CINXE.COM

GitHub - zjukg/KG-LLM-Papers: [Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs)

<!DOCTYPE html> <html lang="en" data-color-mode="auto" data-light-theme="light" data-dark-theme="dark" data-a11y-animated-images="system" data-a11y-link-underlines="true" > <head> <meta charset="utf-8"> <link rel="dns-prefetch" href="https://github.githubassets.com"> <link rel="dns-prefetch" href="https://avatars.githubusercontent.com"> <link rel="dns-prefetch" href="https://github-cloud.s3.amazonaws.com"> <link rel="dns-prefetch" href="https://user-images.githubusercontent.com/"> <link rel="preconnect" href="https://github.githubassets.com" crossorigin> <link rel="preconnect" href="https://avatars.githubusercontent.com"> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/light-74231a1f3bbb.css" /><link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/dark-8a995f0bacd4.css" /><link data-color-theme="dark_dimmed" crossorigin="anonymous" media="all" rel="stylesheet" data-href="https://github.githubassets.com/assets/dark_dimmed-f37fb7684b1f.css" /><link data-color-theme="dark_high_contrast" crossorigin="anonymous" media="all" rel="stylesheet" data-href="https://github.githubassets.com/assets/dark_high_contrast-9ac301c3ebe5.css" /><link data-color-theme="dark_colorblind" crossorigin="anonymous" media="all" rel="stylesheet" data-href="https://github.githubassets.com/assets/dark_colorblind-cd826e8636dc.css" /><link data-color-theme="light_colorblind" crossorigin="anonymous" media="all" rel="stylesheet" data-href="https://github.githubassets.com/assets/light_colorblind-f91b0f603451.css" /><link data-color-theme="light_high_contrast" crossorigin="anonymous" media="all" rel="stylesheet" data-href="https://github.githubassets.com/assets/light_high_contrast-83beb16e0ecf.css" /><link data-color-theme="light_tritanopia" crossorigin="anonymous" media="all" rel="stylesheet" data-href="https://github.githubassets.com/assets/light_tritanopia-6e122dab64fc.css" /><link data-color-theme="dark_tritanopia" crossorigin="anonymous" media="all" rel="stylesheet" data-href="https://github.githubassets.com/assets/dark_tritanopia-18119e682df0.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/primer-primitives-225433424a87.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/primer-aaa714e5674d.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/global-7d4d2344e7ab.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/github-43ae85d4871b.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/repository-4fce88777fa8.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/code-0210be90f4d3.css" /> <script type="application/json" id="client-env">{"locale":"en","featureFlags":["a11y_quote_reply_fix","copilot_immersive_issue_preview","copilot_new_references_ui","copilot_chat_repo_custom_instructions_preview","copilot_no_floating_button","copilot_topics_as_references","copilot_read_shared_conversation","copilot_duplicate_thread","copilot_buffered_streaming","dotcom_chat_client_side_skills","experimentation_azure_variant_endpoint","failbot_handle_non_errors","fgpat_form_ui_updates","geojson_azure_maps","ghost_pilot_confidence_truncation_25","ghost_pilot_confidence_truncation_40","github_models_o3_mini_streaming","hovercard_accessibility","insert_before_patch","issues_react_remove_placeholders","issues_react_blur_item_picker_on_close","marketing_pages_search_explore_provider","primer_react_css_modules_ga","react_data_router_pull_requests","remove_child_patch","sample_network_conn_type","swp_enterprise_contact_form","site_proxima_australia_update","viewscreen_sandbox","issues_react_create_milestone","issues_react_cache_fix_workaround","lifecycle_label_name_updates","copilot_task_oriented_assistive_prompts","issues_react_assignee_warning","issue_types_prevent_private_type_creation","refresh_image_video_src","react_router_dispose_on_disconnect","turbo_app_id_restore"]}</script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/wp-runtime-448def958082.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_oddbird_popover-polyfill_dist_popover_js-9da652f58479.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_arianotify-polyfill_ariaNotify-polyfill_js-node_modules_github_mi-3abb8f-46b9f4874d95.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/ui_packages_failbot_failbot_ts-75968cfb5298.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/environment-f04cb2a9fc8c.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_primer_behaviors_dist_esm_index_mjs-0dbb79f97f8f.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_selector-observer_dist_index_esm_js-f690fd9ae3d5.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_relative-time-element_dist_index_js-62d275b7ddd9.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_text-expander-element_dist_index_js-78748950cb0c.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_auto-complete-element_dist_index_js-node_modules_github_catalyst_-8e9f78-a90ac05d2469.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_filter-input-element_dist_index_js-node_modules_github_remote-inp-b5f1d7-a1760ffda83d.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_markdown-toolbar-element_dist_index_js-ceef33f593fa.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_file-attachment-element_dist_index_js-node_modules_primer_view-co-c44a69-8c52cf4cd0d3.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/github-elements-394f8eb34f19.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/element-registry-0bebfa1427c4.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_braintree_browser-detection_dist_browser-detection_js-node_modules_githu-2906d7-2a07a295af40.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_lit-html_lit-html_js-be8cb88f481b.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_mini-throttle_dist_index_js-node_modules_morphdom_dist_morphdom-e-7c534c-a4a1922eb55f.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_turbo_dist_turbo_es2017-esm_js-a03ee12d659a.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_remote-form_dist_index_js-node_modules_delegated-events_dist_inde-893f9f-b6294cf703b7.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_color-convert_index_js-e3180fe3bcb3.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_quote-selection_dist_index_js-node_modules_github_session-resume_-947061-e7a6c4a19f98.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/ui_packages_updatable-content_updatable-content_ts-2a55124d5c52.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/app_assets_modules_github_behaviors_task-list_ts-app_assets_modules_github_sso_ts-ui_packages-900dde-768abe60b1f8.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/app_assets_modules_github_sticky-scroll-into-view_ts-3e000c5d31a9.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/app_assets_modules_github_behaviors_ajax-error_ts-app_assets_modules_github_behaviors_include-87a4ae-8be71414579a.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/app_assets_modules_github_behaviors_commenting_edit_ts-app_assets_modules_github_behaviors_ht-83c235-e429cff6ceb1.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/behaviors-7ebb6421bf22.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_delegated-events_dist_index_js-node_modules_github_catalyst_lib_index_js-f6223d90c7ba.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/notifications-global-01e85cd1be94.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_virtualized-list_es_index_js-node_modules_github_template-parts_lib_index_js-94dc7a2157c1.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_remote-form_dist_index_js-node_modules_delegated-events_dist_inde-70450e-4b93df70b903.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/app_assets_modules_github_ref-selector_ts-3e9d848bab5f.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/codespaces-c3bcacfe317c.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_filter-input-element_dist_index_js-node_modules_github_remote-inp-3eebbd-0763620ad7bf.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_mini-throttle_dist_decorators_js-node_modules_delegated-events_di-e161aa-9d41fb1b6c9e.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_file-attachment-element_dist_index_js-node_modules_github_remote--3c9c82-b71ef90fbdc7.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/repositories-7a0dbaa42c57.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_mini-throttle_dist_index_js-node_modules_github_catalyst_lib_inde-dbbea9-26cce2010167.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/code-menu-1c0aedc134b1.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/primer-react-e05a7c4c5398.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/react-core-aaa76995a864.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/react-lib-f1bca44e0926.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/octicons-react-cf2f2ab8dab4.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_emotion_is-prop-valid_dist_emotion-is-prop-valid_esm_js-node_modules_emo-62da9f-2df2f32ec596.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_mini-throttle_dist_index_js-node_modules_stacktrace-parser_dist_s-e7dcdd-9a233856b02c.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_oddbird_popover-polyfill_dist_popover-fn_js-55fea94174bf.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/notifications-subscriptions-menu-58a0c58bfee4.js"></script> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/primer-react.f9eaf3e098aa7865fd95.module.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/notifications-subscriptions-menu.1bcff9205c241e99cff2.module.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/primer-react.f9eaf3e098aa7865fd95.module.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/notifications-subscriptions-menu.1bcff9205c241e99cff2.module.css" /> <title>GitHub - zjukg/KG-LLM-Papers: [Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs)</title> <meta name="route-pattern" content="/:user_id/:repository" data-turbo-transient> <meta name="route-controller" content="files" data-turbo-transient> <meta name="route-action" content="disambiguate" data-turbo-transient> <meta name="current-catalog-service-hash" content="f3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb"> <meta name="request-id" content="AE64:261036:373573:4296AA:67E1A8F4" data-pjax-transient="true"/><meta name="html-safe-nonce" content="0f48e2507c39cd7a472e709714cec5cf8c094f4acfe94f7c321483d365edcc08" data-pjax-transient="true"/><meta name="visitor-payload" content="eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJBRTY0OjI2MTAzNjozNzM1NzM6NDI5NkFBOjY3RTFBOEY0IiwidmlzaXRvcl9pZCI6IjI3MDUwMTk1NjkyNTQyNzk0MTIiLCJyZWdpb25fZWRnZSI6InNvdXRoZWFzdGFzaWEiLCJyZWdpb25fcmVuZGVyIjoic291dGhlYXN0YXNpYSJ9" data-pjax-transient="true"/><meta name="visitor-hmac" content="416a7b0ca1c4ffbc707b90ee1deaf8238aedbd3d20bd30b4e76bfb2e24f084fe" data-pjax-transient="true"/> <meta name="hovercard-subject-tag" content="repository:652420569" data-turbo-transient> <meta name="github-keyboard-shortcuts" content="repository,copilot" data-turbo-transient="true" /> <meta name="selected-link" value="repo_source" data-turbo-transient> <link rel="assets" href="https://github.githubassets.com/"> <meta name="google-site-verification" content="Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I"> <meta name="octolytics-url" content="https://collector.github.com/github/collect" /> <meta name="analytics-location" content="/&lt;user-name&gt;/&lt;repo-name&gt;" data-turbo-transient="true" /> <meta name="user-login" content=""> <meta name="viewport" content="width=device-width"> <meta name="description" content="[Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs) - zjukg/KG-LLM-Papers"> <link rel="search" type="application/opensearchdescription+xml" href="/opensearch.xml" title="GitHub"> <link rel="fluid-icon" href="https://github.com/fluidicon.png" title="GitHub"> <meta property="fb:app_id" content="1401488693436528"> <meta name="apple-itunes-app" content="app-id=1477376905, app-argument=https://github.com/zjukg/KG-LLM-Papers" /> <meta name="twitter:image" content="https://opengraph.githubassets.com/ca8165e44156b8303adab4f146e12ebecb89f5f016dfd7683404a393538904e3/zjukg/KG-LLM-Papers" /><meta name="twitter:site" content="@github" /><meta name="twitter:card" content="summary_large_image" /><meta name="twitter:title" content="GitHub - zjukg/KG-LLM-Papers: [Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs)" /><meta name="twitter:description" content="[Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs) - zjukg/KG-LLM-Papers" /> <meta property="og:image" content="https://opengraph.githubassets.com/ca8165e44156b8303adab4f146e12ebecb89f5f016dfd7683404a393538904e3/zjukg/KG-LLM-Papers" /><meta property="og:image:alt" content="[Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs) - zjukg/KG-LLM-Papers" /><meta property="og:image:width" content="1200" /><meta property="og:image:height" content="600" /><meta property="og:site_name" content="GitHub" /><meta property="og:type" content="object" /><meta property="og:title" content="GitHub - zjukg/KG-LLM-Papers: [Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs)" /><meta property="og:url" content="https://github.com/zjukg/KG-LLM-Papers" /><meta property="og:description" content="[Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs) - zjukg/KG-LLM-Papers" /> <meta name="hostname" content="github.com"> <meta name="expected-hostname" content="github.com"> <meta http-equiv="x-pjax-version" content="048665b4e50df9f8b1bf9912d0d82d97432dd2bdcd7b0841ee18d990f0b6c1bc" data-turbo-track="reload"> <meta http-equiv="x-pjax-csp-version" content="77190eb53eb47fc30bd2fcc17a7eefa2dfd8505869fee9299ba911be3a40a9eb" data-turbo-track="reload"> <meta http-equiv="x-pjax-css-version" content="3c046d4b918199cbb4d255cca63226853d0617dbae6529663229394aa9b0742a" data-turbo-track="reload"> <meta http-equiv="x-pjax-js-version" content="51aaeb65a4f479d106ca688db7bcd0fe236a9473a05f0b446fdc8e16317b7f5f" data-turbo-track="reload"> <meta name="turbo-cache-control" content="no-preview" data-turbo-transient=""> <meta data-hydrostats="publish"> <meta name="go-import" content="github.com/zjukg/KG-LLM-Papers git https://github.com/zjukg/KG-LLM-Papers.git"> <meta name="octolytics-dimension-user_id" content="73814672" /><meta name="octolytics-dimension-user_login" content="zjukg" /><meta name="octolytics-dimension-repository_id" content="652420569" /><meta name="octolytics-dimension-repository_nwo" content="zjukg/KG-LLM-Papers" /><meta name="octolytics-dimension-repository_public" content="true" /><meta name="octolytics-dimension-repository_is_fork" content="false" /><meta name="octolytics-dimension-repository_network_root_id" content="652420569" /><meta name="octolytics-dimension-repository_network_root_nwo" content="zjukg/KG-LLM-Papers" /> <link rel="canonical" href="https://github.com/zjukg/KG-LLM-Papers" data-turbo-transient> <meta name="turbo-body-classes" content="logged-out env-production page-responsive"> <meta name="browser-stats-url" content="https://api.github.com/_private/browser/stats"> <meta name="browser-errors-url" content="https://api.github.com/_private/browser/errors"> <meta name="release" content="1140af9f412a2d14a4ee4eb2a3fb3d4f43c2263f"> <link rel="mask-icon" href="https://github.githubassets.com/assets/pinned-octocat-093da3e6fa40.svg" color="#000000"> <link rel="alternate icon" class="js-site-favicon" type="image/png" href="https://github.githubassets.com/favicons/favicon.png"> <link rel="icon" class="js-site-favicon" type="image/svg+xml" href="https://github.githubassets.com/favicons/favicon.svg" data-base-href="https://github.githubassets.com/favicons/favicon"> <meta name="theme-color" content="#1e2327"> <meta name="color-scheme" content="light dark" /> <link rel="manifest" href="/manifest.json" crossOrigin="use-credentials"> </head> <body class="logged-out env-production page-responsive" style="word-wrap: break-word;"> <div data-turbo-body class="logged-out env-production page-responsive" style="word-wrap: break-word;"> <div class="position-relative header-wrapper js-header-wrapper "> <a href="#start-of-content" data-skip-target-assigned="false" class="px-2 py-4 color-bg-accent-emphasis color-fg-on-emphasis show-on-focus js-skip-to-content">Skip to content</a> <span data-view-component="true" class="progress-pjax-loader Progress position-fixed width-full"> <span style="width: 0%;" data-view-component="true" class="Progress-item progress-pjax-loader-bar left-0 top-0 color-bg-accent-emphasis"></span> </span> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/ui_packages_ui-commands_ui-commands_ts-8c874fb594e9.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/keyboard-shortcuts-dialog-33dfb803e078.js"></script> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/primer-react.f9eaf3e098aa7865fd95.module.css" /> <react-partial partial-name="keyboard-shortcuts-dialog" data-ssr="false" data-attempted-ssr="false" > <script type="application/json" data-target="react-partial.embeddedData">{"props":{"docsUrl":"https://docs.github.com/get-started/accessibility/keyboard-shortcuts"}}</script> <div data-target="react-partial.reactRoot"></div> </react-partial> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_github_remote-form_dist_index_js-node_modules_delegated-events_dist_inde-94fd67-4898d1bf4b51.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/sessions-730dca81d0a2.js"></script> <header class="HeaderMktg header-logged-out js-details-container js-header Details f4 py-3" role="banner" data-is-top="true" data-color-mode=light data-light-theme=light data-dark-theme=dark> <h2 class="sr-only">Navigation Menu</h2> <button type="button" class="HeaderMktg-backdrop d-lg-none border-0 position-fixed top-0 left-0 width-full height-full js-details-target" aria-label="Toggle navigation"> <span class="d-none">Toggle navigation</span> </button> <div class="d-flex flex-column flex-lg-row flex-items-center px-3 px-md-4 px-lg-5 height-full position-relative z-1"> <div class="d-flex flex-justify-between flex-items-center width-full width-lg-auto"> <div class="flex-1"> <button aria-label="Toggle navigation" aria-expanded="false" type="button" data-view-component="true" class="js-details-target js-nav-padding-recalculate js-header-menu-toggle Button--link Button--medium Button d-lg-none color-fg-inherit p-1"> <span class="Button-content"> <span class="Button-label"><div class="HeaderMenu-toggle-bar rounded my-1"></div> <div class="HeaderMenu-toggle-bar rounded my-1"></div> <div class="HeaderMenu-toggle-bar rounded my-1"></div></span> </span> </button> </div> <a class="mr-lg-3 color-fg-inherit flex-order-2 js-prevent-focus-on-mobile-nav" href="/" aria-label="Homepage" data-analytics-event="{&quot;category&quot;:&quot;Marketing nav&quot;,&quot;action&quot;:&quot;click to go to homepage&quot;,&quot;label&quot;:&quot;ref_page:Marketing;ref_cta:Logomark;ref_loc:Header&quot;}"> <svg height="32" aria-hidden="true" viewBox="0 0 24 24" version="1.1" width="32" data-view-component="true" class="octicon octicon-mark-github"> <path d="M12 1C5.9225 1 1 5.9225 1 12C1 16.8675 4.14875 20.9787 8.52125 22.4362C9.07125 22.5325 9.2775 22.2025 9.2775 21.9137C9.2775 21.6525 9.26375 20.7862 9.26375 19.865C6.5 20.3737 5.785 19.1912 5.565 18.5725C5.44125 18.2562 4.905 17.28 4.4375 17.0187C4.0525 16.8125 3.5025 16.3037 4.42375 16.29C5.29 16.2762 5.90875 17.0875 6.115 17.4175C7.105 19.0812 8.68625 18.6137 9.31875 18.325C9.415 17.61 9.70375 17.1287 10.02 16.8537C7.5725 16.5787 5.015 15.63 5.015 11.4225C5.015 10.2262 5.44125 9.23625 6.1425 8.46625C6.0325 8.19125 5.6475 7.06375 6.2525 5.55125C6.2525 5.55125 7.17375 5.2625 9.2775 6.67875C10.1575 6.43125 11.0925 6.3075 12.0275 6.3075C12.9625 6.3075 13.8975 6.43125 14.7775 6.67875C16.8813 5.24875 17.8025 5.55125 17.8025 5.55125C18.4075 7.06375 18.0225 8.19125 17.9125 8.46625C18.6138 9.23625 19.04 10.2125 19.04 11.4225C19.04 15.6437 16.4688 16.5787 14.0213 16.8537C14.42 17.1975 14.7638 17.8575 14.7638 18.8887C14.7638 20.36 14.75 21.5425 14.75 21.9137C14.75 22.2025 14.9563 22.5462 15.5063 22.4362C19.8513 20.9787 23 16.8537 23 12C23 5.9225 18.0775 1 12 1Z"></path> </svg> </a> <div class="flex-1 flex-order-2 text-right"> <a href="/login?return_to=https%3A%2F%2Fgithub.com%2Fzjukg%2FKG-LLM-Papers" class="HeaderMenu-link HeaderMenu-button d-inline-flex d-lg-none flex-order-1 f5 no-underline border color-border-default rounded-2 px-2 py-1 color-fg-inherit js-prevent-focus-on-mobile-nav" data-hydro-click="{&quot;event_type&quot;:&quot;authentication.click&quot;,&quot;payload&quot;:{&quot;location_in_page&quot;:&quot;site header menu&quot;,&quot;repository_id&quot;:null,&quot;auth_type&quot;:&quot;SIGN_UP&quot;,&quot;originating_url&quot;:&quot;https://github.com/zjukg/KG-LLM-Papers&quot;,&quot;user_id&quot;:null}}" data-hydro-click-hmac="6f666c4f5eb865ec8ca43a3a5667924e8b4ce54d869cc2ad7a8a6c4611593ff1" data-analytics-event="{&quot;category&quot;:&quot;Marketing nav&quot;,&quot;action&quot;:&quot;click to Sign in&quot;,&quot;label&quot;:&quot;ref_page:Marketing;ref_cta:Sign in;ref_loc:Header&quot;}" > Sign in </a> </div> </div> <div class="HeaderMenu js-header-menu height-fit position-lg-relative d-lg-flex flex-column flex-auto top-0"> <div class="HeaderMenu-wrapper d-flex flex-column flex-self-start flex-lg-row flex-auto rounded rounded-lg-0"> <nav class="HeaderMenu-nav" aria-label="Global"> <ul class="d-lg-flex list-style-none"> <li class="HeaderMenu-item position-relative flex-wrap flex-justify-between flex-items-center d-block d-lg-flex flex-lg-nowrap flex-lg-items-center js-details-container js-header-menu-item"> <button type="button" class="HeaderMenu-link border-0 width-full width-lg-auto px-0 px-lg-2 py-lg-2 no-wrap d-flex flex-items-center flex-justify-between js-details-target" aria-expanded="false"> Product <svg opacity="0.5" aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-chevron-down HeaderMenu-icon ml-1"> <path d="M12.78 5.22a.749.749 0 0 1 0 1.06l-4.25 4.25a.749.749 0 0 1-1.06 0L3.22 6.28a.749.749 0 1 1 1.06-1.06L8 8.939l3.72-3.719a.749.749 0 0 1 1.06 0Z"></path> </svg> </button> <div class="HeaderMenu-dropdown dropdown-menu rounded m-0 p-0 pt-2 pt-lg-4 position-relative position-lg-absolute left-0 left-lg-n3 pb-2 pb-lg-4 d-lg-flex flex-wrap dropdown-menu-wide"> <div class="HeaderMenu-column px-lg-4 border-lg-right mb-4 mb-lg-0 pr-lg-7"> <div class="border-bottom pb-3 pb-lg-0 border-lg-bottom-0"> <ul class="list-style-none f5" > <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description pb-lg-3" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;github_copilot&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;github_copilot_link_product_navbar&quot;}" href="https://github.com/features/copilot"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-copilot color-fg-subtle mr-3"> <path d="M23.922 16.992c-.861 1.495-5.859 5.023-11.922 5.023-6.063 0-11.061-3.528-11.922-5.023A.641.641 0 0 1 0 16.736v-2.869a.841.841 0 0 1 .053-.22c.372-.935 1.347-2.292 2.605-2.656.167-.429.414-1.055.644-1.517a10.195 10.195 0 0 1-.052-1.086c0-1.331.282-2.499 1.132-3.368.397-.406.89-.717 1.474-.952 1.399-1.136 3.392-2.093 6.122-2.093 2.731 0 4.767.957 6.166 2.093.584.235 1.077.546 1.474.952.85.869 1.132 2.037 1.132 3.368 0 .368-.014.733-.052 1.086.23.462.477 1.088.644 1.517 1.258.364 2.233 1.721 2.605 2.656a.832.832 0 0 1 .053.22v2.869a.641.641 0 0 1-.078.256ZM12.172 11h-.344a4.323 4.323 0 0 1-.355.508C10.703 12.455 9.555 13 7.965 13c-1.725 0-2.989-.359-3.782-1.259a2.005 2.005 0 0 1-.085-.104L4 11.741v6.585c1.435.779 4.514 2.179 8 2.179 3.486 0 6.565-1.4 8-2.179v-6.585l-.098-.104s-.033.045-.085.104c-.793.9-2.057 1.259-3.782 1.259-1.59 0-2.738-.545-3.508-1.492a4.323 4.323 0 0 1-.355-.508h-.016.016Zm.641-2.935c.136 1.057.403 1.913.878 2.497.442.544 1.134.938 2.344.938 1.573 0 2.292-.337 2.657-.751.384-.435.558-1.15.558-2.361 0-1.14-.243-1.847-.705-2.319-.477-.488-1.319-.862-2.824-1.025-1.487-.161-2.192.138-2.533.529-.269.307-.437.808-.438 1.578v.021c0 .265.021.562.063.893Zm-1.626 0c.042-.331.063-.628.063-.894v-.02c-.001-.77-.169-1.271-.438-1.578-.341-.391-1.046-.69-2.533-.529-1.505.163-2.347.537-2.824 1.025-.462.472-.705 1.179-.705 2.319 0 1.211.175 1.926.558 2.361.365.414 1.084.751 2.657.751 1.21 0 1.902-.394 2.344-.938.475-.584.742-1.44.878-2.497Z"></path><path d="M14.5 14.25a1 1 0 0 1 1 1v2a1 1 0 0 1-2 0v-2a1 1 0 0 1 1-1Zm-5 0a1 1 0 0 1 1 1v2a1 1 0 0 1-2 0v-2a1 1 0 0 1 1-1Z"></path> </svg> <div> <div class="color-fg-default h4">GitHub Copilot</div> Write better code with AI </div> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description pb-lg-3" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;security&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;security_link_product_navbar&quot;}" href="https://github.com/features/security"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-shield-check color-fg-subtle mr-3"> <path d="M16.53 9.78a.75.75 0 0 0-1.06-1.06L11 13.19l-1.97-1.97a.75.75 0 0 0-1.06 1.06l2.5 2.5a.75.75 0 0 0 1.06 0l5-5Z"></path><path d="m12.54.637 8.25 2.675A1.75 1.75 0 0 1 22 4.976V10c0 6.19-3.771 10.704-9.401 12.83a1.704 1.704 0 0 1-1.198 0C5.77 20.705 2 16.19 2 10V4.976c0-.758.489-1.43 1.21-1.664L11.46.637a1.748 1.748 0 0 1 1.08 0Zm-.617 1.426-8.25 2.676a.249.249 0 0 0-.173.237V10c0 5.46 3.28 9.483 8.43 11.426a.199.199 0 0 0 .14 0C17.22 19.483 20.5 15.461 20.5 10V4.976a.25.25 0 0 0-.173-.237l-8.25-2.676a.253.253 0 0 0-.154 0Z"></path> </svg> <div> <div class="color-fg-default h4">Security</div> Find and fix vulnerabilities </div> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description pb-lg-3" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;actions&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;actions_link_product_navbar&quot;}" href="https://github.com/features/actions"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-workflow color-fg-subtle mr-3"> <path d="M1 3a2 2 0 0 1 2-2h6.5a2 2 0 0 1 2 2v6.5a2 2 0 0 1-2 2H7v4.063C7 16.355 7.644 17 8.438 17H12.5v-2.5a2 2 0 0 1 2-2H21a2 2 0 0 1 2 2V21a2 2 0 0 1-2 2h-6.5a2 2 0 0 1-2-2v-2.5H8.437A2.939 2.939 0 0 1 5.5 15.562V11.5H3a2 2 0 0 1-2-2Zm2-.5a.5.5 0 0 0-.5.5v6.5a.5.5 0 0 0 .5.5h6.5a.5.5 0 0 0 .5-.5V3a.5.5 0 0 0-.5-.5ZM14.5 14a.5.5 0 0 0-.5.5V21a.5.5 0 0 0 .5.5H21a.5.5 0 0 0 .5-.5v-6.5a.5.5 0 0 0-.5-.5Z"></path> </svg> <div> <div class="color-fg-default h4">Actions</div> Automate any workflow </div> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description pb-lg-3" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;codespaces&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;codespaces_link_product_navbar&quot;}" href="https://github.com/features/codespaces"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-codespaces color-fg-subtle mr-3"> <path d="M3.5 3.75C3.5 2.784 4.284 2 5.25 2h13.5c.966 0 1.75.784 1.75 1.75v7.5A1.75 1.75 0 0 1 18.75 13H5.25a1.75 1.75 0 0 1-1.75-1.75Zm-2 12c0-.966.784-1.75 1.75-1.75h17.5c.966 0 1.75.784 1.75 1.75v4a1.75 1.75 0 0 1-1.75 1.75H3.25a1.75 1.75 0 0 1-1.75-1.75ZM5.25 3.5a.25.25 0 0 0-.25.25v7.5c0 .138.112.25.25.25h13.5a.25.25 0 0 0 .25-.25v-7.5a.25.25 0 0 0-.25-.25Zm-2 12a.25.25 0 0 0-.25.25v4c0 .138.112.25.25.25h17.5a.25.25 0 0 0 .25-.25v-4a.25.25 0 0 0-.25-.25Z"></path><path d="M10 17.75a.75.75 0 0 1 .75-.75h6.5a.75.75 0 0 1 0 1.5h-6.5a.75.75 0 0 1-.75-.75Zm-4 0a.75.75 0 0 1 .75-.75h.5a.75.75 0 0 1 0 1.5h-.5a.75.75 0 0 1-.75-.75Z"></path> </svg> <div> <div class="color-fg-default h4">Codespaces</div> Instant dev environments </div> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description pb-lg-3" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;issues&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;issues_link_product_navbar&quot;}" href="https://github.com/features/issues"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-issue-opened color-fg-subtle mr-3"> <path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1ZM2.5 12a9.5 9.5 0 0 0 9.5 9.5 9.5 9.5 0 0 0 9.5-9.5A9.5 9.5 0 0 0 12 2.5 9.5 9.5 0 0 0 2.5 12Zm9.5 2a2 2 0 1 1-.001-3.999A2 2 0 0 1 12 14Z"></path> </svg> <div> <div class="color-fg-default h4">Issues</div> Plan and track work </div> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description pb-lg-3" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;code_review&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;code_review_link_product_navbar&quot;}" href="https://github.com/features/code-review"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-code-review color-fg-subtle mr-3"> <path d="M10.3 6.74a.75.75 0 0 1-.04 1.06l-2.908 2.7 2.908 2.7a.75.75 0 1 1-1.02 1.1l-3.5-3.25a.75.75 0 0 1 0-1.1l3.5-3.25a.75.75 0 0 1 1.06.04Zm3.44 1.06a.75.75 0 1 1 1.02-1.1l3.5 3.25a.75.75 0 0 1 0 1.1l-3.5 3.25a.75.75 0 1 1-1.02-1.1l2.908-2.7-2.908-2.7Z"></path><path d="M1.5 4.25c0-.966.784-1.75 1.75-1.75h17.5c.966 0 1.75.784 1.75 1.75v12.5a1.75 1.75 0 0 1-1.75 1.75h-9.69l-3.573 3.573A1.458 1.458 0 0 1 5 21.043V18.5H3.25a1.75 1.75 0 0 1-1.75-1.75ZM3.25 4a.25.25 0 0 0-.25.25v12.5c0 .138.112.25.25.25h2.5a.75.75 0 0 1 .75.75v3.19l3.72-3.72a.749.749 0 0 1 .53-.22h10a.25.25 0 0 0 .25-.25V4.25a.25.25 0 0 0-.25-.25Z"></path> </svg> <div> <div class="color-fg-default h4">Code Review</div> Manage code changes </div> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description pb-lg-3" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;discussions&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;discussions_link_product_navbar&quot;}" href="https://github.com/features/discussions"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-comment-discussion color-fg-subtle mr-3"> <path d="M1.75 1h12.5c.966 0 1.75.784 1.75 1.75v9.5A1.75 1.75 0 0 1 14.25 14H8.061l-2.574 2.573A1.458 1.458 0 0 1 3 15.543V14H1.75A1.75 1.75 0 0 1 0 12.25v-9.5C0 1.784.784 1 1.75 1ZM1.5 2.75v9.5c0 .138.112.25.25.25h2a.75.75 0 0 1 .75.75v2.19l2.72-2.72a.749.749 0 0 1 .53-.22h6.5a.25.25 0 0 0 .25-.25v-9.5a.25.25 0 0 0-.25-.25H1.75a.25.25 0 0 0-.25.25Z"></path><path d="M22.5 8.75a.25.25 0 0 0-.25-.25h-3.5a.75.75 0 0 1 0-1.5h3.5c.966 0 1.75.784 1.75 1.75v9.5A1.75 1.75 0 0 1 22.25 20H21v1.543a1.457 1.457 0 0 1-2.487 1.03L15.939 20H10.75A1.75 1.75 0 0 1 9 18.25v-1.465a.75.75 0 0 1 1.5 0v1.465c0 .138.112.25.25.25h5.5a.75.75 0 0 1 .53.22l2.72 2.72v-2.19a.75.75 0 0 1 .75-.75h2a.25.25 0 0 0 .25-.25v-9.5Z"></path> </svg> <div> <div class="color-fg-default h4">Discussions</div> Collaborate outside of code </div> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;code_search&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;code_search_link_product_navbar&quot;}" href="https://github.com/features/code-search"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-code-square color-fg-subtle mr-3"> <path d="M10.3 8.24a.75.75 0 0 1-.04 1.06L7.352 12l2.908 2.7a.75.75 0 1 1-1.02 1.1l-3.5-3.25a.75.75 0 0 1 0-1.1l3.5-3.25a.75.75 0 0 1 1.06.04Zm3.44 1.06a.75.75 0 1 1 1.02-1.1l3.5 3.25a.75.75 0 0 1 0 1.1l-3.5 3.25a.75.75 0 1 1-1.02-1.1l2.908-2.7-2.908-2.7Z"></path><path d="M2 3.75C2 2.784 2.784 2 3.75 2h16.5c.966 0 1.75.784 1.75 1.75v16.5A1.75 1.75 0 0 1 20.25 22H3.75A1.75 1.75 0 0 1 2 20.25Zm1.75-.25a.25.25 0 0 0-.25.25v16.5c0 .138.112.25.25.25h16.5a.25.25 0 0 0 .25-.25V3.75a.25.25 0 0 0-.25-.25Z"></path> </svg> <div> <div class="color-fg-default h4">Code Search</div> Find more, search less </div> </a></li> </ul> </div> </div> <div class="HeaderMenu-column px-lg-4"> <div class="border-bottom pb-3 pb-lg-0 border-lg-bottom-0 border-bottom-0"> <span class="d-block h4 color-fg-default my-1" id="product-explore-heading">Explore</span> <ul class="list-style-none f5" aria-labelledby="product-explore-heading"> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;all_features&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;all_features_link_product_navbar&quot;}" href="https://github.com/features"> All features </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary Link--external" target="_blank" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;documentation&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;documentation_link_product_navbar&quot;}" href="https://docs.github.com"> Documentation <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-link-external HeaderMenu-external-icon color-fg-subtle"> <path d="M3.75 2h3.5a.75.75 0 0 1 0 1.5h-3.5a.25.25 0 0 0-.25.25v8.5c0 .138.112.25.25.25h8.5a.25.25 0 0 0 .25-.25v-3.5a.75.75 0 0 1 1.5 0v3.5A1.75 1.75 0 0 1 12.25 14h-8.5A1.75 1.75 0 0 1 2 12.25v-8.5C2 2.784 2.784 2 3.75 2Zm6.854-1h4.146a.25.25 0 0 1 .25.25v4.146a.25.25 0 0 1-.427.177L13.03 4.03 9.28 7.78a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042l3.75-3.75-1.543-1.543A.25.25 0 0 1 10.604 1Z"></path> </svg> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary Link--external" target="_blank" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;github_skills&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;github_skills_link_product_navbar&quot;}" href="https://skills.github.com"> GitHub Skills <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-link-external HeaderMenu-external-icon color-fg-subtle"> <path d="M3.75 2h3.5a.75.75 0 0 1 0 1.5h-3.5a.25.25 0 0 0-.25.25v8.5c0 .138.112.25.25.25h8.5a.25.25 0 0 0 .25-.25v-3.5a.75.75 0 0 1 1.5 0v3.5A1.75 1.75 0 0 1 12.25 14h-8.5A1.75 1.75 0 0 1 2 12.25v-8.5C2 2.784 2.784 2 3.75 2Zm6.854-1h4.146a.25.25 0 0 1 .25.25v4.146a.25.25 0 0 1-.427.177L13.03 4.03 9.28 7.78a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042l3.75-3.75-1.543-1.543A.25.25 0 0 1 10.604 1Z"></path> </svg> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary Link--external" target="_blank" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;blog&quot;,&quot;context&quot;:&quot;product&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;blog_link_product_navbar&quot;}" href="https://github.blog"> Blog <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-link-external HeaderMenu-external-icon color-fg-subtle"> <path d="M3.75 2h3.5a.75.75 0 0 1 0 1.5h-3.5a.25.25 0 0 0-.25.25v8.5c0 .138.112.25.25.25h8.5a.25.25 0 0 0 .25-.25v-3.5a.75.75 0 0 1 1.5 0v3.5A1.75 1.75 0 0 1 12.25 14h-8.5A1.75 1.75 0 0 1 2 12.25v-8.5C2 2.784 2.784 2 3.75 2Zm6.854-1h4.146a.25.25 0 0 1 .25.25v4.146a.25.25 0 0 1-.427.177L13.03 4.03 9.28 7.78a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042l3.75-3.75-1.543-1.543A.25.25 0 0 1 10.604 1Z"></path> </svg> </a></li> </ul> </div> </div> </div> </li> <li class="HeaderMenu-item position-relative flex-wrap flex-justify-between flex-items-center d-block d-lg-flex flex-lg-nowrap flex-lg-items-center js-details-container js-header-menu-item"> <button type="button" class="HeaderMenu-link border-0 width-full width-lg-auto px-0 px-lg-2 py-lg-2 no-wrap d-flex flex-items-center flex-justify-between js-details-target" aria-expanded="false"> Solutions <svg opacity="0.5" aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-chevron-down HeaderMenu-icon ml-1"> <path d="M12.78 5.22a.749.749 0 0 1 0 1.06l-4.25 4.25a.749.749 0 0 1-1.06 0L3.22 6.28a.749.749 0 1 1 1.06-1.06L8 8.939l3.72-3.719a.749.749 0 0 1 1.06 0Z"></path> </svg> </button> <div class="HeaderMenu-dropdown dropdown-menu rounded m-0 p-0 pt-2 pt-lg-4 position-relative position-lg-absolute left-0 left-lg-n3 d-lg-flex flex-wrap dropdown-menu-wide"> <div class="HeaderMenu-column px-lg-4 border-lg-right mb-4 mb-lg-0 pr-lg-7"> <div class="border-bottom pb-3 pb-lg-0 border-lg-bottom-0 pb-lg-3 mb-3 mb-lg-0"> <span class="d-block h4 color-fg-default my-1" id="solutions-by-company-size-heading">By company size</span> <ul class="list-style-none f5" aria-labelledby="solutions-by-company-size-heading"> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;enterprises&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;enterprises_link_solutions_navbar&quot;}" href="https://github.com/enterprise"> Enterprises </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;small_and_medium_teams&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;small_and_medium_teams_link_solutions_navbar&quot;}" href="https://github.com/team"> Small and medium teams </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;startups&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;startups_link_solutions_navbar&quot;}" href="https://github.com/enterprise/startups"> Startups </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;nonprofits&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;nonprofits_link_solutions_navbar&quot;}" href="/solutions/industry/nonprofits"> Nonprofits </a></li> </ul> </div> <div class="border-bottom pb-3 pb-lg-0 border-lg-bottom-0"> <span class="d-block h4 color-fg-default my-1" id="solutions-by-use-case-heading">By use case</span> <ul class="list-style-none f5" aria-labelledby="solutions-by-use-case-heading"> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;devsecops&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;devsecops_link_solutions_navbar&quot;}" href="/solutions/use-case/devsecops"> DevSecOps </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;devops&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;devops_link_solutions_navbar&quot;}" href="/solutions/use-case/devops"> DevOps </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;ci_cd&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;ci_cd_link_solutions_navbar&quot;}" href="/solutions/use-case/ci-cd"> CI/CD </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;view_all_use_cases&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;view_all_use_cases_link_solutions_navbar&quot;}" href="/solutions/use-case"> View all use cases </a></li> </ul> </div> </div> <div class="HeaderMenu-column px-lg-4"> <div class="border-bottom pb-3 pb-lg-0 border-lg-bottom-0"> <span class="d-block h4 color-fg-default my-1" id="solutions-by-industry-heading">By industry</span> <ul class="list-style-none f5" aria-labelledby="solutions-by-industry-heading"> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;healthcare&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;healthcare_link_solutions_navbar&quot;}" href="/solutions/industry/healthcare"> Healthcare </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;financial_services&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;financial_services_link_solutions_navbar&quot;}" href="/solutions/industry/financial-services"> Financial services </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;manufacturing&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;manufacturing_link_solutions_navbar&quot;}" href="/solutions/industry/manufacturing"> Manufacturing </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;government&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;government_link_solutions_navbar&quot;}" href="/solutions/industry/government"> Government </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;view_all_industries&quot;,&quot;context&quot;:&quot;solutions&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;view_all_industries_link_solutions_navbar&quot;}" href="/solutions/industry"> View all industries </a></li> </ul> </div> </div> <div class="HeaderMenu-trailing-link rounded-bottom-2 flex-shrink-0 mt-lg-4 px-lg-4 py-4 py-lg-3 f5 text-semibold"> <a href="/solutions"> View all solutions <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-chevron-right HeaderMenu-trailing-link-icon"> <path d="M6.22 3.22a.75.75 0 0 1 1.06 0l4.25 4.25a.75.75 0 0 1 0 1.06l-4.25 4.