as joint, dual, or shared residence, is a challenge in contemporary family law. It has its supporters and opponents. On the one hand, joint physical custody is beneficial because it provides children with frequent and continuous contact with a mother and father after their divorce or separation. On the other hand, it isn’t good for children to be shuttled back and forth between two residences. Children need a home base. The conclusion is therefore that joint physical custody can’t be seen as a panacea for all post-divorce or post-separation parenting cases and the court shouldn’t automatically make such a determination. The possibility to award this arrangement requires the court to carefully weigh the pros and cons of each individual case. It is difficult to say that joint physical custody is better than single physical custody in any case. It depends on the circumstances and needs of each family. It appears that an individual approach is going to be much better as opposed to a one-size-fits-all idea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=joint%20physical%20custody" title="joint physical custody">joint physical custody</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20residence" title=" shared residence"> shared residence</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20residence" title=" dual residence"> dual residence</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20best%20interests%20of%20the%20child" title=" the best interests of the child"> the best interests of the child</a> </p> <a href="https://publications.waset.org/abstracts/152760/joint-physical-custody-after-divorce-and-child-well-being" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22205</span> A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20T.%20Payandeh%20Najafabadi">Amir T. Payandeh Najafabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ruin%20probability" title="ruin probability">ruin probability</a>, <a href="https://publications.waset.org/abstracts/search?q=compound%20poisson%20processes" title=" compound poisson processes"> compound poisson processes</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20exponential%20%28hyperexponential%29%20distribution" title=" mixture exponential (hyperexponential) distribution"> mixture exponential (hyperexponential) distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-tailed%20distributions" title=" heavy-tailed distributions"> heavy-tailed distributions</a> </p> <a href="https://publications.waset.org/abstracts/54135/a-hyperexponential-approximation-to-finite-time-and-infinite-time-ruin-probabilities-of-compound-poisson-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22204</span> The Beta-Fisher Snedecor Distribution with Applications to Cancer Remission Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Adepoju">K. A. Adepoju</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Shittu"> O. I. Shittu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Chukwu"> A. U. Chukwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new four-parameter generalized version of the Fisher Snedecor distribution called Beta- F distribution is introduced. The comprehensive account of the statistical properties of the new distributions was considered. Formal expressions for the cumulative density function, moments, moment generating function and maximum likelihood estimation, as well as its Fisher information, were obtained. The flexibility of this distribution as well as its robustness using cancer remission time data was demonstrated. The new distribution can be used in most applications where the assumption underlying the use of other lifetime distributions is violated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fisher-snedecor%20distribution" title="fisher-snedecor distribution">fisher-snedecor distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-f%20distribution" title=" beta-f distribution"> beta-f distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20method" title=" maximum likelihood method"> maximum likelihood method</a> </p> <a href="https://publications.waset.org/abstracts/46554/the-beta-fisher-snedecor-distribution-with-applications-to-cancer-remission-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22203</span> The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Zakaraia%20Abdel%20Wahid">Taha Zakaraia Abdel Wahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilute%20gas" title="dilute gas">dilute gas</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20field" title=" radiation field"> radiation field</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20method" title=" travelling wave method"> travelling wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20BGK%20model" title=" unsteady BGK model"> unsteady BGK model</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversible%20thermodynamics" title=" irreversible thermodynamics"> irreversible thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20non-equilibrium%20distribution%20functions" title=" unsteady non-equilibrium distribution functions"> unsteady non-equilibrium distribution functions</a> </p> <a href="https://publications.waset.org/abstracts/10132/the-unsteady-non-equilibrium-distribution-function-and-exact-equilibrium-time-for-a-dilute-gas-affected-by-thermal-radiation-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22202</span> Design of Distribution Network for Gas Cylinders in Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hazem%20J.%20Smadi">Hazem J. Smadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance of a supply chain is directly related to a distribution network that entails the location of storing materials or products and how products are delivered to the end customer through different stages in the supply chain. This study analyses the current distribution network used for delivering gas cylinders to end customer in Jordan. Evaluation of current distribution has been conducted across customer service components. A modification on the current distribution network in terms of central warehousing in each city in the country improves the response time and customer experience.