CINXE.COM

Search results for: Turbulence model.

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Turbulence model.</title> <meta name="description" content="Search results for: Turbulence model."> <meta name="keywords" content="Turbulence model."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Turbulence model." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Turbulence model."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7491</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Turbulence model.</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7491</span> Application of Turbulence Modeling in Computational Fluid Dynamics for Airfoil Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammed%20Bilal">Mohammed Bilal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The precise prediction of aerodynamic behavior is necessary for the design and optimization of airfoils for a variety of applications. Turbulence, a phenomenon of complex and irregular flow, significantly affects the aerodynamic properties of airfoils. Therefore, turbulence modeling is essential for accurately predicting the behavior of airfoils in simulations. This study investigates five commonly employed turbulence models: Spalart-Allmaras (SA) model, k-epsilon model, k-omega model, Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) model. The paper includes a comparison of the models' precision, computational expense, and applicability to various flow conditions. The strengths and weaknesses of each model are highlighted, allowing researchers and engineers to make informed decisions regarding simulations of specific airfoils. Unquestionably, the continuous development of turbulence modeling will contribute to further improvements in airfoil design and optimization, which will be advantageous to numerous industries.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20fluid%20dynamics" title="Computational fluid dynamics">Computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=airfoil" title=" airfoil"> airfoil</a>, <a href="https://publications.waset.org/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/search?q=aircraft." title=" aircraft."> aircraft.</a> </p> <a href="https://publications.waset.org/10013261/application-of-turbulence-modeling-in-computational-fluid-dynamics-for-airfoil-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013261/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013261/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013261/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013261/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013261/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013261/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013261/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013261/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013261/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013261/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7490</span> Investigation of Buoyant Parameters of k-ε Turbulence Model in Gravity Stratified Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Majid%20Bahari">A. Majid Bahari</a>, <a href="https://publications.waset.org/search?q=Kourosh%20Hejazi"> Kourosh Hejazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Different variants for buoyancy-affected terms in k-&epsilon; turbulence model have been utilized to predict the flow parameters more accurately, and investigate applicability of alternative k-&epsilon; turbulence buoyant closures in numerical simulation of a horizontal gravity current. The additional non-isotropic turbulent stress due to buoyancy has been considered in production term, based on Algebraic Stress Model (ASM). In order to account for turbulent scalar fluxes, general gradient diffusion hypothesis has been used along with Boussinesq gradient diffusion hypothesis with a variable turbulent Schmidt number and additional empirical constant c3&epsilon;.To simulate buoyant flow domain a 2D vertical numerical model (WISE, Width Integrated Stratified Environments), based on Reynolds- Averaged Navier-Stokes (RANS) equations, has been deployed and the model has been further developed for different k-&epsilon; turbulence closures. Results are compared against measured laboratory values of a saline gravity current to explore the efficient turbulence model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Buoyant%20flows" title="Buoyant flows">Buoyant flows</a>, <a href="https://publications.waset.org/search?q=Buoyant%20k-%CE%B5%20turbulence%20model" title=" Buoyant k-ε turbulence model"> Buoyant k-ε turbulence model</a>, <a href="https://publications.waset.org/search?q=saline%20gravity%20current." title=" saline gravity current."> saline gravity current.</a> </p> <a href="https://publications.waset.org/1832/investigation-of-buoyant-parameters-of-k-e-turbulence-model-in-gravity-stratified-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1832/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1832/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1832/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1832/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1832/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1832/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1832/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1832/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1832/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1832/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3909</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7489</span> Performance Analysis of a Free-Space Optical Code Division Multiple Access through Atmospheric Turbulence Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tanveer%20Ahmed%20Bhuiyan">Tanveer Ahmed Bhuiyan</a>, <a href="https://publications.waset.org/search?q=Samiul%20Hayder%20Choudhury"> Samiul Hayder Choudhury</a>, <a href="https://publications.waset.org/search?q=Asif%20Al%20-%20Rasheed"> Asif Al - Rasheed</a>, <a href="https://publications.waset.org/search?q=S.P.