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042L9.94 8 6.22 4.28a.75.75 0 0 1 0-1.06Z"></path> </svg> </a> </div> </div> </li> <li class="HeaderMenu-item position-relative flex-wrap flex-justify-between flex-items-center d-block d-lg-flex flex-lg-nowrap flex-lg-items-center js-details-container js-header-menu-item"> <button type="button" class="HeaderMenu-link border-0 width-full width-lg-auto px-0 px-lg-2 py-lg-2 no-wrap d-flex flex-items-center flex-justify-between js-details-target" aria-expanded="false"> Resources <svg opacity="0.5" aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-chevron-down HeaderMenu-icon ml-1"> <path d="M12.78 5.22a.749.749 0 0 1 0 1.06l-4.25 4.25a.749.749 0 0 1-1.06 0L3.22 6.28a.749.749 0 1 1 1.06-1.06L8 8.939l3.72-3.719a.749.749 0 0 1 1.06 0Z"></path> </svg> </button> <div class="HeaderMenu-dropdown dropdown-menu rounded m-0 p-0 pt-2 pt-lg-4 position-relative position-lg-absolute left-0 left-lg-n3 pb-2 pb-lg-4 d-lg-flex flex-wrap dropdown-menu-wide"> <div class="HeaderMenu-column px-lg-4 border-lg-right mb-4 mb-lg-0 pr-lg-7"> <div class="border-bottom pb-3 pb-lg-0 border-lg-bottom-0"> <span class="d-block h4 color-fg-default my-1" id="resources-topics-heading">Topics</span> <ul class="list-style-none f5" aria-labelledby="resources-topics-heading"> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;ai&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;ai_link_resources_navbar&quot;}" href="/resources/articles/ai"> AI </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;devops&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;devops_link_resources_navbar&quot;}" href="/resources/articles/devops"> DevOps </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;security&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;security_link_resources_navbar&quot;}" href="/resources/articles/security"> Security </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;software_development&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;software_development_link_resources_navbar&quot;}" href="/resources/articles/software-development"> Software Development </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;view_all&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;view_all_link_resources_navbar&quot;}" href="/resources/articles"> View all </a></li> </ul> </div> </div> <div class="HeaderMenu-column px-lg-4"> <div class="border-bottom pb-3 pb-lg-0 border-lg-bottom-0 border-bottom-0"> <span class="d-block h4 color-fg-default my-1" id="resources-explore-heading">Explore</span> <ul class="list-style-none f5" aria-labelledby="resources-explore-heading"> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary Link--external" target="_blank" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;learning_pathways&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;learning_pathways_link_resources_navbar&quot;}" href="https://resources.github.com/learn/pathways"> Learning Pathways <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-link-external HeaderMenu-external-icon color-fg-subtle"> <path d="M3.75 2h3.5a.75.75 0 0 1 0 1.5h-3.5a.25.25 0 0 0-.25.25v8.5c0 .138.112.25.25.25h8.5a.25.25 0 0 0 .25-.25v-3.5a.75.75 0 0 1 1.5 0v3.5A1.75 1.75 0 0 1 12.25 14h-8.5A1.75 1.75 0 0 1 2 12.25v-8.5C2 2.784 2.784 2 3.75 2Zm6.854-1h4.146a.25.25 0 0 1 .25.25v4.146a.25.25 0 0 1-.427.177L13.03 4.03 9.28 7.78a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042l3.75-3.75-1.543-1.543A.25.25 0 0 1 10.604 1Z"></path> </svg> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary Link--external" target="_blank" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;events_amp_webinars&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;events_amp_webinars_link_resources_navbar&quot;}" href="https://resources.github.com"> Events &amp; Webinars <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-link-external HeaderMenu-external-icon color-fg-subtle"> <path d="M3.75 2h3.5a.75.75 0 0 1 0 1.5h-3.5a.25.25 0 0 0-.25.25v8.5c0 .138.112.25.25.25h8.5a.25.25 0 0 0 .25-.25v-3.5a.75.75 0 0 1 1.5 0v3.5A1.75 1.75 0 0 1 12.25 14h-8.5A1.75 1.75 0 0 1 2 12.25v-8.5C2 2.784 2.784 2 3.75 2Zm6.854-1h4.146a.25.25 0 0 1 .25.25v4.146a.25.25 0 0 1-.427.177L13.03 4.03 9.28 7.78a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042l3.75-3.75-1.543-1.543A.25.25 0 0 1 10.604 1Z"></path> </svg> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;ebooks_amp_whitepapers&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;ebooks_amp_whitepapers_link_resources_navbar&quot;}" href="https://github.com/resources/whitepapers"> Ebooks &amp; Whitepapers </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;customer_stories&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;customer_stories_link_resources_navbar&quot;}" href="https://github.com/customer-stories"> Customer Stories </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary Link--external" target="_blank" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;partners&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;partners_link_resources_navbar&quot;}" href="https://partner.github.com"> Partners <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-link-external HeaderMenu-external-icon color-fg-subtle"> <path d="M3.75 2h3.5a.75.75 0 0 1 0 1.5h-3.5a.25.25 0 0 0-.25.25v8.5c0 .138.112.25.25.25h8.5a.25.25 0 0 0 .25-.25v-3.5a.75.75 0 0 1 1.5 0v3.5A1.75 1.75 0 0 1 12.25 14h-8.5A1.75 1.75 0 0 1 2 12.25v-8.5C2 2.784 2.784 2 3.75 2Zm6.854-1h4.146a.25.25 0 0 1 .25.25v4.146a.25.25 0 0 1-.427.177L13.03 4.03 9.28 7.78a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042l3.75-3.75-1.543-1.543A.25.25 0 0 1 10.604 1Z"></path> </svg> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;executive_insights&quot;,&quot;context&quot;:&quot;resources&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;executive_insights_link_resources_navbar&quot;}" href="https://github.com/solutions/executive-insights"> Executive Insights </a></li> </ul> </div> </div> </div> </li> <li class="HeaderMenu-item position-relative flex-wrap flex-justify-between flex-items-center d-block d-lg-flex flex-lg-nowrap flex-lg-items-center js-details-container js-header-menu-item"> <button type="button" class="HeaderMenu-link border-0 width-full width-lg-auto px-0 px-lg-2 py-lg-2 no-wrap d-flex flex-items-center flex-justify-between js-details-target" aria-expanded="false"> Open Source <svg opacity="0.5" aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-chevron-down HeaderMenu-icon ml-1"> <path d="M12.78 5.22a.749.749 0 0 1 0 1.06l-4.25 4.25a.749.749 0 0 1-1.06 0L3.22 6.28a.749.749 0 1 1 1.06-1.06L8 8.939l3.72-3.719a.749.749 0 0 1 1.06 0Z"></path> </svg> </button> <div class="HeaderMenu-dropdown dropdown-menu rounded m-0 p-0 pt-2 pt-lg-4 position-relative position-lg-absolute left-0 left-lg-n3 pb-2 pb-lg-4 px-lg-4"> <div class="HeaderMenu-column"> <div class="border-bottom pb-3 pb-lg-0 pb-lg-3 mb-3 mb-lg-0 mb-lg-3"> <ul class="list-style-none f5" > <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;github_sponsors&quot;,&quot;context&quot;:&quot;open_source&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;github_sponsors_link_open_source_navbar&quot;}" href="/sponsors"> <div> <div class="color-fg-default h4">GitHub Sponsors</div> Fund open source developers </div> </a></li> </ul> </div> <div class="border-bottom pb-3 pb-lg-0 pb-lg-3 mb-3 mb-lg-0 mb-lg-3"> <ul class="list-style-none f5" > <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;the_readme_project&quot;,&quot;context&quot;:&quot;open_source&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;the_readme_project_link_open_source_navbar&quot;}" href="https://github.com/readme"> <div> <div class="color-fg-default h4">The ReadME Project</div> GitHub community articles </div> </a></li> </ul> </div> <div class="border-bottom pb-3 pb-lg-0 border-bottom-0"> <span class="d-block h4 color-fg-default my-1" id="open-source-repositories-heading">Repositories</span> <ul class="list-style-none f5" aria-labelledby="open-source-repositories-heading"> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;topics&quot;,&quot;context&quot;:&quot;open_source&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;topics_link_open_source_navbar&quot;}" href="https://github.com/topics"> Topics </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;trending&quot;,&quot;context&quot;:&quot;open_source&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;trending_link_open_source_navbar&quot;}" href="https://github.com/trending"> Trending </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;collections&quot;,&quot;context&quot;:&quot;open_source&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;collections_link_open_source_navbar&quot;}" href="https://github.com/collections"> Collections </a></li> </ul> </div> </div> </div> </li> <li class="HeaderMenu-item position-relative flex-wrap flex-justify-between flex-items-center d-block d-lg-flex flex-lg-nowrap flex-lg-items-center js-details-container js-header-menu-item"> <button type="button" class="HeaderMenu-link border-0 width-full width-lg-auto px-0 px-lg-2 py-lg-2 no-wrap d-flex flex-items-center flex-justify-between js-details-target" aria-expanded="false"> Enterprise <svg opacity="0.5" aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-chevron-down HeaderMenu-icon ml-1"> <path d="M12.78 5.22a.749.749 0 0 1 0 1.06l-4.25 4.25a.749.749 0 0 1-1.06 0L3.22 6.28a.749.749 0 1 1 1.06-1.06L8 8.939l3.72-3.719a.749.749 0 0 1 1.06 0Z"></path> </svg> </button> <div class="HeaderMenu-dropdown dropdown-menu rounded m-0 p-0 pt-2 pt-lg-4 position-relative position-lg-absolute left-0 left-lg-n3 pb-2 pb-lg-4 px-lg-4"> <div class="HeaderMenu-column"> <div class="border-bottom pb-3 pb-lg-0 pb-lg-3 mb-3 mb-lg-0 mb-lg-3"> <ul class="list-style-none f5" > <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;enterprise_platform&quot;,&quot;context&quot;:&quot;enterprise&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;enterprise_platform_link_enterprise_navbar&quot;}" href="/enterprise"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-stack color-fg-subtle mr-3"> <path d="M11.063 1.456a1.749 1.749 0 0 1 1.874 0l8.383 5.316a1.751 1.751 0 0 1 0 2.956l-8.383 5.316a1.749 1.749 0 0 1-1.874 0L2.68 9.728a1.751 1.751 0 0 1 0-2.956Zm1.071 1.267a.25.25 0 0 0-.268 0L3.483 8.039a.25.25 0 0 0 0 .422l8.383 5.316a.25.25 0 0 0 .268 0l8.383-5.316a.25.25 0 0 0 0-.422Z"></path><path d="M1.867 12.324a.75.75 0 0 1 1.035-.232l8.964 5.685a.25.25 0 0 0 .268 0l8.964-5.685a.75.75 0 0 1 .804 1.267l-8.965 5.685a1.749 1.749 0 0 1-1.874 0l-8.965-5.685a.75.75 0 0 1-.231-1.035Z"></path><path d="M1.867 16.324a.75.75 0 0 1 1.035-.232l8.964 5.685a.25.25 0 0 0 .268 0l8.964-5.685a.75.75 0 0 1 .804 1.267l-8.965 5.685a1.749 1.749 0 0 1-1.874 0l-8.965-5.685a.75.75 0 0 1-.231-1.035Z"></path> </svg> <div> <div class="color-fg-default h4">Enterprise platform</div> AI-powered developer platform </div> </a></li> </ul> </div> <div class="border-bottom pb-3 pb-lg-0 border-bottom-0"> <span class="d-block h4 color-fg-default my-1" id="enterprise-available-add-ons-heading">Available add-ons</span> <ul class="list-style-none f5" aria-labelledby="enterprise-available-add-ons-heading"> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description pb-lg-3" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;advanced_security&quot;,&quot;context&quot;:&quot;enterprise&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;advanced_security_link_enterprise_navbar&quot;}" href="https://github.com/enterprise/advanced-security"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-shield-check color-fg-subtle mr-3"> <path d="M16.53 9.78a.75.75 0 0 0-1.06-1.06L11 13.19l-1.97-1.97a.75.75 0 0 0-1.06 1.06l2.5 2.5a.75.75 0 0 0 1.06 0l5-5Z"></path><path d="m12.54.637 8.25 2.675A1.75 1.75 0 0 1 22 4.976V10c0 6.19-3.771 10.704-9.401 12.83a1.704 1.704 0 0 1-1.198 0C5.77 20.705 2 16.19 2 10V4.976c0-.758.489-1.43 1.21-1.664L11.46.637a1.748 1.748 0 0 1 1.08 0Zm-.617 1.426-8.25 2.676a.249.249 0 0 0-.173.237V10c0 5.46 3.28 9.483 8.43 11.426a.199.199 0 0 0 .14 0C17.22 19.483 20.5 15.461 20.5 10V4.976a.25.25 0 0 0-.173-.237l-8.25-2.676a.253.253 0 0 0-.154 0Z"></path> </svg> <div> <div class="color-fg-default h4">Advanced Security</div> Enterprise-grade security features </div> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description pb-lg-3" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;copilot_for_business&quot;,&quot;context&quot;:&quot;enterprise&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;copilot_for_business_link_enterprise_navbar&quot;}" href="/features/copilot/copilot-business"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-copilot color-fg-subtle mr-3"> <path d="M23.922 16.992c-.861 1.495-5.859 5.023-11.922 5.023-6.063 0-11.061-3.528-11.922-5.023A.641.641 0 0 1 0 16.736v-2.869a.841.841 0 0 1 .053-.22c.372-.935 1.347-2.292 2.605-2.656.167-.429.414-1.055.644-1.517a10.195 10.195 0 0 1-.052-1.086c0-1.331.282-2.499 1.132-3.368.397-.406.89-.717 1.474-.952 1.399-1.136 3.392-2.093 6.122-2.093 2.731 0 4.767.957 6.166 2.093.584.235 1.077.546 1.474.952.85.869 1.132 2.037 1.132 3.368 0 .368-.014.733-.052 1.086.23.462.477 1.088.644 1.517 1.258.364 2.233 1.721 2.605 2.656a.832.832 0 0 1 .053.22v2.869a.641.641 0 0 1-.078.256ZM12.172 11h-.344a4.323 4.323 0 0 1-.355.508C10.703 12.455 9.555 13 7.965 13c-1.725 0-2.989-.359-3.782-1.259a2.005 2.005 0 0 1-.085-.104L4 11.741v6.585c1.435.779 4.514 2.179 8 2.179 3.486 0 6.565-1.4 8-2.179v-6.585l-.098-.104s-.033.045-.085.104c-.793.9-2.057 1.259-3.782 1.259-1.59 0-2.738-.545-3.508-1.492a4.323 4.323 0 0 1-.355-.508h-.016.016Zm.641-2.935c.136 1.057.403 1.913.878 2.497.442.544 1.134.938 2.344.938 1.573 0 2.292-.337 2.657-.751.384-.435.558-1.15.558-2.361 0-1.14-.243-1.847-.705-2.319-.477-.488-1.319-.862-2.824-1.025-1.487-.161-2.192.138-2.533.529-.269.307-.437.808-.438 1.578v.021c0 .265.021.562.063.893Zm-1.626 0c.042-.331.063-.628.063-.894v-.02c-.001-.77-.169-1.271-.438-1.578-.341-.391-1.046-.69-2.533-.529-1.505.163-2.347.537-2.824 1.025-.462.472-.705 1.179-.705 2.319 0 1.211.175 1.926.558 2.361.365.414 1.084.751 2.657.751 1.21 0 1.902-.394 2.344-.938.475-.584.742-1.44.878-2.497Z"></path><path d="M14.5 14.25a1 1 0 0 1 1 1v2a1 1 0 0 1-2 0v-2a1 1 0 0 1 1-1Zm-5 0a1 1 0 0 1 1 1v2a1 1 0 0 1-2 0v-2a1 1 0 0 1 1-1Z"></path> </svg> <div> <div class="color-fg-default h4">Copilot for business</div> Enterprise-grade AI features </div> </a></li> <li> <a class="HeaderMenu-dropdown-link d-block no-underline position-relative py-2 Link--secondary d-flex flex-items-center Link--has-description" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;premium_support&quot;,&quot;context&quot;:&quot;enterprise&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;premium_support_link_enterprise_navbar&quot;}" href="/premium-support"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-comment-discussion color-fg-subtle mr-3"> <path d="M1.75 1h12.5c.966 0 1.75.784 1.75 1.75v9.5A1.75 1.75 0 0 1 14.25 14H8.061l-2.574 2.573A1.458 1.458 0 0 1 3 15.543V14H1.75A1.75 1.75 0 0 1 0 12.25v-9.5C0 1.784.784 1 1.75 1ZM1.5 2.75v9.5c0 .138.112.25.25.25h2a.75.75 0 0 1 .75.75v2.19l2.72-2.72a.749.749 0 0 1 .53-.22h6.5a.25.25 0 0 0 .25-.25v-9.5a.25.25 0 0 0-.25-.25H1.75a.25.25 0 0 0-.25.25Z"></path><path d="M22.5 8.75a.25.25 0 0 0-.25-.25h-3.5a.75.75 0 0 1 0-1.5h3.5c.966 0 1.75.784 1.75 1.75v9.5A1.75 1.75 0 0 1 22.25 20H21v1.543a1.457 1.457 0 0 1-2.487 1.03L15.939 20H10.75A1.75 1.75 0 0 1 9 18.25v-1.465a.75.75 0 0 1 1.5 0v1.465c0 .138.112.25.25.25h5.5a.75.75 0 0 1 .53.22l2.72 2.72v-2.19a.75.75 0 0 1 .75-.75h2a.25.25 0 0 0 .25-.25v-9.5Z"></path> </svg> <div> <div class="color-fg-default h4">Premium Support</div> Enterprise-grade 24/7 support </div> </a></li> </ul> </div> </div> </div> </li> <li class="HeaderMenu-item position-relative flex-wrap flex-justify-between flex-items-center d-block d-lg-flex flex-lg-nowrap flex-lg-items-center js-details-container js-header-menu-item"> <a class="HeaderMenu-link no-underline px-0 px-lg-2 py-3 py-lg-2 d-block d-lg-inline-block" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;pricing&quot;,&quot;context&quot;:&quot;global&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;pricing_link_global_navbar&quot;}" href="https://github.com/pricing">Pricing</a> </li> </ul> </nav> <div class="d-flex flex-column flex-lg-row width-full flex-justify-end flex-lg-items-center text-center mt-3 mt-lg-0 text-lg-left ml-lg-3"> <qbsearch-input class="search-input" data-scope="repo:zjukg/KG-LLM-Papers" data-custom-scopes-path="/search/custom_scopes" data-delete-custom-scopes-csrf="XoNFyrrpaAzwub1iCUV-cx4g5yroEzQGiZ6DNWX1wLzYkRj3xNt_1KhydeZwUDKy5qNLadoxdypeMt-fZD2qeQ" data-max-custom-scopes="10" data-header-redesign-enabled="false" data-initial-value="" data-blackbird-suggestions-path="/search/suggestions" data-jump-to-suggestions-path="/_graphql/GetSuggestedNavigationDestinations" data-current-repository="zjukg/KG-LLM-Papers" data-current-org="zjukg" data-current-owner="" data-logged-in="false" data-copilot-chat-enabled="false" data-nl-search-enabled="false" data-retain-scroll-position="true"> <div class="search-input-container search-with-dialog position-relative d-flex flex-row flex-items-center mr-4 rounded" data-action="click:qbsearch-input#searchInputContainerClicked" > <button type="button" class="header-search-button placeholder input-button form-control d-flex flex-1 flex-self-stretch flex-items-center no-wrap width-full py-0 pl-2 pr-0 text-left border-0 box-shadow-none" data-target="qbsearch-input.inputButton" aria-label="Search or jump to…" aria-haspopup="dialog" placeholder="Search or jump to..." data-hotkey=s,/ autocapitalize="off" data-analytics-event="{&quot;location&quot;:&quot;navbar&quot;,&quot;action&quot;:&quot;searchbar&quot;,&quot;context&quot;:&quot;global&quot;,&quot;tag&quot;:&quot;input&quot;,&quot;label&quot;:&quot;searchbar_input_global_navbar&quot;}" data-action="click:qbsearch-input#handleExpand" > <div class="mr-2 color-fg-muted"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-search"> <path d="M10.68 11.74a6 6 0 0 1-7.922-8.982 6 6 0 0 1 8.982 7.922l3.04 3.04a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215ZM11.5 7a4.499 4.499 0 1 0-8.997 0A4.499 4.499 0 0 0 11.5 7Z"></path> </svg> </div> <span class="flex-1" data-target="qbsearch-input.inputButtonText">Search or jump to...</span> <div class="d-flex" data-target="qbsearch-input.hotkeyIndicator"> <svg xmlns="http://www.w3.org/2000/svg" width="22" height="20" aria-hidden="true" class="mr-1"><path fill="none" stroke="#979A9C" opacity=".4" d="M3.5.5h12c1.7 0 3 1.3 3 3v13c0 1.7-1.3 3-3 3h-12c-1.7 0-3-1.3-3-3v-13c0-1.7 1.3-3 3-3z"></path><path fill="#979A9C" d="M11.8 6L8 15.1h-.9L10.8 6h1z"></path></svg> </div> </button> <input type="hidden" name="type" class="js-site-search-type-field"> <div class="Overlay--hidden " data-modal-dialog-overlay> <modal-dialog data-action="close:qbsearch-input#handleClose cancel:qbsearch-input#handleClose" data-target="qbsearch-input.searchSuggestionsDialog" role="dialog" id="search-suggestions-dialog" aria-modal="true" aria-labelledby="search-suggestions-dialog-header" data-view-component="true" class="Overlay Overlay--width-large Overlay--height-auto"> <h1 id="search-suggestions-dialog-header" class="sr-only">Search code, repositories, users, issues, pull requests...</h1> <div class="Overlay-body Overlay-body--paddingNone"> <div data-view-component="true"> <div class="search-suggestions position-fixed width-full color-shadow-large border color-fg-default color-bg-default overflow-hidden d-flex flex-column query-builder-container" style="border-radius: 12px;" data-target="qbsearch-input.queryBuilderContainer" hidden > <!-- '"` --><!-- </textarea></xmp> --></option></form><form id="query-builder-test-form" action="" accept-charset="UTF-8" method="get"> <query-builder data-target="qbsearch-input.queryBuilder" id="query-builder-query-builder-test" data-filter-key=":" data-view-component="true" class="QueryBuilder search-query-builder"> <div class="FormControl FormControl--fullWidth"> <label id="query-builder-test-label" for="query-builder-test" class="FormControl-label sr-only"> Search </label> <div class="QueryBuilder-StyledInput width-fit " data-target="query-builder.styledInput" > <span id="query-builder-test-leadingvisual-wrap" class="FormControl-input-leadingVisualWrap QueryBuilder-leadingVisualWrap"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-search FormControl-input-leadingVisual"> <path d="M10.68 11.74a6 6 0 0 1-7.922-8.982 6 6 0 0 1 8.982 7.922l3.04 3.04a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215ZM11.5 7a4.499 4.499 0 1 0-8.997 0A4.499 4.499 0 0 0 11.5 7Z"></path> </svg> </span> <div data-target="query-builder.styledInputContainer" class="QueryBuilder-StyledInputContainer"> <div aria-hidden="true" class="QueryBuilder-StyledInputContent" data-target="query-builder.styledInputContent" ></div> <div class="QueryBuilder-InputWrapper"> <div aria-hidden="true" class="QueryBuilder-Sizer" data-target="query-builder.sizer"></div> <input id="query-builder-test" name="query-builder-test" value="" autocomplete="off" type="text" role="combobox" spellcheck="false" aria-expanded="false" aria-describedby="validation-bf5f6659-3ec8-49c0-9948-e110c62d226c" data-target="query-builder.input" data-action=" input:query-builder#inputChange blur:query-builder#inputBlur keydown:query-builder#inputKeydown focus:query-builder#inputFocus " data-view-component="true" class="FormControl-input QueryBuilder-Input FormControl-medium" /> </div> </div> <span class="sr-only" id="query-builder-test-clear">Clear</span> <button role="button" id="query-builder-test-clear-button" aria-labelledby="query-builder-test-clear query-builder-test-label" data-target="query-builder.clearButton" data-action=" click:query-builder#clear focus:query-builder#clearButtonFocus blur:query-builder#clearButtonBlur " variant="small" hidden="hidden" type="button" data-view-component="true" class="Button Button--iconOnly Button--invisible Button--medium mr-1 px-2 py-0 d-flex flex-items-center rounded-1 color-fg-muted"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-x-circle-fill Button-visual"> <path d="M2.343 13.657A8 8 0 1 1 13.658 2.343 8 8 0 0 1 2.343 13.657ZM6.03 4.97a.751.751 0 0 0-1.042.018.751.751 0 0 0-.018 1.042L6.94 8 4.97 9.97a.749.749 0 0 0 .326 1.275.749.749 0 0 0 .734-.215L8 9.06l1.97 1.97a.749.749 0 0 0 1.275-.326.749.749 0 0 0-.215-.734L9.06 8l1.97-1.97a.749.749 0 0 0-.326-1.275.749.749 0 0 0-.734.215L8 6.94Z"></path> </svg> </button> </div> <template id="search-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-search"> <path d="M10.68 11.74a6 6 0 0 1-7.922-8.982 6 6 0 0 1 8.982 7.922l3.04 3.04a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215ZM11.5 7a4.499 4.499 0 1 0-8.997 0A4.499 4.499 0 0 0 11.5 7Z"></path> </svg> </template> <template id="code-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-code"> <path d="m11.28 3.22 4.25 4.25a.75.75 0 0 1 0 1.06l-4.25 4.25a.749.749 0 0 1-1.275-.326.749.749 0 0 1 .215-.734L13.94 8l-3.72-3.72a.749.749 0 0 1 .326-1.275.749.749 0 0 1 .734.215Zm-6.56 0a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042L2.06 8l3.72 3.72a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L.47 8.53a.75.75 0 0 1 0-1.06Z"></path> </svg> </template> <template id="file-code-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-file-code"> <path d="M4 1.75C4 .784 4.784 0 5.75 0h5.586c.464 0 .909.184 1.237.513l2.914 2.914c.329.328.513.773.513 1.237v8.586A1.75 1.75 0 0 1 14.25 15h-9a.75.75 0 0 1 0-1.5h9a.25.25 0 0 0 .25-.25V6h-2.75A1.75 1.75 0 0 1 10 4.25V1.5H5.75a.25.25 0 0 0-.25.25v2.5a.75.75 0 0 1-1.5 0Zm1.72 4.97a.75.75 0 0 1 1.06 0l2 2a.75.75 0 0 1 0 1.06l-2 2a.749.749 0 0 1-1.275-.326.749.749 0 0 1 .215-.734l1.47-1.47-1.47-1.47a.75.75 0 0 1 0-1.06ZM3.28 7.78 1.81 9.25l1.47 1.47a.751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018l-2-2a.75.75 0 0 1 0-1.06l2-2a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042Zm8.22-6.218V4.25c0 .138.112.25.25.25h2.688l-.011-.013-2.914-2.914-.013-.011Z"></path> </svg> </template> <template id="history-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-history"> <path d="m.427 1.927 1.215 1.215a8.002 8.002 0 1 1-1.6 5.685.75.75 0 1 1 1.493-.154 6.5 6.5 0 1 0 1.18-4.458l1.358 1.358A.25.25 0 0 1 3.896 6H.25A.25.25 0 0 1 0 5.75V2.104a.25.25 0 0 1 .427-.177ZM7.75 4a.75.75 0 0 1 .75.75v2.992l2.028.812a.75.75 0 0 1-.557 1.392l-2.5-1A.751.751 0 0 1 7 8.25v-3.5A.75.75 0 0 1 7.75 4Z"></path> </svg> </template> <template id="repo-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-repo"> <path d="M2 2.5A2.5 2.5 0 0 1 4.5 0h8.75a.75.75 0 0 1 .75.75v12.5a.75.75 0 0 1-.75.75h-2.5a.75.75 0 0 1 0-1.5h1.75v-2h-8a1 1 0 0 0-.714 1.7.75.75 0 1 1-1.072 1.05A2.495 2.495 0 0 1 2 11.5Zm10.5-1h-8a1 1 0 0 0-1 1v6.708A2.486 2.486 0 0 1 4.5 9h8ZM5 12.25a.25.25 0 0 1 .25-.25h3.5a.25.25 0 0 1 .25.25v3.25a.25.25 0 0 1-.4.2l-1.45-1.087a.249.249 0 0 0-.3 0L5.4 15.7a.25.25 0 0 1-.4-.2Z"></path> </svg> </template> <template id="bookmark-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-bookmark"> <path d="M3 2.75C3 1.784 3.784 1 4.75 1h6.5c.966 0 1.75.784 1.75 1.75v11.5a.75.75 0 0 1-1.227.579L8 11.722l-3.773 3.107A.751.751 0 0 1 3 14.25Zm1.75-.25a.25.25 0 0 0-.25.25v9.91l3.023-2.489a.75.75 0 0 1 .954 0l3.023 2.49V2.75a.25.25 0 0 0-.25-.25Z"></path> </svg> </template> <template id="plus-circle-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-plus-circle"> <path d="M8 0a8 8 0 1 1 0 16A8 8 0 0 1 8 0ZM1.5 8a6.5 6.5 0 1 0 13 0 6.5 6.5 0 0 0-13 0Zm7.25-3.25v2.5h2.5a.75.75 0 0 1 0 1.5h-2.5v2.5a.75.75 0 0 1-1.5 0v-2.5h-2.5a.75.75 0 0 1 0-1.5h2.5v-2.5a.75.75 0 0 1 1.5 0Z"></path> </svg> </template> <template id="circle-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-dot-fill"> <path d="M8 4a4 4 0 1 1 0 8 4 4 0 0 1 0-8Z"></path> </svg> </template> <template id="trash-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-trash"> <path d="M11 1.75V3h2.25a.75.75 0 0 1 0 1.5H2.75a.75.75 0 0 1 0-1.5H5V1.75C5 .784 5.784 0 6.75 0h2.5C10.216 0 11 .784 11 1.75ZM4.496 6.675l.66 6.6a.25.25 0 0 0 .249.225h5.19a.25.25 0 0 0 .249-.225l.66-6.6a.75.75 0 0 1 1.492.149l-.66 6.6A1.748 1.748 0 0 1 10.595 15h-5.19a1.75 1.75 0 0 1-1.741-1.575l-.66-6.6a.75.75 0 1 1 1.492-.15ZM6.5 1.75V3h3V1.75a.25.25 0 0 0-.25-.25h-2.5a.25.25 0 0 0-.25.25Z"></path> </svg> </template> <template id="team-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-people"> <path d="M2 5.5a3.5 3.5 0 1 1 5.898 2.549 5.508 5.508 0 0 1 3.034 4.084.75.75 0 1 1-1.482.235 4 4 0 0 0-7.9 0 .75.75 0 0 1-1.482-.236A5.507 5.507 0 0 1 3.102 8.05 3.493 3.493 0 0 1 2 5.5ZM11 4a3.001 3.001 0 0 1 2.22 5.018 5.01 5.01 0 0 1 2.56 3.012.749.749 0 0 1-.885.954.752.752 0 0 1-.549-.514 3.507 3.507 0 0 0-2.522-2.372.75.75 0 0 1-.574-.73v-.352a.75.75 0 0 1 .416-.672A1.5 1.5 0 0 0 11 5.5.75.75 0 0 1 11 4Zm-5.5-.5a2 2 0 1 0-.001 3.999A2 2 0 0 0 5.5 3.5Z"></path> </svg> </template> <template id="project-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-project"> <path d="M1.75 0h12.5C15.216 0 16 .784 16 1.75v12.5A1.75 1.75 0 0 1 14.25 16H1.75A1.75 1.75 0 0 1 0 14.25V1.75C0 .784.784 0 1.75 0ZM1.5 1.75v12.5c0 .138.112.25.25.25h12.5a.25.25 0 0 0 .25-.25V1.75a.25.25 0 0 0-.25-.25H1.75a.25.25 0 0 0-.25.25ZM11.75 3a.75.75 0 0 1 .75.75v7.5a.75.75 0 0 1-1.5 0v-7.5a.75.75 0 0 1 .75-.75Zm-8.25.75a.75.75 0 0 1 1.5 0v5.5a.75.75 0 0 1-1.5 0ZM8 3a.75.75 0 0 1 .75.75v3.5a.75.75 0 0 1-1.5 0v-3.5A.75.75 0 0 1 8 3Z"></path> </svg> </template> <template id="pencil-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-pencil"> <path d="M11.013 1.427a1.75 1.75 0 0 1 2.474 0l1.086 1.086a1.75 1.75 0 0 1 0 2.474l-8.61 8.61c-.21.21-.47.364-.756.445l-3.251.93a.75.75 0 0 1-.927-.928l.929-3.25c.081-.286.235-.547.445-.758l8.61-8.61Zm.176 4.823L9.75 4.81l-6.286 6.287a.253.253 0 0 0-.064.108l-.558 1.953 1.953-.558a.253.253 0 0 0 .108-.064Zm1.238-3.763a.25.25 0 0 0-.354 0L10.811 3.75l1.439 1.44 1.263-1.263a.25.25 0 0 0 0-.354Z"></path> </svg> </template> <template id="copilot-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-copilot"> <path d="M7.998 15.035c-4.562 0-7.873-2.914-7.998-3.749V9.338c.085-.628.677-1.686 1.588-2.065.013-.07.024-.143.036-.218.029-.183.06-.384.126-.612-.201-.508-.254-1.084-.254-1.656 0-.87.128-1.769.693-2.484.579-.733 1.494-1.124 2.724-1.261 1.206-.134 2.262.034 2.944.765.05.053.096.108.139.165.044-.057.094-.112.143-.165.682-.731 1.738-.899 2.944-.765 1.23.137 2.145.528 2.724 1.261.566.715.693 1.614.693 2.484 0 .572-.053 1.148-.254 1.656.066.228.098.429.126.612.012.076.024.148.037.218.924.385 1.522 1.471 1.591 2.095v1.872c0 .766-3.351 3.795-8.002 3.795Zm0-1.485c2.28 0 4.584-1.11 5.002-1.433V7.862l-.023-.116c-.49.21-1.075.291-1.727.291-1.146 0-2.059-.327-2.71-.991A3.222 3.222 0 0 1 8 6.303a3.24 3.24 0 0 1-.544.743c-.65.664-1.563.991-2.71.991-.652 0-1.236-.081-1.727-.291l-.023.116v4.255c.419.323 2.722 1.433 5.002 1.433ZM6.762 2.83c-.193-.206-.637-.413-1.682-.297-1.019.113-1.479.404-1.713.7-.247.312-.369.789-.369 1.554 0 .793.129 1.171.308 1.371.162.181.519.379 1.442.379.853 0 1.339-.235 1.638-.54.315-.322.527-.827.617-1.553.117-.935-.037-1.395-.241-1.614Zm4.155-.297c-1.044-.116-1.488.091-1.681.297-.204.219-.359.679-.242 1.614.091.726.303 1.231.618 1.553.299.305.784.54 1.638.54.922 0 1.28-.198 1.442-.379.179-.2.308-.578.308-1.371 0-.765-.123-1.242-.37-1.554-.233-.296-.693-.587-1.713-.7Z"></path><path d="M6.25 9.037a.75.75 0 0 1 .75.75v1.501a.75.75 0 0 1-1.5 0V9.787a.75.75 0 0 1 .75-.75Zm4.25.75v1.501a.75.75 0 0 1-1.5 0V9.787a.75.75 0 0 1 1.5 0Z"></path> </svg> </template> <template id="copilot-error-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-copilot-error"> <path d="M16 11.24c0 .112-.072.274-.21.467L13 9.688V7.862l-.023-.116c-.49.21-1.075.291-1.727.291-.198 0-.388-.009-.571-.029L6.833 5.226a4.01 4.01 0 0 0 .17-.782c.117-.935-.037-1.395-.241-1.614-.193-.206-.637-.413-1.682-.297-.683.076-1.115.231-1.395.415l-1.257-.91c.579-.564 1.413-.877 2.485-.996 1.206-.134 2.262.034 2.944.765.05.053.096.108.139.165.044-.057.094-.112.143-.165.682-.731 1.738-.899 2.944-.765 1.23.137 2.145.528 2.724 1.261.566.715.693 1.614.693 2.484 0 .572-.053 1.148-.254 1.656.066.228.098.429.126.612.012.076.024.148.037.218.924.385 1.522 1.471 1.591 2.095Zm-5.083-8.707c-1.044-.116-1.488.091-1.681.297-.204.219-.359.679-.242 1.614.091.726.303 1.231.618 1.553.299.305.784.54 1.638.54.922 0 1.28-.198 1.442-.379.179-.2.308-.578.308-1.371 0-.765-.123-1.242-.37-1.554-.233-.296-.693-.587-1.713-.7Zm2.511 11.074c-1.393.776-3.272 1.428-5.43 1.428-4.562 0-7.873-2.914-7.998-3.749V9.338c.085-.628.677-1.686 1.588-2.065.013-.07.024-.143.036-.218.029-.183.06-.384.126-.612-.18-.455-.241-.963-.252-1.475L.31 4.107A.747.747 0 0 1 0 3.509V3.49a.748.748 0 0 1 .625-.73c.156-.026.306.047.435.139l14.667 10.578a.592.592 0 0 1 .227.264.752.752 0 0 1 .046.249v.022a.75.75 0 0 1-1.19.596Zm-1.367-.991L5.635 7.964a5.128 5.128 0 0 1-.889.073c-.652 0-1.236-.081-1.727-.291l-.023.116v4.255c.419.323 2.722 1.433 5.002 1.433 1.539 0 3.089-.505 4.063-.934Z"></path> </svg> </template> <template id="workflow-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-workflow"> <path d="M0 1.75C0 .784.784 0 1.75 0h3.5C6.216 0 7 .784 7 1.75v3.5A1.75 1.75 0 0 1 5.25 7H4v4a1 1 0 0 0 1 1h4v-1.25C9 9.784 9.784 9 10.75 9h3.5c.966 0 1.75.784 1.75 1.75v3.5A1.75 1.75 0 0 1 14.25 16h-3.5A1.75 1.75 0 0 1 9 14.25v-.75H5A2.5 2.5 0 0 1 2.5 11V7h-.75A1.75 1.75 0 0 1 0 5.25Zm1.75-.25a.25.25 0 0 0-.25.25v3.5c0 .138.112.25.25.25h3.5a.25.25 0 0 0 .25-.25v-3.5a.25.25 0 0 0-.25-.25Zm9 9a.25.25 0 0 0-.25.25v3.5c0 .138.112.25.25.25h3.5a.25.25 0 0 0 .25-.25v-3.5a.25.25 0 0 0-.25-.25Z"></path> </svg> </template> <template id="book-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-book"> <path d="M0 1.75A.75.75 0 0 1 .75 1h4.253c1.227 0 2.317.59 3 1.501A3.743 3.743 0 0 1 11.006 1h4.245a.75.75 0 0 1 .75.75v10.5a.75.75 0 0 1-.75.75h-4.507a2.25 2.25 0 0 0-1.591.659l-.622.621a.75.75 0 0 1-1.06 0l-.622-.621A2.25 2.25 0 0 0 5.258 13H.75a.75.75 0 0 1-.75-.75Zm7.251 10.324.004-5.073-.002-2.253A2.25 2.25 0 0 0 5.003 2.5H1.5v9h3.757a3.75 3.75 0 0 1 1.994.574ZM8.755 4.75l-.004 7.322a3.752 3.752 0 0 1 1.992-.572H14.5v-9h-3.495a2.25 2.25 0 0 0-2.25 2.25Z"></path> </svg> </template> <template id="code-review-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-code-review"> <path d="M1.75 1h12.5c.966 0 1.75.784 1.75 1.75v8.5A1.75 1.75 0 0 1 14.25 13H8.061l-2.574 2.573A1.458 1.458 0 0 1 3 14.543V13H1.75A1.75 1.75 0 0 1 0 11.25v-8.5C0 1.784.784 1 1.75 1ZM1.5 2.75v8.5c0 .138.112.25.25.25h2a.75.75 0 0 1 .75.75v2.19l2.72-2.72a.749.749 0 0 1 .53-.22h6.5a.25.25 0 0 0 .25-.25v-8.5a.25.25 0 0 0-.25-.25H1.75a.25.25 0 0 0-.25.25Zm5.28 1.72a.75.75 0 0 1 0 1.06L5.31 7l1.47 1.47a.751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018l-2-2a.75.75 0 0 1 0-1.06l2-2a.75.75 0 0 1 1.06 0Zm2.44 0a.75.75 0 0 1 1.06 0l2 2a.75.75 0 0 1 0 1.06l-2 2a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042L10.69 7 9.22 5.53a.75.75 0 0 1 0-1.06Z"></path> </svg> </template> <template id="codespaces-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-codespaces"> <path d="M0 11.25c0-.966.784-1.75 1.75-1.75h12.5c.966 0 1.75.784 1.75 1.75v3A1.75 1.75 0 0 1 14.25 16H1.75A1.75 1.75 0 0 1 0 14.25Zm2-9.5C2 .784 2.784 0 3.75 0h8.5C13.216 0 14 .784 14 1.75v5a1.75 1.75 0 0 1-1.75 1.75h-8.5A1.75 1.75 0 0 1 2 6.75Zm1.75-.25a.25.25 0 0 0-.25.25v5c0 .138.112.25.25.25h8.5a.25.25 0 0 0 .25-.25v-5a.25.25 0 0 0-.25-.25Zm-2 9.5a.25.25 0 0 0-.25.25v3c0 .138.112.25.25.25h12.5a.25.25 0 0 0 .25-.25v-3a.25.25 0 0 0-.25-.25Z"></path><path d="M7 12.75a.75.75 0 0 1 .75-.75h4.5a.75.75 0 0 1 0 1.5h-4.5a.75.75 0 0 1-.75-.75Zm-4 0a.75.75 0 0 1 .75-.75h.5a.75.75 0 0 1 0 1.5h-.5a.75.75 0 0 1-.75-.75Z"></path> </svg> </template> <template id="comment-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-comment"> <path d="M1 2.75C1 1.784 1.784 1 2.75 1h10.5c.966 0 1.75.784 1.75 1.75v7.5A1.75 1.75 0 0 1 13.25 12H9.06l-2.573 2.573A1.458 1.458 0 0 1 4 13.543V12H2.75A1.75 1.75 0 0 1 1 10.25Zm1.75-.25a.25.25 0 0 0-.25.25v7.5c0 .138.112.25.25.25h2a.75.75 0 0 1 .75.75v2.19l2.72-2.72a.749.749 0 0 1 .53-.22h4.5a.25.25 0 0 0 .25-.25v-7.5a.25.25 0 0 0-.25-.25Z"></path> </svg> </template> <template id="comment-discussion-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-comment-discussion"> <path d="M1.75 1h8.5c.966 0 1.75.784 1.75 1.75v5.5A1.75 1.75 0 0 1 10.25 10H7.061l-2.574 2.573A1.458 1.458 0 0 1 2 11.543V10h-.25A1.75 1.75 0 0 1 0 8.25v-5.5C0 1.784.784 1 1.75 1ZM1.5 2.75v5.5c0 .138.112.25.25.25h1a.75.75 0 0 1 .75.75v2.19l2.72-2.72a.749.749 0 0 1 .53-.22h3.5a.25.25 0 0 0 .25-.25v-5.5a.25.25 0 0 0-.25-.25h-8.5a.25.25 0 0 0-.25.25Zm13 2a.25.25 0 0 0-.25-.25h-.5a.75.75 0 0 1 0-1.5h.5c.966 0 1.75.784 1.75 1.75v5.5A1.75 1.75 0 0 1 14.25 12H14v1.543a1.458 1.458 0 0 1-2.487 1.03L9.22 12.28a.749.749 0 0 1 .326-1.275.749.749 0 0 1 .734.215l2.22 2.22v-2.19a.75.75 0 0 1 .75-.75h1a.25.25 0 0 0 .25-.25Z"></path> </svg> </template> <template id="organization-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-organization"> <path d="M1.75 16A1.75 1.75 0 0 1 0 14.25V1.75C0 .784.784 0 1.75 0h8.5C11.216 0 12 .784 12 1.75v12.5c0 .085-.006.168-.018.25h2.268a.25.25 0 0 0 .25-.25V8.285a.25.25 0 0 0-.111-.208l-1.055-.703a.749.749 0 1 1 .832-1.248l1.055.703c.487.325.779.871.779 1.456v5.965A1.75 1.75 0 0 1 14.25 16h-3.5a.766.766 0 0 1-.197-.026c-.099.017-.2.026-.303.026h-3a.75.75 0 0 1-.75-.75V14h-1v1.25a.75.75 0 0 1-.75.75Zm-.25-1.75c0 .138.112.25.25.25H4v-1.25a.75.75 0 0 1 .75-.75h2.5a.75.75 0 0 1 .75.75v1.25h2.25a.25.25 0 0 0 .25-.25V1.75a.25.25 0 0 0-.25-.25h-8.5a.25.25 0 0 0-.25.25ZM3.75 6h.5a.75.75 0 0 1 0 1.5h-.5a.75.75 0 0 1 0-1.5ZM3 3.75A.75.75 0 0 1 3.75 3h.5a.75.75 0 0 1 0 1.5h-.5A.75.75 0 0 1 3 3.75Zm4 3A.75.75 0 0 1 7.75 6h.5a.75.75 0 0 1 0 1.5h-.5A.75.75 0 0 1 7 6.75ZM7.75 3h.5a.75.75 0 0 1 0 1.5h-.5a.75.75 0 0 1 0-1.5ZM3 9.75A.75.75 0 0 1 3.75 9h.5a.75.75 0 0 1 0 1.5h-.5A.75.75 0 0 1 3 9.75ZM7.75 9h.5a.75.75 0 0 1 0 1.5h-.5a.75.75 0 0 1 0-1.5Z"></path> </svg> </template> <template id="rocket-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-rocket"> <path d="M14.064 0h.186C15.216 0 16 .784 16 1.75v.186a8.752 8.752 0 0 1-2.564 6.186l-.458.459c-.314.314-.641.616-.979.904v3.207c0 .608-.315 1.172-.833 1.49l-2.774 1.707a.749.749 0 0 1-1.11-.418l-.954-3.102a1.214 1.214 0 0 1-.145-.125L3.754 9.816a1.218 1.218 0 0 1-.124-.145L.528 8.717a.749.749 0 0 1-.418-1.11l1.71-2.774A1.748 1.748 0 0 1 3.31 4h3.204c.288-.338.59-.665.904-.979l.459-.458A8.749 8.749 0 0 1 14.064 0ZM8.938 3.623h-.002l-.458.458c-.76.76-1.437 1.598-2.02 2.5l-1.5 2.317 2.143 2.143 2.317-1.5c.902-.583 1.74-1.26 2.499-2.02l.459-.458a7.25 7.25 0 0 0 2.123-5.127V1.75a.25.25 0 0 0-.25-.25h-.186a7.249 7.249 0 0 0-5.125 2.123ZM3.56 14.56c-.732.732-2.334 1.045-3.005 1.148a.234.234 0 0 1-.201-.064.234.234 0 0 1-.064-.201c.103-.671.416-2.273 1.15-3.003a1.502 1.502 0 1 1 2.12 2.12Zm6.94-3.935c-.088.06-.177.118-.266.175l-2.35 1.521.548 1.783 1.949-1.2a.25.25 0 0 0 .119-.213ZM3.678 8.116 5.2 5.766c.058-.09.117-.178.176-.266H3.309a.25.25 0 0 0-.213.119l-1.2 1.95ZM12 5a1 1 0 1 1-2 0 1 1 0 0 1 2 0Z"></path> </svg> </template> <template id="shield-check-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-shield-check"> <path d="m8.533.133 5.25 1.68A1.75 1.75 0 0 1 15 3.48V7c0 1.566-.32 3.182-1.303 4.682-.983 1.498-2.585 2.813-5.032 3.855a1.697 1.697 0 0 1-1.33 0c-2.447-1.042-4.049-2.357-5.032-3.855C1.32 10.182 1 8.566 1 7V3.48a1.75 1.75 0 0 1 1.217-1.667l5.25-1.68a1.748 1.748 0 0 1 1.066 0Zm-.61 1.429.001.001-5.25 1.68a.251.251 0 0 0-.174.237V7c0 1.36.275 2.666 1.057 3.859.784 1.194 2.121 2.342 4.366 3.298a.196.196 0 0 0 .154 0c2.245-.957 3.582-2.103 4.366-3.297C13.225 9.666 13.5 8.358 13.5 7V3.48a.25.25 0 0 0-.174-.238l-5.25-1.68a.25.25 0 0 0-.153 0ZM11.28 6.28l-3.5 3.5a.75.75 0 0 1-1.06 0l-1.5-1.5a.749.749 0 0 1 .326-1.275.749.749 0 0 1 .734.215l.97.97 2.97-2.97a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042Z"></path> </svg> </template> <template id="heart-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-heart"> <path d="m8 14.25.345.666a.75.75 0 0 1-.69 0l-.008-.004-.018-.01a7.152 7.152 0 0 1-.31-.17 22.055 22.055 0 0 1-3.434-2.414C2.045 10.731 0 8.35 0 5.5 0 2.836 2.086 1 4.25 1 5.797 1 7.153 1.802 8 3.02 8.847 1.802 10.203 1 11.75 1 13.914 1 16 2.836 16 5.5c0 2.85-2.045 5.231-3.885 6.818a22.066 22.066 0 0 1-3.744 2.584l-.018.01-.006.003h-.002ZM4.25 2.5c-1.336 0-2.75 1.164-2.75 3 0 2.15 1.58 4.144 3.365 5.682A20.58 20.58 0 0 0 8 13.393a20.58 20.58 0 0 0 3.135-2.211C12.92 9.644 14.5 7.65 14.5 5.5c0-1.836-1.414-3-2.75-3-1.373 0-2.609.986-3.029 2.456a.749.749 0 0 1-1.442 0C6.859 3.486 5.623 2.5 4.25 2.5Z"></path> </svg> </template> <template id="server-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-server"> <path d="M1.75 1h12.5c.966 0 1.75.784 1.75 1.75v4c0 .372-.116.717-.314 1 .198.283.314.628.314 1v4a1.75 1.75 0 0 1-1.75 1.75H1.75A1.75 1.75 0 0 1 0 12.75v-4c0-.358.109-.707.314-1a1.739 1.739 0 0 1-.314-1v-4C0 1.784.784 1 1.75 1ZM1.5 2.75v4c0 .138.112.25.25.25h12.5a.25.25 0 0 0 .25-.25v-4a.25.25 0 0 0-.25-.25H1.75a.25.25 0 0 0-.25.25Zm.25 5.75a.25.25 0 0 0-.25.25v4c0 .138.112.25.25.25h12.5a.25.25 0 0 0 .25-.25v-4a.25.25 0 0 0-.25-.25ZM7 4.75A.75.75 0 0 1 7.75 4h4.5a.75.75 0 0 1 0 1.5h-4.5A.75.75 0 0 1 7 4.75ZM7.75 10h4.5a.75.75 0 0 1 0 1.5h-4.5a.75.75 0 0 1 0-1.5ZM3 4.75A.75.75 0 0 1 3.75 4h.5a.75.75 0 0 1 0 1.5h-.5A.75.75 0 0 1 3 4.75ZM3.75 10h.5a.75.75 0 0 1 0 1.5h-.5a.75.75 0 0 1 0-1.5Z"></path> </svg> </template> <template id="globe-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-globe"> <path d="M8 0a8 8 0 1 1 0 16A8 8 0 0 1 8 0ZM5.78 8.75a9.64 9.64 0 0 0 1.363 4.177c.255.426.542.832.857 1.215.245-.296.551-.705.857-1.215A9.64 9.64 0 0 0 10.22 8.75Zm4.44-1.5a9.64 9.64 0 0 0-1.363-4.177c-.307-.51-.612-.919-.857-1.215a9.927 9.927 0 0 0-.857 1.215A9.64 9.64 0 0 0 5.78 7.25Zm-5.944 1.5H1.543a6.507 6.507 0 0 0 4.666 5.5c-.123-.181-.24-.365-.352-.552-.715-1.192-1.437-2.874-1.581-4.948Zm-2.733-1.5h2.733c.144-2.074.866-3.756 1.58-4.948.12-.197.237-.381.353-.552a6.507 6.507 0 0 0-4.666 5.5Zm10.181 1.5c-.144 2.074-.866 3.756-1.58 4.948-.12.197-.237.381-.353.552a6.507 6.507 0 0 0 4.666-5.5Zm2.733-1.5a6.507 6.507 0 0 0-4.666-5.5c.123.181.24.365.353.552.714 1.192 1.436 2.874 1.58 4.948Z"></path> </svg> </template> <template id="issue-opened-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-issue-opened"> <path d="M8 9.5a1.5 