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20network" title="distribution network">distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20cylinder" title=" gas cylinder"> gas cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/64310/design-of-distribution-network-for-gas-cylinders-in-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22201</span> Development and Evaluation of Gastro Retentive Floating Tablets of Ayurvedic Vati Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan%20Pathan">Imran Khan Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Bhandari"> Anil Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeyush%20K.%20Sharma"> Peeyush K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20K.%20Patel"> Rakesh K. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Purohit"> Suresh Purohit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floating tablets of Marichyadi Vati were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using HPMC E50 LV act as Matrixing agent, Carbopol as floating enhancer, microcrystalline cellulose as binder, sodium bi carbonate as effervescent agent with other excipients. The simplex lattice design was used for selection of variables for tablets formulation. Formulation was optimized on the basis of floating time and in vitro drug release. The results showed that the floating lag time for optimized formulation was found to be 61 second with about 97.32 % of total drug release within 3 hours. The in vitro release profiles of drug from the formulation could be best expressed zero order with highest linearity r2 = 0.9943. It was concluded that the gastroretentive drug delivery system can be developed for Marichyadi Vati containing piperine to increase the residence time of the drug in the stomach and thereby increasing bioavailability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piperine" title="piperine">piperine</a>, <a href="https://publications.waset.org/abstracts/search?q=Marichyadi%20Vati" title=" Marichyadi Vati"> Marichyadi Vati</a>, <a href="https://publications.waset.org/abstracts/search?q=gastroretentive%20drug%20delivery" title=" gastroretentive drug delivery"> gastroretentive drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20tablet" title=" floating tablet"> floating tablet</a> </p> <a href="https://publications.waset.org/abstracts/1702/development-and-evaluation-of-gastro-retentive-floating-tablets-of-ayurvedic-vati-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22200</span> Interactions between Residential Mobility, Car Ownership and Commute Mode: The Case for Melbourne</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solmaz%20Jahed%20Shiran">Solmaz Jahed Shiran</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Hearne"> John Hearne</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayebeh%20Saghapour"> Tayebeh Saghapour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daily travel behavior is strongly influenced by the location of the places of residence, education, and employment. Hence a change in those locations due to a move or changes in an occupation leads to a change in travel behavior. Given the interventions of housing mobility and travel behaviors, the hypothesis is that a mobile housing market allows households to move as a result of any change in their life course, allowing them to be closer to central services, public transport facilities and workplace and hence reducing the time spent by individuals on daily travel. Conversely, household’s immobility may lead to longer commutes of residents, for example, after a change of a job or a need for new services such as schools for children who have reached their school age. This paper aims to investigate the association between residential mobility and travel behavior. The Victorian Integrated Survey of Travel and Activity (VISTA) data is used for the empirical analysis. Car ownership and journey to work time and distance of employed people are used as indicators of travel behavior. Change of usual residence within the last five years used to identify movers and non-movers. Statistical analysis, including regression models, is used to compare the travel behavior of movers and non-movers. The results show travel time, and the distance does not differ for movers and non-movers. However, this is not the case when taking into account the residence tenure-type. In addition, car ownership rate and number found to be significantly higher for non-movers. It is hoped that the results from this study will contribute to a better understanding of factors other than common socioeconomic and built environment features influencing travel behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=journey%20to%20work" title="journey to work">journey to work</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20models" title=" regression models"> regression models</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20mobility" title=" residential mobility"> residential mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=commute%20mode" title=" commute mode"> commute mode</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20ownership" title=" car ownership"> car ownership</a> </p> <a href="https://publications.waset.org/abstracts/110682/interactions-between-residential-mobility-car-ownership-and-commute-mode-the-case-for-melbourne" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=740">740</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=741">741</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10