%20Majumder"> S.P. Majumder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of atmospheric turbulence on bit error probability in free-space optical CDMA scheme with Sequence Inverse Keyed (SIK) optical correlator receiver is analyzed. Here Intensity Modulation scheme is considered for transmission. The turbulence induced fading is described by the newly introduced gamma-gamma pdf[1] as a tractable mathematical model for atmospheric turbulence. Results are evaluated with Gold and Kasami code & it is shown that Gold sequence can be used for more efficient transmission than Kasami sequence in an atmospheric turbulence channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CDMA" title="CDMA">CDMA</a>, <a href="https://publications.waset.org/search?q=gamma-gamma%20pdf" title=" gamma-gamma pdf"> gamma-gamma pdf</a>, <a href="https://publications.waset.org/search?q=atmospheric%0Aturbulence" title=" atmospheric turbulence"> atmospheric turbulence</a>, <a href="https://publications.waset.org/search?q=Kasami" title=" Kasami"> Kasami</a>, <a href="https://publications.waset.org/search?q=Gold" title=" Gold"> Gold</a>, <a href="https://publications.waset.org/search?q=SIK" title=" SIK"> SIK</a>, <a href="https://publications.waset.org/search?q=BER" title=" BER"> BER</a>, <a href="https://publications.waset.org/search?q=Power%20Penalty" title=" Power Penalty"> Power Penalty</a>, <a href="https://publications.waset.org/search?q=FSO." title=" FSO."> FSO.</a> </p> <a href="https://publications.waset.org/2607/performance-analysis-of-a-free-space-optical-code-division-multiple-access-through-atmospheric-turbulence-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2607/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2607/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2607/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2607/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2607/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2607/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2607/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2607/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2607/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2607/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2133</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7488</span> Assessment of the Accuracy of Spalart-Allmaras Turbulence Model for Application in Turbulent Wall Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Spalart and Allmaras turbulence model has been implemented in a numerical code to study the compressible turbulent flows, which the system of governing equations is solved with a finite volume approach using a structured grid. The AUSM+ scheme is used to calculate the inviscid fluxes. Different benchmark problems have been computed to validate the implementation and numerical results are shown. A special Attention is paid to wall jet applications. In this study, the jet is submitted to various wall boundary conditions (adiabatic or uniform heat flux) in forced convection regime and both two-dimensional and axisymmetric wall jets are considered. The comparison between the numerical results and experimental data has given the validity of this turbulence model to study the turbulent wall jets especially in engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Wall%20Jet" title="Wall Jet">Wall Jet</a>, <a href="https://publications.waset.org/search?q=Heat%20transfer" title=" Heat transfer"> Heat transfer</a>, <a href="https://publications.waset.org/search?q=Numerical%20Simulation" title=" Numerical Simulation"> Numerical Simulation</a>, <a href="https://publications.waset.org/search?q=Spalart-Allmaras%20Turbulence%20model." title=" Spalart-Allmaras Turbulence model."> Spalart-Allmaras Turbulence model.</a> </p> <a href="https://publications.waset.org/11796/assessment-of-the-accuracy-of-spalart-allmaras-turbulence-model-for-application-in-turbulent-wall-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11796/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11796/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11796/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11796/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11796/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11796/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11796/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11796/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11796/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11796/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2768</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7487</span> A Comparative Study of Turbulence Models Performance for Turbulent Flow in a Planar Asymmetric Diffuser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Samy%20M.%20El-Behery">Samy M. El-Behery</a>, <a href="https://publications.waset.org/search?q=Mofreh%20H.%20Hamed"> Mofreh H. Hamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a computational study of the separated flow in a planer asymmetric diffuser. The steady RANS equations for turbulent incompressible fluid flow and six turbulence closures are used in the present study. The commercial software code, FLUENT 6.3.26, was used for solving the set of governing equations using various turbulence models. Five of the used turbulence models are available directly in the code while the v2-f turbulence model was implemented via User Defined Scalars (UDS) and User Defined Functions (UDF). A series of computational analysis is performed to assess the performance of turbulence models at different grid density. The results show that the standard k-&omega;, SST k-&omega; and v2-f models clearly performed better than other models when an adverse pressure gradient was present. The RSM model shows an acceptable agreement with the velocity and turbulent kinetic energy profiles but it failed to predict the location of separation and attachment points. The standard k-&epsilon; and the low-Re k- &epsilon; delivered very poor results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Turbulence%20models" title="Turbulence models">Turbulence models</a>, <a href="https://publications.waset.org/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a>, <a href="https://publications.waset.org/search?q=wall%20functions" title=" wall functions"> wall functions</a>, <a href="https://publications.waset.org/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/search?q=reattachment" title=" reattachment"> reattachment</a>, <a href="https://publications.waset.org/search?q=diffuser." title=" diffuser."