1.5 0 1 0 0-3 1.5 1.5 0 0 0 0 3Z"></path><path d="M8 0a8 8 0 1 1 0 16A8 8 0 0 1 8 0ZM1.5 8a6.5 6.5 0 1 0 13 0 6.5 6.5 0 0 0-13 0Z"></path> </svg> </template> <template id="device-mobile-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-device-mobile"> <path d="M3.75 0h8.5C13.216 0 14 .784 14 1.75v12.5A1.75 1.75 0 0 1 12.25 16h-8.5A1.75 1.75 0 0 1 2 14.25V1.75C2 .784 2.784 0 3.75 0ZM3.5 1.75v12.5c0 .138.112.25.25.25h8.5a.25.25 0 0 0 .25-.25V1.75a.25.25 0 0 0-.25-.25h-8.5a.25.25 0 0 0-.25.25ZM8 13a1 1 0 1 1 0-2 1 1 0 0 1 0 2Z"></path> </svg> </template> <template id="package-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-package"> <path d="m8.878.392 5.25 3.045c.54.314.872.89.872 1.514v6.098a1.75 1.75 0 0 1-.872 1.514l-5.25 3.045a1.75 1.75 0 0 1-1.756 0l-5.25-3.045A1.75 1.75 0 0 1 1 11.049V4.951c0-.624.332-1.201.872-1.514L7.122.392a1.75 1.75 0 0 1 1.756 0ZM7.875 1.69l-4.63 2.685L8 7.133l4.755-2.758-4.63-2.685a.248.248 0 0 0-.25 0ZM2.5 5.677v5.372c0 .09.047.171.125.216l4.625 2.683V8.432Zm6.25 8.271 4.625-2.683a.25.25 0 0 0 .125-.216V5.677L8.75 8.432Z"></path> </svg> </template> <template id="credit-card-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-credit-card"> <path d="M10.75 9a.75.75 0 0 0 0 1.5h1.5a.75.75 0 0 0 0-1.5h-1.5Z"></path><path d="M0 3.75C0 2.784.784 2 1.75 2h12.5c.966 0 1.75.784 1.75 1.75v8.5A1.75 1.75 0 0 1 14.25 14H1.75A1.75 1.75 0 0 1 0 12.25ZM14.5 6.5h-13v5.75c0 .138.112.25.25.25h12.5a.25.25 0 0 0 .25-.25Zm0-2.75a.25.25 0 0 0-.25-.25H1.75a.25.25 0 0 0-.25.25V5h13Z"></path> </svg> </template> <template id="play-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-play"> <path d="M8 0a8 8 0 1 1 0 16A8 8 0 0 1 8 0ZM1.5 8a6.5 6.5 0 1 0 13 0 6.5 6.5 0 0 0-13 0Zm4.879-2.773 4.264 2.559a.25.25 0 0 1 0 .428l-4.264 2.559A.25.25 0 0 1 6 10.559V5.442a.25.25 0 0 1 .379-.215Z"></path> </svg> </template> <template id="gift-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-gift"> <path d="M2 2.75A2.75 2.75 0 0 1 4.75 0c.983 0 1.873.42 2.57 1.232.268.318.497.668.68 1.042.183-.375.411-.725.68-1.044C9.376.42 10.266 0 11.25 0a2.75 2.75 0 0 1 2.45 4h.55c.966 0 1.75.784 1.75 1.75v2c0 .698-.409 1.301-1 1.582v4.918A1.75 1.75 0 0 1 13.25 16H2.75A1.75 1.75 0 0 1 1 14.25V9.332C.409 9.05 0 8.448 0 7.75v-2C0 4.784.784 4 1.75 4h.55c-.192-.375-.3-.8-.3-1.25ZM7.25 9.5H2.5v4.75c0 .138.112.25.25.25h4.5Zm1.5 0v5h4.5a.25.25 0 0 0 .25-.25V9.5Zm0-4V8h5.5a.25.25 0 0 0 .25-.25v-2a.25.25 0 0 0-.25-.25Zm-7 0a.25.25 0 0 0-.25.25v2c0 .138.112.25.25.25h5.5V5.5h-5.5Zm3-4a1.25 1.25 0 0 0 0 2.5h2.309c-.233-.818-.542-1.401-.878-1.793-.43-.502-.915-.707-1.431-.707ZM8.941 4h2.309a1.25 1.25 0 0 0 0-2.5c-.516 0-1 .205-1.43.707-.337.392-.646.975-.879 1.793Z"></path> </svg> </template> <template id="code-square-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-code-square"> <path d="M0 1.75C0 .784.784 0 1.75 0h12.5C15.216 0 16 .784 16 1.75v12.5A1.75 1.75 0 0 1 14.25 16H1.75A1.75 1.75 0 0 1 0 14.25Zm1.75-.25a.25.25 0 0 0-.25.25v12.5c0 .138.112.25.25.25h12.5a.25.25 0 0 0 .25-.25V1.75a.25.25 0 0 0-.25-.25Zm7.47 3.97a.75.75 0 0 1 1.06 0l2 2a.75.75 0 0 1 0 1.06l-2 2a.749.749 0 0 1-1.275-.326.749.749 0 0 1 .215-.734L10.69 8 9.22 6.53a.75.75 0 0 1 0-1.06ZM6.78 6.53 5.31 8l1.47 1.47a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215l-2-2a.75.75 0 0 1 0-1.06l2-2a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042Z"></path> </svg> </template> <template id="device-desktop-icon"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-device-desktop"> <path d="M14.25 1c.966 0 1.75.784 1.75 1.75v7.5A1.75 1.75 0 0 1 14.25 12h-3.727c.099 1.041.52 1.872 1.292 2.757A.752.752 0 0 1 11.25 16h-6.5a.75.75 0 0 1-.565-1.243c.772-.885 1.192-1.716 1.292-2.757H1.75A1.75 1.75 0 0 1 0 10.25v-7.5C0 1.784.784 1 1.75 1ZM1.75 2.5a.25.25 0 0 0-.25.25v7.5c0 .138.112.25.25.25h12.5a.25.25 0 0 0 .25-.25v-7.5a.25.25 0 0 0-.25-.25ZM9.018 12H6.982a5.72 5.72 0 0 1-.765 2.5h3.566a5.72 5.72 0 0 1-.765-2.5Z"></path> </svg> </template> <div class="position-relative"> <ul role="listbox" class="ActionListWrap QueryBuilder-ListWrap" aria-label="Suggestions" data-action=" combobox-commit:query-builder#comboboxCommit mousedown:query-builder#resultsMousedown " data-target="query-builder.resultsList" data-persist-list=false id="query-builder-test-results" ></ul> </div> <div class="FormControl-inlineValidation" id="validation-bf5f6659-3ec8-49c0-9948-e110c62d226c" hidden="hidden"> <span class="FormControl-inlineValidation--visual"> <svg aria-hidden="true" height="12" viewBox="0 0 12 12" version="1.1" width="12" data-view-component="true" class="octicon octicon-alert-fill"> <path d="M4.855.708c.5-.896 1.79-.896 2.29 0l4.675 8.351a1.312 1.312 0 0 1-1.146 1.954H1.33A1.313 1.313 0 0 1 .183 9.058ZM7 7V3H5v4Zm-1 3a1 1 0 1 0 0-2 1 1 0 0 0 0 2Z"></path> </svg> </span> <span></span> </div> </div> <div data-target="query-builder.screenReaderFeedback" aria-live="polite" aria-atomic="true" class="sr-only"></div> </query-builder></form> <div class="d-flex flex-row color-fg-muted px-3 text-small color-bg-default search-feedback-prompt"> <a target="_blank" href="https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax" data-view-component="true" class="Link color-fg-accent text-normal ml-2">Search syntax tips</a> <div class="d-flex flex-1"></div> </div> </div> </div> </div> </modal-dialog></div> </div> <div data-action="click:qbsearch-input#retract" class="dark-backdrop position-fixed" hidden data-target="qbsearch-input.darkBackdrop"></div> <div class="color-fg-default"> <dialog-helper> <dialog data-target="qbsearch-input.feedbackDialog" data-action="close:qbsearch-input#handleDialogClose cancel:qbsearch-input#handleDialogClose" id="feedback-dialog" aria-modal="true" aria-labelledby="feedback-dialog-title" aria-describedby="feedback-dialog-description" data-view-component="true" class="Overlay Overlay-whenNarrow Overlay--size-medium Overlay--motion-scaleFade Overlay--disableScroll"> <div data-view-component="true" class="Overlay-header"> <div class="Overlay-headerContentWrap"> <div class="Overlay-titleWrap"> <h1 class="Overlay-title " id="feedback-dialog-title"> Provide feedback </h1> </div> <div class="Overlay-actionWrap"> <button data-close-dialog-id="feedback-dialog" aria-label="Close" type="button" data-view-component="true" class="close-button Overlay-closeButton"><svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-x"> <path d="M3.72 3.72a.75.75 0 0 1 1.06 0L8 6.94l3.22-3.22a.749.749 0 0 1 1.275.326.749.749 0 0 1-.215.734L9.06 8l3.22 3.22a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L8 9.06l-3.22 3.22a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042L6.94 8 3.72 4.78a.75.75 0 0 1 0-1.06Z"></path> </svg></button> </div> </div> </div> <scrollable-region data-labelled-by="feedback-dialog-title"> <div data-view-component="true" class="Overlay-body"> <!-- '"` --><!-- </textarea></xmp> --></option></form><form id="code-search-feedback-form" data-turbo="false" action="/search/feedback" accept-charset="UTF-8" method="post"><input type="hidden" data-csrf="true" name="authenticity_token" value="RY2W1NzXK66r4uDsbvIHhI2P/yxY+hKbn8zekUk405ftfKKprGQFUKkAToo05PgDmzw/VsjPpvIALdR4rAnzGg==" /> <p>We read every piece of feedback, and take your input very seriously.</p> <textarea name="feedback" class="form-control width-full mb-2" style="height: 120px" id="feedback"></textarea> <input name="include_email" id="include_email" aria-label="Include my email address so I can be contacted" class="form-control mr-2" type="checkbox"> <label for="include_email" style="font-weight: normal">Include my email address so I can be contacted</label> </form></div> </scrollable-region> <div data-view-component="true" class="Overlay-footer Overlay-footer--alignEnd"> <button data-close-dialog-id="feedback-dialog" type="button" data-view-component="true" class="btn"> Cancel </button> <button form="code-search-feedback-form" data-action="click:qbsearch-input#submitFeedback" type="submit" data-view-component="true" class="btn-primary btn"> Submit feedback </button> </div> </dialog></dialog-helper> <custom-scopes data-target="qbsearch-input.customScopesManager"> <dialog-helper> <dialog data-target="custom-scopes.customScopesModalDialog" data-action="close:qbsearch-input#handleDialogClose cancel:qbsearch-input#handleDialogClose" id="custom-scopes-dialog" aria-modal="true" aria-labelledby="custom-scopes-dialog-title" aria-describedby="custom-scopes-dialog-description" data-view-component="true" class="Overlay Overlay-whenNarrow Overlay--size-medium Overlay--motion-scaleFade Overlay--disableScroll"> <div data-view-component="true" class="Overlay-header Overlay-header--divided"> <div class="Overlay-headerContentWrap"> <div class="Overlay-titleWrap"> <h1 class="Overlay-title " id="custom-scopes-dialog-title"> Saved searches </h1> <h2 id="custom-scopes-dialog-description" class="Overlay-description">Use saved searches to filter your results more quickly</h2> </div> <div class="Overlay-actionWrap"> <button data-close-dialog-id="custom-scopes-dialog" aria-label="Close" type="button" data-view-component="true" class="close-button Overlay-closeButton"><svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-x"> <path d="M3.72 3.72a.75.75 0 0 1 1.06 0L8 6.94l3.22-3.22a.749.749 0 0 1 1.275.326.749.749 0 0 1-.215.734L9.06 8l3.22 3.22a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L8 9.06l-3.22 3.22a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042L6.94 8 3.72 4.78a.75.75 0 0 1 0-1.06Z"></path> </svg></button> </div> </div> </div> <scrollable-region data-labelled-by="custom-scopes-dialog-title"> <div data-view-component="true" class="Overlay-body"> <div data-target="custom-scopes.customScopesModalDialogFlash"></div> <div hidden class="create-custom-scope-form" data-target="custom-scopes.createCustomScopeForm"> <!-- '"` --><!-- </textarea></xmp> --></option></form><form id="custom-scopes-dialog-form" data-turbo="false" action="/search/custom_scopes" accept-charset="UTF-8" method="post"><input type="hidden" data-csrf="true" name="authenticity_token" value="CerYE/tfC06gpQ3k5mik58NuDEy0/Sn94YwPUQr5THlFaF71XvCGBl7llwn/2qQUCHmU1JrNRgl17EkCmV7xqQ==" /> <div data-target="custom-scopes.customScopesModalDialogFlash"></div> <input type="hidden" id="custom_scope_id" name="custom_scope_id" data-target="custom-scopes.customScopesIdField"> <div class="form-group"> <label for="custom_scope_name">Name</label> <auto-check src="/search/custom_scopes/check_name" required only-validate-on-blur="false"> <input type="text" name="custom_scope_name" id="custom_scope_name" data-target="custom-scopes.customScopesNameField" class="form-control" autocomplete="off" placeholder="github-ruby" required maxlength="50"> <input type="hidden" data-csrf="true" value="GIIUFqQ64oM0+U63uc8D/M7ToVCZPPY2zKDP4J1YppHJyTe2PYOMBuYFv+QVeJpvb3ArwsZdH9tpEgZy9nmFrw==" /> </auto-check> </div> <div class="form-group"> <label for="custom_scope_query">Query</label> <input type="text" name="custom_scope_query" id="custom_scope_query" data-target="custom-scopes.customScopesQueryField" class="form-control" autocomplete="off" placeholder="(repo:mona/a OR repo:mona/b) AND lang:python" required maxlength="500"> </div> <p class="text-small color-fg-muted"> To see all available qualifiers, see our <a class="Link--inTextBlock" href="https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax">documentation</a>. </p> </form> </div> <div data-target="custom-scopes.manageCustomScopesForm"> <div data-target="custom-scopes.list"></div> </div> </div> </scrollable-region> <div data-view-component="true" class="Overlay-footer Overlay-footer--alignEnd Overlay-footer--divided"> <button data-action="click:custom-scopes#customScopesCancel" type="button" data-view-component="true" class="btn"> Cancel </button> <button form="custom-scopes-dialog-form" data-action="click:custom-scopes#customScopesSubmit" data-target="custom-scopes.customScopesSubmitButton" type="submit" data-view-component="true" class="btn-primary btn"> Create saved search </button> </div> </dialog></dialog-helper> </custom-scopes> </div> </qbsearch-input> <div class="position-relative HeaderMenu-link-wrap d-lg-inline-block"> <a href="/login?return_to=https%3A%2F%2Fgithub.com%2Fzjukg%2FKG-LLM-Papers" class="HeaderMenu-link HeaderMenu-link--sign-in HeaderMenu-button flex-shrink-0 no-underline d-none d-lg-inline-flex border border-lg-0 rounded rounded-lg-0 px-2 py-1" style="margin-left: 12px;" data-hydro-click="{&quot;event_type&quot;:&quot;authentication.click&quot;,&quot;payload&quot;:{&quot;location_in_page&quot;:&quot;site header menu&quot;,&quot;repository_id&quot;:null,&quot;auth_type&quot;:&quot;SIGN_UP&quot;,&quot;originating_url&quot;:&quot;https://github.com/zjukg/KG-LLM-Papers&quot;,&quot;user_id&quot;:null}}" data-hydro-click-hmac="6f666c4f5eb865ec8ca43a3a5667924e8b4ce54d869cc2ad7a8a6c4611593ff1" data-analytics-event="{&quot;category&quot;:&quot;Marketing nav&quot;,&quot;action&quot;:&quot;click to go to homepage&quot;,&quot;label&quot;:&quot;ref_page:Marketing;ref_cta:Sign in;ref_loc:Header&quot;}" > Sign in </a> </div> <a href="/signup?ref_cta=Sign+up&amp;ref_loc=header+logged+out&amp;ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&amp;source=header-repo&amp;source_repo=zjukg%2FKG-LLM-Papers" class="HeaderMenu-link HeaderMenu-link--sign-up HeaderMenu-button flex-shrink-0 d-flex d-lg-inline-flex no-underline border color-border-default rounded px-2 py-1" data-hydro-click="{&quot;event_type&quot;:&quot;authentication.click&quot;,&quot;payload&quot;:{&quot;location_in_page&quot;:&quot;site header menu&quot;,&quot;repository_id&quot;:null,&quot;auth_type&quot;:&quot;SIGN_UP&quot;,&quot;originating_url&quot;:&quot;https://github.com/zjukg/KG-LLM-Papers&quot;,&quot;user_id&quot;:null}}" data-hydro-click-hmac="6f666c4f5eb865ec8ca43a3a5667924e8b4ce54d869cc2ad7a8a6c4611593ff1" data-analytics-event="{&quot;category&quot;:&quot;Sign up&quot;,&quot;action&quot;:&quot;click to sign up for account&quot;,&quot;label&quot;:&quot;ref_page:/&lt;user-name&gt;/&lt;repo-name&gt;;ref_cta:Sign up;ref_loc:header logged out&quot;}" > Sign up </a> <button type="button" class="sr-only js-header-menu-focus-trap d-block d-lg-none">Reseting focus</button> </div> </div> </div> </div> </header> <div hidden="hidden" data-view-component="true" class="js-stale-session-flash stale-session-flash flash flash-warn flash-full"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-alert"> <path d="M6.457 1.047c.659-1.234 2.427-1.234 3.086 0l6.082 11.378A1.75 1.75 0 0 1 14.082 15H1.918a1.75 1.75 0 0 1-1.543-2.575Zm1.763.707a.25.25 0 0 0-.44 0L1.698 13.132a.25.25 0 0 0 .22.368h12.164a.25.25 0 0 0 .22-.368Zm.53 3.996v2.5a.75.75 0 0 1-1.5 0v-2.5a.75.75 0 0 1 1.5 0ZM9 11a1 1 0 1 1-2 0 1 1 0 0 1 2 0Z"></path> </svg> <span class="js-stale-session-flash-signed-in" hidden>You signed in with another tab or window. <a class="Link--inTextBlock" href="">Reload</a> to refresh your session.</span> <span class="js-stale-session-flash-signed-out" hidden>You signed out in another tab or window. <a class="Link--inTextBlock" href="">Reload</a> to refresh your session.</span> <span class="js-stale-session-flash-switched" hidden>You switched accounts on another tab or window. <a class="Link--inTextBlock" href="">Reload</a> to refresh your session.</span> <button id="icon-button-e7bd64ef-c229-4724-b1d4-6ab4835ffef1" aria-labelledby="tooltip-49ab74bd-6d87-43d0-b224-0909aad801c7" type="button" data-view-component="true" class="Button Button--iconOnly Button--invisible Button--medium flash-close js-flash-close"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-x Button-visual"> <path d="M3.72 3.72a.75.75 0 0 1 1.06 0L8 6.94l3.22-3.22a.749.749 0 0 1 1.275.326.749.749 0 0 1-.215.734L9.06 8l3.22 3.22a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L8 9.06l-3.22 3.22a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042L6.94 8 3.72 4.78a.75.75 0 0 1 0-1.06Z"></path> </svg> </button><tool-tip id="tooltip-49ab74bd-6d87-43d0-b224-0909aad801c7" for="icon-button-e7bd64ef-c229-4724-b1d4-6ab4835ffef1" popover="manual" data-direction="s" data-type="label" data-view-component="true" class="sr-only position-absolute">Dismiss alert</tool-tip> </div> </div> <div id="start-of-content" class="show-on-focus"></div> <div id="js-flash-container" class="flash-container" data-turbo-replace> <template class="js-flash-template"> <div class="flash flash-full {{ className }}"> <div > <button autofocus class="flash-close js-flash-close" type="button" aria-label="Dismiss this message"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-x"> <path d="M3.72 3.72a.75.75 0 0 1 1.06 0L8 6.94l3.22-3.22a.749.749 0 0 1 1.275.326.749.749 0 0 1-.215.734L9.06 8l3.22 3.22a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L8 9.06l-3.22 3.22a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042L6.94 8 3.72 4.78a.75.75 0 0 1 0-1.06Z"></path> </svg> </button> <div aria-atomic="true" role="alert" class="js-flash-alert"> <div>{{ message }}</div> </div> </div> </div> </template> </div> <div class="application-main " data-commit-hovercards-enabled data-discussion-hovercards-enabled data-issue-and-pr-hovercards-enabled data-project-hovercards-enabled > <div itemscope itemtype="http://schema.org/SoftwareSourceCode" class=""> <main id="js-repo-pjax-container" > <div id="repository-container-header" class="pt-3 hide-full-screen" style="background-color: var(--page-header-bgColor, var(--color-page-header-bg));" data-turbo-replace> <div class="d-flex flex-nowrap flex-justify-end mb-3 px-3 px-lg-5" style="gap: 1rem;"> <div class="flex-auto min-width-0 width-fit"> <div class=" d-flex flex-wrap flex-items-center wb-break-word f3 text-normal"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-repo color-fg-muted mr-2"> <path d="M2 2.5A2.5 2.5 0 0 1 4.5 0h8.75a.75.75 0 0 1 .75.75v12.5a.75.75 0 0 1-.75.75h-2.5a.75.75 0 0 1 0-1.5h1.75v-2h-8a1 1 0 0 0-.714 1.7.75.75 0 1 1-1.072 1.05A2.495 2.495 0 0 1 2 11.5Zm10.5-1h-8a1 1 0 0 0-1 1v6.708A2.486 2.486 0 0 1 4.5 9h8ZM5 12.25a.25.25 0 0 1 .25-.25h3.5a.25.25 0 0 1 .25.25v3.25a.25.25 0 0 1-.4.2l-1.45-1.087a.249.249 0 0 0-.3 0L5.4 15.7a.25.25 0 0 1-.4-.2Z"></path> </svg> <span class="author flex-self-stretch" itemprop="author"> <a class="url fn" rel="author" data-hovercard-type="organization" data-hovercard-url="/orgs/zjukg/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" href="/zjukg"> zjukg </a> </span> <span class="mx-1 flex-self-stretch color-fg-muted">/</span> <strong itemprop="name" class="mr-2 flex-self-stretch"> <a data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame" href="/zjukg/KG-LLM-Papers">KG-LLM-Papers</a> </strong> <span></span><span class="Label Label--secondary v-align-middle mr-1">Public</span> </div> </div> <div id="repository-details-container" class="flex-shrink-0" data-turbo-replace style="max-width: 70%;"> <ul class="pagehead-actions flex-shrink-0 d-none d-md-inline" style="padding: 2px 0;"> <li> <a href="/login?return_to=%2Fzjukg%2FKG-LLM-Papers" rel="nofollow" id="repository-details-watch-button" data-hydro-click="{&quot;event_type&quot;:&quot;authentication.click&quot;,&quot;payload&quot;:{&quot;location_in_page&quot;:&quot;notification subscription menu watch&quot;,&quot;repository_id&quot;:null,&quot;auth_type&quot;:&quot;LOG_IN&quot;,&quot;originating_url&quot;:&quot;https://github.com/zjukg/KG-LLM-Papers&quot;,&quot;user_id&quot;:null}}" data-hydro-click-hmac="e38c7a8eb53a27b6d29d0481eacaacaab13c20eee61d771e5008cd066a4b467f" aria-label="You must be signed in to change notification settings" data-view-component="true" class="btn-sm btn"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-bell mr-2"> <path d="M8 16a2 2 0 0 0 1.985-1.75c.017-.137-.097-.25-.235-.25h-3.5c-.138 0-.252.113-.235.25A2 2 0 0 0 8 16ZM3 5a5 5 0 0 1 10 0v2.947c0 .05.015.098.042.139l1.703 2.555A1.519 1.519 0 0 1 13.482 13H2.518a1.516 1.516 0 0 1-1.263-2.36l1.703-2.554A.255.255 0 0 0 3 7.947Zm5-3.5A3.5 3.5 0 0 0 4.5 5v2.947c0 .346-.102.683-.294.97l-1.703 2.556a.017.017 0 0 0-.003.01l.001.006c0 .002.002.004.004.006l.006.004.007.001h10.964l.007-.001.006-.004.004-.006.001-.007a.017.017 0 0 0-.003-.01l-1.703-2.554a1.745 1.745 0 0 1-.294-.97V5A3.5 3.5 0 0 0 8 1.5Z"></path> </svg>Notifications </a> <tool-tip id="tooltip-e80f9992-eb8b-4e54-af63-823b2d0a6b08" for="repository-details-watch-button" popover="manual" data-direction="s" data-type="description" data-view-component="true" class="sr-only position-absolute">You must be signed in to change notification settings</tool-tip> </li> <li> <a icon="repo-forked" id="fork-button" href="/login?return_to=%2Fzjukg%2FKG-LLM-Papers" rel="nofollow" data-hydro-click="{&quot;event_type&quot;:&quot;authentication.click&quot;,&quot;payload&quot;:{&quot;location_in_page&quot;:&quot;repo details fork button&quot;,&quot;repository_id&quot;:652420569,&quot;auth_type&quot;:&quot;LOG_IN&quot;,&quot;originating_url&quot;:&quot;https://github.com/zjukg/KG-LLM-Papers&quot;,&quot;user_id&quot;:null}}" data-hydro-click-hmac="56864563d32a46448845da620eea1e6428aca634c4cd39a78f24d7ca2e5dd086" data-view-component="true" class="btn-sm btn"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-repo-forked mr-2"> <path d="M5 5.372v.878c0 .414.336.75.75.75h4.5a.75.75 0 0 0 .75-.75v-.878a2.25 2.25 0 1 1 1.5 0v.878a2.25 2.25 0 0 1-2.25 2.25h-1.5v2.128a2.251 2.251 0 1 1-1.5 0V8.5h-1.5A2.25 2.25 0 0 1 3.5 6.25v-.878a2.25 2.25 0 1 1 1.5 0ZM5 3.25a.75.75 0 1 0-1.5 0 .75.75 0 0 0 1.5 0Zm6.75.75a.75.75 0 1 0 0-1.5.75.75 0 0 0 0 1.5Zm-3 8.75a.75.75 0 1 0-1.5 0 .75.75 0 0 0 1.5 0Z"></path> </svg>Fork <span id="repo-network-counter" data-pjax-replace="true" data-turbo-replace="true" title="136" data-view-component="true" class="Counter">136</span> </a> </li> <li> <div data-view-component="true" class="BtnGroup d-flex"> <a href="/login?return_to=%2Fzjukg%2FKG-LLM-Papers" rel="nofollow" data-hydro-click="{&quot;event_type&quot;:&quot;authentication.click&quot;,&quot;payload&quot;:{&quot;location_in_page&quot;:&quot;star button&quot;,&quot;repository_id&quot;:652420569,&quot;auth_type&quot;:&quot;LOG_IN&quot;,&quot;originating_url&quot;:&quot;https://github.com/zjukg/KG-LLM-Papers&quot;,&quot;user_id&quot;:null}}" data-hydro-click-hmac="7c9a66fad1f0b76f569154b2185c032b05d1573091bc385a67c2c908167c70a1" aria-label="You must be signed in to star a repository" data-view-component="true" class="tooltipped tooltipped-sw btn-sm btn"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-star v-align-text-bottom d-inline-block mr-2"> <path d="M8 .25a.75.75 0 0 1 .673.418l1.882 3.815 4.21.612a.75.75 0 0 1 .416 1.279l-3.046 2.97.719 4.192a.751.751 0 0 1-1.088.791L8 12.347l-3.766 1.98a.75.75 0 0 1-1.088-.79l.72-4.194L.818 6.374a.75.75 0 0 1 .416-1.28l4.21-.611L7.327.668A.75.75 0 0 1 8 .25Zm0 2.445L6.615 5.5a.75.75 0 0 1-.564.41l-3.097.45 2.24 2.184a.75.75 0 0 1 .216.664l-.528 3.084 2.769-1.456a.75.75 0 0 1 .698 0l2.77 1.456-.53-3.084a.75.75 0 0 1 .216-.664l2.24-2.183-3.096-.45a.75.75 0 0 1-.564-.41L8 2.694Z"></path> </svg><span data-view-component="true" class="d-inline"> Star </span> <span id="repo-stars-counter-star" aria-label="1784 users starred this repository" data-singular-suffix="user starred this repository" data-plural-suffix="users starred this repository" data-turbo-replace="true" title="1,784" data-view-component="true" class="Counter js-social-count">1.8k</span> </a></div> </li> </ul> </div> </div> <div id="responsive-meta-container" data-turbo-replace> <div class="d-block d-md-none mb-2 px-3 px-md-4 px-lg-5"> <p class="f4 mb-3 "> [Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs) </p> <h3 class="sr-only">License</h3> <div class="mb-2"> <a href="/zjukg/KG-LLM-Papers/blob/main/LICENSE" class="Link--muted" data-analytics-event="{&quot;category&quot;:&quot;Repository Overview&quot;,&quot;action&quot;:&quot;click&quot;,&quot;label&quot;:&quot;location:sidebar;file:license&quot;}" > <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-law mr-2"> <path d="M8.75.75V2h.985c.304 0 .603.08.867.231l1.29.736c.038.022.08.033.124.033h2.234a.75.75 0 0 1 0 1.5h-.427l2.111 4.692a.75.75 0 0 1-.154.838l-.53-.53.529.531-.001.002-.002.002-.006.006-.006.005-.01.01-.045.04c-.21.176-.441.327-.686.45C14.556 10.78 13.88 11 13 11a4.498 4.498 0 0 1-2.023-.454 3.544 3.544 0 0 1-.686-.45l-.045-.04-.016-.015-.006-.006-.004-.004v-.001a.75.75 0 0 1-.154-.838L12.178 4.5h-.162c-.305 0-.604-.079-.868-.231l-1.29-.736a.245.245 0 0 0-.124-.033H8.75V13h2.5a.75.75 0 0 1 0 1.5h-6.5a.75.75 0 0 1 0-1.5h2.5V3.5h-.984a.245.245 0 0 0-.124.033l-1.289.737c-.265.15-.564.23-.869.23h-.162l2.112 4.692a.75.75 0 0 1-.154.838l-.53-.53.529.531-.001.002-.002.002-.006.006-.016.015-.045.04c-.21.176-.441.327-.686.45C4.556 10.78 3.88 11 3 11a4.498 4.498 0 0 1-2.023-.454 3.544 3.544 0 0 1-.686-.45l-.045-.04-.016-.015-.006-.006-.004-.004v-.001a.75.75 0 0 1-.154-.838L2.178 4.5H1.75a.75.75 0 0 1 0-1.5h2.234a.249.249 0 0 0 .125-.033l1.288-.737c.265-.15.564-.23.869-.23h.984V.75a.75.75 0 0 1 1.5 0Zm2.945 8.477c.285.135.718.273 1.305.273s1.02-.138 1.305-.273L13 6.327Zm-10 0c.285.135.718.273 1.305.273s1.02-.138 1.305-.273L3 6.327Z"></path> </svg> MIT license </a> </div> <div class="mb-3"> <a class="Link--secondary no-underline mr-3" href="/zjukg/KG-LLM-Papers/stargazers"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-star mr-1"> <path d="M8 .25a.75.75 0 0 1 .673.418l1.882 3.815 4.21.612a.75.75 0 0 1 .416 1.279l-3.046 2.97.719 4.192a.751.751 0 0 1-1.088.791L8 12.347l-3.766 1.98a.75.75 0 0 1-1.088-.79l.72-4.194L.818 6.374a.75.75 0 0 1 .416-1.28l4.21-.611L7.327.668A.75.75 0 0 1 8 .25Zm0 2.445L6.615 5.5a.75.75 0 0 1-.564.41l-3.097.45 2.24 2.184a.75.75 0 0 1 .216.664l-.528 3.084 2.769-1.456a.75.75 0 0 1 .698 0l2.77 1.456-.53-3.084a.75.75 0 0 1 .216-.664l2.24-2.183-3.096-.45a.75.75 0 0 1-.564-.41L8 2.694Z"></path> </svg> <span class="text-bold">1.8k</span> stars </a> <a class="Link--secondary no-underline mr-3" href="/zjukg/KG-LLM-Papers/forks"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-repo-forked mr-1"> <path d="M5 5.372v.878c0 .414.336.75.75.75h4.5a.75.75 0 0 0 .75-.75v-.878a2.25 2.25 0 1 1 1.5 0v.878a2.25 2.25 0 0 1-2.25 2.25h-1.5v2.128a2.251 2.251 0 1 1-1.5 0V8.5h-1.5A2.25 2.25 0 0 1 3.5 6.25v-.878a2.25 2.25 0 1 1 1.5 0ZM5 3.25a.75.75 0 1 0-1.5 0 .75.75 0 0 0 1.5 0Zm6.75.75a.75.75 0 1 0 0-1.5.75.75 0 0 0 0 1.5Zm-3 8.75a.75.75 0 1 0-1.5 0 .75.75 0 0 0 1.5 0Z"></path> </svg> <span class="text-bold">136</span> forks </a> <a class="Link--secondary no-underline mr-3 d-inline-block" href="/zjukg/KG-LLM-Papers/branches"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-git-branch mr-1"> <path d="M9.5 3.25a2.25 2.25 0 1 1 3 2.122V6A2.5 2.5 0 0 1 10 8.5H6a1 1 0 0 0-1 1v1.128a2.251 2.251 0 1 1-1.5 0V5.372a2.25 2.25 0 1 1 1.5 0v1.836A2.493 2.493 0 0 1 6 7h4a1 1 0 0 0 1-1v-.628A2.25 2.25 0 0 1 9.5 3.25Zm-6 0a.75.75 0 1 0 1.5 0 .75.75 0 0 0-1.5 0Zm8.25-.75a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5ZM4.25 12a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5Z"></path> </svg> <span>Branches</span> </a> <a class="Link--secondary no-underline d-inline-block" href="/zjukg/KG-LLM-Papers/tags"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-tag mr-1"> <path d="M1 7.775V2.75C1 1.784 1.784 1 2.75 1h5.025c.464 0 .91.184 1.238.513l6.25 6.25a1.75 1.75 0 0 1 0 2.474l-5.026 5.026a1.75 1.75 0 0 1-2.474 0l-6.25-6.25A1.752 1.752 0 0 1 1 7.775Zm1.5 0c0 .066.026.13.073.177l6.25 6.25a.25.25 0 0 0 .354 0l5.025-5.025a.25.25 0 0 0 0-.354l-6.25-6.25a.25.25 0 0 0-.177-.073H2.75a.25.25 0 0 0-.25.25ZM6 5a1 1 0 1 1 0 2 1 1 0 0 1 0-2Z"></path> </svg> <span>Tags</span> </a> <a class="Link--secondary no-underline d-inline-block" href="/zjukg/KG-LLM-Papers/activity"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-pulse mr-1"> <path d="M6 2c.306 0 .582.187.696.471L10 10.731l1.304-3.26A.751.751 0 0 1 12 7h3.25a.75.75 0 0 1 0 1.5h-2.742l-1.812 4.528a.751.751 0 0 1-1.392 0L6 4.77 4.696 8.03A.75.75 0 0 1 4 8.5H.75a.75.75 0 0 1 0-1.5h2.742l1.812-4.529A.751.751 0 0 1 6 2Z"></path> </svg> <span>Activity</span> </a> </div> <div class="d-flex flex-wrap gap-2"> <div class="flex-1"> <div data-view-component="true" class="BtnGroup d-flex"> <a href="/login?return_to=%2Fzjukg%2FKG-LLM-Papers" rel="nofollow" data-hydro-click="{&quot;event_type&quot;:&quot;authentication.click&quot;,&quot;payload&quot;:{&quot;location_in_page&quot;:&quot;star button&quot;,&quot;repository_id&quot;:652420569,&quot;auth_type&quot;:&quot;LOG_IN&quot;,&quot;originating_url&quot;:&quot;https://github.com/zjukg/KG-LLM-Papers&quot;,&quot;user_id&quot;:null}}" data-hydro-click-hmac="7c9a66fad1f0b76f569154b2185c032b05d1573091bc385a67c2c908167c70a1" aria-label="You must be signed in to star a repository" data-view-component="true" class="tooltipped tooltipped-sw btn-sm btn btn-block"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-star v-align-text-bottom d-inline-block mr-2"> <path d="M8 .25a.75.75 0 0 1 .673.418l1.882 3.815 4.21.612a.75.75 0 0 1 .416 1.279l-3.046 2.97.719 4.192a.751.751 0 0 1-1.088.791L8 12.347l-3.766 1.98a.75.75 0 0 1-1.088-.79l.72-4.194L.818 6.374a.75.75 0 0 1 .416-1.28l4.21-.611L7.327.668A.75.75 0 0 1 8 .25Zm0 2.445L6.615 5.5a.75.75 0 0 1-.564.41l-3.097.45 2.24 2.184a.75.75 0 0 1 .216.664l-.528 3.084 2.769-1.456a.75.75 0 0 1 .698 0l2.77 1.456-.53-3.084a.75.75 0 0 1 .216-.664l2.24-2.183-3.096-.45a.75.75 0 0 1-.564-.41L8 2.694Z"></path> </svg><span data-view-component="true" class="d-inline"> Star </span> </a></div> </div> <div class="flex-1"> <a href="/login?return_to=%2Fzjukg%2FKG-LLM-Papers" rel="nofollow" id="files-overview-watch-button" data-hydro-click="{&quot;event_type&quot;:&quot;authentication.click&quot;,&quot;payload&quot;:{&quot;location_in_page&quot;:&quot;notification subscription menu watch&quot;,&quot;repository_id&quot;:null,&quot;auth_type&quot;:&quot;LOG_IN&quot;,&quot;originating_url&quot;:&quot;https://github.com/zjukg/KG-LLM-Papers&quot;,&quot;user_id&quot;:null}}" data-hydro-click-hmac="e38c7a8eb53a27b6d29d0481eacaacaab13c20eee61d771e5008cd066a4b467f" aria-label="You must be signed in to change notification settings" data-view-component="true" class="btn-sm btn btn-block"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-bell mr-2"> <path d="M8 16a2 2 0 0 0 1.985-1.75c.017-.137-.097-.25-.235-.25h-3.5c-.138 0-.252.113-.235.25A2 2 0 0 0 8 16ZM3 5a5 5 0 0 1 10 0v2.947c0 .05.015.098.042.139l1.703 2.555A1.519 1.519 0 0 1 13.482 13H2.518a1.516 1.516 0 0 1-1.263-2.36l1.703-2.554A.255.255 0 0 0 3 7.947Zm5-3.5A3.5 3.5 0 0 0 4.5 5v2.947c0 .346-.102.683-.294.97l-1.703 2.556a.017.017 0 0 0-.003.01l.001.006c0 .002.002.004.004.006l.006.004.007.001h10.964l.007-.001.006-.004.004-.006.001-.007a.017.017 0 0 0-.003-.01l-1.703-2.554a1.745 1.745 0 0 1-.294-.97V5A3.5 3.5 0 0 0 8 1.5Z"></path> </svg>Notifications </a> <tool-tip id="tooltip-3f726933-c1dd-4ab3-8d3e-dd475cc58365" for="files-overview-watch-button" popover="manual" data-direction="s" data-type="description" data-view-component="true" class="sr-only position-absolute">You must be signed in to change notification settings</tool-tip> </div> <span> </span> </div> </div> </div> <nav data-pjax="#js-repo-pjax-container" aria-label="Repository" data-view-component="true" class="js-repo-nav js-sidenav-container-pjax js-responsive-underlinenav overflow-hidden UnderlineNav px-3 px-md-4 px-lg-5"> <ul data-view-component="true" class="UnderlineNav-body list-style-none"> <li data-view-component="true" class="d-inline-flex"> <a id="code-tab" href="/zjukg/KG-LLM-Papers" data-tab-item="i0code-tab" data-selected-links="repo_source repo_downloads repo_commits repo_releases repo_tags repo_branches repo_packages repo_deployments repo_attestations /zjukg/KG-LLM-Papers" data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame" data-hotkey="g c" data-analytics-event="{&quot;category&quot;:&quot;Underline navbar&quot;,&quot;action&quot;:&quot;Click tab&quot;,&quot;label&quot;:&quot;Code&quot;,&quot;target&quot;:&quot;UNDERLINE_NAV.TAB&quot;}" aria-current="page" data-view-component="true" class="UnderlineNav-item no-wrap js-responsive-underlinenav-item js-selected-navigation-item selected"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-code UnderlineNav-octicon d-none d-sm-inline"> <path d="m11.28 3.22 4.25 4.25a.75.75 0 0 1 0 1.06l-4.25 4.25a.749.749 0 0 1-1.275-.326.749.749 0 0 1 .215-.734L13.94 8l-3.72-3.72a.749.749 0 0 1 .326-1.275.749.749 0 0 1 .734.215Zm-6.56 0a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042L2.06 8l3.72 3.72a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L.47 8.53a.75.75 0 0 1 0-1.06Z"></path> </svg> <span data-content="Code">Code</span> <span id="code-repo-tab-count" data-pjax-replace="" data-turbo-replace="" title="Not available" data-view-component="true" class="Counter"></span> </a></li> <li data-view-component="true" class="d-inline-flex"> <a id="issues-tab" href="/zjukg/KG-LLM-Papers/issues" data-tab-item="i1issues-tab" data-selected-links="repo_issues repo_labels repo_milestones /zjukg/KG-LLM-Papers/issues" data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame" data-hotkey="g i" data-analytics-event="{&quot;category&quot;:&quot;Underline navbar&quot;,&quot;action&quot;:&quot;Click tab&quot;,&quot;label&quot;:&quot;Issues&quot;,&quot;target&quot;:&quot;UNDERLINE_NAV.TAB&quot;}" data-view-component="true" class="UnderlineNav-item no-wrap js-responsive-underlinenav-item js-selected-navigation-item"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-issue-opened UnderlineNav-octicon d-none d-sm-inline"> <path d="M8 9.5a1.5 1.5 0 1 0 0-3 1.5 1.5 0 0 0 0 3Z"></path><path d="M8 0a8 8 0 1 1 0 16A8 8 0 0 1 8 0ZM1.5 8a6.5 6.5 0 1 0 13 0 6.5 6.5 0 0 0-13 0Z"></path> </svg> <span data-content="Issues">Issues</span> <span id="issues-repo-tab-count" data-pjax-replace="" data-turbo-replace="" title="5" data-view-component="true" class="Counter">5</span> </a></li> <li data-view-component="true" class="d-inline-flex"> <a id="pull-requests-tab" href="/zjukg/KG-LLM-Papers/pulls" data-tab-item="i2pull-requests-tab" data-selected-links="repo_pulls checks /zjukg/KG-LLM-Papers/pulls" data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame" data-hotkey="g p" data-analytics-event="{&quot;category&quot;:&quot;Underline navbar&quot;,&quot;action&quot;:&quot;Click tab&quot;,&quot;label&quot;:&quot;Pull requests&quot;,&quot;target&quot;:&quot;UNDERLINE_NAV.TAB&quot;}" data-view-component="true" class="UnderlineNav-item no-wrap js-responsive-underlinenav-item js-selected-navigation-item"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-git-pull-request UnderlineNav-octicon d-none d-sm-inline"> <path d="M1.5 3.25a2.25 2.25 0 1 1 3 2.122v5.256a2.251 2.251 0 1 1-1.5 0V5.372A2.25 2.25 0 0 1 1.5 3.25Zm5.677-.177L9.573.677A.25.25 0 0 1 10 .854V2.5h1A2.5 2.5 0 0 1 13.5 5v5.628a2.251 2.251 0 1 1-1.5 0V5a1 1 0 0 0-1-1h-1v1.646a.25.25 0 0 1-.427.177L7.177 3.427a.25.25 0 0 1 0-.354ZM3.75 2.5a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5Zm0 9.5a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5Zm8.25.75a.75.75 0 1 0 1.5 0 .75.75 0 0 0-1.5 0Z"></path> </svg> <span data-content="Pull requests">Pull requests</span> <span id="pull-requests-repo-tab-count" data-pjax-replace="" data-turbo-replace="" title="0" hidden="hidden" data-view-component="true" class="Counter">0</span> </a></li> <li data-view-component="true" class="d-inline-flex"> <a id="actions-tab" href="/zjukg/KG-LLM-Papers/actions" data-tab-item="i3actions-tab" data-selected-links="repo_actions /zjukg/KG-LLM-Papers/actions" data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame" data-hotkey="g a" data-analytics-event="{&quot;category&quot;:&quot;Underline navbar&quot;,&quot;action&quot;:&quot;Click tab&quot;,&quot;label&quot;:&quot;Actions&quot;,&quot;target&quot;:&quot;UNDERLINE_NAV.TAB&quot;}" data-view-component="true" class="UnderlineNav-item no-wrap js-responsive-underlinenav-item js-selected-navigation-item"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-play UnderlineNav-octicon d-none d-sm-inline"> <path d="M8 0a8 8 0 1 1 0 16A8 8 0 0 1 8 0ZM1.5 8a6.5 6.5 0 1 0 13 0 6.5 6.5 0 0 0-13 0Zm4.879-2.773 4.264 2.559a.25.25 0 0 1 0 .428l-4.264 2.559A.25.25 0 0 1 6 10.559V5.442a.25.25 0 0 1 .379-.215Z"></path> </svg> <span data-content="Actions">Actions</span> <span id="actions-repo-tab-count" data-pjax-replace="" data-turbo-replace="" title="Not available" data-view-component="true" class="Counter"></span> </a></li> <li data-view-component="true" class="d-inline-flex"> <a id="projects-tab" href="/zjukg/KG-LLM-Papers/projects" data-tab-item="i4projects-tab" data-selected-links="repo_projects new_repo_project repo_project /zjukg/KG-LLM-Papers/projects" data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame" data-hotkey="g b" data-analytics-event="{&quot;category&quot;:&quot;Underline navbar&quot;,&quot;action&quot;:&quot;Click tab&quot;,&quot;label&quot;:&quot;Projects&quot;,&quot;target&quot;:&quot;UNDERLINE_NAV.TAB&quot;}" data-view-component="true" class="UnderlineNav-item no-wrap js-responsive-underlinenav-item js-selected-navigation-item"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-table UnderlineNav-octicon d-none d-sm-inline"> <path d="M0 1.75C0 .784.784 0 1.75 0h12.5C15.216 0 16 .784 16 1.75v12.5A1.75 1.75 0 0 1 14.25 16H1.75A1.75 1.75 0 0 1 0 14.25ZM6.5 6.5v8h7.75a.25.25 0 0 0 .25-.25V6.5Zm8-1.5V1.75a.25.25 0 0 0-.25-.25H6.5V5Zm-13 1.5v7.75c0 .138.112.25.25.25H5v-8ZM5 5V1.5H1.75a.25.25 0 0 0-.25.25V5Z"></path> </svg> <span data-content="Projects">Projects</span> <span id="projects-repo-tab-count" data-pjax-replace="" data-turbo-replace="" title="0" hidden="hidden" data-view-component="true" class="Counter">0</span> </a></li> <li data-view-component="true" class="d-inline-flex"> <a id="wiki-tab" href="/zjukg/KG-LLM-Papers/wiki" data-tab-item="i5wiki-tab" data-selected-links="repo_wiki /zjukg/KG-LLM-Papers/wiki" data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame" data-hotkey="g w" data-analytics-event="{&quot;category&quot;:&quot;Underline navbar&quot;,&quot;action&quot;:&quot;Click tab&quot;,&quot;label&quot;:&quot;Wiki&quot;,&quot;target&quot;:&quot;UNDERLINE_NAV.TAB&quot;}" data-view-component="true" class="UnderlineNav-item no-wrap js-responsive-underlinenav-item js-selected-navigation-item"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-book UnderlineNav-octicon d-none d-sm-inline"> <path d="M0 1.75A.75.75 0 0 1 .75 1h4.253c1.227 0 2.317.59 3 1.501A3.743 3.743 0 0 1 11.006 1h4.245a.75.75 0 0 1 .75.75v10.5a.75.75 0 0 1-.75.75h-4.507a2.25 2.25 0 0 0-1.591.659l-.622.621a.75.75 0 0 1-1.06 0l-.622-.621A2.25 2.25 0 0 0 5.258 13H.75a.75.75 0 0 1-.75-.75Zm7.251 10.324.004-5.073-.002-2.253A2.25 2.25 0 0 0 5.003 2.5H1.5v9h3.757a3.75 3.75 0 0 1 1.994.574ZM8.755 4.75l-.004 7.322a3.752 3.752 0 0 1 1.992-.572H14.5v-9h-3.495a2.25 2.25 0 0 0-2.25 2.25Z"></path> </svg> <span data-content="Wiki">Wiki</span> <span id="wiki-repo-tab-count" data-pjax-replace="" data-turbo-replace="" title="Not available" data-view-component="true" class="Counter"></span> </a></li> <li data-view-component="true" class="d-inline-flex"> <a id="security-tab" href="/zjukg/KG-LLM-Papers/security" data-tab-item="i6security-tab" data-selected-links="security overview alerts policy token_scanning code_scanning /zjukg/KG-LLM-Papers/security" data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame" data-hotkey="g s" data-analytics-event="{&quot;category&quot;:&quot;Underline navbar&quot;,&quot;action&quot;:&quot;Click tab&quot;,&quot;label&quot;:&quot;Security&quot;,&quot;target&quot;:&quot;UNDERLINE_NAV.TAB&quot;}" data-view-component="true" class="UnderlineNav-item no-wrap js-responsive-underlinenav-item js-selected-navigation-item"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-shield UnderlineNav-octicon d-none d-sm-inline"> <path d="M7.467.133a1.748 1.748 0 0 1 1.066 0l5.25 1.68A1.75 1.75 0 0 1 15 3.48V7c0 1.566-.32 3.182-1.303 4.682-.983 1.498-2.585 2.813-5.032 3.855a1.697 1.697 0 0 1-1.33 0c-2.447-1.042-4.049-2.357-5.032-3.855C1.32 10.182 1 8.566 1 7V3.48a1.75 1.75 0 0 1 1.217-1.667Zm.61 1.429a.25.25 0 0 0-.153 0l-5.25 1.68a.25.25 0 0 0-.174.238V7c0 1.358.275 2.666 1.057 3.86.784 1.194 2.121 2.34 4.366 3.297a.196.196 0 0 0 .154 0c2.245-.956 3.582-2.104 4.366-3.298C13.225 9.666 13.5 8.36 13.5 7V3.48a.251.251 0 0 0-.174-.237l-5.25-1.68ZM8.75 4.75v3a.75.75 0 0 1-1.5 0v-3a.75.75 0 0 1 1.5 0ZM9 10.5a1 1 0 1 1-2 0 1 1 0 0 1 2 0Z"></path> </svg> <span data-content="Security">Security</span> <include-fragment src="/zjukg/KG-LLM-Papers/security/overall-count" accept="text/fragment+html"></include-fragment> </a></li> <li data-view-component="true" class="d-inline-flex"> <a id="insights-tab" href="/zjukg/KG-LLM-Papers/pulse" data-tab-item="i7insights-tab" data-selected-links="repo_graphs repo_contributors dependency_graph dependabot_updates pulse people community /zjukg/KG-LLM-Papers/pulse" data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame" data-analytics-event="{&quot;category&quot;:&quot;Underline navbar&quot;,&quot;action&quot;:&quot;Click tab&quot;,&quot;label&quot;:&quot;Insights&quot;,&quot;target&quot;:&quot;UNDERLINE_NAV.TAB&quot;}" data-view-component="true" class="UnderlineNav-item no-wrap js-responsive-underlinenav-item js-selected-navigation-item"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-graph UnderlineNav-octicon d-none d-sm-inline"> <path d="M1.5 1.75V13.5h13.75a.75.75 0 0 1 0 1.5H.75a.75.75 0 0 1-.75-.75V1.75a.75.75 0 0 1 1.5 0Zm14.28 2.53-5.25 5.25a.75.75 0 0 1-1.06 0L7 7.06 4.28 9.78a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042l3.25-3.25a.75.75 0 0 1 1.06 0L10 7.94l4.72-4.72a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042Z"></path> </svg> <span data-content="Insights">Insights</span> <span id="insights-repo-tab-count" data-pjax-replace="" data-turbo-replace="" title="Not available" data-view-component="true" class="Counter"></span> </a></li> </ul> <div style="visibility:hidden;" data-view-component="true" class="UnderlineNav-actions js-responsive-underlinenav-overflow position-absolute pr-3 pr-md-4 pr-lg-5 right-0"> <action-menu data-select-variant="none" data-view-component="true"> <focus-group direction="vertical" mnemonics retain> <button id="action-menu-245e694e-0d87-414b-b3f5-9476a143c7bd-button" popovertarget="action-menu-245e694e-0d87-414b-b3f5-9476a143c7bd-overlay" aria-controls="action-menu-245e694e-0d87-414b-b3f5-9476a143c7bd-list" aria-haspopup="true" aria-labelledby="tooltip-fed5a5b7-db41-4d08-920f-a2e3bfd9e0bb" type="button" data-view-component="true" class="Button Button--iconOnly Button--secondary Button--medium UnderlineNav-item"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-kebab-horizontal Button-visual"> <path d="M8 9a1.5 1.5 0 1 0 0-3 1.5 1.5 0 0 0 0 3ZM1.5 9a1.5 1.5 0 1 0 0-3 1.5 1.5 0 0 0 0 3Zm13 0a1.5 1.5 0 1 0 0-3 1.5 1.5 0 0 0 0 3Z"></path> </svg> </button><tool-tip id="tooltip-fed5a5b7-db41-4d08-920f-a2e3bfd9e0bb" for="action-menu-245e694e-0d87-414b-b3f5-9476a143c7bd-button" popover="manual" data-direction="s" data-type="label" data-view-component="true" class="sr-only position-absolute">Additional navigation options</tool-tip> <anchored-position data-target="action-menu.overlay" id="action-menu-245e694e-0d87-414b-b3f5-9476a143c7bd-overlay" anchor="action-menu-245e694e-0d87-414b-b3f5-9476a143c7bd-button" align="start" side="outside-bottom" anchor-offset="normal" popover="auto" data-view-component="true"> <div data-view-component="true" class="Overlay Overlay--size-auto"> <div data-view-component="true" class="Overlay-body Overlay-body--paddingNone"> <action-list> <div data-view-component="true"> <ul aria-labelledby="action-menu-245e694e-0d87-414b-b3f5-9476a143c7bd-button" id="action-menu-245e694e-0d87-414b-b3f5-9476a143c7bd-list" role="menu" data-view-component="true" class="ActionListWrap--inset ActionListWrap"> <li hidden="hidden" data-menu-item="i0code-tab" data-targets="action-list.items" role="none" data-view-component="true" class="ActionListItem"> <a tabindex="-1" id="item-91e6818f-c518-489f-80e7-88aced716e0b" href="/zjukg/KG-LLM-Papers" role="menuitem" data-view-component="true" class="ActionListContent ActionListContent--visual16"> <span class="ActionListItem-visual ActionListItem-visual--leading"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-code"> <path d="m11.28 3.22 4.25 4.25a.75.75 0 0 1 0 1.06l-4.25 4.25a.749.749 0 0 1-1.275-.326.749.749 0 0 1 .215-.734L13.94 8l-3.72-3.72a.749.749 0 0 1 .326-1.275.749.749 0 0 1 .734.215Zm-6.56 0a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042L2.06 8l3.72 3.72a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L.47 8.53a.75.75 0 0 1 0-1.06Z"></path> </svg> </span> <span data-view-component="true" class="ActionListItem-label"> Code </span> </a> </li> <li hidden="hidden" data-menu-item="i1issues-tab" data-targets="action-list.items" role="none" data-view-component="true" class="ActionListItem"> <a tabindex="-1" id="item-9ea8ee38-3175-4ad2-be84-637968ab95a6" href="/zjukg/KG-LLM-Papers/issues" role="menuitem" data-view-component="true" class="ActionListContent ActionListContent--visual16"> <span class="ActionListItem-visual ActionListItem-visual--leading"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-issue-opened"> <path d="M8 9.5a1.5 1.5 0 1 0 0-3 1.5 1.5 0 0 0 0 3Z"></path><path d="M8 0a8 8 0 1 1 0 16A8 8 0 0 1 8 0ZM1.5 8a6.5 6.5 0 1 0 13 0 6.5 6.5 0 0 0-13 0Z"></path> </svg> </span> <span data-view-component="true" class="ActionListItem-label"> Issues </span> </a> </li> <li hidden="hidden" data-menu-item="i2pull-requests-tab" data-targets="action-list.items" role="none" data-view-component="true" class="ActionListItem"> <a tabindex="-1" id="item-3df62061-63b0-4a57-834f-60daafcb38bc" href="/zjukg/KG-LLM-Papers/pulls" role="menuitem" data-view-component="true" class="ActionListContent ActionListContent--visual16"> <span class="ActionListItem-visual ActionListItem-visual--leading"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-git-pull-request"> <path d="M1.5 3.25a2.25 2.25 0 1 1 3 2.122v5.256a2.251 2.251 0 1 1-1.5 0V5.372A2.25 2.25 0 0 1 1.5 3.25Zm5.677-.177L9.573.677A.25.25 0 0 1 10 .854V2.5h1A2.5 2.5 0 0 1 13.5 5v5.628a2.251 2.251 0 1 1-1.5 0V5a1 1 0 0 0-1-1h-1v1.646a.25.25 0 0 1-.427.177L7.177 3.427a.25.25 0 0 1 0-.354ZM3.75 2.5a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5Zm0 9.5a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5Zm8.25.75a.75.75 0 1 0 1.5 0 .75.75 0 0 0-1.5 0Z"></path> </svg> </span> <span data-view-component="true" class="ActionListItem-label"> Pull requests </span> </a> </li> <li hidden="hidden" data-menu-item="i3actions-tab" data-targets="action-list.items" role="none" data-view-component="true" class="ActionListItem"> <a tabindex="-1" id="item-97221b1a-8067-410d-8011-32ee53c5c0a8" href="/zjukg/KG-LLM-Papers/actions" role="menuitem" data-view-component="true" class="ActionListContent ActionListContent--visual16"> <span class="ActionListItem-visual ActionListItem-visual--leading"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-play"> <path d="M8 0a8 8 0 1 1 0 16A8 8 0 0 1 8 0ZM1.5 8a6.5 6.5 0 1 0 13 0 6.5 6.5 0 0 0-13 0Zm4.879-2.773 4.264 2.559a.25.25 0 0 1 0 .428l-4.264 2.559A.25.25 0 0 1 6 10.559V5.442a.25.25 0 0 1 .379-.215Z"></path> </svg> </span> <span data-view-component="true" class="ActionListItem-label"> Actions </span> </a> </li> <li hidden="hidden" data-menu-item="i4projects-tab" data-targets="action-list.items" role="none" data-view-component="true" class="ActionListItem"> <a tabindex="-1" id="item-3de6ce79-5d58-4d07-bc2b-2c3ea36c85cc" href="/zjukg/KG-LLM-Papers/projects" role="menuitem" data-view-component="true" class="ActionListContent ActionListContent--visual16"> <span class="ActionListItem-visual ActionListItem-visual--leading"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-table"> <path d="M0 1.75C0 .784.784 0 1.75 0h12.5C15.216 0 16 .784 16 1.75v12.5A1.75 1.75 0 0 1 14.25 16H1.75A1.75 1.75 0 0 1 0 14.25ZM6.5 6.5v8h7.75a.25.25 0 0 0 .25-.25V6.5Zm8-1.5V1.75a.25.25 0 0 0-.25-.25H6.5V5Zm-13 1.5v7.75c0 .138.112.25.25.25H5v-8ZM5 5V1.5H1.75a.25.25 0 0 0-.25.25V5Z"></path> </svg> </span> <span data-view-component="true" class="ActionListItem-label"> Projects </span> </a> </li> <li hidden="hidden" data-menu-item="i5wiki-tab" data-targets="action-list.items" role="none" data-view-component="true" class="ActionListItem"> <a tabindex="-1" id="item-18fe8a4a-b477-4546-b337-1aee0db2e486" href="/zjukg/KG-LLM-Papers/wiki" role="menuitem" data-view-component="true" class="ActionListContent ActionListContent--visual16"> <span class="ActionListItem-visual ActionListItem-visual--leading"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-book"> <path d="M0 1.75A.75.75 0 0 1 .75 1h4.253c1.227 0 2.317.59 3 1.501A3.743 3.743 0 0 1 11.006 1h4.245a.75.75 0 0 1 .75.75v10.5a.75.75 0 0 1-.75.75h-4.507a2.25 2.25 0 0 0-1.591.659l-.622.621a.75.75 0 0 1-1.06 0l-.622-.621A2.25 2.25 0 0 0 5.258 13H.75a.75.75 0 0 1-.75-.75Zm7.251 10.324.004-5.073-.002-2.253A2.25 2.25 0 0 0 5.003 2.5H1.5v9h3.757a3.75 3.75 0 0 1 1.994.574ZM8.755 4.75l-.004 7.322a3.752 3.752 0 0 1 1.992-.572H14.5v-9h-3.495a2.25 2.25 0 0 0-2.25 2.25Z"></path> </svg> </span> <span data-view-component="true" class="ActionListItem-label"> Wiki </span> </a> </li> <li hidden="hidden" data-menu-item="i6security-tab" data-targets="action-list.items" role="none" data-view-component="true" class="ActionListItem"> <a tabindex="-1" id="item-fa4f0e86-784e-4abe-bfea-16e788e19bf1" href="/zjukg/KG-LLM-Papers/security" role="menuitem" data-view-component="true" class="ActionListContent ActionListContent--visual16"> <span class="ActionListItem-visual ActionListItem-visual--leading"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-shield"> <path d="M7.467.133a1.748 1.748 0 0 1 1.066 0l5.25 1.68A1.75 1.75 0 0 1 15 3.48V7c0 1.566-.32 3.182-1.303 4.682-.983 1.498-2.585 2.813-5.032 3.855a1.697 1.697 0 0 1-1.33 0c-2.447-1.042-4.049-2.357-5.032-3.855C1.32 10.182 1 8.566 1 7V3.48a1.75 1.75 0 0 1 1.217-1.667Zm.61 1.429a.25.25 0 0 0-.153 0l-5.25 1.68a.25.25 0 0 0-.174.238V7c0 1.358.275 2.666 1.057 3.86.784 1.194 2.121 2.34 4.366 3.297a.196.196 0 0 0 .154 0c2.245-.956 3.582-2.104 4.366-3.298C13.225 9.666 13.5 8.36 13.5 7V3.48a.251.251 0 0 0-.174-.237l-5.25-1.68ZM8.75 4.75v3a.75.75 0 0 1-1.5 0v-3a.75.75 0 0 1 1.5 0ZM9 10.5a1 1 0 1 1-2 0 1 1 0 0 1 2 0Z"></path> </svg> </span> <span data-view-component="true" class="ActionListItem-label"> Security </span> </a> </li> <li hidden="hidden" data-menu-item="i7insights-tab" data-targets="action-list.items" role="none" data-view-component="true" class="ActionListItem"> <a tabindex="-1" id="item-5f6f4491-7862-4dbe-97a6-902dd9c0cfa9" href="/zjukg/KG-LLM-Papers/pulse" role="menuitem" data-view-component="true" class="ActionListContent ActionListContent--visual16"> <span class="ActionListItem-visual ActionListItem-visual--leading"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-graph"> <path d="M1.5 1.75V13.5h13.75a.75.75 0 0 1 0 1.5H.75a.75.75 0 0 1-.75-.75V1.75a.75.75 0 0 1 1.5 0Zm14.28 2.53-5.25 5.25a.75.75 0 0 1-1.06 0L7 7.06 4.28 9.78a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042l3.25-3.25a.75.75 0 0 1 1.06 0L10 7.94l4.72-4.72a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042Z"></path> </svg> </span> <span data-view-component="true" class="ActionListItem-label"> Insights </span> </a> </li> </ul> </div></action-list> </div> </div></anchored-position> </focus-group> </action-menu></div> </nav> </div> <turbo-frame id="repo-content-turbo-frame" target="_top" data-turbo-action="advance" class=""> <div id="repo-content-pjax-container" class="repository-content " > <h1 class='sr-only'>zjukg/KG-LLM-Papers</h1> <div class="clearfix container-xl px-md-4 px-lg-5 px-3"> <div> <div style="max-width: 100%" data-view-component="true" class="Layout Layout--flowRow-until-md react-repos-overview-margin Layout--sidebarPosition-end Layout--sidebarPosition-flowRow-end"> <div data-view-component="true" class="Layout-main"> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_dompurify_dist_purify_es_mjs-dd1d3ea6a436.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/vendors-node_modules_tanstack_query-core_build_modern_queryObserver_js-node_modules_tanstack_-defd52-843b41414e0e.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/ui_packages_aria-live_aria-live_ts-ui_packages_promise-with-resolvers-polyfill_promise-with-r-17c672-34345cb18aac.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/ui_packages_paths_index_ts-e019c54eb886.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/ui_packages_ref-selector_RefSelector_tsx-7496afc3784d.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/ui_packages_commit-attribution_index_ts-ui_packages_commit-checks-status_index_ts-ui_packages-7094d4-15017f02e61c.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/ui_packages_code-view-shared_hooks_shortcuts_ts-ui_packages_code-view-shared_utilities_styles-0dc246-f8753c5db08d.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/ui_packages_code-view-shared_hooks_use-canonical-object_ts-ui_packages_code-view-shared_hooks-a83ec0-5ee2b562b57f.js"></script> <script crossorigin="anonymous" defer="defer" type="application/javascript" src="https://github.githubassets.com/assets/repos-overview-ca785c0ab4fa.js"></script> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/primer-react.f9eaf3e098aa7865fd95.module.css" /> <link crossorigin="anonymous" media="all" rel="stylesheet" href="https://github.githubassets.com/assets/repos-overview.0ee7cac3ab511a65d9f9.module.css" /> <react-partial partial-name="repos-overview" data-ssr="true" data-attempted-ssr="true" > <script type="application/json" data-target="react-partial.embeddedData">{"props":{"initialPayload":{"allShortcutsEnabled":false,"path":"/","repo":{"id":652420569,"defaultBranch":"main","name":"KG-LLM-Papers","ownerLogin":"zjukg","currentUserCanPush":false,"isFork":false,"isEmpty":false,"createdAt":"2023-06-12T03:26:14.000Z","ownerAvatar":"https://avatars.githubusercontent.com/u/73814672?v=4","public":true,"private":false,"isOrgOwned":true},"currentUser":null,"refInfo":{"name":"main","listCacheKey":"v0:1686540374.62358","canEdit":false,"refType":"branch","currentOid":"bc09ef1c2664749dc67907cc2dce717fab7e9f9f"},"tree":{"items":[{"name":"LICENSE","path":"LICENSE","contentType":"file"},{"name":"README.md","path":"README.md","contentType":"file"}],"templateDirectorySuggestionUrl":null,"readme":null,"totalCount":2,"showBranchInfobar":false},"fileTree":null,"fileTreeProcessingTime":null,"foldersToFetch":[],"treeExpanded":false,"symbolsExpanded":false,"isOverview":true,"overview":{"banners":{"shouldRecommendReadme":false,"isPersonalRepo":false,"showUseActionBanner":false,"actionSlug":null,"actionId":null,"showProtectBranchBanner":false,"publishBannersInfo":{"dismissActionNoticePath":"/settings/dismiss-notice/publish_action_from_repo","releasePath":"/zjukg/KG-LLM-Papers/releases/new?marketplace=true","showPublishActionBanner":false},"interactionLimitBanner":null,"showInvitationBanner":false,"inviterName":null,"actionsMigrationBannerInfo":{"releaseTags":[],"showImmutableActionsMigrationBanner":false,"initialMigrationStatus":null}},"codeButton":{"contactPath":"/contact","isEnterprise":false,"local":{"protocolInfo":{"httpAvailable":true,"sshAvailable":null,"httpUrl":"https://github.com/zjukg/KG-LLM-Papers.git","showCloneWarning":null,"sshUrl":null,"sshCertificatesRequired":null,"sshCertificatesAvailable":null,"ghCliUrl":"gh repo clone zjukg/KG-LLM-Papers","defaultProtocol":"http","newSshKeyUrl":"/settings/ssh/new","setProtocolPath":"/users/set_protocol"},"platformInfo":{"cloneUrl":"https://desktop.github.com","showVisualStudioCloneButton":false,"visualStudioCloneUrl":"https://windows.github.com","showXcodeCloneButton":false,"xcodeCloneUrl":"xcode://clone?repo=https%3A%2F%2Fgithub.com%2Fzjukg%2FKG-LLM-Papers","zipballUrl":"/zjukg/KG-LLM-Papers/archive/refs/heads/main.zip"}},"newCodespacePath":"/codespaces/new?hide_repo_select=true\u0026repo=652420569"},"popovers":{"rename":null,"renamedParentRepo":null},"commitCount":"179","overviewFiles":[{"displayName":"README.md","repoName":"KG-LLM-Papers","refName":"main","path":"README.md","preferredFileType":"readme","tabName":"README","richText":"\u003carticle class=\"markdown-body entry-content container-lg\" itemprop=\"text\"\u003e\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch1 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eKG-LLM-Papers\u003c/h1\u003e\u003ca id=\"user-content-kg-llm-papers\" class=\"anchor\" aria-label=\"Permalink: KG-LLM-Papers\" href=\"#kg-llm-papers\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp dir=\"auto\"\u003e\u003ca href=\"https://github.com/zjukg/KG-LLM-Papers\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3418ba3754faddfb88c5cbdc94c31ad670fc693c8caa59bc2806c9836acc04e4/68747470733a2f2f617765736f6d652e72652f62616467652e737667\" alt=\"Awesome\" data-canonical-src=\"https://awesome.re/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/zjukg/KG-LLM-Papers/blob/main/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/28f4d479bf0a9b033b3a3b95ab2adc343da448a025b01aefdc0fbc7f0e169eb8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d677265656e2e737667\" alt=\"License: MIT\" data-canonical-src=\"https://img.shields.io/badge/License-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1c14b1f572078d9ce103e23337a6f10bc6bba51f1f3c08992f68bb9ff2c6af6e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f7a6a756b672f4b472d4c4c4d2d5061706572733f636f6c6f723d677265656e\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1c14b1f572078d9ce103e23337a6f10bc6bba51f1f3c08992f68bb9ff2c6af6e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f7a6a756b672f4b472d4c4c4d2d5061706572733f636f6c6f723d677265656e\" alt=\"\" data-canonical-src=\"https://img.shields.io/github/last-commit/zjukg/KG-LLM-Papers?color=green\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/30c6078aaee2b242e7c07f16316804464f124b8041003f717280157f42a411c0/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f5052732d57656c636f6d652d726564\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/30c6078aaee2b242e7c07f16316804464f124b8041003f717280157f42a411c0/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f5052732d57656c636f6d652d726564\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/PRs-Welcome-red\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp dir=\"auto\"\u003eWhat can LLMs do for KGs? Or, in other words, what role can KG play in the era of LLMs?\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp dir=\"auto\"\u003e🙌 This repository collects papers integrating \u003cstrong\u003eknowledge graphs (KGs)\u003c/strong\u003e and \u003cstrong\u003elarge language models (LLMs)\u003c/strong\u003e.\u003c/p\u003e\n\u003cp dir=\"auto\"\u003e😎 Welcome to recommend missing papers through \u003cstrong\u003e\u003ccode\u003ePull Requests\u003c/code\u003e\u003c/strong\u003e.\u003c/p\u003e\n\n\u003cdetails\u003e\n \u003csummary\u003e👈 🔔 News \u003c/summary\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003e\u003cstrong\u003e\u003ccode\u003e2025-02\u003c/code\u003e We preprint our Paper \u003ca href=\"https://arxiv.org/abs/2502.05478\" rel=\"nofollow\"\u003eOntoTune: Ontology-Driven Self-training for Aligning Large Language Models\u003c/a\u003e (WWW 2025) [\u003ca href=\"https://github.com/zjukg/OntoTune\"\u003e\u003ccode\u003eRepo\u003c/code\u003e\u003c/a\u003e].\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003ccode\u003e2025-02\u003c/code\u003e We preprint our Paper \u003ca href=\"https://arxiv.org/abs/2502.06257\" rel=\"nofollow\"\u003eK-ON: Stacking Knowledge On the Head Layer of Large Language Model\u003c/a\u003e (AAAI 2025 Oral) [\u003ca href=\"https://github.com/zjukg/K-ON\"\u003e\u003ccode\u003eRepo\u003c/code\u003e\u003c/a\u003e].\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003ccode\u003e2025-01\u003c/code\u003e We preprint our Paper \u003ca href=\"https://arxiv.org/abs/2501.00244\" rel=\"nofollow\"\u003eHave We Designed Generalizable Structural Knowledge Promptings? Systematic Evaluation and Rethinking\u003c/a\u003e [\u003ca href=\"https://github.com/zjukg/SUBARU\"\u003e\u003ccode\u003eRepo\u003c/code\u003e\u003c/a\u003e].\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003ccode\u003e2024-12\u003c/code\u003e We preprint our Paper \u003ca href=\"https://arxiv.org/abs/2406.18916\" rel=\"nofollow\"\u003eTrustUQA: A Trustful Framework for Unified Structured Data Question Answering\u003c/a\u003e (AAAI 2025) [\u003ca href=\"https://github.com/zjukg/TrustUQA\"\u003e\u003ccode\u003eRepo\u003c/code\u003e\u003c/a\u003e].\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003ccode\u003e2024-09\u003c/code\u003e Our paper \u003ca href=\"https://openreview.net/forum?id=eqMNwXvOqn\" rel=\"nofollow\"\u003eMKGL: Mastery of a Three-Word Language\u003c/a\u003e has been accepted by NeurIPS 2024 as a spotlight paper. [\u003ca href=\"https://github.com/zjukg/MKGL\"\u003e\u003ccode\u003eRepo\u003c/code\u003e\u003c/a\u003e]\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003ccode\u003e2024-07\u003c/code\u003e Our paper \u003ca href=\"https://arxiv.org/abs/2310.06671\" rel=\"nofollow\"\u003eMaking Large Language Models Perform Better in Knowledge Graph Completion\u003c/a\u003e has been accepted by ACM MM 2024 as an oral paper. [\u003ca href=\"https://github.com/zjukg/KoPA\"\u003e\u003ccode\u003eRepo\u003c/code\u003e\u003c/a\u003e]\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003ccode\u003e2024-05\u003c/code\u003e Our paper \u003ca href=\"https://arxiv.org/abs/2311.06503\" rel=\"nofollow\"\u003eKnowledgeable Preference Alignment for LLMs in Domain-specific Question Answering\u003c/a\u003e has been accepted by ACL 2024. [\u003ca href=\"https://github.com/zjukg/KnowPAT\"\u003e\u003ccode\u003eRepo\u003c/code\u003e\u003c/a\u003e]\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003ccode\u003e2024-02\u003c/code\u003e We preprint our Survey \u003ca href=\"http://arxiv.org/abs/2402.05391\" rel=\"nofollow\"\u003eKnowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey\u003c/a\u003e [\u003ca href=\"https://github.com/zjukg/KG-MM-Survey\"\u003e\u003ccode\u003eRepo\u003c/code\u003e\u003c/a\u003e].\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003ccode\u003e2023-06\u003c/code\u003e We create this repository to maintain a paper list on \u003ccode\u003eIntergrating Knowledge Graphs and Large Language Models\u003c/code\u003e.\u003c/strong\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/details\u003e\n\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch2 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eContent\u003c/h2\u003e\u003ca id=\"user-content-content\" class=\"anchor\" aria-label=\"Permalink: Content\" href=\"#content\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003e\u003ca href=\"#papers\"\u003e📜 Papers\u003c/a\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003e\u003ca href=\"#surveys\"\u003e🔖 Surveys\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#methods\"\u003e⚙ Methods\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#resources-and-benchmarking\"\u003e🧰 Resources\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch2 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003ePapers\u003c/h2\u003e\u003ca id=\"user-content-papers\" class=\"anchor\" aria-label=\"Permalink: Papers\" href=\"#papers\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch3 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eSurveys\u003c/h3\u003e\u003ca id=\"user-content-surveys\" class=\"anchor\" aria-label=\"Permalink: Surveys\" href=\"#surveys\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003e[\u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1570826824000301\" rel=\"nofollow\"\u003eJoWS\u003c/a\u003e] Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective \u003ccode\u003e2024.12\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.05391\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey. \u003ccode\u003e2024.02\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.07914\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey. \u003ccode\u003e2023.11\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.07521\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity. \u003ccode\u003e2023.10\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.04835\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] On the Evolution of Knowledge Graphs: A Survey and Perspective. \u003ccode\u003e2023.10\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/pdf/2309.17122\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Benchmarking the Abilities of Large Language Models for RDF Knowledge Graph Creation and Comprehension: How Well Do LLMs Speak Turtle? \u003ccode\u003e2023.09\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.01029\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Explainability for Large Language Models: A Survey. \u003ccode\u003e2023.09\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.14217\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Generations of Knowledge Graphs: The Crazy Ideas and the Business Impact. \u003ccode\u003e2023.08\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.06374\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Large Language Models and Knowledge Graphs: Opportunities and Challenges. \u003ccode\u003e2023.08\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/pdf/2306.08302\" rel=\"nofollow\"\u003eTKDE\u003c/a\u003e] Unifying Large Language Models and Knowledge Graphs: A Roadmap. \u003ccode\u003e2023.06\u003c/code\u003e [\u003ca href=\"https://github.com/RManLuo/Awesome-LLM-KG\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/pdf/2306.11489.pdf\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] ChatGPT is not Enough: Enhancing Large Language Models with Knowledge Graphs for Fact-aware Language Modeling. \u003ccode\u003e2023.06\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2211.05994\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] A Survey of Knowledge-Enhanced Pre-trained Language Models. \u003ccode\u003e2023.05\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch3 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eMethod\u003c/h3\u003e\u003ca id=\"user-content-method\" class=\"anchor\" aria-label=\"Permalink: Method\" href=\"#method\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2502.10453\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Linking Cryptoasset Attribution Tags to Knowledge Graph Entities: An LLM-based Approach. \u003ccode\u003e2025.2\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2502.05478\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] OntoTune: Ontology-Driven Self-training for Aligning Large Language Models. \u003ccode\u003e2025.2\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://aclanthology.org/2024.findings-emnlp.524/\" rel=\"nofollow\"\u003eEMNLP 2024 findings\u003c/a\u003e] Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering. \u003ccode\u003e2024.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2407.11417\" rel=\"nofollow\"\u003eEMNLP 2024 findings\u003c/a\u003e] SPINACH: SPARQL-Based Information Navigation for Challenging Real-World Questions. \u003ccode\u003e2024.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/pdf/2410.18415\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains. \u003ccode\u003e2024.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2410.12609\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs. \u003ccode\u003e2024.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2410.07526\" rel=\"nofollow\"\u003eNeurIPS 2024\u003c/a\u003e] MKGL: Mastery of a Three-Word Language. \u003ccode\u003e2024.10\u003c/code\u003e [\u003ca href=\"https://github.com/zjukg/MKGL\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.06861\" rel=\"nofollow\"\u003eNeurIPS 2024\u003c/a\u003e] UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction. \u003ccode\u003e2024.10\u003c/code\u003e [\u003ca href=\"https://github.com/usail-hkust/UrbanKGent\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.16412\" rel=\"nofollow\"\u003eNeurIPS 2024\u003c/a\u003e] KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge. \u003ccode\u003e2024.10\u003c/code\u003e [\u003ca href=\"https://github.com/pat-jj/KG-FIT\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://openreview.net/forum?id=JCG0KTPVYy\" rel=\"nofollow\"\u003eICML 2024\u003c/a\u003e] Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models. \u003ccode\u003e2024.10\u003c/code\u003e [\u003ca href=\"https://github.com/shiliu-egg/ICML2024_COFT\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2410.02811\" rel=\"nofollow\"\u003eACL 2024\u003c/a\u003e] SAC-KG: Exploiting Large Language Models as Skilled Automatic Constructors for Domain Knowledge Graphs. \u003ccode\u003e2024.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.16806\" rel=\"nofollow\"\u003eNeurIPS 2024\u003c/a\u003e] LLM4EA: Entity Alignment with Noisy Annotations from Large Language Models. \u003ccode\u003e2024.09\u003c/code\u003e [\u003ca href=\"https://github.com/chensyCN/llm4ea_official\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2407.00653\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs. \u003ccode\u003e2024.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2407.10793\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework. \u003ccode\u003e2024.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2407.10805\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Think-on-Graph 2.0: Deep and Interpretable Large Language Model Reasoning with Knowledge Graph-guided Retrieval. \u003ccode\u003e2024.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2407.16127\" rel=\"nofollow\"\u003eISWC 2024\u003c/a\u003e] Finetuning Generative Large Language Models with Discrimination Instructions for Knowledge Graph Completion. \u003ccode\u003e2024.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.16568\" rel=\"nofollow\"\u003eACL 2024 findings\u003c/a\u003e] Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models. \u003ccode\u003e2024.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2407.21358\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs. \u003ccode\u003e2024.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.07793\" rel=\"nofollow\"\u003eNAACL 2024 findings\u003c/a\u003e] GenTKG: Generative Forecasting on Temporal Knowledge Graph with Large Language Models. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.11199\" rel=\"nofollow\"\u003eACL 2024 findings\u003c/a\u003e] Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.03746\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Efficient Knowledge Infusion via KG-LLM Alignment. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.18114\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.13862\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Graph-Enhanced Large Language Models via Path Selection. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.14282\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.02962\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.02110\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] UniOQA: A Unified Framework for Knowledge Graph Question Answering with Large Language Model. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.02030\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Multimodal Reasoning with Multimodal Knowledge Graph. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.01391\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Graph in Astronomical Research with Large Language Models: Quantifying Driving Forces in Interdisciplinary Scientific Discovery. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.01238\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] EffiQA: Efficient Question-Answering with Strategic Multi-Model Collaboration on Knowledge Graphs. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.01145\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2406.00036\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-024-00481-2\" rel=\"nofollow\"\u003eEPJ Data Science\u003c/a\u003e] Glitter or Gold? Deriving Structured Insights from Sustainability Reports via Large Language Models. \u003ccode\u003e2024.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.20455\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] DepsRAG: Towards Managing Software Dependencies using Large Language Models. \u003ccode\u003e2024.06\u003c/code\u003e [\u003ca href=\"https://github.com/Mohannadcse/DepsRAG\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.19877\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KNOW: A Real-World Ontology for Knowledge Capture with Large Language Models \u003ccode\u003e2024.05\u003c/code\u003e [\u003ca href=\"https://github.com/KnowOntology\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.14831\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models \u003ccode\u003e2024.05\u003c/code\u003e [\u003ca href=\"https://github.com/OSU-NLP-Group/HippoRAG\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.14012\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Prompt-Time Ontology-Driven Symbolic Knowledge Capture with Large Language Models \u003ccode\u003e2024.05\u003c/code\u003e [\u003ca href=\"https://github.com/HaltiaAI/paper-PTODSKC\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.10288\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Timeline-based Sentence Decomposition with In-Context Learning for Temporal Fact Extraction. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.09713\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] SOK-Bench: A Situated Video Reasoning Benchmark with Aligned Open-World Knowledge. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.06545\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Mitigating Hallucinations in Large Language Models via Self-Refinement-Enhanced Knowledge Retrieval. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.06524\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.04819\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] DALK: Dynamic Co-Augmentation of LLMs and KG to answer Alzheimer's Disease Questions with Scientific Literature. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.04756\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] BiasKG: Adversarial Knowledge Graphs to Induce Bias in Large Language Models. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.04753\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] AttacKG+:Boosting Attack Knowledge Graph Construction with Large Language Models. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.04180\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Sora Detector: A Unified Hallucination Detection for Large Text-to-Video Models. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.03734\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] FOKE: A Personalized and Explainable Education Framework Integrating Foundation Models, Knowledge Graphs, and Prompt Engineering. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.02738\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Relations Prediction for Knowledge Graph Completion using Large Language Models. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.02105\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Evaluating Large Language Models for Structured Science Summarization in the Open Research Knowledge Graph. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.01649\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2405.00449\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] RAG-based Explainable Prediction of Road Users Behaviors for Automated Driving using Knowledge Graphs and Large Language Models. \u003ccode\u003e2024.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.19744\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] PrivComp-KG : Leveraging Knowledge Graph and Large Language Models for Privacy Policy Compliance Verification. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.19234\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Multi-hop Question Answering over Knowledge Graphs using Large Language Models. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.19146\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Automated Construction of Theme-specific Knowledge Graphs. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.17723\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.17000\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Evaluating Class Membership Relations in Knowledge Graphs using Large Language Models. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.15923\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KGValidator: A Framework for Automatic Validation of Knowledge Graph Construction. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.13865\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Context-Enhanced Language Models for Generating Multi-Paper Citations. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.10384\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.09763\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KG-CTG: Citation Generation through Knowledge Graph-guided Large Language Models. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.09077\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] CuriousLLM: Elevating Multi-Document QA with Reasoning-Infused Knowledge Graph Prompting. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.07677\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] ODA: Observation-Driven Agent for integrating LLMs and Knowledge Graphs. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.06571\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Building A Knowledge Graph to Enrich ChatGPT Responses in Manufacturing Service Discovery. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.04264\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.03868\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Extract, Define, Canonicalize: An LLM-based Framework for Knowledge Graph Construction. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://openreview.net/forum?id=dWYRjT501w\" rel=\"nofollow\"\u003eCOLM 2024\u003c/a\u003e] Unveiling LLMs: The Evolution of Latent Representations in a Dynamic Knowledge Graph. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.03080\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Construction of Functional Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.02389\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] On Linearizing Structured Data in Encoder-Decoder Language Models: Insights from Text-to-SQL. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.01720\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Self-Improvement Programming for Temporal Knowledge Graph Question Answering. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.01425\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] A Preliminary Roadmap for LLMs as Assistants in Exploring, Analyzing, and Visualizing Knowledge Graphs. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.00942\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.00589\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Harnessing the Power of Large Language Model for Uncertainty Aware Graph Processing. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.00209\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] EventGround: Narrative Reasoning by Grounding to Eventuality-centric Knowledge Graphs. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.14741\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.16130\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] From Local to Global: A Graph RAG Approach to Query-Focused Summarization. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.15883\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses. \u003ccode\u003e2024.