> diffuser.</a> </p> <a href="https://publications.waset.org/12386/a-comparative-study-of-turbulence-models-performance-for-turbulent-flow-in-a-planar-asymmetric-diffuser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12386/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12386/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12386/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12386/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12386/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12386/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12386/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12386/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12386/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12386/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3769</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7486</span> Simulation Study on Vehicle Drag Reduction by Surface Dimples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20F.%20Wong">S. F. Wong</a>, <a href="https://publications.waset.org/search?q=S.%20S.%20Dol"> S. S. Dol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio <em>DR</em>, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via <em>k-&epsilon; </em>turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the <em>DR</em> of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at <em>DR</em> = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerodynamics" title="Aerodynamics">Aerodynamics</a>, <a href="https://publications.waset.org/search?q=Boundary%20Layer" title=" Boundary Layer"> Boundary Layer</a>, <a href="https://publications.waset.org/search?q=Dimple" title=" Dimple"> Dimple</a>, <a href="https://publications.waset.org/search?q=Drag" title=" Drag"> Drag</a>, <a href="https://publications.waset.org/search?q=Kinetic%20Energy" title=" Kinetic Energy"> Kinetic Energy</a>, <a href="https://publications.waset.org/search?q=Turbulence." title=" Turbulence."> Turbulence.</a> </p> <a href="https://publications.waset.org/10003966/simulation-study-on-vehicle-drag-reduction-by-surface-dimples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003966/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003966/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003966/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003966/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003966/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003966/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003966/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003966/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003966/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003966/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2348</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7485</span> Stochastic Subspace Modelling of Turbulence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20T.%20Sichani">M. T. Sichani</a>, <a href="https://publications.waset.org/search?q=B.%20J.%20Pedersen"> B. J. Pedersen</a>, <a href="https://publications.waset.org/search?q=S.%20R.%20K.%20Nielsen"> S. R. K. Nielsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical cross spectral density function for the along-wind turbulence component over the wind field area is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since the succeeding state space and ARMA modelling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Turbulence" title="Turbulence">Turbulence</a>, <a href="https://publications.waset.org/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/search?q=complex%20coherence" title=" complex coherence"> complex coherence</a>, <a href="https://publications.waset.org/search?q=state%20space%20modelling" title=" state space modelling"> state space modelling</a>, <a href="https://publications.waset.org/search?q=ARMA%20modelling." title=" ARMA modelling."> ARMA modelling.</a> </p> <a href="https://publications.waset.org/15627/stochastic-subspace-modelling-of-turbulence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15627/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15627/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15627/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15627/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15627/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15627/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15627/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15627/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15627/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15627/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1646</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7484</span> Ignition Analysis in Supersonic Turbulent Mixing Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical study of two dimensional supersonic hydrogen-air mixing layer is performed to investigate the effect of turbulence and chemical additive on ignition distance. Chemical reaction is treated using detail kinetics. Advection upstream splitting method is used to calculate the fluxes and one equation turbulence model is chosen here to simulate the considered problem. Hydrogen peroxide is used as an additive and the results show that inflow turbulence and chemical additive may drastically decrease the ignition delay in supersonic combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ignition" title="Ignition">Ignition</a>, <a href="https://publications.waset.org/search?q=Mixing%20layer" title=" Mixing layer"> Mixing layer</a>, <a href="https://publications.waset.org/search?q=Numerical%20simulation" title=" Numerical simulation"> Numerical simulation</a>, <a href="https://publications.waset.org/search?q=Supersonic%20combustion" title="Supersonic combustion">Supersonic combustion</a>, <a href="https://publications.waset.org/search?q=Turbulence" title=" Turbulence"> Turbulence</a> </p> <a href="https://publications.waset.org/13369/ignition-analysis-in-supersonic-turbulent-mixing-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13369/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13369/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13369/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13369/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13369/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13369/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13369/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13369/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13369/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13369/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1724</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7483</span> Influence of Turbulence Model, Grid Resolution and Free-Stream Turbulence Intensity on the Numerical Simulation of the Flow Field around an Inclined Flat Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Raciti%20Castelli">M. Raciti Castelli</a>, <a href="https://publications.waset.org/search?q=P.