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.14950\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KnowLA: Enhancing Parameter-efficient Finetuning with Knowledgeable Adaptation. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.17532\" rel=\"nofollow\"\u003eLREC-COLING 2024\u003c/a\u003e] KC-GenRe: A Knowledge-constrained Generative Re-ranking Method Based on Large Language Models for Knowledge Graph Completion. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.14253\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] K-Act2Emo: Korean Commonsense Knowledge Graph for Indirect Emotional Expression. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.12151\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Fusing Domain-Specific Content from Large Language Models into Knowledge Graphs for Enhanced Zero Shot Object State Classification. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.11786\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Construction of Hyper-Relational Knowledge Graphs Using Pre-Trained Large Language Models. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.08593\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.08345\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] From human experts to machines: An LLM supported approach to ontology and knowledge graph construction. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.07398\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Complex Reasoning over Logical Queries on Commonsense Knowledge Graphs. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.07311\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Graph Large Language Model (KG-LLM) for Link Prediction. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.05881\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.04261\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Advancing Biomedical Text Mining with Community Challenges. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.03008\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Graphs as Context Sources for LLM-Based Explanations of Learning Recommendations. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.02966\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Evidence-Focused Fact Summarization for Knowledge-Augmented Zero-Shot Question Answering. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.02576\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] AceMap: Knowledge Discovery through Academic Graph. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.02253\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.02014\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Unveiling Hidden Links Between Unseen Security Entities. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.01972\" rel=\"nofollow\"\u003eLREC-COLING 2024\u003c/a\u003e] Multi-perspective Improvement of Knowledge Graph Completion with Large Language Models. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.01481\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Infusing Knowledge into Large Language Models with Contextual Prompts. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.01395\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] CR-LT-KGQA: A Knowledge Graph Question Answering Dataset Requiring Commonsense Reasoning and Long-Tail Knowledge. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.01390\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Right for Right Reasons: Large Language Models for Verifiable Commonsense Knowledge Graph Question Answering. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.01382\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Automatic Question-Answer Generation for Long-Tail Knowledge. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2403.00953\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] AutoRD: An Automatic and End-to-End System for Rare Disease Knowledge Graph Construction Based on Ontologies-enhanced Large Language Models. \u003ccode\u003e2024.03\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.17786\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Stepwise Self-Consistent Mathematical Reasoning with Large Language Models. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.16568\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.15048\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Unlocking the Power of Large Language Models for Entity Alignment. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.14382\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Enhancing Temporal Knowledge Graph Forecasting with Large Language Models via Chain-of-History Reasoning. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.13750\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Breaking the Barrier: Utilizing Large Language Models for Industrial Recommendation Systems through an Inferential Knowledge Graph. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.13593\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Graph Enhanced Large Language Model Editing. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.12728\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Modality-Aware Integration with Large Language Models for Knowledge-based Visual Question Answering. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.12352\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.11804\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] LLM as Prompter: Low-resource Inductive Reasoning on Arbitrary Knowledge Graphs. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.11541\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Counter-intuitive: Large Language Models Can Better Understand Knowledge Graphs Than We Thought. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.11441\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.11323\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Towards Development of Automated Knowledge Maps and Databases for Materials Engineering using Large Language Models. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.11163\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning over Knowledge Graph. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.11034\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] PAT-Questions: A Self-Updating Benchmark for Present-Anchored Temporal Question-Answering. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.10779\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] A Condensed Transition Graph Framework for Zero-shot Link Prediction with Large Language Models. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.09911\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Enhancing Large Language Models with Pseudo- and Multisource- Knowledge Graphs for Open-ended Question Answering. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.07630\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.07148\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] X-LoRA: Mixture of Low-Rank Adapter Experts, a Flexible Framework for Large Language Models with Applications in Protein Mechanics and Design. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.07016\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records Analysis via Large Language Models. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.06764\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.05862\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Let Your Graph Do the Talking: Encoding Structured Data for LLMs. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.05135\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] CADReN: Contextual Anchor-Driven Relational Network for Controllable Cross-Graphs Node Importance Estimation. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.04978\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.04627\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question Answering over a Life Science Knowledge Graph. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.03339\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Interplay of Semantic Communication and Knowledge Learning. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.03299\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.02130\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Rendering Graphs for Graph Reasoning in Multimodal Large Language Models. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.01730\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Evaluating LLM -- Generated Multimodal Diagnosis from Medical Images and Symptom Analysis. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.01729\" rel=\"nofollow\"\u003eEACL 2024\u003c/a\u003e] Contextualization Distillation from Large Language Model for Knowledge Graph Completion. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.01495\" rel=\"nofollow\"\u003eEACL 2024\u003c/a\u003e] A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.00414\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Prompt-Time Symbolic Knowledge Capture with Large Language Models. \u003ccode\u003e2024.02\u003c/code\u003e [\u003ca href=\"https://github.com/HaltiaAI/paper-PTSKC\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.00292\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Effective Bug Detection in Graph Database Engines: An LLM-based Approach. \u003ccode\u003e2024.02\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.16960\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.14640\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Benchmarking Large Language Models in Complex Question Answering Attribution using Knowledge Graphs. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.13444\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Clue-Guided Path Exploration: An Efficient Knowledge Base Question-Answering Framework with Low Computational Resource Consumption. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.12863\" rel=\"nofollow\"\u003eAAAI 2024\u003c/a\u003e] KAM-CoT: Knowledge Augmented Multimodal Chain-of-Thoughts Reasoning. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.12671\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.08517\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Supporting Student Decisions on Learning Recommendations: An LLM-Based Chatbot with Knowledge Graph Contextualization for Conversational Explainability and Mentoring. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.07237\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Distilling Event Sequence Knowledge From Large Language Models. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.06853\" rel=\"nofollow\"\u003eACL 24\u003c/a\u003e] Large Language Models Can Learn Temporal Reasoning. \u003ccode\u003e2024.01\u003c/code\u003e [\u003ca href=\"https://github.com/xiongsiheng/TG-LLM\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.06072\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Chain of History: Learning and Forecasting with LLMs for Temporal Knowledge Graph Completion. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.04507\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] TechGPT-2.0: A large language model project to solve the task of knowledge graph construction. \u003ccode\u003e2024.01\u003c/code\u003e [\u003ca href=\"https://github.com/neukg/TechGPT-2.0\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.01711\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Evaluating Large Language Models in Semantic Parsing for Conversational Question Answering over Knowledge Graphs. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.00761\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] The Earth is Flat? Unveiling Factual Errors in Large Language Models. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.00426\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] keqing: knowledge-based question answering is a nature chain-of-thought mentor of LLM. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.03158\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Quartet Logic: A Four-Step Reasoning (QLFR) framework for advancing Short Text Classification. \u003ccode\u003e2024.01\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.17269\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Conversational Question Answering with Reformulations over Knowledge Graph. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.15883\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Think and Retrieval: A Hypothesis Knowledge Graph Enhanced Medical Large Language Models. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.15880\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KnowledgeNavigator: Leveraging Large Language Models for Enhanced Reasoning over Knowledge Graph. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.11813\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Urban Generative Intelligence (UGI): A Foundational Platform for Agents in Embodied City Environment. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.11785\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Zero-Shot Fact-Checking with Semantic Triples and Knowledge Graphs. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.11539\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KGLens: A Parameterized Knowledge Graph Solution to Assess What an LLM Does and Doesn't Know. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.11282\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] LLM-ARK: Knowledge Graph Reasoning Using Large Language Models via Deep Reinforcement Learning. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.09126\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Towards Trustworthy AI Software Development Assistance. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.06185\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] KnowGPT: Black-Box Knowledge Injection for Large Language Models. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.05276\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Making Large Language Models Better Knowledge Miners for Online Marketing with Progressive Prompting Augmentation. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.03749\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Conceptual Engineering Using Large Language Models. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.03022\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Beyond Isolation: Multi-Agent Synergy for Improving Knowledge Graph Construction. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.01954\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Zero- and Few-Shots Knowledge Graph Triplet Extraction with Large Language Models. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2312.00353\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] On Exploring the Reasoning Capability of Large Language Models with Knowledge Graphs. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.17330\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Biomedical knowledge graph-optimized prompt generation for large language models. \u003ccode\u003e2023.11\u003c/code\u003e [\u003ca href=\"https://github.com/BaranziniLab/KG_RAG\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.16137\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] A Graph-to-Text Approach to Knowledge-Grounded Response Generation in Human-Robot Interaction. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"http://arxiv.org/abs/2311.01150\" rel=\"nofollow\"\u003eEMNLP 2023\u003c/a\u003e]Revisiting the Knowledge Injection Frameworks. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://aclanthology.org/2023.emnlp-main.143\" rel=\"nofollow\"\u003eEMNLP 2023\u003c/a\u003e]Does the Correctness of Factual Knowledge Matter for Factual Knowledge-Enhanced Pre-trained Language Models? \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://aclanthology.org/2023.emnlp-main.228/\" rel=\"nofollow\"\u003eEMNLP 2023\u003c/a\u003e]ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained Language Models for Question Answering over Knowledge Graph. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://aclanthology.org/2023.findings-emnlp.580/\" rel=\"nofollow\"\u003eEMNLP 2023 Findings\u003c/a\u003e]KICGPT: Large Language Model with Knowledge in Context for Knowledge Graph Completion. \u003ccode\u003e2023.12\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.01862\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] \u003cmath-renderer class=\"js-inline-math\" style=\"display: inline-block\" data-static-url=\"https://github.githubassets.com/static\" data-run-id=\"9b5c46fafee86632afb35d7dcf77cc09\"\u003e$R^3$\u003c/math-renderer\u003e-NL2GQL: A Hybrid Models Approach for for Accuracy Enhancing and Hallucinations Mitigation. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.13314\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Mitigating Large Language Model Hallucinations via Autonomous Knowledge Graph-based Retrofitting. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.14202\" rel=\"nofollow\"\u003eEMNLP 2023\u003c/a\u003e] Fine-tuned LLMs Know More, Hallucinate Less with Few-Shot Sequence-to-Sequence Semantic Parsing over Wikidata. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.09841\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Leveraging LLMs in Scholarly Knowledge Graph Question Answering. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.06503\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.03837\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] OLaLa: Ontology Matching with Large Language Models. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.02956\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] In-Context Learning for Knowledge Base Question Answering for Unmanned Systems based on Large Language Models. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.01266\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Let's Discover More API Relations: A Large Language Model-based AI Chain for Unsupervised API Relation Inference. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.00444\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Form follows Function: Text-to-Text Conditional Graph Generation based on Functional Requirements. \u003ccode\u003e2023.11\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.02166\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Large Language Models Meet Knowledge Graphs to Answer Factoid Questions. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.07008\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Answer Candidate Type Selection: Text-to-Text Language Model for Closed Book Question Answering Meets Knowledge Graphs. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.00287\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.20170\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain Question Answering over Knowledge Base and Text. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.19998\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Generative retrieval-augmented ontologic graph and multi-agent strategies for interpretive large language model-based materials design. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.18951\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] A Multimodal Ecological Civilization Pattern Recommendation Method Based on Large Language Models and Knowledge Graph. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.18356\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] LoRAShear: Efficient Large Language Model Structured Pruning and Knowledge Recovery. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.16421\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Graph Agent: Explicit Reasoning Agent for Graphs. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.14174\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] An In-Context Schema Understanding Method for Knowledge Base Question Answering. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.13023\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] GraphGPT: Graph Instruction Tuning for Large Language Models. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.11638\" rel=\"nofollow\"\u003eEMNLP 2023 Findings\u003c/a\u003e] Systematic Assessment of Factual Knowledge in Large Language Models. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.11220\" rel=\"nofollow\"\u003eEMNLP 2023 Findings\u003c/a\u003e] KG-GPT: A General Framework for Reasoning on Knowledge Graphs Using Large Language Models. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.10445\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.09089\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Qilin-Med: Multi-stage Knowledge Injection Advanced Medical Large Language Model. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.08975\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.08365\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] From Large Language Models to Knowledge Graphs for Biomarker Discovery in Cancer. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.06671\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Making Large Language Models Perform Better in Knowledge Graph Completion. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.08279\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] CP-KGC: Constrained-Prompt Knowledge Graph Completion with Large Language Models. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.07170\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] PHALM: Building a Knowledge Graph from Scratch by Prompting Humans and a Language Model. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.03269\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] InstructProtein: Aligning Human and Protein Language via Knowledge Instruction. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.01290\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Crosswords: Geometric Reasoning over Structured Knowledge with Large Language Models. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.01061\" rel=\"nofollow\"\u003eICLR 2024\u003c/a\u003e] Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning. \u003ccode\u003e2023.10\u003c/code\u003e [\u003ca href=\"https://github.com/RManLuo/reasoning-on-graphs\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.00299\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] RelBERT: Embedding Relations with Language Models. \u003ccode\u003e2023.10\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.17122\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Benchmarking the Abilities of Large Language Models for RDF Knowledge Graph Creation and Comprehension: How Well Do LLMs Speak Turtle?. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/pdf/2309.16134\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Let's Chat to Find the APIs: Connecting Human, LLM and Knowledge Graph through AI Chain. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/pdf/2309.15427\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Graph Neural Prompting with Large Language Models. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.12132\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] A knowledge representation approach for construction contract knowledge modeling. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.11206\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Retrieve-Rewrite-Answer: A KG-to-Text Enhanced LLMs Framework for Knowledge Graph Question Answering. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.08594\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] \"Merge Conflicts!\" Exploring the Impacts of External Distractors to Parametric Knowledge Graphs. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.00240\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] FactLLaMA: Optimizing Instruction-Following Language Models with External Knowledge for Automated Fact-Checking. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/pdf/2309.01538\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.04695\" rel=\"nofollow\"\u003eAAAI 2024\u003c/a\u003e] Code-Style In-Context Learning for Knowledge-Based Question Answering. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.04565\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Unleashing the Power of Graph Learning through LLM-based Autonomous Agents. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.04175\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge-tuning Large Language Models with Structured Medical Knowledge Bases for Reliable Response Generation in Chinese. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.03118\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from Knowledge Graphs. \u003ccode\u003e2023.09\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.14429\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Biomedical Entity Linking with Triple-aware Pre-Training. \u003ccode\u003e2023.08\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.13916\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Exploring Large Language Models for Knowledge Graph Completion. \u003ccode\u003e2023.08\u003c/code\u003e [\u003ca href=\"https://github.com/yao8839836/kg-llm\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.16622\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Developing a Scalable Benchmark for Assessing Large Language Models in Knowledge Graph Engineering. \u003ccode\u003e2023.08\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.14321\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Leveraging A Medical Knowledge Graph into Large Language Models for Diagnosis Prediction. \u003ccode\u003e2023.08\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.12028\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] LKPNR: LLM and KG for Personalized News Recommendation Framework. \u003ccode\u003e2023.08\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.11730\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Graph Prompting for Multi-Document Question Answering. \u003ccode\u003e2023.08\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.10168\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Head-to-Tail: How Knowledgeable are Large Language Models (LLM)? A.K.A. Will LLMs Replace Knowledge Graphs?. \u003ccode\u003e2023.08\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.09729\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models. \u003ccode\u003e2023.08\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.00081\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Towards Semantically Enriched Embeddings for Knowledge Graph Completion. \u003ccode\u003e2023.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2307.11772\" rel=\"nofollow\"\u003eTKDE 2024\u003c/a\u003e] AutoAlign: Fully Automatic and Effective Knowledge Graph Alignment enabled by Large Language Models. \u003ccode\u003e2023.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2307.07312\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Using Large Language Models for Zero-Shot Natural Language Generation from Knowledge Graphs. \u003ccode\u003e2023.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2307.07697\" rel=\"nofollow\"\u003eICLR 2024\u003c/a\u003e] Think-on-Graph: Deep and Responsible Reasoning of Large Language Model with Knowledge Graph. \u003ccode\u003e2023.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2307.03393\" rel=\"nofollow\"\u003eSIGKDD 2024 Explorations\u003c/a\u003e] Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs. \u003ccode\u003e2023.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2307.05722\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations. \u003ccode\u003e2023.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2307.02738\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] RecallM: An Architecture for Temporal Context Understanding and Question Answering. \u003ccode\u003e2023.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2307.06917\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] LLM-assisted Knowledge Graph Engineering: Experiments with ChatGPT. \u003ccode\u003e2023.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2307.01128\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction. \u003ccode\u003e2023.07\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2306.10241\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Snowman: A Million-scale Chinese Commonsense Knowledge Graph Distilled from Foundation Model\n. \u003ccode\u003e2023.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/pdf/2306.04136.pdf\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering. \u003ccode\u003e2023.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2306.10723\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Fine-tuning Large Enterprise Language Models via Ontological Reasoning. \u003ccode\u003e2023.06\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.18395\" rel=\"nofollow\"\u003eNeurIPS 2023\u003c/a\u003e] Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks. \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/pdf/2305.04676\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Enhancing Knowledge Graph Construction Using Large Language Models. \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.03513\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] ChatGraph: Interpretable Text Classification by Converting ChatGPT Knowledge to Graphs. \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.06590\" rel=\"nofollow\"\u003eACL 2023\u003c/a\u003e] FactKG: Fact Verification via Reasoning on Knowledge Graphs. \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2304.05973\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented Prompting. \u003ccode\u003e2023.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.09645\" rel=\"nofollow\"\u003eEMNLP 2023\u003c/a\u003e] StructGPT: A General Framework for Large Language Model to Reason over Structured Data. \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.19523\" rel=\"nofollow\"\u003eICLR 2024\u003c/a\u003e] Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning. \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.13168\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities. \u003ccode\u003e2023.05\u003c/code\u003e [\u003ca href=\"https://github.com/zjunlp/AutoKG\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.10037\" rel=\"nofollow\"\u003eNeurIPS 2023\u003c/a\u003e] Can Language Models Solve Graph Problems in Natural Language? \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.09858\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Knowledge Graph Completion Models are Few-shot Learners: An Empirical Study of Relation Labeling in E-commerce with LLMs. \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.16755\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Can large language models generate salient negative statements? \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.15066\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] GPT4Graph: Can Large Language Models Understand Graph Structured Data ? An Empirical Evaluation and Benchmarking. \u003ccode\u003e2023.05\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.01157\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Complex Logical Reasoning over Knowledge Graphs using Large Language Models. \u003ccode\u003e2023.05\u003c/code\u003e [\u003ca href=\"https://github.com/Akirato/LLM-KG-Reasoning/tree/main\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2305.00050\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Causal Reasoning and Large Language Models: Opening a New Frontier for Causality. \u003ccode\u003e2023.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2303.05279\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Can large language models build causal graphs? \u003ccode\u003e2023.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2304.05774\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses. \u003ccode\u003e2023.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2304.11116\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Augmented by ChatGPT. \u003ccode\u003e2023.04\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2304.02711\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning. \u003ccode\u003e2023.04\u003c/code\u003e [\u003ca href=\"https://github.com/monarch-initiative/ontogpt\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch3 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eResources and Benchmarking\u003c/h3\u003e\u003ca id=\"user-content-resources-and-benchmarking\" class=\"anchor\" aria-label=\"Permalink: Resources and Benchmarking\" href=\"#resources-and-benchmarking\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2404.13207\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases. \u003ccode\u003e2024.04\u003c/code\u003e [\u003ca href=\"https://github.com/snap-stanford/stark\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2402.06341\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] RareBench: Can LLMs Serve as Rare Diseases Specialists?. \u003ccode\u003e2024.02\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.14640\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Benchmarking Large Language Models in Complex Question Answering Attribution using Knowledge Graphs. \u003ccode\u003e2024.01\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2401.06853\" rel=\"nofollow\"\u003eACL 24\u003c/a\u003e] Large Language Models Can Learn Temporal Reasoning. \u003ccode\u003e2024.01\u003c/code\u003e [\u003ca href=\"https://github.com/xiongsiheng/TG-LLM\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.09174\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph. \u003ccode\u003e2023.11\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2311.07509\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] A Benchmark to Understand the Role of Knowledge Graphs on Large Language Model's Accuracy for Question Answering on Enterprise SQL Databases. \u003ccode\u003e2023.11\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.05634\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution. \u003ccode\u003e2023.10\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.15517\" rel=\"nofollow\"\u003eEMNLP 2023\u003c/a\u003e] MarkQA: A large scale KBQA dataset with numerical reasoning. \u003ccode\u003e2023.10\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2306.14704\" rel=\"nofollow\"\u003eCIKM 2023\u003c/a\u003e] Ontology Enrichment from Texts: A Biomedical Dataset for Concept Discovery and Placement. \u003ccode\u003e2023.06\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2306.05783\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Xiezhi: An Ever-Updating Benchmark for Holistic Domain Knowledge Evaluation. \u003ccode\u003e2023.06\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2210.00305\" rel=\"nofollow\"\u003eAACL 2023 System Demonstrations\u003c/a\u003e] LambdaKG: A Library for Pre-trained Language Model-Based Knowledge Graph Embeddings \u003ccode\u003e2023.03\u003c/code\u003e [\u003ca href=\"http://47.92.96.190:9001/\" rel=\"nofollow\"\u003eRepo\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2309.11669\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] Construction of Paired Knowledge Graph-Text Datasets Informed by Cyclic Evaluation. \u003ccode\u003e2023.09\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2310.08365\" rel=\"nofollow\"\u003earxiv\u003c/a\u003e] From Large Language Models to Knowledge Graphs for Biomarker Discovery in Cancer. \u003ccode\u003e2023.10\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e[\u003ca href=\"https://arxiv.org/abs/2308.02357\" rel=\"nofollow\"\u003eISWC 2023\u003c/a\u003e] Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph Generation from Text. \u003ccode\u003e2023.08\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch2 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003eContribution\u003c/h2\u003e\u003ca id=\"user-content-contribution\" class=\"anchor\" aria-label=\"Permalink: Contribution\" href=\"#contribution\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch3 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003e👥 Contributors\u003c/h3\u003e\u003ca id=\"user-content--contributors\" class=\"anchor\" aria-label=\"Permalink: 👥 Contributors\" href=\"#-contributors\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003ca href=\"https://github.com/zjukg/KG-LLM-Papers/graphs/contributors\"\u003e\n \u003cimg src=\"https://camo.githubusercontent.com/2587b3dcfd9b268a898efd413cf2fe89756c0600753691bd764a9e1402499694/68747470733a2f2f636f6e747269622e726f636b732f696d6167653f7265706f3d7a6a756b672f4b472d4c4c4d2d506170657273\" data-canonical-src=\"https://contrib.rocks/image?repo=zjukg/KG-LLM-Papers\" style=\"max-width: 100%;\"\u003e\n\u003c/a\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch3 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003e🎉 Contributing ( welcome ! )\u003c/h3\u003e\u003ca id=\"user-content--contributing--welcome--\" class=\"anchor\" aria-label=\"Permalink: 🎉 Contributing ( welcome ! )\" href=\"#-contributing--welcome--\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul dir=\"auto\"\u003e\n\u003cli\u003e✨ Add a new paper or update an existing KG-related LLM paper.\u003c/li\u003e\n\u003cli\u003e🧐 Use the same format as existing entries to describe the work.\u003c/li\u003e\n\u003cli\u003e😄 A very brief explanation why you think a paper should be added or updated is recommended (Not Neccessary) via \u003cstrong\u003e\u003ccode\u003eAdding Issues\u003c/code\u003e\u003c/strong\u003e or \u003cstrong\u003e\u003ccode\u003ePull Requests\u003c/code\u003e\u003c/strong\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp dir=\"auto\"\u003e\u003cstrong\u003eDon't worry if you put something wrong, they will be fixed for you. Just feel free to contribute and promote your awesome work here! 🤩 We'll get back to you in time ~ 😉\u003c/strong\u003e\u003c/p\u003e\n\u003cp dir=\"auto\"\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a63dd8f593a6536ad4b7ce5978d689ef71596be697885c81d62da490d2eb87cd/68747470733a2f2f6170692e737461722d686973746f72792e636f6d2f7376673f7265706f733d7a6a756b672f4b472d4c4c4d2d50617065727326747970653d44617465\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a63dd8f593a6536ad4b7ce5978d689ef71596be697885c81d62da490d2eb87cd/68747470733a2f2f6170692e737461722d686973746f72792e636f6d2f7376673f7265706f733d7a6a756b672f4b472d4c4c4d2d50617065727326747970653d44617465\" alt=\"Star History Chart\" data-canonical-src=\"https://api.star-history.com/svg?repos=zjukg/KG-LLM-Papers\u0026amp;type=Date\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\" dir=\"auto\"\u003e\u003ch2 tabindex=\"-1\" class=\"heading-element\" dir=\"auto\"\u003e🤝 Cite:\u003c/h2\u003e\u003ca id=\"user-content--cite\" class=\"anchor\" aria-label=\"Permalink: 🤝 Cite:\" href=\"#-cite\"\u003e\u003csvg class=\"octicon octicon-link\" viewBox=\"0 0 16 16\" version=\"1.1\" width=\"16\" height=\"16\" aria-hidden=\"true\"\u003e\u003cpath d=\"m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z\"\u003e\u003c/path\u003e\u003c/svg\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp dir=\"auto\"\u003eIf this Repo is helpful to you, please consider citing one of our papers. We would greatly appreciate it :)\u003c/p\u003e\n\u003cdiv class=\"snippet-clipboard-content notranslate position-relative overflow-auto\" data-snippet-clipboard-copy-content=\"@inproceedings{DBLP:conf/nips/GuoB000LSZLLZZC24,\n author = {Lingbing Guo and\n Zhongpu Bo and\n Zhuo Chen and\n Yichi Zhang and\n Jiaoyan Chen and\n Yarong Lan and\n Mengshu Sun and\n Zhiqiang Zhang and\n Yangyifei Luo and\n Qian Li and\n Qiang Zhang and\n Wen Zhang and\n Huajun Chen},\n title = {{MKGL:} Mastery of a Three-Word Language},\n booktitle = {NeurIPS},\n year = {2024}\n}\"\u003e\u003cpre lang=\"bigquery\" class=\"notranslate\"\u003e\u003ccode\u003e@inproceedings{DBLP:conf/nips/GuoB000LSZLLZZC24,\n author = {Lingbing Guo and\n Zhongpu Bo and\n Zhuo Chen and\n Yichi Zhang and\n Jiaoyan Chen and\n Yarong Lan and\n Mengshu Sun and\n Zhiqiang Zhang and\n Yangyifei Luo and\n Qian Li and\n Qiang Zhang and\n Wen Zhang and\n Huajun Chen},\n title = {{MKGL:} Mastery of a Three-Word Language},\n booktitle = {NeurIPS},\n year = {2024}\n}\n\u003c/code\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"snippet-clipboard-content notranslate position-relative overflow-auto\" data-snippet-clipboard-copy-content=\"@inproceedings{DBLP:conf/acl/ZhangCFLL0C24,\n author = {Yichi Zhang and\n Zhuo Chen and\n Yin Fang and\n Yanxi Lu and\n Fangming Li and\n Wen Zhang and\n Huajun Chen},\n title = {Knowledgeable Preference Alignment for LLMs in Domain-specific Question\n Answering},\n booktitle = {{ACL} (Findings)},\n pages = {891--904},\n publisher = {Association for Computational Linguistics},\n year = {2024}\n}\n\n\"\u003e\u003cpre lang=\"bigquery\" class=\"notranslate\"\u003e\u003ccode\u003e@inproceedings{DBLP:conf/acl/ZhangCFLL0C24,\n author = {Yichi Zhang and\n Zhuo Chen and\n Yin Fang and\n Yanxi Lu and\n Fangming Li and\n Wen Zhang and\n Huajun Chen},\n title = {Knowledgeable Preference Alignment for LLMs in Domain-specific Question\n Answering},\n booktitle = {{ACL} (Findings)},\n pages = {891--904},\n publisher = {Association for Computational Linguistics},\n year = {2024}\n}\n\n\n\u003c/code\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"snippet-clipboard-content notranslate position-relative overflow-auto\" data-snippet-clipboard-copy-content=\"@inproceedings{DBLP:conf/mm/00090GX0C24,\n author = {Yichi Zhang and\n Zhuo Chen and\n Lingbing Guo and\n Yajing Xu and\n Wen Zhang and\n Huajun Chen},\n title = {Making Large Language Models Perform Better in Knowledge Graph Completion},\n booktitle = {{ACM} Multimedia},\n pages = {233--242},\n publisher = {{ACM}},\n year = {2024}\n}\"\u003e\u003cpre lang=\"bigquery\" class=\"notranslate\"\u003e\u003ccode\u003e@inproceedings{DBLP:conf/mm/00090GX0C24,\n author = {Yichi Zhang and\n Zhuo Chen and\n Lingbing Guo and\n Yajing Xu and\n Wen Zhang and\n Huajun Chen},\n title = {Making Large Language Models Perform Better in Knowledge Graph Completion},\n booktitle = {{ACM} Multimedia},\n pages = {233--242},\n publisher = {{ACM}},\n year = {2024}\n}\n\u003c/code\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/article\u003e","loaded":true,"timedOut":false,"errorMessage":null,"headerInfo":{"toc":[{"level":1,"text":"KG-LLM-Papers","anchor":"kg-llm-papers","htmlText":"KG-LLM-Papers"},{"level":2,"text":"Content","anchor":"content","htmlText":"Content"},{"level":2,"text":"Papers","anchor":"papers","htmlText":"Papers"},{"level":3,"text":"Surveys","anchor":"surveys","htmlText":"Surveys"},{"level":3,"text":"Method","anchor":"method","htmlText":"Method"},{"level":3,"text":"Resources and Benchmarking","anchor":"resources-and-benchmarking","htmlText":"Resources and Benchmarking"},{"level":2,"text":"Contribution","anchor":"contribution","htmlText":"Contribution"},{"level":3,"text":"👥 Contributors","anchor":"-contributors","htmlText":"👥 Contributors"},{"level":3,"text":"🎉 Contributing ( welcome ! )","anchor":"-contributing--welcome--","htmlText":"🎉 Contributing ( welcome ! )"},{"level":2,"text":"🤝 Cite:","anchor":"-cite","htmlText":"🤝 Cite:"}],"siteNavLoginPath":"/login?return_to=https%3A%2F%2Fgithub.com%2Fzjukg%2FKG-LLM-Papers"}},{"displayName":"LICENSE","repoName":"KG-LLM-Papers","refName":"main","path":"LICENSE","preferredFileType":"license","tabName":"MIT","richText":null,"loaded":false,"timedOut":false,"errorMessage":null,"headerInfo":{"toc":null,"siteNavLoginPath":"/login?return_to=https%3A%2F%2Fgithub.com%2Fzjukg%2FKG-LLM-Papers"}}],"overviewFilesProcessingTime":0}},"appPayload":{"helpUrl":"https://docs.github.com","findFileWorkerPath":"/assets-cdn/worker/find-file-worker-7d7eb7c71814.js","findInFileWorkerPath":"/assets-cdn/worker/find-in-file-worker-96e76d5fdb2c.js","githubDevUrl":null,"enabled_features":{"copilot_workspace":null,"code_nav_ui_events":false,"overview_shared_code_dropdown_button":false,"react_blob_overlay":false,"accessible_code_button":true,"github_models_repo_integration":false}}}}</script> <div data-target="react-partial.reactRoot"><style data-styled="true" data-styled-version="5.3.11">.iVEunk{margin-top:16px;margin-bottom:16px;}/*!sc*/ .jzuOtQ{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;}/*!sc*/ .bGojzy{margin-bottom:0;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;row-gap:16px;}/*!sc*/ .iNSVHo{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;padding-bottom:16px;padding-top:8px;}/*!sc*/ .bVgnfw{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;gap:8px;}/*!sc*/ @media screen and (max-width:320px){.bVgnfw{-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;}}/*!sc*/ .CEgMp{position:relative;}/*!sc*/ @media screen and (max-width:380px){.CEgMp .ref-selector-button-text-container{max-width:80px;}}/*!sc*/ @media screen and (max-width:320px){.CEgMp{-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;}.CEgMp .overview-ref-selector{width:100%;}.CEgMp .overview-ref-selector > span{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:start;-webkit-justify-content:flex-start;-ms-flex-pack:start;justify-content:flex-start;}.CEgMp .overview-ref-selector > span > span[data-component="text"]{-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;}}/*!sc*/ .gMOVLe[data-size="medium"]{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;min-width:0;}/*!sc*/ .gMOVLe[data-size="medium"] svg{color:var(--fgColor-muted,var(--color-fg-muted,#656d76));}/*!sc*/ .gMOVLe[data-size="medium"] > span{width:inherit;}/*!sc*/ .gUkoLg{-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;}/*!sc*/ .bZBlpz{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;width:100%;}/*!sc*/ .lhTYNA{margin-right:4px;color:var(--fgColor-muted,var(--color-fg-muted,#656d76));}/*!sc*/ .ffLUq{font-size:14px;min-width:0;overflow:hidden;text-overflow:ellipsis;white-space:nowrap;}/*!sc*/ .bmcJak{min-width:0;}/*!sc*/ .fLXEGX{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ @media screen and (max-width:1079px){.fLXEGX{display:none;}}/*!sc*/ .lmSMZJ[data-size="medium"]{color:var(--fgColor-muted,var(--color-fg-muted,#656d76));padding-left:4px;padding-right:4px;}/*!sc*/ .lmSMZJ[data-size="medium"] span[data-component="leadingVisual"]{margin-right:4px !important;}/*!sc*/ .dqfxud{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ @media screen and (min-width:1080px){.dqfxud{display:none;}}/*!sc*/ @media screen and (max-width:543px){.dqfxud{display:none;}}/*!sc*/ .fGwBZA[data-size="medium"][data-no-visuals]{color:var(--fgColor-muted,var(--color-fg-muted,#656d76));}/*!sc*/ .jxTzTd{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;padding-left:8px;gap:8px;}/*!sc*/ .gqqBXN{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;gap:8px;}/*!sc*/ @media screen and (max-width:543px){.gqqBXN{display:none;}}/*!sc*/ .dzXgxt{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ @media screen and (max-width:1011px){.dzXgxt{display:none;}}/*!sc*/ .iWFGlI{margin-left:8px;margin-right:8px;margin:0;}/*!sc*/ .vcvyP{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;min-width:160px;}/*!sc*/ .YUPas{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ @media screen and (min-width:1012px){.YUPas{display:none;}}/*!sc*/ .izFOf{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ @media screen and (min-width:544px){.izFOf{display:none;}}/*!sc*/ .vIPPs{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/ .fdROMU{width:100%;border-collapse:separate;border-spacing:0;border:1px solid;border-color:var(--borderColor-default,var(--color-border-default,#d0d7de));border-radius:6px;table-layout:fixed;overflow:unset;}/*!sc*/ .jGKpsv{height:0px;line-height:0px;}/*!sc*/ .jGKpsv tr{height:0px;font-size:0px;}/*!sc*/ .jdgHnn{padding:16px;color:var(--fgColor-muted,var(--color-fg-muted,#656d76));font-size:12px;text-align:left;height:40px;}/*!sc*/ .jdgHnn th{padding-left:16px;background-color:var(--bgColor-muted,var(--color-canvas-subtle,#f6f8fa));}/*!sc*/ .bQivRW{width:100%;border-top-left-radius:6px;}/*!sc*/ @media screen and (min-width:544px){.bQivRW{display:none;}}/*!sc*/ .ldkMIO{width:40%;border-top-left-radius:6px;}/*!sc*/ @media screen and (max-width:543px){.ldkMIO{display:none;}}/*!sc*/ .jMbWeI{text-align:right;padding-right:16px;width:136px;border-top-right-radius:6px;}/*!sc*/ .gpqjiB{color:var(--fgColor-muted,var(--color-fg-muted,#656d76));font-size:12px;height:40px;}/*!sc*/ .dzCJzi{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;gap:8px;min-width:273px;padding:8px;}/*!sc*/ @media screen and (min-width:544px){.dzCJzi{-webkit-flex-wrap:nowrap;-ms-flex-wrap:nowrap;flex-wrap:nowrap;}}/*!sc*/ .eNCcrz{text-align:center;vertical-align:center;height:40px;border-top:1px solid;border-color:var(--borderColor-default,var(--color-border-default,#d0d7de));}/*!sc*/ .bHTcCe{border-top:1px solid var(--borderColor-default,var(--color-border-default));cursor:pointer;}/*!sc*/ .csrIcr{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;gap:16px;}/*!sc*/ .bUQNHB{border:1px solid;border-color:var(--borderColor-default,var(--color-border-default,#d0d7de));border-radius:6px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;}/*!sc*/ @media screen and (max-width:543px){.bUQNHB{margin-left:-16px;margin-right:-16px;max-width:calc(100% + 32px);}}/*!sc*/ @media screen and (min-width:544px){.bUQNHB{max-width:100%;}}/*!sc*/ .jPdcfu{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;border-bottom:1px solid;border-bottom-color:var(--borderColor-default,var(--color-border-default,#d0d7de));-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;padding-right:8px;position:-webkit-sticky;position:sticky;top:0;background-color:var(--bgColor-default,var(--color-canvas-default,#ffffff));z-index:1;border-top-left-radius:6px;border-top-right-radius:6px;}/*!sc*/ .iphEWz{-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;border-bottom:none;max-width:100%;padding-left:8px;padding-right:8px;}/*!sc*/ .hUCRAk{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .cwoBXV[data-size="medium"]{color:var(--fgColor-muted,var(--color-fg-subtle,#6e7781));padding-left:8px;padding-right:8px;}/*!sc*/ .QkQOb{padding:32px;overflow:auto;}/*!sc*/ data-styled.g1[id="Box-sc-g0xbh4-0"]{content:"iVEunk,jzuOtQ,bGojzy,iNSVHo,bVgnfw,CEgMp,gMOVLe,gUkoLg,bZBlpz,lhTYNA,ffLUq,bmcJak,fLXEGX,lmSMZJ,dqfxud,fGwBZA,jxTzTd,gqqBXN,dzXgxt,iWFGlI,vcvyP,YUPas,izFOf,vIPPs,fdROMU,jGKpsv,jdgHnn,bQivRW,ldkMIO,jMbWeI,gpqjiB,dzCJzi,eNCcrz,bHTcCe,csrIcr,bUQNHB,jPdcfu,iphEWz,hUCRAk,cwoBXV,QkQOb,"}/*!sc*/ .brGdpi{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;-webkit-clip:rect(0,0,0,0);clip:rect(0,0,0,0);white-space:nowrap;border-width:0;}/*!sc*/ data-styled.g6[id="_VisuallyHidden__VisuallyHidden-sc-11jhm7a-0"]{content:"brGdpi,"}/*!sc*/ .hWlpPn{position:relative;display:inline-block;}/*!sc*/ .hWlpPn::after{position:absolute;z-index:1000000;display:none;padding:0.5em 0.75em;font:normal normal 11px/1.5 -apple-system,BlinkMacSystemFont,"Segoe UI","Noto Sans",Helvetica,Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji";-webkit-font-smoothing:subpixel-antialiased;color:var(--tooltip-fgColor,var(--fgColor-onEmphasis,var(--color-fg-on-emphasis,#ffffff)));text-align:center;-webkit-text-decoration:none;text-decoration:none;text-shadow:none;text-transform:none;-webkit-letter-spacing:normal;-moz-letter-spacing:normal;-ms-letter-spacing:normal;letter-spacing:normal;word-wrap:break-word;white-space:pre;pointer-events:none;content:attr(aria-label);background:var(--tooltip-bgColor,var(--bgColor-emphasis,var(--color-neutral-emphasis-plus,#24292f)));border-radius:6px;opacity:0;}/*!sc*/ @-webkit-keyframes tooltip-appear{from{opacity:0;}to{opacity:1;}}/*!sc*/ @keyframes tooltip-appear{from{opacity:0;}to{opacity:1;}}/*!sc*/ .hWlpPn:hover::after,.hWlpPn:active::after,.hWlpPn:focus::after,.hWlpPn:focus-within::after{display:inline-block;-webkit-text-decoration:none;text-decoration:none;-webkit-animation-name:tooltip-appear;animation-name:tooltip-appear;-webkit-animation-duration:0.1s;animation-duration:0.1s;-webkit-animation-fill-mode:forwards;animation-fill-mode:forwards;-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-animation-delay:0s;animation-delay:0s;}/*!sc*/ .hWlpPn.tooltipped-no-delay:hover::after,.hWlpPn.tooltipped-no-delay:active::after,.hWlpPn.tooltipped-no-delay:focus::after,.hWlpPn.tooltipped-no-delay:focus-within::after{-webkit-animation-delay:0s;animation-delay:0s;}/*!sc*/ .hWlpPn.tooltipped-multiline:hover::after,.hWlpPn.tooltipped-multiline:active::after,.hWlpPn.tooltipped-multiline:focus::after,.hWlpPn.tooltipped-multiline:focus-within::after{display:table-cell;}/*!sc*/ .hWlpPn.tooltipped-s::after,.hWlpPn.tooltipped-se::after,.hWlpPn.tooltipped-sw::after{top:100%;right:50%;margin-top:6px;}/*!sc*/ .hWlpPn.tooltipped-se::after{right:auto;left:50%;margin-left:-16px;}/*!sc*/ .hWlpPn.tooltipped-sw::after{margin-right:-16px;}/*!sc*/ .hWlpPn.tooltipped-n::after,.hWlpPn.tooltipped-ne::after,.hWlpPn.tooltipped-nw::after{right:50%;bottom:100%;margin-bottom:6px;}/*!sc*/ .hWlpPn.tooltipped-ne::after{right:auto;left:50%;margin-left:-16px;}/*!sc*/ .hWlpPn.tooltipped-nw::after{margin-right:-16px;}/*!sc*/ .hWlpPn.tooltipped-s::after,.hWlpPn.tooltipped-n::after{-webkit-transform:translateX(50%);-ms-transform:translateX(50%);transform:translateX(50%);}/*!sc*/ .hWlpPn.tooltipped-w::after{right:100%;bottom:50%;margin-right:6px;-webkit-transform:translateY(50%);-ms-transform:translateY(50%);transform:translateY(50%);}/*!sc*/ .hWlpPn.tooltipped-e::after{bottom:50%;left:100%;margin-left:6px;-webkit-transform:translateY(50%);-ms-transform:translateY(50%);transform:translateY(50%);}/*!sc*/ .hWlpPn.tooltipped-multiline::after{width:-webkit-max-content;width:-moz-max-content;width:max-content;max-width:250px;word-wrap:break-word;white-space:pre-line;border-collapse:separate;}/*!sc*/ .hWlpPn.tooltipped-multiline.tooltipped-s::after,.hWlpPn.tooltipped-multiline.tooltipped-n::after{right:auto;left:50%;-webkit-transform:translateX(-50%);-ms-transform:translateX(-50%);transform:translateX(-50%);}/*!sc*/ .hWlpPn.tooltipped-multiline.tooltipped-w::after,.hWlpPn.tooltipped-multiline.tooltipped-e::after{right:100%;}/*!sc*/ .hWlpPn.tooltipped-align-right-2::after{right:0;margin-right:0;}/*!sc*/ .hWlpPn.tooltipped-align-left-2::after{left:0;margin-left:0;}/*!sc*/ data-styled.g17[id="Tooltip__TooltipBase-sc-17tf59c-0"]{content:"hWlpPn,"}/*!sc*/ .liVpTx{display:inline-block;overflow:hidden;text-overflow:ellipsis;vertical-align:top;white-space:nowrap;max-width:125px;}/*!sc*/ data-styled.g19[id="Truncate__StyledTruncate-sc-23o1d2-0"]{content:"liVpTx,"}/*!sc*/ </style> <!-- --> <!-- --> <div class="Box-sc-g0xbh4-0 iVEunk"><div class="Box-sc-g0xbh4-0 jzuOtQ"><div class="Box-sc-g0xbh4-0 bGojzy"></div></div><div class="Box-sc-g0xbh4-0 iNSVHo"><div class="Box-sc-g0xbh4-0 bVgnfw"><div class="Box-sc-g0xbh4-0 CEgMp"><button type="button" aria-haspopup="true" aria-expanded="false" tabindex="0" aria-label="main branch" data-testid="anchor-button" class="Box-sc-g0xbh4-0 gMOVLe prc-Button-ButtonBase-c50BI overview-ref-selector width-full" data-loading="false" data-size="medium" data-variant="default" aria-describedby="branch-picker-repos-header-ref-selector-loading-announcement" id="branch-picker-repos-header-ref-selector"><span data-component="buttonContent" class="Box-sc-g0xbh4-0 gUkoLg prc-Button-ButtonContent-HKbr-"><span data-component="text" class="prc-Button-Label-pTQ3x"><div class="Box-sc-g0xbh4-0 bZBlpz"><div class="Box-sc-g0xbh4-0 lhTYNA"><svg aria-hidden="true" focusable="false" class="octicon octicon-git-branch" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M9.5 3.25a2.25 2.25 0 1 1 3 2.122V6A2.5 2.5 0 0 1 10 8.5H6a1 1 0 0 0-1 1v1.128a2.251 2.251 0 1 1-1.5 0V5.372a2.25 2.25 0 1 1 1.5 0v1.836A2.493 2.493 0 0 1 6 7h4a1 1 0 0 0 1-1v-.628A2.25 2.25 0 0 1 9.5 3.25Zm-6 0a.75.75 0 1 0 1.5 0 .75.75 0 0 0-1.5 0Zm8.25-.75a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5ZM4.25 12a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5Z"></path></svg></div><div class="Box-sc-g0xbh4-0 ffLUq ref-selector-button-text-container"><span class="Box-sc-g0xbh4-0 bmcJak prc-Text-Text-0ima0"> <!-- -->main</span></div></div></span><span data-component="trailingVisual" class="prc-Button-Visual-2epfX prc-Button-VisualWrap-Db-eB"><svg aria-hidden="true" focusable="false" class="octicon octicon-triangle-down" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="m4.427 7.427 3.396 3.396a.25.25 0 0 0 .354 0l3.396-3.396A.25.25 0 0 0 11.396 7H4.604a.25.25 0 0 0-.177.427Z"></path></svg></span></span></button><button hidden="" data-hotkey-scope="read-only-cursor-text-area"></button></div><div class="Box-sc-g0xbh4-0 fLXEGX"><a style="--button-color:fg.muted" type="button" href="/zjukg/KG-LLM-Papers/branches" class="Box-sc-g0xbh4-0 lmSMZJ prc-Button-ButtonBase-c50BI" data-loading="false" data-size="medium" data-variant="invisible" aria-describedby=":Rclab:-loading-announcement"><span data-component="buttonContent" class="Box-sc-g0xbh4-0 gUkoLg prc-Button-ButtonContent-HKbr-"><span data-component="leadingVisual" class="prc-Button-Visual-2epfX prc-Button-VisualWrap-Db-eB"><svg aria-hidden="true" focusable="false" class="octicon octicon-git-branch" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M9.5 3.25a2.25 2.25 0 1 1 3 2.122V6A2.5 2.5 0 0 1 10 8.5H6a1 1 0 0 0-1 1v1.128a2.251 2.251 0 1 1-1.5 0V5.372a2.25 2.25 0 1 1 1.5 0v1.836A2.493 2.493 0 0 1 6 7h4a1 1 0 0 0 1-1v-.628A2.25 2.25 0 0 1 9.5 3.25Zm-6 0a.75.75 0 1 0 1.5 0 .75.75 0 0 0-1.5 0Zm8.25-.75a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5ZM4.25 12a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5Z"></path></svg></span><span data-component="text" class="prc-Button-Label-pTQ3x">Branches</span></span></a><a style="--button-color:fg.muted" type="button" href="/zjukg/KG-LLM-Papers/tags" class="Box-sc-g0xbh4-0 lmSMZJ prc-Button-ButtonBase-c50BI" data-loading="false" data-size="medium" data-variant="invisible" aria-describedby=":Rklab:-loading-announcement"><span data-component="buttonContent" class="Box-sc-g0xbh4-0 gUkoLg prc-Button-ButtonContent-HKbr-"><span data-component="leadingVisual" class="prc-Button-Visual-2epfX prc-Button-VisualWrap-Db-eB"><svg aria-hidden="true" focusable="false" class="octicon octicon-tag" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M1 7.775V2.75C1 1.784 1.784 1 2.75 1h5.025c.464 0 .91.184 1.238.513l6.25 6.25a1.75 1.75 0 0 1 0 2.474l-5.026 5.026a1.75 1.75 0 0 1-2.474 0l-6.25-6.25A1.752 1.752 0 0 1 1 7.775Zm1.5 0c0 .066.026.13.073.177l6.25 6.25a.25.25 0 0 0 .354 0l5.025-5.025a.25.25 0 0 0 0-.354l-6.25-6.25a.25.25 0 0 0-.177-.073H2.75a.25.25 0 0 0-.25.25ZM6 5a1 1 0 1 1 0 2 1 1 0 0 1 0-2Z"></path></svg></span><span data-component="text" class="prc-Button-Label-pTQ3x">Tags</span></span></a></div><div class="Box-sc-g0xbh4-0 dqfxud"><a style="--button-color:fg.muted" type="button" aria-label="Go to Branches page" href="/zjukg/KG-LLM-Papers/branches" class="Box-sc-g0xbh4-0 fGwBZA prc-Button-ButtonBase-c50BI" data-loading="false" data-no-visuals="true" data-size="medium" data-variant="invisible" aria-describedby=":Relab:-loading-announcement"><svg aria-hidden="true" focusable="false" class="octicon octicon-git-branch" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M9.5 3.25a2.25 2.25 0 1 1 3 2.122V6A2.5 2.5 0 0 1 10 8.5H6a1 1 0 0 0-1 1v1.128a2.251 2.251 0 1 1-1.5 0V5.372a2.25 2.25 0 1 1 1.5 0v1.836A2.493 2.493 0 0 1 6 7h4a1 1 0 0 0 1-1v-.628A2.25 2.25 0 0 1 9.5 3.25Zm-6 0a.75.75 0 1 0 1.5 0 .75.75 0 0 0-1.5 0Zm8.25-.75a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5ZM4.25 12a.75.75 0 1 0 0 1.5.75.75 0 0 0 0-1.5Z"></path></svg></a><a style="--button-color:fg.muted" type="button" aria-label="Go to Tags page" href="/zjukg/KG-LLM-Papers/tags" class="Box-sc-g0xbh4-0 fGwBZA prc-Button-ButtonBase-c50BI" data-loading="false" data-no-visuals="true" data-size="medium" data-variant="invisible" aria-describedby=":Rmlab:-loading-announcement"><svg aria-hidden="true" focusable="false" class="octicon octicon-tag" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M1 7.775V2.75C1 1.784 1.784 1 2.75 1h5.025c.464 0 .91.184 1.238.513l6.25 6.25a1.75 1.75 0 0 1 0 2.474l-5.026 5.026a1.75 1.75 0 0 1-2.474 0l-6.25-6.25A1.752 1.752 0 0 1 1 7.775Zm1.5 0c0 .066.026.13.073.177l6.25 6.25a.25.25 0 0 0 .354 0l5.025-5.025a.25.25 0 0 0 0-.354l-6.25-6.25a.25.25 0 0 0-.177-.073H2.75a.25.25 0 0 0-.25.25ZM6 5a1 1 0 1 1 0 2 1 1 0 0 1 0-2Z"></path></svg></a></div></div><div class="Box-sc-g0xbh4-0 jxTzTd"><div class="Box-sc-g0xbh4-0 gqqBXN"><div class="Box-sc-g0xbh4-0 dzXgxt"><!--$--><div class="Box-sc-g0xbh4-0 iWFGlI"><span class="Box-sc-g0xbh4-0 vcvyP TextInput-wrapper prc-components-TextInputWrapper-i1ofR prc-components-TextInputBaseWrapper-ueK9q" data-leading-visual="true" data-trailing-visual="true" aria-busy="false"><span class="TextInput-icon" id=":R2j5ab:" aria-hidden="true"><svg aria-hidden="true" focusable="false" class="octicon octicon-search" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M10.68 11.74a6 6 0 0 1-7.922-8.982 6 6 0 0 1 8.982 7.922l3.04 3.04a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215ZM11.5 7a4.499 4.499 0 1 0-8.997 0A4.499 4.499 0 0 0 11.5 7Z"></path></svg></span><input type="text" aria-label="Go to file" role="combobox" aria-controls="file-results-list" aria-expanded="false" aria-haspopup="dialog" autoCorrect="off" spellcheck="false" placeholder="Go to file" aria-describedby=":R2j5ab: :R2j5abH1:" data-component="input" class="prc-components-Input-Ic-y8" value=""/><span class="TextInput-icon" id=":R2j5abH1:" aria-hidden="true"></span></span></div><!--/$--></div><div class="Box-sc-g0xbh4-0 YUPas"><button type="button" class="prc-Button-ButtonBase-c50BI" data-loading="false" data-no-visuals="true" data-size="medium" data-variant="default" aria-describedby=":Rr5ab:-loading-announcement"><span data-component="buttonContent" data-align="center" class="prc-Button-ButtonContent-HKbr-"><span data-component="text" class="prc-Button-Label-pTQ3x">Go to file</span></span></button></div><div class="react-directory-add-file-icon"></div><div class="react-directory-remove-file-icon"></div></div><button type="button" aria-haspopup="true" aria-expanded="false" tabindex="0" class="prc-Button-ButtonBase-c50BI" data-loading="false" data-size="medium" data-variant="primary" aria-describedby=":R55ab:-loading-announcement" id=":R55ab:"><span data-component="buttonContent" data-align="center" class="prc-Button-ButtonContent-HKbr-"><span data-component="leadingVisual" class="prc-Button-Visual-2epfX prc-Button-VisualWrap-Db-eB"><svg aria-hidden="true" focusable="false" class="octicon octicon-code hide-sm" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="m11.28 3.22 4.25 4.25a.75.75 0 0 1 0 1.06l-4.25 4.25a.749.749 0 0 1-1.275-.326.749.749 0 0 1 .215-.734L13.94 8l-3.72-3.72a.749.749 0 0 1 .326-1.275.749.749 0 0 1 .734.215Zm-6.56 0a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042L2.06 8l3.72 3.72a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L.47 8.53a.75.75 0 0 1 0-1.06Z"></path></svg></span><span data-component="text" class="prc-Button-Label-pTQ3x">Code</span><span data-component="trailingVisual" class="prc-Button-Visual-2epfX prc-Button-VisualWrap-Db-eB"><svg aria-hidden="true" focusable="false" class="octicon octicon-triangle-down" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="m4.427 7.427 3.396 3.396a.25.25 0 0 0 .354 0l3.396-3.396A.25.25 0 0 0 11.396 7H4.604a.25.25 0 0 0-.177.427Z"></path></svg></span></span></button><div class="Box-sc-g0xbh4-0 izFOf"><button data-component="IconButton" type="button" aria-label="Open more actions menu" aria-haspopup="true" aria-expanded="false" tabindex="0" class="prc-Button-ButtonBase-c50BI prc-Button-IconButton-szpyj" data-loading="false" data-no-visuals="true" data-size="medium" data-variant="default" aria-describedby=":R75ab:-loading-announcement" id=":R75ab:"><svg aria-hidden="true" focusable="false" class="octicon octicon-kebab-horizontal" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M8 9a1.5 1.5 0 1 0 0-3 1.5 1.5 0 0 0 0 3ZM1.5 9a1.5 1.5 0 1 0 0-3 1.5 1.5 0 0 0 0 3Zm13 0a1.5 1.5 0 1 0 0-3 1.5 1.5 0 0 0 0 3Z"></path></svg></button></div></div></div><div class="Box-sc-g0xbh4-0 vIPPs"><div data-hpc="true"><button hidden="" data-testid="focus-next-element-button" data-hotkey="j"></button><button hidden="" data-testid="focus-previous-element-button" data-hotkey="k"></button><h2 class="sr-only ScreenReaderHeading-module__userSelectNone--vW4Cq prc-Heading-Heading-6CmGO" data-testid="screen-reader-heading" id="folders-and-files">Folders and files</h2><table aria-labelledby="folders-and-files" class="Box-sc-g0xbh4-0 fdROMU"><thead class="Box-sc-g0xbh4-0 jGKpsv"><tr class="Box-sc-g0xbh4-0 jdgHnn"><th colSpan="2" class="Box-sc-g0xbh4-0 bQivRW"><span class="text-bold">Name</span></th><th colSpan="1" class="Box-sc-g0xbh4-0 ldkMIO"><span class="text-bold">Name</span></th><th class="hide-sm"><div title="Last commit message" class="Truncate__StyledTruncate-sc-23o1d2-0 liVpTx width-fit"><span class="text-bold">Last commit message</span></div></th><th colSpan="1" class="Box-sc-g0xbh4-0 jMbWeI"><div title="Last commit date" class="Truncate__StyledTruncate-sc-23o1d2-0 liVpTx width-fit"><span class="text-bold">Last commit date</span></div></th></tr></thead><tbody><tr class="Box-sc-g0xbh4-0 gpqjiB"><td colSpan="3" class="bgColor-muted p-1 rounded-top-2"><div class="Box-sc-g0xbh4-0 dzCJzi"><h2 class="sr-only ScreenReaderHeading-module__userSelectNone--vW4Cq prc-Heading-Heading-6CmGO" data-testid="screen-reader-heading">Latest commit</h2><div style="width:120px" class="Skeleton Skeleton--text" data-testid="loading"> </div><div class="d-flex flex-shrink-0 gap-2"><div data-testid="latest-commit-details" class="d-none d-sm-flex flex-items-center"></div><div class="d-flex gap-2"><h2 class="sr-only ScreenReaderHeading-module__userSelectNone--vW4Cq prc-Heading-Heading-6CmGO" data-testid="screen-reader-heading">History</h2><a href="/zjukg/KG-LLM-Papers/commits/main/" class="prc-Button-ButtonBase-c50BI d-none d-lg-flex LinkButton-module__code-view-link-button--xvCGA flex-items-center fgColor-default" data-loading="false" data-size="small" data-variant="invisible" aria-describedby=":Raqj8pab:-loading-announcement"><span data-component="buttonContent" data-align="center" class="prc-Button-ButtonContent-HKbr-"><span data-component="leadingVisual" class="prc-Button-Visual-2epfX prc-Button-VisualWrap-Db-eB"><svg aria-hidden="true" focusable="false" class="octicon octicon-history" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="m.427 1.927 1.215 1.215a8.002 8.002 0 1 1-1.6 5.685.75.75 0 1 1 1.493-.154 6.5 6.5 0 1 0 1.18-4.458l1.358 1.358A.25.25 0 0 1 3.896 6H.25A.25.25 0 0 1 0 5.75V2.104a.25.25 0 0 1 .427-.177ZM7.75 4a.75.75 0 0 1 .75.75v2.992l2.028.812a.75.75 0 0 1-.557 1.392l-2.5-1A.751.751 0 0 1 7 8.25v-3.5A.75.75 0 0 1 7.75 4Z"></path></svg></span><span data-component="text" class="prc-Button-Label-pTQ3x"><span class="fgColor-default">179 Commits</span></span></span></a><div class="d-sm-none"></div><div class="d-flex d-lg-none"><span role="tooltip" aria-label="179 Commits" id="history-icon-button-tooltip" class="Tooltip__TooltipBase-sc-17tf59c-0 hWlpPn tooltipped-n"><a href="/zjukg/KG-LLM-Papers/commits/main/" class="prc-Button-ButtonBase-c50BI LinkButton-module__code-view-link-button--xvCGA flex-items-center fgColor-default" data-loading="false" data-size="small" data-variant="invisible" aria-describedby=":R1iqj8pab:-loading-announcement history-icon-button-tooltip"><span data-component="buttonContent" data-align="center" class="prc-Button-ButtonContent-HKbr-"><span data-component="leadingVisual" class="prc-Button-Visual-2epfX prc-Button-VisualWrap-Db-eB"><svg aria-hidden="true" focusable="false" class="octicon octicon-history" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="m.427 1.927 1.215 1.215a8.002 8.002 0 1 1-1.6 5.685.75.75 0 1 1 1.493-.154 6.5 6.5 0 1 0 1.18-4.458l1.358 1.358A.25.25 0 0 1 3.896 6H.25A.25.25 0 0 1 0 5.75V2.104a.25.25 0 0 1 .427-.177ZM7.75 4a.75.75 0 0 1 .75.75v2.992l2.028.812a.75.75 0 0 1-.557 1.392l-2.5-1A.751.751 0 0 1 7 8.25v-3.5A.75.75 0 0 1 7.75 4Z"></path></svg></span></span></a></span></div></div></div></div></td></tr><tr class="react-directory-row undefined" id="folder-row-0"><td class="react-directory-row-name-cell-small-screen" colSpan="2"><div class="react-directory-filename-column"><svg aria-hidden="true" focusable="false" class="octicon octicon-file color-fg-muted" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M2 1.75C2 .784 2.784 0 3.75 0h6.586c.464 0 .909.184 1.237.513l2.914 2.914c.329.328.513.773.513 1.237v9.586A1.75 1.75 0 0 1 13.25 16h-9.5A1.75 1.75 0 0 1 2 14.25Zm1.75-.25a.25.25 0 0 0-.25.25v12.5c0 .138.112.25.25.25h9.5a.25.25 0 0 0 .25-.25V6h-2.75A1.75 1.75 0 0 1 9 4.25V1.5Zm6.75.062V4.25c0 .138.112.25.25.25h2.688l-.011-.013-2.914-2.914-.013-.011Z"></path></svg><div class="overflow-hidden"><div class="react-directory-filename-cell"><div class="react-directory-truncate"><a title="LICENSE" aria-label="LICENSE, (File)" class="Link--primary" href="/zjukg/KG-LLM-Papers/blob/main/LICENSE">LICENSE</a></div></div></div></div></td><td class="react-directory-row-name-cell-large-screen" colSpan="1"><div class="react-directory-filename-column"><svg aria-hidden="true" focusable="false" class="octicon octicon-file color-fg-muted" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M2 1.75C2 .784 2.784 0 3.75 0h6.586c.464 0 .909.184 1.237.513l2.914 2.914c.329.328.513.773.513 1.237v9.586A1.75 1.75 0 0 1 13.25 16h-9.5A1.75 1.75 0 0 1 2 14.25Zm1.75-.25a.25.25 0 0 0-.25.25v12.5c0 .138.112.25.25.25h9.5a.25.25 0 0 0 .25-.25V6h-2.75A1.75 1.75 0 0 1 9 4.25V1.5Zm6.75.062V4.25c0 .138.112.25.25.25h2.688l-.011-.013-2.914-2.914-.013-.011Z"></path></svg><div class="overflow-hidden"><div class="react-directory-filename-cell"><div class="react-directory-truncate"><a title="LICENSE" aria-label="LICENSE, (File)" class="Link--primary" href="/zjukg/KG-LLM-Papers/blob/main/LICENSE">LICENSE</a></div></div></div></div></td><td class="react-directory-row-commit-cell"><div class="Skeleton Skeleton--text"> </div></td><td><div class="Skeleton Skeleton--text"> </div></td></tr><tr class="react-directory-row undefined" id="folder-row-1"><td class="react-directory-row-name-cell-small-screen" colSpan="2"><div class="react-directory-filename-column"><svg aria-hidden="true" focusable="false" class="octicon octicon-file color-fg-muted" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M2 1.75C2 .784 2.784 0 3.75 0h6.586c.464 0 .909.184 1.237.513l2.914 2.914c.329.328.513.773.513 1.237v9.586A1.75 1.75 0 0 1 13.25 16h-9.5A1.75 1.75 0 0 1 2 14.25Zm1.75-.25a.25.25 0 0 0-.25.25v12.5c0 .138.112.25.25.25h9.5a.25.25 0 0 0 .25-.25V6h-2.75A1.75 1.75 0 0 1 9 4.25V1.5Zm6.75.062V4.25c0 .138.112.25.25.25h2.688l-.011-.013-2.914-2.914-.013-.011Z"></path></svg><div class="overflow-hidden"><div class="react-directory-filename-cell"><div class="react-directory-truncate"><a title="README.md" aria-label="README.md, (File)" class="Link--primary" href="/zjukg/KG-LLM-Papers/blob/main/README.md">README.md</a></div></div></div></div></td><td class="react-directory-row-name-cell-large-screen" colSpan="1"><div class="react-directory-filename-column"><svg aria-hidden="true" focusable="false" class="octicon octicon-file color-fg-muted" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M2 1.75C2 .784 2.784 0 3.75 0h6.586c.464 0 .909.184 1.237.513l2.914 2.914c.329.328.513.773.513 1.237v9.586A1.75 1.75 0 0 1 13.25 16h-9.5A1.75 1.75 0 0 1 2 14.25Zm1.75-.25a.25.25 0 0 0-.25.25v12.5c0 .138.112.25.25.25h9.5a.25.25 0 0 0 .25-.25V6h-2.75A1.75 1.75 0 0 1 9 4.25V1.5Zm6.75.062V4.25c0 .138.112.25.25.25h2.688l-.011-.013-2.914-2.914-.013-.011Z"></path></svg><div class="overflow-hidden"><div class="react-directory-filename-cell"><div class="react-directory-truncate"><a title="README.md" aria-label="README.md, (File)" class="Link--primary" href="/zjukg/KG-LLM-Papers/blob/main/README.md">README.md</a></div></div></div></div></td><td class="react-directory-row-commit-cell"><div class="Skeleton Skeleton--text"> </div></td><td><div class="Skeleton Skeleton--text"> </div></td></tr><tr class="Box-sc-g0xbh4-0 eNCcrz d-none" data-testid="view-all-files-row"><td colSpan="3" class="Box-sc-g0xbh4-0 bHTcCe"><div><button class="prc-Link-Link-85e08">View all files</button></div></td></tr></tbody></table></div><div class="Box-sc-g0xbh4-0 csrIcr"><div class="Box-sc-g0xbh4-0 bUQNHB"><div itemscope="" itemType="https://schema.org/abstract" class="Box-sc-g0xbh4-0 jPdcfu"><h2 class="_VisuallyHidden__VisuallyHidden-sc-11jhm7a-0 brGdpi">Repository files navigation</h2><nav class="Box-sc-g0xbh4-0 iphEWz prc-components-UnderlineWrapper-oOh5J" aria-label="Repository files"><ul class="prc-components-UnderlineItemList-b23Hf" role="list"><li class="Box-sc-g0xbh4-0 hUCRAk"><a class="prc-components-UnderlineItem-lJsg-" href="#" aria-current="page"><span data-component="icon"><svg aria-hidden="true" focusable="false" class="octicon octicon-book" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M0 1.75A.75.75 0 0 1 .75 1h4.253c1.227 0 2.317.59 3 1.501A3.743 3.743 0 0 1 11.006 1h4.245a.75.75 0 0 1 .75.75v10.5a.75.75 0 0 1-.75.75h-4.507a2.25 2.25 0 0 0-1.591.659l-.622.621a.75.75 0 0 1-1.06 0l-.622-.621A2.25 2.25 0 0 0 5.258 13H.75a.75.75 0 0 1-.75-.75Zm7.251 10.324.004-5.073-.002-2.253A2.25 2.25 0 0 0 5.003 2.5H1.5v9h3.757a3.75 3.75 0 0 1 1.994.574ZM8.755 4.75l-.004 7.322a3.752 3.752 0 0 1 1.992-.572H14.5v-9h-3.495a2.25 2.25 0 0 0-2.25 2.25Z"></path></svg></span><span data-component="text" data-content="README">README</span></a></li><li class="Box-sc-g0xbh4-0 hUCRAk"><a class="prc-components-UnderlineItem-lJsg-" href="#"><span data-component="icon"><svg aria-hidden="true" focusable="false" class="octicon octicon-law" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M8.75.75V2h.985c.304 0 .603.08.867.231l1.29.736c.038.022.08.033.124.033h2.234a.75.75 0 0 1 0 1.5h-.427l2.111 4.692a.75.75 0 0 1-.154.838l-.53-.53.529.531-.001.002-.002.002-.006.006-.006.005-.01.01-.045.04c-.21.176-.441.327-.686.45C14.556 10.78 13.88 11 13 11a4.498 4.498 0 0 1-2.023-.454 3.544 3.544 0 0 1-.686-.45l-.045-.04-.016-.015-.006-.006-.004-.004v-.001a.75.75 0 0 1-.154-.838L12.178 4.5h-.162c-.305 0-.604-.079-.868-.231l-1.29-.736a.245.245 0 0 0-.124-.033H8.75V13h2.5a.75.75 0 0 1 0 1.5h-6.5a.75.75 0 0 1 0-1.5h2.5V3.5h-.984a.245.245 0 0 0-.124.033l-1.289.737c-.265.15-.564.23-.869.23h-.162l2.112 4.692a.75.75 0 0 1-.154.838l-.53-.53.529.531-.001.002-.002.002-.006.006-.016.015-.045.04c-.21.176-.441.327-.686.45C4.556 10.78 3.88 11 3 11a4.498 4.498 0 0 1-2.023-.454 3.544 3.544 0 0 1-.686-.45l-.045-.04-.016-.015-.006-.006-.004-.004v-.001a.75.75 0 0 1-.154-.838L2.178 4.5H1.75a.75.75 0 0 1 0-1.5h2.234a.249.249 0 0 0 .125-.033l1.288-.737c.265-.15.564-.23.869-.23h.984V.75a.75.75 0 0 1 1.5 0Zm2.945 8.477c.285.135.718.273 1.305.273s1.02-.138 1.305-.273L13 6.327Zm-10 0c.285.135.718.273 1.305.273s1.02-.138 1.305-.273L3 6.327Z"></path></svg></span><span data-component="text" data-content="MIT license">MIT license</span></a></li></ul></nav><button style="--button-color:fg.subtle" type="button" aria-label="Outline" aria-haspopup="true" aria-expanded="false" tabindex="0" class="Box-sc-g0xbh4-0 cwoBXV prc-Button-ButtonBase-c50BI" data-loading="false" data-size="medium" data-variant="invisible" aria-describedby=":Rr9ab:-loading-announcement" id=":Rr9ab:"><svg aria-hidden="true" focusable="false" class="octicon octicon-list-unordered" viewBox="0 0 16 16" width="16" height="16" fill="currentColor" display="inline-block" overflow="visible" style="vertical-align:text-bottom"><path d="M5.75 2.5h8.5a.75.75 0 0 1 0 1.5h-8.5a.75.75 0 0 1 0-1.5Zm0 5h8.5a.75.75 0 0 1 0 1.5h-8.5a.75.75 0 0 1 0-1.5Zm0 5h8.5a.75.75 0 0 1 0 1.5h-8.5a.75.75 0 0 1 0-1.5ZM2 14a1 1 0 1 1 0-2 1 1 0 0 1 0 2Zm1-6a1 1 0 1 1-2 0 1 1 0 0 1 2 0ZM2 4a1 1 0 1 1 0-2 1 1 0 0 1 0 2Z"></path></svg></button></div><div class="Box-sc-g0xbh4-0 QkQOb js-snippet-clipboard-copy-unpositioned undefined" data-hpc="true"><article class="markdown-body entry-content container-lg" itemprop="text"><div class="markdown-heading" dir="auto"><h1 tabindex="-1" class="heading-element" dir="auto">KG-LLM-Papers</h1><a id="user-content-kg-llm-papers" class="anchor" aria-label="Permalink: KG-LLM-Papers" href="#kg-llm-papers"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <p dir="auto"><a href="https://github.com/zjukg/KG-LLM-Papers"><img src="https://camo.githubusercontent.com/3418ba3754faddfb88c5cbdc94c31ad670fc693c8caa59bc2806c9836acc04e4/68747470733a2f2f617765736f6d652e72652f62616467652e737667" alt="Awesome" data-canonical-src="https://awesome.re/badge.svg" style="max-width: 100%;"></a> <a href="https://github.com/zjukg/KG-LLM-Papers/blob/main/LICENSE"><img src="https://camo.githubusercontent.com/28f4d479bf0a9b033b3a3b95ab2adc343da448a025b01aefdc0fbc7f0e169eb8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d677265656e2e737667" alt="License: MIT" data-canonical-src="https://img.shields.io/badge/License-MIT-green.svg" style="max-width: 100%;"></a> <a target="_blank" rel="noopener noreferrer nofollow" href="https://camo.githubusercontent.com/1c14b1f572078d9ce103e23337a6f10bc6bba51f1f3c08992f68bb9ff2c6af6e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f7a6a756b672f4b472d4c4c4d2d5061706572733f636f6c6f723d677265656e"><img src="https://camo.githubusercontent.com/1c14b1f572078d9ce103e23337a6f10bc6bba51f1f3c08992f68bb9ff2c6af6e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f7a6a756b672f4b472d4c4c4d2d5061706572733f636f6c6f723d677265656e" alt="" data-canonical-src="https://img.shields.io/github/last-commit/zjukg/KG-LLM-Papers?color=green" style="max-width: 100%;"></a> <a target="_blank" rel="noopener noreferrer nofollow" href="https://camo.githubusercontent.com/30c6078aaee2b242e7c07f16316804464f124b8041003f717280157f42a411c0/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f5052732d57656c636f6d652d726564"><img src="https://camo.githubusercontent.com/30c6078aaee2b242e7c07f16316804464f124b8041003f717280157f42a411c0/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f5052732d57656c636f6d652d726564" alt="" data-canonical-src="https://img.shields.io/badge/PRs-Welcome-red" style="max-width: 100%;"></a></p> <blockquote> <p dir="auto">What can LLMs do for KGs? Or, in other words, what role can KG play in the era of LLMs?</p> </blockquote> <p dir="auto">🙌 This repository collects papers integrating <strong>knowledge graphs (KGs)</strong> and <strong>large language models (LLMs)</strong>.</p> <p dir="auto">😎 Welcome to recommend missing papers through <strong><code>Pull Requests</code></strong>.</p> <details> <summary>👈 🔔 News </summary> <ul dir="auto"> <li><strong><code>2025-02</code> We preprint our Paper <a href="https://arxiv.org/abs/2502.05478" rel="nofollow">OntoTune: Ontology-Driven Self-training for Aligning Large Language Models</a> (WWW 2025) [<a href="https://github.com/zjukg/OntoTune"><code>Repo</code></a>].</strong></li> <li><strong><code>2025-02</code> We preprint our Paper <a href="https://arxiv.org/abs/2502.06257" rel="nofollow">K-ON: Stacking Knowledge On the Head Layer of Large Language Model</a> (AAAI 2025 Oral) [<a href="https://github.com/zjukg/K-ON"><code>Repo</code></a>].</strong></li> <li><strong><code>2025-01</code> We preprint our Paper <a href="https://arxiv.org/abs/2501.00244" rel="nofollow">Have We Designed Generalizable Structural Knowledge Promptings? Systematic Evaluation and Rethinking</a> [<a href="https://github.com/zjukg/SUBARU"><code>Repo</code></a>].</strong></li> <li><strong><code>2024-12</code> We preprint our Paper <a href="https://arxiv.org/abs/2406.18916" rel="nofollow">TrustUQA: A Trustful Framework for Unified Structured Data Question Answering</a> (AAAI 2025) [<a href="https://github.com/zjukg/TrustUQA"><code>Repo</code></a>].</strong></li> <li><strong><code>2024-09</code> Our paper <a href="https://openreview.net/forum?id=eqMNwXvOqn" rel="nofollow">MKGL: Mastery of a Three-Word Language</a> has been accepted by NeurIPS 2024 as a spotlight paper. [<a href="https://github.com/zjukg/MKGL"><code>Repo</code></a>]</strong></li> <li><strong><code>2024-07</code> Our paper <a href="https://arxiv.org/abs/2310.06671" rel="nofollow">Making Large Language Models Perform Better in Knowledge Graph Completion</a> has been accepted by ACM MM 2024 as an oral paper. [<a href="https://github.com/zjukg/KoPA"><code>Repo</code></a>]</strong></li> <li><strong><code>2024-05</code> Our paper <a href="https://arxiv.org/abs/2311.06503" rel="nofollow">Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering</a> has been accepted by ACL 2024. [<a href="https://github.com/zjukg/KnowPAT"><code>Repo</code></a>]</strong></li> <li><strong><code>2024-02</code> We preprint our Survey <a href="http://arxiv.org/abs/2402.05391" rel="nofollow">Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey</a> [<a href="https://github.com/zjukg/KG-MM-Survey"><code>Repo</code></a>].</strong></li> <li><strong><code>2023-06</code> We create this repository to maintain a paper list on <code>Intergrating Knowledge Graphs and Large Language Models</code>.</strong></li> </ul> </details> <div class="markdown-heading" dir="auto"><h2 tabindex="-1" class="heading-element" dir="auto">Content</h2><a id="user-content-content" class="anchor" aria-label="Permalink: Content" href="#content"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <ul dir="auto"> <li><a href="#papers">📜 Papers</a> <ul dir="auto"> <li><a href="#surveys">🔖 Surveys</a></li> <li><a href="#methods">⚙ Methods</a></li> <li><a href="#resources-and-benchmarking">🧰 Resources</a></li> </ul> </li> </ul> <hr> <div class="markdown-heading" dir="auto"><h2 tabindex="-1" class="heading-element" dir="auto">Papers</h2><a id="user-content-papers" class="anchor" aria-label="Permalink: Papers" href="#papers"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <div class="markdown-heading" dir="auto"><h3 tabindex="-1" class="heading-element" dir="auto">Surveys</h3><a id="user-content-surveys" class="anchor" aria-label="Permalink: Surveys" href="#surveys"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <ul dir="auto"> <li>[<a href="https://www.sciencedirect.com/science/article/pii/S1570826824000301" rel="nofollow">JoWS</a>] Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective <code>2024.12</code></li> <li>[<a href="https://arxiv.org/abs/2402.05391" rel="nofollow">arxiv</a>] Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey. <code>2024.02</code></li> <li>[<a href="https://arxiv.org/abs/2311.07914" rel="nofollow">arxiv</a>] Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey. <code>2023.11</code></li> <li>[<a href="https://arxiv.org/abs/2310.07521" rel="nofollow">arxiv</a>] Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity. <code>2023.10</code></li> <li>[<a href="https://arxiv.org/abs/2310.04835" rel="nofollow">arxiv</a>] On the Evolution of Knowledge Graphs: A Survey and Perspective. <code>2023.10</code></li> <li>[<a href="https://arxiv.org/pdf/2309.17122" rel="nofollow">arxiv</a>] Benchmarking the Abilities of Large Language Models for RDF Knowledge Graph Creation and Comprehension: How Well Do LLMs Speak Turtle? <code>2023.09</code></li> <li>[<a href="https://arxiv.org/abs/2309.01029" rel="nofollow">arxiv</a>] Explainability for Large Language Models: A Survey. <code>2023.09</code></li> <li>[<a href="https://arxiv.org/abs/2308.14217" rel="nofollow">arxiv</a>] Generations of Knowledge Graphs: The Crazy Ideas and the Business Impact. <code>2023.08</code></li> <li>[<a href="https://arxiv.org/abs/2308.06374" rel="nofollow">arxiv</a>] Large Language Models and Knowledge Graphs: Opportunities and Challenges. <code>2023.08</code></li> <li>[<a href="https://arxiv.org/pdf/2306.08302" rel="nofollow">TKDE</a>] Unifying Large Language Models and Knowledge Graphs: A Roadmap. <code>2023.06</code> [<a href="https://github.com/RManLuo/Awesome-LLM-KG">Repo</a>]</li> <li>[<a href="https://arxiv.org/pdf/2306.11489.pdf" rel="nofollow">arxiv</a>] ChatGPT is not Enough: Enhancing Large Language Models with Knowledge Graphs for Fact-aware Language Modeling. <code>2023.06</code></li> <li>[<a href="https://arxiv.org/abs/2211.05994" rel="nofollow">arxiv</a>] A Survey of Knowledge-Enhanced Pre-trained Language Models. <code>2023.05</code></li> </ul> <div class="markdown-heading" dir="auto"><h3 tabindex="-1" class="heading-element" dir="auto">Method</h3><a id="user-content-method" class="anchor" aria-label="Permalink: Method" href="#method"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <ul dir="auto"> <li>[<a href="https://arxiv.org/abs/2502.10453" rel="nofollow">arxiv</a>] Linking Cryptoasset Attribution Tags to Knowledge Graph Entities: An LLM-based Approach. <code>2025.2</code> </li> <li>[<a href="https://arxiv.org/abs/2502.05478" rel="nofollow">arxiv</a>] OntoTune: Ontology-Driven Self-training for Aligning Large Language Models. <code>2025.2</code> </li> <li>[<a href="https://aclanthology.org/2024.findings-emnlp.524/" rel="nofollow">EMNLP 2024 findings</a>] Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering. <code>2024.11</code> </li> <li>[<a href="https://arxiv.org/abs/2407.11417" rel="nofollow">EMNLP 2024 findings</a>] SPINACH: SPARQL-Based Information Navigation for Challenging Real-World Questions. <code>2024.11</code> </li> <li>[<a href="https://arxiv.org/pdf/2410.18415" rel="nofollow">arxiv</a>] Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains. <code>2024.10</code> </li> <li>[<a href="https://arxiv.org/abs/2410.12609" rel="nofollow">arxiv</a>] Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs. <code>2024.10</code> </li> <li>[<a href="https://arxiv.org/abs/2410.07526" rel="nofollow">NeurIPS 2024</a>] MKGL: Mastery of a Three-Word Language. <code>2024.10</code> [<a href="https://github.com/zjukg/MKGL">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2402.06861" rel="nofollow">NeurIPS 2024</a>] UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction. <code>2024.10</code> [<a href="https://github.com/usail-hkust/UrbanKGent">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2405.16412" rel="nofollow">NeurIPS 2024</a>] KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge. <code>2024.10</code> [<a href="https://github.com/pat-jj/KG-FIT">Repo</a>]</li> <li>[<a href="https://openreview.net/forum?id=JCG0KTPVYy" rel="nofollow">ICML 2024</a>] Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models. <code>2024.10</code> [<a href="https://github.com/shiliu-egg/ICML2024_COFT">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2410.02811" rel="nofollow">ACL 2024</a>] SAC-KG: Exploiting Large Language Models as Skilled Automatic Constructors for Domain Knowledge Graphs. <code>2024.09</code> </li> <li>[<a href="https://arxiv.org/abs/2405.16806" rel="nofollow">NeurIPS 2024</a>] LLM4EA: Entity Alignment with Noisy Annotations from Large Language Models. <code>2024.09</code> [<a href="https://github.com/chensyCN/llm4ea_official">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2407.00653" rel="nofollow">arxiv</a>] Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs. <code>2024.07</code> </li> <li>[<a href="https://arxiv.org/abs/2407.10793" rel="nofollow">arxiv</a>] GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework. <code>2024.07</code> </li> <li>[<a href="https://arxiv.org/abs/2407.10805" rel="nofollow">arxiv</a>] Think-on-Graph 2.0: Deep and Interpretable Large Language Model Reasoning with Knowledge Graph-guided Retrieval. <code>2024.07</code> </li> <li>[<a href="https://arxiv.org/abs/2407.16127" rel="nofollow">ISWC 2024</a>] Finetuning Generative Large Language Models with Discrimination Instructions for Knowledge Graph Completion. <code>2024.07</code> </li> <li>[<a href="https://arxiv.org/abs/2402.16568" rel="nofollow">ACL 2024 findings</a>] Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models. <code>2024.07</code> </li> <li>[<a href="https://arxiv.org/abs/2407.21358" rel="nofollow">arxiv</a>] Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs. <code>2024.07</code> </li> <li>[<a href="https://arxiv.org/abs/2310.07793" rel="nofollow">NAACL 2024 findings</a>] GenTKG: Generative Forecasting on Temporal Knowledge Graph with Large Language Models. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2402.11199" rel="nofollow">ACL 2024 findings</a>] Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.03746" rel="nofollow">arxiv</a>] Efficient Knowledge Infusion via KG-LLM Alignment. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.18114" rel="nofollow">arxiv</a>] Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.13862" rel="nofollow">arxiv</a>] Knowledge Graph-Enhanced Large Language Models via Path Selection. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.14282" rel="nofollow">arxiv</a>] Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.02962" rel="nofollow">arxiv</a>] Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.02110" rel="nofollow">arxiv</a>] UniOQA: A Unified Framework for Knowledge Graph Question Answering with Large Language Model. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.02030" rel="nofollow">arxiv</a>] Multimodal Reasoning with Multimodal Knowledge Graph. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.01391" rel="nofollow">arxiv</a>] Knowledge Graph in Astronomical Research with Large Language Models: Quantifying Driving Forces in Interdisciplinary Scientific Discovery. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.01238" rel="nofollow">arxiv</a>] EffiQA: Efficient Question-Answering with Strategic Multi-Model Collaboration on Knowledge Graphs. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.01145" rel="nofollow">arxiv</a>] Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2406.00036" rel="nofollow">arxiv</a>] EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling. <code>2024.06</code> </li> <li>[<a href="https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-024-00481-2" rel="nofollow">EPJ Data Science</a>] Glitter or Gold? Deriving Structured Insights from Sustainability Reports via Large Language Models. <code>2024.06</code> </li> <li>[<a href="https://arxiv.org/abs/2405.20455" rel="nofollow">arxiv</a>] DepsRAG: Towards Managing Software Dependencies using Large Language Models. <code>2024.06</code> [<a href="https://github.com/Mohannadcse/DepsRAG">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2405.19877" rel="nofollow">arxiv</a>] KNOW: A Real-World Ontology for Knowledge Capture with Large Language Models <code>2024.05</code> [<a href="https://github.com/KnowOntology">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2405.14831" rel="nofollow">arxiv</a>] HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models <code>2024.05</code> [<a href="https://github.com/OSU-NLP-Group/HippoRAG">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2405.14012" rel="nofollow">arxiv</a>] Prompt-Time Ontology-Driven Symbolic Knowledge Capture with Large Language Models <code>2024.05</code> [<a href="https://github.com/HaltiaAI/paper-PTODSKC">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2405.10288" rel="nofollow">arxiv</a>] Timeline-based Sentence Decomposition with In-Context Learning for Temporal Fact Extraction. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.09713" rel="nofollow">arxiv</a>] SOK-Bench: A Situated Video Reasoning Benchmark with Aligned Open-World Knowledge. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.06545" rel="nofollow">arxiv</a>] Mitigating Hallucinations in Large Language Models via Self-Refinement-Enhanced Knowledge Retrieval. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.06524" rel="nofollow">arxiv</a>] Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.04819" rel="nofollow">arxiv</a>] DALK: Dynamic Co-Augmentation of LLMs and KG to answer Alzheimer's Disease Questions with Scientific Literature. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.04756" rel="nofollow">arxiv</a>] BiasKG: Adversarial Knowledge Graphs to Induce Bias in Large Language Models. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.04753" rel="nofollow">arxiv</a>] AttacKG+:Boosting Attack Knowledge Graph Construction with Large Language Models. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.04180" rel="nofollow">arxiv</a>] Sora Detector: A Unified Hallucination Detection for Large Text-to-Video Models. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.03734" rel="nofollow">arxiv</a>] FOKE: A Personalized and Explainable Education Framework Integrating Foundation Models, Knowledge Graphs, and Prompt Engineering. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.02738" rel="nofollow">arxiv</a>] Relations Prediction for Knowledge Graph Completion using Large Language Models. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.02105" rel="nofollow">arxiv</a>] Evaluating Large Language Models for Structured Science Summarization in the Open Research Knowledge Graph. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.01649" rel="nofollow">arxiv</a>] Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2405.00449" rel="nofollow">arxiv</a>] RAG-based Explainable Prediction of Road Users Behaviors for Automated Driving using Knowledge Graphs and Large Language Models. <code>2024.05</code> </li> <li>[<a href="https://arxiv.org/abs/2404.19744" rel="nofollow">arxiv</a>] PrivComp-KG : Leveraging Knowledge Graph and Large Language Models for Privacy Policy Compliance Verification. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.19234" rel="nofollow">arxiv</a>] Multi-hop Question Answering over Knowledge Graphs using Large Language Models. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.19146" rel="nofollow">arxiv</a>] Automated Construction of Theme-specific Knowledge Graphs. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.17723" rel="nofollow">arxiv</a>] Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.17000" rel="nofollow">arxiv</a>] Evaluating Class Membership Relations in Knowledge Graphs using Large Language Models. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.15923" rel="nofollow">arxiv</a>] KGValidator: A Framework for Automatic Validation of Knowledge Graph Construction. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.13865" rel="nofollow">arxiv</a>] Context-Enhanced Language Models for Generating Multi-Paper Citations. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.10384" rel="nofollow">arxiv</a>] Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.09763" rel="nofollow">arxiv</a>] KG-CTG: Citation Generation through Knowledge Graph-guided Large Language Models. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.09077" rel="nofollow">arxiv</a>] CuriousLLM: Elevating Multi-Document QA with Reasoning-Infused Knowledge Graph Prompting. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.07677" rel="nofollow">arxiv</a>] ODA: Observation-Driven Agent for integrating LLMs and Knowledge Graphs. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.06571" rel="nofollow">arxiv</a>] Building A Knowledge Graph to Enrich ChatGPT Responses in Manufacturing Service Discovery. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.04264" rel="nofollow">arxiv</a>] Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.03868" rel="nofollow">arxiv</a>] Extract, Define, Canonicalize: An LLM-based Framework for Knowledge Graph Construction. <code>2024.04</code> </li> <li>[<a href="https://openreview.net/forum?id=dWYRjT501w" rel="nofollow">COLM 2024</a>] Unveiling LLMs: The Evolution of Latent Representations in a Dynamic Knowledge Graph. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.03080" rel="nofollow">arxiv</a>] Construction of Functional Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.02389" rel="nofollow">arxiv</a>] On Linearizing Structured Data in Encoder-Decoder Language Models: Insights from Text-to-SQL. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.01720" rel="nofollow">arxiv</a>] Self-Improvement Programming for Temporal Knowledge Graph Question Answering. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.01425" rel="nofollow">arxiv</a>] A Preliminary Roadmap for LLMs as Assistants in Exploring, Analyzing, and Visualizing Knowledge Graphs. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.00942" rel="nofollow">arxiv</a>] Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.00589" rel="nofollow">arxiv</a>] Harnessing the Power of Large Language Model for Uncertainty Aware Graph Processing. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.00209" rel="nofollow">arxiv</a>] EventGround: Narrative Reasoning by Grounding to Eventuality-centric Knowledge Graphs. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.14741" rel="nofollow">arxiv</a>] Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2404.16130" rel="nofollow">arxiv</a>] From Local to Global: A Graph RAG Approach to Query-Focused Summarization. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2312.15883" rel="nofollow">arxiv</a>] HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses. <code>2024.04</code> </li> <li>[<a href="https://arxiv.org/abs/2403.14950" rel="nofollow">arxiv</a>] KnowLA: Enhancing Parameter-efficient Finetuning with Knowledgeable Adaptation. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.17532" rel="nofollow">LREC-COLING 2024</a>] KC-GenRe: A Knowledge-constrained Generative Re-ranking Method Based on Large Language Models for Knowledge Graph Completion. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.14253" rel="nofollow">arxiv</a>] K-Act2Emo: Korean Commonsense Knowledge Graph for Indirect Emotional Expression. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.12151" rel="nofollow">arxiv</a>] Fusing Domain-Specific Content from Large Language Models into Knowledge Graphs for Enhanced Zero Shot Object State Classification. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.11786" rel="nofollow">arxiv</a>] Construction of Hyper-Relational Knowledge Graphs Using Pre-Trained Large Language Models. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.08593" rel="nofollow">arxiv</a>] Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.08345" rel="nofollow">arxiv</a>] From human experts to machines: An LLM supported approach to ontology and knowledge graph construction. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.07398" rel="nofollow">arxiv</a>] Complex Reasoning over Logical Queries on Commonsense Knowledge Graphs. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.07311" rel="nofollow">arxiv</a>] Knowledge Graph Large Language Model (KG-LLM) for Link Prediction. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.05881" rel="nofollow">arxiv</a>] KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.04261" rel="nofollow">arxiv</a>] Advancing Biomedical Text Mining with Community Challenges. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.03008" rel="nofollow">arxiv</a>] Knowledge Graphs as Context Sources for LLM-Based Explanations of Learning Recommendations. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.02966" rel="nofollow">arxiv</a>] Evidence-Focused Fact Summarization for Knowledge-Augmented Zero-Shot Question Answering. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.02576" rel="nofollow">arxiv</a>] AceMap: Knowledge Discovery through Academic Graph. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.02253" rel="nofollow">arxiv</a>] KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.02014" rel="nofollow">arxiv</a>] Unveiling Hidden Links Between Unseen Security Entities. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.01972" rel="nofollow">LREC-COLING 2024</a>] Multi-perspective Improvement of Knowledge Graph Completion with Large Language Models. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.01481" rel="nofollow">arxiv</a>] Infusing Knowledge into Large Language Models with Contextual Prompts. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.01395" rel="nofollow">arxiv</a>] CR-LT-KGQA: A Knowledge Graph Question Answering Dataset Requiring Commonsense Reasoning and Long-Tail Knowledge. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.01390" rel="nofollow">arxiv</a>] Right for Right Reasons: Large Language Models for Verifiable Commonsense Knowledge Graph Question Answering. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.01382" rel="nofollow">arxiv</a>] Automatic Question-Answer Generation for Long-Tail Knowledge. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2403.00953" rel="nofollow">arxiv</a>] AutoRD: An Automatic and End-to-End System for Rare Disease Knowledge Graph Construction Based on Ontologies-enhanced Large Language Models. <code>2024.03</code> </li> <li>[<a href="https://arxiv.org/abs/2402.17786" rel="nofollow">arxiv</a>] Stepwise Self-Consistent Mathematical Reasoning with Large Language Models. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.16568" rel="nofollow">arxiv</a>] Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.15048" rel="nofollow">arxiv</a>] Unlocking the Power of Large Language Models for Entity Alignment. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.14382" rel="nofollow">arxiv</a>] Enhancing Temporal Knowledge Graph Forecasting with Large Language Models via Chain-of-History Reasoning. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.13750" rel="nofollow">arxiv</a>] Breaking the Barrier: Utilizing Large Language Models for Industrial Recommendation Systems through an Inferential Knowledge Graph. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.13593" rel="nofollow">arxiv</a>] Knowledge Graph Enhanced Large Language Model Editing. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.12728" rel="nofollow">arxiv</a>] Modality-Aware Integration with Large Language Models for Knowledge-based Visual Question Answering. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.12352" rel="nofollow">arxiv</a>] Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.11804" rel="nofollow">arxiv</a>] LLM as Prompter: Low-resource Inductive Reasoning on Arbitrary Knowledge Graphs. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.11541" rel="nofollow">arxiv</a>] Counter-intuitive: Large Language Models Can Better Understand Knowledge Graphs Than We Thought. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.11441" rel="nofollow">arxiv</a>] InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.11323" rel="nofollow">arxiv</a>] Towards Development of Automated Knowledge Maps and Databases for Materials Engineering using Large Language Models. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.11163" rel="nofollow">arxiv</a>] KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning over Knowledge Graph. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.11034" rel="nofollow">arxiv</a>] PAT-Questions: A Self-Updating Benchmark for Present-Anchored Temporal Question-Answering. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.10779" rel="nofollow">arxiv</a>] A Condensed Transition Graph Framework for Zero-shot Link Prediction with Large Language Models. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.09911" rel="nofollow">arxiv</a>] Enhancing Large Language Models with Pseudo- and Multisource- Knowledge Graphs for Open-ended Question Answering. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.07630" rel="nofollow">arxiv</a>] G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.07148" rel="nofollow">arxiv</a>] X-LoRA: Mixture of Low-Rank Adapter Experts, a Flexible Framework for Large Language Models with Applications in Protein Mechanics and Design. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.07016" rel="nofollow">arxiv</a>] REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records Analysis via Large Language Models. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.06764" rel="nofollow">arxiv</a>] GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.05862" rel="nofollow">arxiv</a>] Let Your Graph Do the Talking: Encoding Structured Data for LLMs. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.05135" rel="nofollow">arxiv</a>] CADReN: Contextual Anchor-Driven Relational Network for Controllable Cross-Graphs Node Importance Estimation. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.04978" rel="nofollow">arxiv</a>] An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.04627" rel="nofollow">arxiv</a>] SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question Answering over a Life Science Knowledge Graph. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.03339" rel="nofollow">arxiv</a>] Interplay of Semantic Communication and Knowledge Learning. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.03299" rel="nofollow">arxiv</a>] GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.02130" rel="nofollow">arxiv</a>] Rendering Graphs for Graph Reasoning in Multimodal Large Language Models. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.01730" rel="nofollow">arxiv</a>] Evaluating LLM -- Generated Multimodal Diagnosis from Medical Images and Symptom Analysis. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.01729" rel="nofollow">EACL 2024</a>] Contextualization Distillation from Large Language Model for Knowledge Graph Completion. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.01495" rel="nofollow">EACL 2024</a>] A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2402.00414" rel="nofollow">arxiv</a>] Prompt-Time Symbolic Knowledge Capture with Large Language Models. <code>2024.02</code> [<a href="https://github.com/HaltiaAI/paper-PTSKC">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2402.00292" rel="nofollow">arxiv</a>] Effective Bug Detection in Graph Database Engines: An LLM-based Approach. <code>2024.02</code> </li> <li>[<a href="https://arxiv.org/abs/2401.16960" rel="nofollow">arxiv</a>] Two Heads Are Better Than One: Integrating Knowledge from Knowledge Graphs and Large Language Models for Entity Alignment. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.14640" rel="nofollow">arxiv</a>] Benchmarking Large Language Models in Complex Question Answering Attribution using Knowledge Graphs. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.13444" rel="nofollow">arxiv</a>] Clue-Guided Path Exploration: An Efficient Knowledge Base Question-Answering Framework with Low Computational Resource Consumption. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.12863" rel="nofollow">AAAI 2024</a>] KAM-CoT: Knowledge Augmented Multimodal Chain-of-Thoughts Reasoning. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.12671" rel="nofollow">arxiv</a>] Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.08517" rel="nofollow">arxiv</a>] Supporting Student Decisions on Learning Recommendations: An LLM-Based Chatbot with Knowledge Graph Contextualization for Conversational Explainability and Mentoring. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.07237" rel="nofollow">arxiv</a>] Distilling Event Sequence Knowledge From Large Language Models. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.06853" rel="nofollow">ACL 24</a>] Large Language Models Can Learn Temporal Reasoning. <code>2024.01</code> [<a href="https://github.com/xiongsiheng/TG-LLM">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2401.06072" rel="nofollow">arxiv</a>] Chain of History: Learning and Forecasting with LLMs for Temporal Knowledge Graph Completion. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.04507" rel="nofollow">arxiv</a>] TechGPT-2.0: A large language model project to solve the task of knowledge graph construction. <code>2024.01</code> [<a href="https://github.com/neukg/TechGPT-2.0">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2401.01711" rel="nofollow">arxiv</a>] Evaluating Large Language Models in Semantic Parsing for Conversational Question Answering over Knowledge Graphs. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.00761" rel="nofollow">arxiv</a>] The Earth is Flat? Unveiling Factual Errors in Large Language Models. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.00426" rel="nofollow">arxiv</a>] keqing: knowledge-based question answering is a nature chain-of-thought mentor of LLM. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2401.03158" rel="nofollow">arxiv</a>] Quartet Logic: A Four-Step Reasoning (QLFR) framework for advancing Short Text Classification. <code>2024.01</code> </li> <li>[<a href="https://arxiv.org/abs/2312.17269" rel="nofollow">arxiv</a>] Conversational Question Answering with Reformulations over Knowledge Graph. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.15883" rel="nofollow">arxiv</a>] Think and Retrieval: A Hypothesis Knowledge Graph Enhanced Medical Large Language Models. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.15880" rel="nofollow">arxiv</a>] KnowledgeNavigator: Leveraging Large Language Models for Enhanced Reasoning over Knowledge Graph. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.11813" rel="nofollow">arxiv</a>] Urban Generative Intelligence (UGI): A Foundational Platform for Agents in Embodied City Environment. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.11785" rel="nofollow">arxiv</a>] Zero-Shot Fact-Checking with Semantic Triples and Knowledge Graphs. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.11539" rel="nofollow">arxiv</a>] KGLens: A Parameterized Knowledge Graph Solution to Assess What an LLM Does and Doesn't Know. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.11282" rel="nofollow">arxiv</a>] LLM-ARK: Knowledge Graph Reasoning Using Large Language Models via Deep Reinforcement Learning. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.09126" rel="nofollow">arxiv</a>] Towards Trustworthy AI Software Development Assistance. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.06185" rel="nofollow">arxiv</a>] KnowGPT: Black-Box Knowledge Injection for Large Language Models. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.05276" rel="nofollow">arxiv</a>] Making Large Language Models Better Knowledge Miners for Online Marketing with Progressive Prompting Augmentation. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.03749" rel="nofollow">arxiv</a>] Conceptual Engineering Using Large Language Models. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.03022" rel="nofollow">arxiv</a>] Beyond Isolation: Multi-Agent Synergy for Improving Knowledge Graph Construction. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.01954" rel="nofollow">arxiv</a>] Zero- and Few-Shots Knowledge Graph Triplet Extraction with Large Language Models. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2312.00353" rel="nofollow">arxiv</a>] On Exploring the Reasoning Capability of Large Language Models with Knowledge Graphs. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2311.17330" rel="nofollow">arxiv</a>] Biomedical knowledge graph-optimized prompt generation for large language models. <code>2023.11</code> [<a href="https://github.com/BaranziniLab/KG_RAG">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2311.16137" rel="nofollow">arxiv</a>] A Graph-to-Text Approach to Knowledge-Grounded Response Generation in Human-Robot Interaction. <code>2023.11</code> </li> <li>[<a href="http://arxiv.org/abs/2311.01150" rel="nofollow">EMNLP 2023</a>]Revisiting the Knowledge Injection Frameworks. <code>2023.12</code> </li> <li>[<a href="https://aclanthology.org/2023.emnlp-main.143" rel="nofollow">EMNLP 2023</a>]Does the Correctness of Factual Knowledge Matter for Factual Knowledge-Enhanced Pre-trained Language Models? <code>2023.12</code> </li> <li>[<a href="https://aclanthology.org/2023.emnlp-main.228/" rel="nofollow">EMNLP 2023</a>]ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained Language Models for Question Answering over Knowledge Graph. <code>2023.12</code> </li> <li>[<a href="https://aclanthology.org/2023.findings-emnlp.580/" rel="nofollow">EMNLP 2023 Findings</a>]KICGPT: Large Language Model with Knowledge in Context for Knowledge Graph Completion. <code>2023.12</code> </li> <li>[<a href="https://arxiv.org/abs/2311.01862" rel="nofollow">arxiv</a>] <math-renderer class="js-inline-math" style="display: inline-block" data-static-url="https://github.githubassets.com/static" data-run-id="9b5c46fafee86632afb35d7dcf77cc09">$R^3$</math-renderer>-NL2GQL: A Hybrid Models Approach for for Accuracy Enhancing and Hallucinations Mitigation. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2311.13314" rel="nofollow">arxiv</a>] Mitigating Large Language Model Hallucinations via Autonomous Knowledge Graph-based Retrofitting. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2305.14202" rel="nofollow">EMNLP 2023</a>] Fine-tuned LLMs Know More, Hallucinate Less with Few-Shot Sequence-to-Sequence Semantic Parsing over Wikidata. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2311.09841" rel="nofollow">arxiv</a>] Leveraging LLMs in Scholarly Knowledge Graph Question Answering. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2311.06503" rel="nofollow">arxiv</a>] Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2311.03837" rel="nofollow">arxiv</a>] OLaLa: Ontology Matching with Large Language Models. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2311.02956" rel="nofollow">arxiv</a>] In-Context Learning for Knowledge Base Question Answering for Unmanned Systems based on Large Language Models. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2311.01266" rel="nofollow">arxiv</a>] Let's Discover More API Relations: A Large Language Model-based AI Chain for Unsupervised API Relation Inference. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2311.00444" rel="nofollow">arxiv</a>] Form follows Function: Text-to-Text Conditional Graph Generation based on Functional Requirements. <code>2023.11</code> </li> <li>[<a href="https://arxiv.org/abs/2310.02166" rel="nofollow">arxiv</a>] Large Language Models Meet Knowledge Graphs to Answer Factoid Questions. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.07008" rel="nofollow">arxiv</a>] Answer Candidate Type Selection: Text-to-Text Language Model for Closed Book Question Answering Meets Knowledge Graphs. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2311.00287" rel="nofollow">arxiv</a>] Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.20170" rel="nofollow">arxiv</a>] DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain Question Answering over Knowledge Base and Text. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.19998" rel="nofollow">arxiv</a>] Generative retrieval-augmented ontologic graph and multi-agent strategies for interpretive large language model-based materials design. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.18951" rel="nofollow">arxiv</a>] A Multimodal Ecological Civilization Pattern Recommendation Method Based on Large Language Models and Knowledge Graph. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.18356" rel="nofollow">arxiv</a>] LoRAShear: Efficient Large Language Model Structured Pruning and Knowledge Recovery. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.16421" rel="nofollow">arxiv</a>] Graph Agent: Explicit Reasoning Agent for Graphs. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.14174" rel="nofollow">arxiv</a>] An In-Context Schema Understanding Method for Knowledge Base Question Answering. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.13023" rel="nofollow">arxiv</a>] GraphGPT: Graph Instruction Tuning for Large Language Models. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.11638" rel="nofollow">EMNLP 2023 Findings</a>] Systematic Assessment of Factual Knowledge in Large Language Models. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.11220" rel="nofollow">EMNLP 2023 Findings</a>] KG-GPT: A General Framework for Reasoning on Knowledge Graphs Using Large Language Models. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.10445" rel="nofollow">arxiv</a>] MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.09089" rel="nofollow">arxiv</a>] Qilin-Med: Multi-stage Knowledge Injection Advanced Medical Large Language Model. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.08975" rel="nofollow">arxiv</a>] ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.08365" rel="nofollow">arxiv</a>] From Large Language Models to Knowledge Graphs for Biomarker Discovery in Cancer. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.06671" rel="nofollow">arxiv</a>] Making Large Language Models Perform Better in Knowledge Graph Completion. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.08279" rel="nofollow">arxiv</a>] CP-KGC: Constrained-Prompt Knowledge Graph Completion with Large Language Models. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.07170" rel="nofollow">arxiv</a>] PHALM: Building a Knowledge Graph from Scratch by Prompting Humans and a Language Model. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.03269" rel="nofollow">arxiv</a>] InstructProtein: Aligning Human and Protein Language via Knowledge Instruction. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.01290" rel="nofollow">arxiv</a>] Knowledge Crosswords: Geometric Reasoning over Structured Knowledge with Large Language Models. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2310.01061" rel="nofollow">ICLR 2024</a>] Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning. <code>2023.10</code> [<a href="https://github.com/RManLuo/reasoning-on-graphs">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2310.00299" rel="nofollow">arxiv</a>] RelBERT: Embedding Relations with Language Models. <code>2023.10</code> </li> <li>[<a href="https://arxiv.org/abs/2309.17122" rel="nofollow">arxiv</a>] Benchmarking the Abilities of Large Language Models for RDF Knowledge Graph Creation and Comprehension: How Well Do LLMs Speak Turtle?. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/pdf/2309.16134" rel="nofollow">arxiv</a>] Let's Chat to Find the APIs: Connecting Human, LLM and Knowledge Graph through AI Chain. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/pdf/2309.15427" rel="nofollow">arxiv</a>] Graph Neural Prompting with Large Language Models. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/abs/2309.12132" rel="nofollow">arxiv</a>] A knowledge representation approach for construction contract knowledge modeling. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/abs/2309.11206" rel="nofollow">arxiv</a>] Retrieve-Rewrite-Answer: A KG-to-Text Enhanced LLMs Framework for Knowledge Graph Question Answering. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/abs/2309.08594" rel="nofollow">arxiv</a>] "Merge Conflicts!" Exploring the Impacts of External Distractors to Parametric Knowledge Graphs. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/abs/2309.00240" rel="nofollow">arxiv</a>] FactLLaMA: Optimizing Instruction-Following Language Models with External Knowledge for Automated Fact-Checking. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/pdf/2309.01538" rel="nofollow">arxiv</a>] ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/abs/2309.04695" rel="nofollow">AAAI 2024</a>] Code-Style In-Context Learning for Knowledge-Based Question Answering. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/abs/2309.04565" rel="nofollow">arxiv</a>] Unleashing the Power of Graph Learning through LLM-based Autonomous Agents. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/abs/2309.04175" rel="nofollow">arxiv</a>] Knowledge-tuning Large Language Models with Structured Medical Knowledge Bases for Reliable Response Generation in Chinese. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/abs/2309.03118" rel="nofollow">arxiv</a>] Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from Knowledge Graphs. <code>2023.09</code> </li> <li>[<a href="https://arxiv.org/abs/2308.14429" rel="nofollow">arxiv</a>] Biomedical Entity Linking with Triple-aware Pre-Training. <code>2023.08</code> </li> <li>[<a href="https://arxiv.org/abs/2308.13916" rel="nofollow">arxiv</a>] Exploring Large Language Models for Knowledge Graph Completion. <code>2023.08</code> [<a href="https://github.com/yao8839836/kg-llm">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2308.16622" rel="nofollow">arxiv</a>] Developing a Scalable Benchmark for Assessing Large Language Models in Knowledge Graph Engineering. <code>2023.08</code> </li> <li>[<a href="https://arxiv.org/abs/2308.14321" rel="nofollow">arxiv</a>] Leveraging A Medical Knowledge Graph into Large Language Models for Diagnosis Prediction. <code>2023.08</code> </li> <li>[<a href="https://arxiv.org/abs/2308.12028" rel="nofollow">arxiv</a>] LKPNR: LLM and KG for Personalized News Recommendation Framework. <code>2023.08</code> </li> <li>[<a href="https://arxiv.org/abs/2308.11730" rel="nofollow">arxiv</a>] Knowledge Graph Prompting for Multi-Document Question Answering. <code>2023.08</code> </li> <li>[<a href="https://arxiv.org/abs/2308.10168" rel="nofollow">arxiv</a>] Head-to-Tail: How Knowledgeable are Large Language Models (LLM)? A.K.A. Will LLMs Replace Knowledge Graphs?. <code>2023.08</code> </li> <li>[<a href="https://arxiv.org/abs/2308.09729" rel="nofollow">arxiv</a>] MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models. <code>2023.08</code> </li> <li>[<a href="https://arxiv.org/abs/2308.00081" rel="nofollow">arxiv</a>] Towards Semantically Enriched Embeddings for Knowledge Graph Completion. <code>2023.07</code> </li> <li>[<a href="https://arxiv.org/abs/2307.11772" rel="nofollow">TKDE 2024</a>] AutoAlign: Fully Automatic and Effective Knowledge Graph Alignment enabled by Large Language Models. <code>2023.07</code> </li> <li>[<a href="https://arxiv.org/abs/2307.07312" rel="nofollow">arxiv</a>] Using Large Language Models for Zero-Shot Natural Language Generation from Knowledge Graphs. <code>2023.07</code> </li> <li>[<a href="https://arxiv.org/abs/2307.07697" rel="nofollow">ICLR 2024</a>] Think-on-Graph: Deep and Responsible Reasoning of Large Language Model with Knowledge Graph. <code>2023.07</code> </li> <li>[<a href="https://arxiv.org/abs/2307.03393" rel="nofollow">SIGKDD 2024 Explorations</a>] Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs. <code>2023.07</code> </li> <li>[<a href="https://arxiv.org/abs/2307.05722" rel="nofollow">arxiv</a>] Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations. <code>2023.07</code> </li> <li>[<a href="https://arxiv.org/abs/2307.02738" rel="nofollow">arxiv</a>] RecallM: An Architecture for Temporal Context Understanding and Question Answering. <code>2023.07</code> </li> <li>[<a href="https://arxiv.org/abs/2307.06917" rel="nofollow">arxiv</a>] LLM-assisted Knowledge Graph Engineering: Experiments with ChatGPT. <code>2023.07</code> </li> <li>[<a href="https://arxiv.org/abs/2307.01128" rel="nofollow">arxiv</a>] Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction. <code>2023.07</code> </li> <li>[<a href="https://arxiv.org/abs/2306.10241" rel="nofollow">arxiv</a>] Snowman: A Million-scale Chinese Commonsense Knowledge Graph Distilled from Foundation Model . <code>2023.06</code> </li> <li>[<a href="https://arxiv.org/pdf/2306.04136.pdf" rel="nofollow">arxiv</a>] Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering. <code>2023.06</code> </li> <li>[<a href="https://arxiv.org/abs/2306.10723" rel="nofollow">arxiv</a>] Fine-tuning Large Enterprise Language Models via Ontological Reasoning. <code>2023.06</code> </li> <li>[<a href="https://arxiv.org/abs/2305.18395" rel="nofollow">NeurIPS 2023</a>] Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks. <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/pdf/2305.04676" rel="nofollow">arxiv</a>] Enhancing Knowledge Graph Construction Using Large Language Models. <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/abs/2305.03513" rel="nofollow">arxiv</a>] ChatGraph: Interpretable Text Classification by Converting ChatGPT Knowledge to Graphs. <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/abs/2305.06590" rel="nofollow">ACL 2023</a>] FactKG: Fact Verification via Reasoning on Knowledge Graphs. <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/abs/2304.05973" rel="nofollow">arxiv</a>] HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented Prompting. <code>2023.04</code> </li> <li>[<a href="https://arxiv.org/abs/2305.09645" rel="nofollow">EMNLP 2023</a>] StructGPT: A General Framework for Large Language Model to Reason over Structured Data. <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/abs/2305.19523" rel="nofollow">ICLR 2024</a>] Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning. <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/abs/2305.13168" rel="nofollow">arxiv</a>] LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities. <code>2023.05</code> [<a href="https://github.com/zjunlp/AutoKG">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2305.10037" rel="nofollow">NeurIPS 2023</a>] Can Language Models Solve Graph Problems in Natural Language? <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/abs/2305.09858" rel="nofollow">arxiv</a>] Knowledge Graph Completion Models are Few-shot Learners: An Empirical Study of Relation Labeling in E-commerce with LLMs. <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/abs/2305.16755" rel="nofollow">arxiv</a>] Can large language models generate salient negative statements? <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/abs/2305.15066" rel="nofollow">arxiv</a>] GPT4Graph: Can Large Language Models Understand Graph Structured Data ? An Empirical Evaluation and Benchmarking. <code>2023.05</code> </li> <li>[<a href="https://arxiv.org/abs/2305.01157" rel="nofollow">arxiv</a>] Complex Logical Reasoning over Knowledge Graphs using Large Language Models. <code>2023.05</code> [<a href="https://github.com/Akirato/LLM-KG-Reasoning/tree/main">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2305.00050" rel="nofollow">arxiv</a>] Causal Reasoning and Large Language Models: Opening a New Frontier for Causality. <code>2023.04</code> </li> <li>[<a href="https://arxiv.org/abs/2303.05279" rel="nofollow">arxiv</a>] Can large language models build causal graphs? <code>2023.04</code> </li> <li>[<a href="https://arxiv.org/abs/2304.05774" rel="nofollow">arxiv</a>] Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses. <code>2023.04</code> </li> <li>[<a href="https://arxiv.org/abs/2304.11116" rel="nofollow">arxiv</a>] Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Augmented by ChatGPT. <code>2023.04</code> </li> <li>[<a href="https://arxiv.org/abs/2304.02711" rel="nofollow">arxiv</a>] Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning. <code>2023.04</code> [<a href="https://github.com/monarch-initiative/ontogpt">Repo</a>]</li> </ul> <div class="markdown-heading" dir="auto"><h3 tabindex="-1" class="heading-element" dir="auto">Resources and Benchmarking</h3><a id="user-content-resources-and-benchmarking" class="anchor" aria-label="Permalink: Resources and Benchmarking" href="#resources-and-benchmarking"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <ul dir="auto"> <li>[<a href="https://arxiv.org/abs/2404.13207" rel="nofollow">arxiv</a>] STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases. <code>2024.04</code> [<a href="https://github.com/snap-stanford/stark">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2402.06341" rel="nofollow">arxiv</a>] RareBench: Can LLMs Serve as Rare Diseases Specialists?. <code>2024.02</code></li> <li>[<a href="https://arxiv.org/abs/2401.14640" rel="nofollow">arxiv</a>] Benchmarking Large Language Models in Complex Question Answering Attribution using Knowledge Graphs. <code>2024.01</code></li> <li>[<a href="https://arxiv.org/abs/2401.06853" rel="nofollow">ACL 24</a>] Large Language Models Can Learn Temporal Reasoning. <code>2024.01</code> [<a href="https://github.com/xiongsiheng/TG-LLM">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2311.09174" rel="nofollow">arxiv</a>] AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph. <code>2023.11</code></li> <li>[<a href="https://arxiv.org/abs/2311.07509" rel="nofollow">arxiv</a>] A Benchmark to Understand the Role of Knowledge Graphs on Large Language Model's Accuracy for Question Answering on Enterprise SQL Databases. <code>2023.11</code></li> <li>[<a href="https://arxiv.org/abs/2310.05634" rel="nofollow">arxiv</a>] Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution. <code>2023.10</code></li> <li>[<a href="https://arxiv.org/abs/2310.15517" rel="nofollow">EMNLP 2023</a>] MarkQA: A large scale KBQA dataset with numerical reasoning. <code>2023.10</code></li> <li>[<a href="https://arxiv.org/abs/2306.14704" rel="nofollow">CIKM 2023</a>] Ontology Enrichment from Texts: A Biomedical Dataset for Concept Discovery and Placement. <code>2023.06</code></li> <li>[<a href="https://arxiv.org/abs/2306.05783" rel="nofollow">arxiv</a>] Xiezhi: An Ever-Updating Benchmark for Holistic Domain Knowledge Evaluation. <code>2023.06</code></li> <li>[<a href="https://arxiv.org/abs/2210.00305" rel="nofollow">AACL 2023 System Demonstrations</a>] LambdaKG: A Library for Pre-trained Language Model-Based Knowledge Graph Embeddings <code>2023.03</code> [<a href="http://47.92.96.190:9001/" rel="nofollow">Repo</a>]</li> <li>[<a href="https://arxiv.org/abs/2309.11669" rel="nofollow">arxiv</a>] Construction of Paired Knowledge Graph-Text Datasets Informed by Cyclic Evaluation. <code>2023.09</code></li> <li>[<a href="https://arxiv.org/abs/2310.08365" rel="nofollow">arxiv</a>] From Large Language Models to Knowledge Graphs for Biomarker Discovery in Cancer. <code>2023.10</code></li> <li>[<a href="https://arxiv.org/abs/2308.02357" rel="nofollow">ISWC 2023</a>] Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph Generation from Text. <code>2023.08</code></li> </ul> <div class="markdown-heading" dir="auto"><h2 tabindex="-1" class="heading-element" dir="auto">Contribution</h2><a id="user-content-contribution" class="anchor" aria-label="Permalink: Contribution" href="#contribution"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <div class="markdown-heading" dir="auto"><h3 tabindex="-1" class="heading-element" dir="auto">👥 Contributors</h3><a id="user-content--contributors" class="anchor" aria-label="Permalink: 👥 Contributors" href="#-contributors"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <a href="https://github.com/zjukg/KG-LLM-Papers/graphs/contributors"> <img src="https://camo.githubusercontent.com/2587b3dcfd9b268a898efd413cf2fe89756c0600753691bd764a9e1402499694/68747470733a2f2f636f6e747269622e726f636b732f696d6167653f7265706f3d7a6a756b672f4b472d4c4c4d2d506170657273" data-canonical-src="https://contrib.rocks/image?repo=zjukg/KG-LLM-Papers" style="max-width: 100%;"> </a> <div class="markdown-heading" dir="auto"><h3 tabindex="-1" class="heading-element" dir="auto">🎉 Contributing ( welcome ! )</h3><a id="user-content--contributing--welcome--" class="anchor" aria-label="Permalink: 🎉 Contributing ( welcome ! )" href="#-contributing--welcome--"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <ul dir="auto"> <li>✨ Add a new paper or update an existing KG-related LLM paper.</li> <li>🧐 Use the same format as existing entries to describe the work.</li> <li>😄 A very brief explanation why you think a paper should be added or updated is recommended (Not Neccessary) via <strong><code>Adding Issues</code></strong> or <strong><code>Pull Requests</code></strong>.</li> </ul> <p dir="auto"><strong>Don't worry if you put something wrong, they will be fixed for you. Just feel free to contribute and promote your awesome work here! 🤩 We'll get back to you in time ~ 😉</strong></p> <p dir="auto"><a target="_blank" rel="noopener noreferrer nofollow" href="https://camo.githubusercontent.com/a63dd8f593a6536ad4b7ce5978d689ef71596be697885c81d62da490d2eb87cd/68747470733a2f2f6170692e737461722d686973746f72792e636f6d2f7376673f7265706f733d7a6a756b672f4b472d4c4c4d2d50617065727326747970653d44617465"><img src="https://camo.githubusercontent.com/a63dd8f593a6536ad4b7ce5978d689ef71596be697885c81d62da490d2eb87cd/68747470733a2f2f6170692e737461722d686973746f72792e636f6d2f7376673f7265706f733d7a6a756b672f4b472d4c4c4d2d50617065727326747970653d44617465" alt="Star History Chart" data-canonical-src="https://api.star-history.com/svg?repos=zjukg/KG-LLM-Papers&amp;type=Date" style="max-width: 100%;"></a></p> <div class="markdown-heading" dir="auto"><h2 tabindex="-1" class="heading-element" dir="auto">🤝 Cite:</h2><a id="user-content--cite" class="anchor" aria-label="Permalink: 🤝 Cite:" href="#-cite"><svg class="octicon octicon-link" viewBox="0 0 16 16" version="1.1" width="16" height="16" aria-hidden="true"><path d="m7.775 3.275 1.25-1.25a3.5 3.5 0 1 1 4.95 4.95l-2.5 2.5a3.5 3.5 0 0 1-4.95 0 .751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018 1.998 1.998 0 0 0 2.83 0l2.5-2.5a2.002 2.002 0 0 0-2.83-2.83l-1.25 1.25a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042Zm-4.69 9.64a1.998 1.998 0 0 0 2.83 0l1.25-1.25a.751.751 0 0 1 1.042.018.751.751 0 0 1 .018 1.042l-1.25 1.25a3.5 3.5 0 1 1-4.95-4.95l2.5-2.5a3.5 3.5 0 0 1 4.95 0 .751.751 0 0 1-.018 1.042.751.751 0 0 1-1.042.018 1.998 1.998 0 0 0-2.83 0l-2.5 2.5a1.998 1.998 0 0 0 0 2.83Z"></path></svg></a></div> <p dir="auto">If this Repo is helpful to you, please consider citing one of our papers. We would greatly appreciate it :)</p> <div class="snippet-clipboard-content notranslate position-relative overflow-auto" data-snippet-clipboard-copy-content="@inproceedings{DBLP:conf/nips/GuoB000LSZLLZZC24, author = {Lingbing Guo and Zhongpu Bo and Zhuo Chen and Yichi Zhang and Jiaoyan Chen and Yarong Lan and Mengshu Sun and Zhiqiang Zhang and Yangyifei Luo and Qian Li and Qiang Zhang and Wen Zhang and Huajun Chen}, title = {{MKGL:} Mastery of a Three-Word Language}, booktitle = {NeurIPS}, year = {2024} }"><pre lang="bigquery" class="notranslate"><code>@inproceedings{DBLP:conf/nips/GuoB000LSZLLZZC24, author = {Lingbing Guo and Zhongpu Bo and Zhuo Chen and Yichi Zhang and Jiaoyan Chen and Yarong Lan and Mengshu Sun and Zhiqiang Zhang and Yangyifei Luo and Qian Li and Qiang Zhang and Wen Zhang and Huajun Chen}, title = {{MKGL:} Mastery of a Three-Word Language}, booktitle = {NeurIPS}, year = {2024} } </code></pre></div> <div class="snippet-clipboard-content notranslate position-relative overflow-auto" data-snippet-clipboard-copy-content="@inproceedings{DBLP:conf/acl/ZhangCFLL0C24, author = {Yichi Zhang and Zhuo Chen and Yin Fang and Yanxi Lu and Fangming Li and Wen Zhang and Huajun Chen}, title = {Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering}, booktitle = {{ACL} (Findings)}, pages = {891--904}, publisher = {Association for Computational Linguistics}, year = {2024} } "><pre lang="bigquery" class="notranslate"><code>@inproceedings{DBLP:conf/acl/ZhangCFLL0C24, author = {Yichi Zhang and Zhuo Chen and Yin Fang and Yanxi Lu and Fangming Li and Wen Zhang and Huajun Chen}, title = {Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering}, booktitle = {{ACL} (Findings)}, pages = {891--904}, publisher = {Association for Computational Linguistics}, year = {2024} } </code></pre></div> <div class="snippet-clipboard-content notranslate position-relative overflow-auto" data-snippet-clipboard-copy-content="@inproceedings{DBLP:conf/mm/00090GX0C24, author = {Yichi Zhang and Zhuo Chen and Lingbing Guo and Yajing Xu and Wen Zhang and Huajun Chen}, title = {Making Large Language Models Perform Better in Knowledge Graph Completion}, booktitle = {{ACM} Multimedia}, pages = {233--242}, publisher = {{ACM}}, year = {2024} }"><pre lang="bigquery" class="notranslate"><code>@inproceedings{DBLP:conf/mm/00090GX0C24, author = {Yichi Zhang and Zhuo Chen and Lingbing Guo and Yajing Xu and Wen Zhang and Huajun Chen}, title = {Making Large Language Models Perform Better in Knowledge Graph Completion}, booktitle = {{ACM} Multimedia}, pages = {233--242}, publisher = {{ACM}}, year = {2024} } </code></pre></div> </article></div></div></div></div></div> <!-- --> <!-- --> <script type="application/json" id="__PRIMER_DATA_:R0:__">{"resolvedServerColorMode":"day"}</script></div> </react-partial> <input type="hidden" data-csrf="true" value="hqwSeCx6qbIeS/Ui9/KdBeCVpDzklbKjNfQ6AERtB068HiPEUQj/N59Am8U4TuRJPRf/JXSwUBqMJ+csgrSmqA==" /> </div> <div data-view-component="true" class="Layout-sidebar"> <div class="BorderGrid about-margin" data-pjax> <div class="BorderGrid-row"> <div class="BorderGrid-cell"> <div class="hide-sm hide-md"> <h2 class="mb-3 h4">About</h2> <p class="f4 my-3"> [Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs) </p> <h3 class="sr-only">Topics</h3> <div class="my-3"> <div class="f6"> <a href="/topics/nlp" title="Topic: nlp" data-view-component="true" class="topic-tag topic-tag-link"> nlp </a> <a href="/topics/awesome" title="Topic: awesome" data-view-component="true" class="topic-tag topic-tag-link"> awesome </a> <a href="/topics/knowledge" title="Topic: knowledge" data-view-component="true" class="topic-tag topic-tag-link"> knowledge </a> <a href="/topics/prompt" title="Topic: prompt" data-view-component="true" class="topic-tag topic-tag-link"> prompt </a> <a href="/topics/survey" title="Topic: survey" data-view-component="true" class="topic-tag topic-tag-link"> survey </a> <a href="/topics/knowledge-graph" title="Topic: knowledge-graph" data-view-component="true" class="topic-tag topic-tag-link"> knowledge-graph </a> <a href="/topics/gpt" title="Topic: gpt" data-view-component="true" class="topic-tag topic-tag-link"> gpt </a> <a href="/topics/language-models" title="Topic: language-models" data-view-component="true" class="topic-tag topic-tag-link"> language-models </a> <a href="/topics/commonsense" title="Topic: commonsense" data-view-component="true" class="topic-tag topic-tag-link"> commonsense </a> <a href="/topics/paper-list" title="Topic: paper-list" data-view-component="true" class="topic-tag topic-tag-link"> paper-list </a> <a href="/topics/awsome-list" title="Topic: awsome-list" data-view-component="true" class="topic-tag topic-tag-link"> awsome-list </a> <a href="/topics/large-language-models" title="Topic: large-language-models" data-view-component="true" class="topic-tag topic-tag-link"> large-language-models </a> <a href="/topics/llm" title="Topic: llm" data-view-component="true" class="topic-tag topic-tag-link"> llm </a> <a href="/topics/awesome-llm" title="Topic: awesome-llm" data-view-component="true" class="topic-tag topic-tag-link"> awesome-llm </a> <a href="/topics/awesome-kg" title="Topic: awesome-kg" data-view-component="true" class="topic-tag topic-tag-link"> awesome-kg </a> </div> </div> <h3 class="sr-only">Resources</h3> <div class="mt-2"> <a class="Link--muted" data-analytics-event="{&quot;category&quot;:&quot;Repository Overview&quot;,&quot;action&quot;:&quot;click&quot;,&quot;label&quot;:&quot;location:sidebar;file:readme&quot;}" href="#readme-ov-file"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-book mr-2"> <path d="M0 1.75A.75.75 0 0 1 .75 1h4.253c1.227 0 2.317.59 3 1.501A3.743 3.743 0 0 1 11.006 1h4.245a.75.75 0 0 1 .75.75v10.5a.75.75 0 0 1-.75.75h-4.507a2.25 2.25 0 0 0-1.591.659l-.622.621a.75.75 0 0 1-1.06 0l-.622-.621A2.25 2.25 0 0 0 5.258 13H.75a.75.75 0 0 1-.75-.75Zm7.251 10.324.004-5.073-.002-2.253A2.25 2.25 0 0 0 5.003 2.5H1.5v9h3.757a3.75 3.75 0 0 1 1.994.574ZM8.755 4.75l-.004 7.322a3.752 3.752 0 0 1 1.992-.572H14.5v-9h-3.495a2.25 2.25 0 0 0-2.25 2.25Z"></path> </svg> Readme </a> </div> <h3 class="sr-only">License</h3> <div class="mt-2"> <a href="#MIT-1-ov-file" class="Link--muted" data-analytics-event="{&quot;category&quot;:&quot;Repository Overview&quot;,&quot;action&quot;:&quot;click&quot;,&quot;label&quot;:&quot;location:sidebar;file:license&quot;}" > <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-law mr-2"> <path d="M8.75.75V2h.985c.304 0 .603.08.867.231l1.29.736c.038.022.08.033.124.033h2.234a.75.75 0 0 1 0 1.5h-.427l2.111 4.692a.75.75 0 0 1-.154.838l-.53-.53.529.531-.001.002-.002.002-.006.006-.006.005-.01.01-.045.04c-.21.176-.441.327-.686.45C14.556 10.78 13.88 11 13 11a4.498 4.498 0 0 1-2.023-.454 3.544 3.544 0 0 1-.686-.45l-.045-.04-.016-.015-.006-.006-.004-.004v-.001a.75.75 0 0 1-.154-.838L12.178 4.5h-.162c-.305 0-.604-.079-.868-.231l-1.29-.736a.245.245 0 0 0-.124-.033H8.75V13h2.5a.75.75 0 0 1 0 1.5h-6.5a.75.75 0 0 1 0-1.5h2.5V3.5h-.984a.245.245 0 0 0-.124.033l-1.289.737c-.265.15-.564.23-.869.23h-.162l2.112 4.692a.75.75 0 0 1-.154.838l-.53-.53.529.531-.001.002-.002.002-.006.006-.016.015-.045.04c-.21.176-.441.327-.686.45C4.556 10.78 3.88 11 3 11a4.498 4.498 0 0 1-2.023-.454 3.544 3.544 0 0 1-.686-.45l-.045-.04-.016-.015-.006-.006-.004-.004v-.001a.75.75 0 0 1-.154-.838L2.178 4.5H1.75a.75.75 0 0 1 0-1.5h2.234a.249.249 0 0 0 .125-.033l1.288-.737c.265-.15.564-.23.869-.23h.984V.75a.75.75 0 0 1 1.5 0Zm2.945 8.477c.285.135.718.273 1.305.273s1.02-.138 1.305-.273L13 6.327Zm-10 0c.285.135.718.273 1.305.273s1.02-.138 1.305-.273L3 6.327Z"></path> </svg> MIT license </a> </div> <include-fragment src="/zjukg/KG-LLM-Papers/hovercards/citation/sidebar_partial?tree_name=main"> </include-fragment> <div class="mt-2"> <a href="/zjukg/KG-LLM-Papers/activity" data-view-component="true" class="Link Link--muted"><svg text="gray" aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-pulse mr-2"> <path d="M6 2c.306 0 .582.187.696.471L10 10.731l1.304-3.26A.751.751 0 0 1 12 7h3.25a.75.75 0 0 1 0 1.5h-2.742l-1.812 4.528a.751.751 0 0 1-1.392 0L6 4.77 4.696 8.03A.75.75 0 0 1 4 8.5H.75a.75.75 0 0 1 0-1.5h2.742l1.812-4.529A.751.751 0 0 1 6 2Z"></path> </svg> <span class="color-fg-muted">Activity</span></a> </div> <div class="mt-2"> <a href="/zjukg/KG-LLM-Papers/custom-properties" data-view-component="true" class="Link Link--muted"><svg text="gray" aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-note mr-2"> <path d="M0 3.75C0 2.784.784 2 1.75 2h12.5c.966 0 1.75.784 1.75 1.75v8.5A1.75 1.75 0 0 1 14.25 14H1.75A1.75 1.75 0 0 1 0 12.25Zm1.75-.25a.25.25 0 0 0-.25.25v8.5c0 .138.112.25.25.25h12.5a.25.25 0 0 0 .25-.25v-8.5a.25.25 0 0 0-.25-.25ZM3.5 6.25a.75.75 0 0 1 .75-.75h7a.75.75 0 0 1 0 1.5h-7a.75.75 0 0 1-.75-.75Zm.75 2.25h4a.75.75 0 0 1 0 1.5h-4a.75.75 0 0 1 0-1.5Z"></path> </svg> <span class="color-fg-muted">Custom properties</span></a> </div> <h3 class="sr-only">Stars</h3> <div class="mt-2"> <a href="/zjukg/KG-LLM-Papers/stargazers" data-view-component="true" class="Link Link--muted"><svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-star mr-2"> <path d="M8 .25a.75.75 0 0 1 .673.418l1.882 3.815 4.21.612a.75.75 0 0 1 .416 1.279l-3.046 2.97.719 4.192a.751.751 0 0 1-1.088.791L8 12.347l-3.766 1.98a.75.75 0 0 1-1.088-.79l.72-4.194L.818 6.374a.75.75 0 0 1 .416-1.28l4.21-.611L7.327.668A.75.75 0 0 1 8 .25Zm0 2.445L6.615 5.5a.75.75 0 0 1-.564.41l-3.097.45 2.24 2.184a.75.75 0 0 1 .216.664l-.528 3.084 2.769-1.456a.75.75 0 0 1 .698 0l2.77 1.456-.53-3.084a.75.75 0 0 1 .216-.664l2.24-2.183-3.096-.45a.75.75 0 0 1-.564-.41L8 2.694Z"></path> </svg> <strong>1.8k</strong> stars</a> </div> <h3 class="sr-only">Watchers</h3> <div class="mt-2"> <a href="/zjukg/KG-LLM-Papers/watchers" data-view-component="true" class="Link Link--muted"><svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-eye mr-2"> <path d="M8 2c1.981 0 3.671.992 4.933 2.078 1.27 1.091 2.187 2.345 2.637 3.023a1.62 1.62 0 0 1 0 1.798c-.45.678-1.367 1.932-2.637 3.023C11.67 13.008 9.981 14 8 14c-1.981 0-3.671-.992-4.933-2.078C1.797 10.83.88 9.576.43 8.898a1.62 1.62 0 0 1 0-1.798c.45-.677 1.367-1.931 2.637-3.022C4.33 2.992 6.019 2 8 2ZM1.679 7.932a.12.12 0 0 0 0 .136c.411.622 1.241 1.75 2.366 2.717C5.176 11.758 6.527 12.5 8 12.5c1.473 0 2.825-.742 3.955-1.715 1.124-.967 1.954-2.096 2.366-2.717a.12.12 0 0 0 0-.136c-.412-.621-1.242-1.75-2.366-2.717C10.824 4.242 9.473 3.5 8 3.5c-1.473 0-2.825.742-3.955 1.715-1.124.967-1.954 2.096-2.366 2.717ZM8 10a2 2 0 1 1-.001-3.999A2 2 0 0 1 8 10Z"></path> </svg> <strong>57</strong> watching</a> </div> <h3 class="sr-only">Forks</h3> <div class="mt-2"> <a href="/zjukg/KG-LLM-Papers/forks" data-view-component="true" class="Link Link--muted"><svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-repo-forked mr-2"> <path d="M5 5.372v.878c0 .414.336.75.75.75h4.5a.75.75 0 0 0 .75-.75v-.878a2.25 2.25 0 1 1 1.5 0v.878a2.25 2.25 0 0 1-2.25 2.25h-1.5v2.128a2.251 2.251 0 1 1-1.5 0V8.5h-1.5A2.25 2.25 0 0 1 3.5 6.25v-.878a2.25 2.25 0 1 1 1.5 0ZM5 3.25a.75.75 0 1 0-1.5 0 .75.75 0 0 0 1.5 0Zm6.75.75a.75.75 0 1 0 0-1.5.75.75 0 0 0 0 1.5Zm-3 8.75a.75.75 0 1 0-1.5 0 .75.75 0 0 0 1.5 0Z"></path> </svg> <strong>136</strong> forks</a> </div> <div class="mt-2"> <a class="Link--muted" href="/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fzjukg%2FKG-LLM-Papers&amp;report=zjukg+%28user%29"> Report repository </a> </div> </div> </div> </div> <div class="BorderGrid-row"> <div class="BorderGrid-cell"> <h2 class="h4 mb-3" data-pjax="#repo-content-pjax-container" data-turbo-frame="repo-content-turbo-frame"> <a href="/zjukg/KG-LLM-Papers/releases" data-view-component="true" class="Link--primary no-underline Link">Releases</a></h2> <div class="text-small color-fg-muted">No releases published</div> </div> </div> <div class="BorderGrid-row"> <div class="BorderGrid-cell"> <h2 class="h4 mb-3"> <a href="/orgs/zjukg/packages?repo_name=KG-LLM-Papers" data-view-component="true" class="Link--primary no-underline Link d-flex flex-items-center">Packages <span title="0" hidden="hidden" data-view-component="true" class="Counter ml-1">0</span></a></h2> <div class="text-small color-fg-muted" > No packages published <br> </div> </div> </div> <div class="BorderGrid-row" hidden> <div class="BorderGrid-cell"> <include-fragment src="/zjukg/KG-LLM-Papers/used_by_list" accept="text/fragment+html"> </include-fragment> </div> </div> <div class="BorderGrid-row"> <div class="BorderGrid-cell"> <h2 class="h4 mb-3"> <a href="/zjukg/KG-LLM-Papers/graphs/contributors" data-view-component="true" class="Link--primary no-underline Link d-flex flex-items-center">Contributors <span title="33" data-view-component="true" class="Counter ml-1">33</span></a></h2> <ul class="list-style-none d-flex flex-wrap mb-n2"> <li class="mb-2 mr-2" > <a href="https://github.com/hackerchenzhuo" class="" data-hovercard-type="user" data-hovercard-url="/users/hackerchenzhuo/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/42081540?s=64&amp;v=4" alt="@hackerchenzhuo" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/csking2001" class="" data-hovercard-type="user" data-hovercard-url="/users/csking2001/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/103507566?s=64&amp;v=4" alt="@csking2001" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/wencolani" class="" data-hovercard-type="user" data-hovercard-url="/users/wencolani/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/14907976?s=64&amp;v=4" alt="@wencolani" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/Zhang-Each" class="" data-hovercard-type="user" data-hovercard-url="/users/Zhang-Each/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/53668089?s=64&amp;v=4" alt="@Zhang-Each" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/wjj0122" class="" data-hovercard-type="user" data-hovercard-url="/users/wjj0122/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/100128448?s=64&amp;v=4" alt="@wjj0122" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/Lza12a" class="" data-hovercard-type="user" data-hovercard-url="/users/Lza12a/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/136632428?s=64&amp;v=4" alt="@Lza12a" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/hzwy3c" class="" data-hovercard-type="user" data-hovercard-url="/users/hzwy3c/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/57245981?s=64&amp;v=4" alt="@hzwy3c" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/ChenJiaoyan" class="" data-hovercard-type="user" data-hovercard-url="/users/ChenJiaoyan/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/1263235?s=64&amp;v=4" alt="@ChenJiaoyan" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/sVujke" class="" data-hovercard-type="user" data-hovercard-url="/users/sVujke/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/6172163?s=64&amp;v=4" alt="@sVujke" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/Mohannadcse" class="" data-hovercard-type="user" data-hovercard-url="/users/Mohannadcse/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/15859139?s=64&amp;v=4" alt="@Mohannadcse" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/Digity101" class="" data-hovercard-type="user" data-hovercard-url="/users/Digity101/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/21064583?s=64&amp;v=4" alt="@Digity101" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/george1459" class="" data-hovercard-type="user" data-hovercard-url="/users/george1459/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/46696710?s=64&amp;v=4" alt="@george1459" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/saturnMars" class="" data-hovercard-type="user" data-hovercard-url="/users/saturnMars/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/52834362?s=64&amp;v=4" alt="@saturnMars" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> <li class="mb-2 mr-2" > <a href="https://github.com/pat-jj" class="" data-hovercard-type="user" data-hovercard-url="/users/pat-jj/hovercard" data-octo-click="hovercard-link-click" data-octo-dimensions="link_type:self" > <img src="https://avatars.githubusercontent.com/u/56672509?s=64&amp;v=4" alt="@pat-jj" size="32" height="32" width="32" data-view-component="true" class="avatar circle" /> </a> </li> </ul> <div data-view-component="true" class="mt-3"> <a text="small" href="/zjukg/KG-LLM-Papers/graphs/contributors" data-view-component="true" class="Link--inTextBlock Link">+ 19 contributors</a></div> </div> </div> </div> </div> </div></div> </div> </div> </turbo-frame> </main> </div> </div> <footer class="footer pt-8 pb-6 f6 color-fg-muted p-responsive" role="contentinfo" > <h2 class='sr-only'>Footer</h2> <div class="d-flex flex-justify-center flex-items-center flex-column-reverse flex-lg-row flex-wrap flex-lg-nowrap"> <div class="d-flex flex-items-center flex-shrink-0 mx-2"> <a aria-label="Homepage" title="GitHub" class="footer-octicon mr-2" href="https://github.com"> <svg aria-hidden="true" height="24" viewBox="0 0 24 24" version="1.1" width="24" data-view-component="true" class="octicon octicon-mark-github"> <path d="M12 1C5.9225 1 1 5.9225 1 12C1 16.8675 4.14875 20.9787 8.52125 22.4362C9.07125 22.5325 9.2775 22.2025 9.2775 21.9137C9.2775 21.6525 9.26375 20.7862 9.26375 19.865C6.5 20.3737 5.785 19.1912 5.565 18.5725C5.44125 18.2562 4.905 17.28 4.4375 17.0187C4.0525 16.8125 3.5025 16.3037 4.42375 16.29C5.29 16.2762 5.90875 17.0875 6.115 17.4175C7.105 19.0812 8.68625 18.6137 9.31875 18.325C9.415 17.61 9.70375 17.1287 10.02 16.8537C7.5725 16.5787 5.015 15.63 5.015 11.4225C5.015 10.2262 5.44125 9.23625 6.1425 8.46625C6.0325 8.19125 5.6475 7.06375 6.2525 5.55125C6.2525 5.55125 7.17375 5.2625 9.2775 6.67875C10.1575 6.43125 11.0925 6.3075 12.0275 6.3075C12.9625 6.3075 13.8975 6.43125 14.7775 6.67875C16.8813 5.24875 17.8025 5.55125 17.8025 5.55125C18.4075 7.06375 18.0225 8.19125 17.9125 8.46625C18.6138 9.23625 19.04 10.2125 19.04 11.4225C19.04 15.6437 16.4688 16.5787 14.0213 16.8537C14.42 17.1975 14.7638 17.8575 14.7638 18.8887C14.7638 20.36 14.75 21.5425 14.75 21.9137C14.75 22.2025 14.9563 22.5462 15.5063 22.4362C19.8513 20.9787 23 16.8537 23 12C23 5.9225 18.0775 1 12 1Z"></path> </svg> </a> <span> &copy; 2025 GitHub,&nbsp;Inc. </span> </div> <nav aria-label="Footer"> <h3 class="sr-only" id="sr-footer-heading">Footer navigation</h3> <ul class="list-style-none d-flex flex-justify-center flex-wrap mb-2 mb-lg-0" aria-labelledby="sr-footer-heading"> <li class="mx-2"> <a data-analytics-event="{&quot;category&quot;:&quot;Footer&quot;,&quot;action&quot;:&quot;go to Terms&quot;,&quot;label&quot;:&quot;text:terms&quot;}" href="https://docs.github.com/site-policy/github-terms/github-terms-of-service" data-view-component="true" class="Link--secondary Link">Terms</a> </li> <li class="mx-2"> <a data-analytics-event="{&quot;category&quot;:&quot;Footer&quot;,&quot;action&quot;:&quot;go to privacy&quot;,&quot;label&quot;:&quot;text:privacy&quot;}" href="https://docs.github.com/site-policy/privacy-policies/github-privacy-statement" data-view-component="true" class="Link--secondary Link">Privacy</a> </li> <li class="mx-2"> <a data-analytics-event="{&quot;category&quot;:&quot;Footer&quot;,&quot;action&quot;:&quot;go to security&quot;,&quot;label&quot;:&quot;text:security&quot;}" href="https://github.com/security" data-view-component="true" class="Link--secondary Link">Security</a> </li> <li class="mx-2"> <a data-analytics-event="{&quot;category&quot;:&quot;Footer&quot;,&quot;action&quot;:&quot;go to status&quot;,&quot;label&quot;:&quot;text:status&quot;}" href="https://www.githubstatus.com/" data-view-component="true" class="Link--secondary Link">Status</a> </li> <li class="mx-2"> <a data-analytics-event="{&quot;category&quot;:&quot;Footer&quot;,&quot;action&quot;:&quot;go to docs&quot;,&quot;label&quot;:&quot;text:docs&quot;}" href="https://docs.github.com/" data-view-component="true" class="Link--secondary Link">Docs</a> </li> <li class="mx-2"> <a data-analytics-event="{&quot;category&quot;:&quot;Footer&quot;,&quot;action&quot;:&quot;go to contact&quot;,&quot;label&quot;:&quot;text:contact&quot;}" href="https://support.github.com?tags=dotcom-footer" data-view-component="true" class="Link--secondary Link">Contact</a> </li> <li class="mx-2" > <cookie-consent-link> <button type="button" class="Link--secondary underline-on-hover border-0 p-0 color-bg-transparent" data-action="click:cookie-consent-link#showConsentManagement" data-analytics-event="{&quot;location&quot;:&quot;footer&quot;,&quot;action&quot;:&quot;cookies&quot;,&quot;context&quot;:&quot;subfooter&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;cookies_link_subfooter_footer&quot;}" > Manage cookies </button> </cookie-consent-link> </li> <li class="mx-2"> <cookie-consent-link> <button type="button" class="Link--secondary underline-on-hover border-0 p-0 color-bg-transparent" data-action="click:cookie-consent-link#showConsentManagement" data-analytics-event="{&quot;location&quot;:&quot;footer&quot;,&quot;action&quot;:&quot;dont_share_info&quot;,&quot;context&quot;:&quot;subfooter&quot;,&quot;tag&quot;:&quot;link&quot;,&quot;label&quot;:&quot;dont_share_info_link_subfooter_footer&quot;}" > Do not share my personal information </button> </cookie-consent-link> </li> </ul> </nav> </div> </footer> <ghcc-consent id="ghcc" class="position-fixed bottom-0 left-0" style="z-index: 999999" data-initial-cookie-consent-allowed="" data-cookie-consent-required="false"></ghcc-consent> <div id="ajax-error-message" class="ajax-error-message flash flash-error" hidden> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-alert"> <path d="M6.457 1.047c.659-1.234 2.427-1.234 3.086 0l6.082 11.378A1.75 1.75 0 0 1 14.082 15H1.918a1.75 1.75 0 0 1-1.543-2.575Zm1.763.707a.25.25 0 0 0-.44 0L1.698 13.132a.25.25 0 0 0 .22.368h12.164a.25.25 0 0 0 .22-.368Zm.53 3.996v2.5a.75.75 0 0 1-1.5 0v-2.5a.75.75 0 0 1 1.5 0ZM9 11a1 1 0 1 1-2 0 1 1 0 0 1 2 0Z"></path> </svg> <button type="button" class="flash-close js-ajax-error-dismiss" aria-label="Dismiss error"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-x"> <path d="M3.72 3.72a.75.75 0 0 1 1.06 0L8 6.94l3.22-3.22a.749.749 0 0 1 1.275.326.749.749 0 0 1-.215.734L9.06 8l3.22 3.22a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L8 9.06l-3.22 3.22a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042L6.94 8 3.72 4.78a.75.75 0 0 1 0-1.06Z"></path> </svg> </button> You can’t perform that action at this time. </div> <template id="site-details-dialog"> <details class="details-reset details-overlay details-overlay-dark lh-default color-fg-default hx_rsm" open> <summary role="button" aria-label="Close dialog"></summary> <details-dialog class="Box Box--overlay d-flex flex-column anim-fade-in fast hx_rsm-dialog hx_rsm-modal"> <button class="Box-btn-octicon m-0 btn-octicon position-absolute right-0 top-0" type="button" aria-label="Close dialog" data-close-dialog> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-x"> <path d="M3.72 3.72a.75.75 0 0 1 1.06 0L8 6.94l3.22-3.22a.749.749 0 0 1 1.275.326.749.749 0 0 1-.215.734L9.06 8l3.22 3.22a.749.749 0 0 1-.326 1.275.749.749 0 0 1-.734-.215L8 9.06l-3.22 3.22a.751.751 0 0 1-1.042-.018.751.751 0 0 1-.018-1.042L6.94 8 3.72 4.78a.75.75 0 0 1 0-1.06Z"></path> </svg> </button> <div class="octocat-spinner my-6 js-details-dialog-spinner"></div> </details-dialog> </details> </template> <div class="Popover js-hovercard-content position-absolute" style="display: none; outline: none;"> <div class="Popover-message Popover-message--bottom-left Popover-message--large Box color-shadow-large" style="width:360px;"> </div> </div> <template id="snippet-clipboard-copy-button"> <div class="zeroclipboard-container position-absolute right-0 top-0"> <clipboard-copy aria-label="Copy" class="ClipboardButton btn js-clipboard-copy m-2 p-0" data-copy-feedback="Copied!" data-tooltip-direction="w"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-copy js-clipboard-copy-icon m-2"> <path d="M0 6.75C0 5.784.784 5 1.75 5h1.5a.75.75 0 0 1 0 1.5h-1.5a.25.25 0 0 0-.25.25v7.5c0 .138.112.25.25.25h7.5a.25.25 0 0 0 .25-.25v-1.5a.75.75 0 0 1 1.5 0v1.5A1.75 1.75 0 0 1 9.25 16h-7.5A1.75 1.75 0 0 1 0 14.25Z"></path><path d="M5 1.75C5 .784 5.784 0 6.75 0h7.5C15.216 0 16 .784 16 1.75v7.5A1.75 1.75 0 0 1 14.25 11h-7.5A1.75 1.75 0 0 1 5 9.25Zm1.75-.25a.25.25 0 0 0-.25.25v7.5c0 .138.112.25.25.25h7.5a.25.25 0 0 0 .25-.25v-7.5a.25.25 0 0 0-.25-.25Z"></path> </svg> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-check js-clipboard-check-icon color-fg-success d-none m-2"> <path d="M13.78 4.22a.75.75 0 0 1 0 1.06l-7.25 7.25a.75.75 0 0 1-1.06 0L2.22 9.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018L6 10.94l6.72-6.72a.75.75 0 0 1 1.06 0Z"></path> </svg> </clipboard-copy> </div> </template> <template id="snippet-clipboard-copy-button-unpositioned"> <div class="zeroclipboard-container"> <clipboard-copy aria-label="Copy" class="ClipboardButton btn btn-invisible js-clipboard-copy m-2 p-0 d-flex flex-justify-center flex-items-center" data-copy-feedback="Copied!" data-tooltip-direction="w"> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-copy js-clipboard-copy-icon"> <path d="M0 6.75C0 5.784.784 5 1.75 5h1.5a.75.75 0 0 1 0 1.5h-1.5a.25.25 0 0 0-.25.25v7.5c0 .138.112.25.25.25h7.5a.25.25 0 0 0 .25-.25v-1.5a.75.75 0 0 1 1.5 0v1.5A1.75 1.75 0 0 1 9.25 16h-7.5A1.75 1.75 0 0 1 0 14.25Z"></path><path d="M5 1.75C5 .784 5.784 0 6.75 0h7.5C15.216 0 16 .784 16 1.75v7.5A1.75 1.75 0 0 1 14.25 11h-7.5A1.75 1.75 0 0 1 5 9.25Zm1.75-.25a.25.25 0 0 0-.25.25v7.5c0 .138.112.25.25.25h7.5a.25.25 0 0 0 .25-.25v-7.5a.25.25 0 0 0-.25-.25Z"></path> </svg> <svg aria-hidden="true" height="16" viewBox="0 0 16 16" version="1.1" width="16" data-view-component="true" class="octicon octicon-check js-clipboard-check-icon color-fg-success d-none"> <path d="M13.78 4.22a.75.75 0 0 1 0 1.06l-7.25 7.25a.75.75 0 0 1-1.06 0L2.22 9.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018L6 10.94l6.72-6.72a.75.75 0 0 1 1.06 0Z"></path> </svg> </clipboard-copy> </div> </template> </div> <div id="js-global-screen-reader-notice" class="sr-only mt-n1" aria-live="polite" aria-atomic="true" ></div> <div id="js-global-screen-reader-notice-assertive" class="sr-only mt-n1" aria-live="assertive" aria-atomic="true"></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10