%20Cioppa"> P. Cioppa</a>, <a href="https://publications.waset.org/search?q=E.%20Benini"> E. Benini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow field around a flat plate of infinite span has been investigated for several values of the angle of attack. Numerical predictions have been compared to experimental measurements, in order to examine the effect of turbulence model and grid resolution on the resultant aerodynamic forces acting on the plate. Also the influence of the free-stream turbulence intensity, at the entrance of the computational domain, has been investigated. A full campaign of simulations has been conducted for three inclination angles (9°, 15° and 30°), in order to obtain some practical guidelines to be used for the simulation of the flow field around inclined plates and discs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/search?q=flat%20plate" title=" flat plate"> flat plate</a> </p> <a href="https://publications.waset.org/9330/influence-of-turbulence-model-grid-resolution-and-free-stream-turbulence-intensity-on-the-numerical-simulation-of-the-flow-field-around-an-inclined-flat-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9330/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9330/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9330/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9330/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9330/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9330/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9330/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9330/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9330/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9330/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1583</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7482</span> Energy Budget Equation of Superfluid HVBK Model: LES Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Bakhtaoui">M. Bakhtaoui</a>, <a href="https://publications.waset.org/search?q=L.%20Merahi"> L. Merahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The reliability of the filtered HVBK model is now investigated via some large eddy simulations (LES) of freely decaying isotropic superfluid turbulence. For homogeneous turbulence at very high Reynolds numbers, comparison of the terms in the spectral kinetic energy budget equation indicates, in the energy-containing range, that the production and energy transfer effects become significant except for dissipation. In the inertial range, where the two fluids are perfectly locked, the mutual friction maybe neglected with respect to other terms. Also, the LES results for the other terms of the energy balance are presented.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Superfluid%20turbulence" title="Superfluid turbulence">Superfluid turbulence</a>, <a href="https://publications.waset.org/search?q=HVBK" title=" HVBK"> HVBK</a>, <a href="https://publications.waset.org/search?q=Energy%20budget" title=" Energy budget"> Energy budget</a>, <a href="https://publications.waset.org/search?q=Large%0D%0AEddy%20Simulation." title=" Large Eddy Simulation."> Large Eddy Simulation.</a> </p> <a href="https://publications.waset.org/10000053/energy-budget-equation-of-superfluid-hvbk-model-les-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000053/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000053/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000053/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000053/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000053/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000053/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000053/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000053/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000053/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000053/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2013</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7481</span> Modeling of Surface Roughness for Flow over a Complex Vegetated Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wichai%20Pattanapol">Wichai Pattanapol</a>, <a href="https://publications.waset.org/search?q=Sarah%20J.%20Wakes"> Sarah J. Wakes</a>, <a href="https://publications.waset.org/search?q=Michael%20J.%20Hilton"> Michael J. Hilton</a>, <a href="https://publications.waset.org/search?q=Katharine%20J.M.%20Dickinson"> Katharine J.M. Dickinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Turbulence modeling of large-scale flow over a vegetated surface is complex. Such problems involve large scale computational domains, while the characteristics of flow near the surface are also involved. In modeling large scale flow, surface roughness including vegetation is generally taken into account by mean of roughness parameters in the modified law of the wall. However, the turbulence structure within the canopy region cannot be captured with this method, another method which applies source/sink terms to model plant drag can be used. These models have been developed and tested intensively but with a simple surface geometry. This paper aims to compare the use of roughness parameter, and additional source/sink terms in modeling the effect of plant drag on wind flow over a complex vegetated surface. The RNG k-&epsilon; turbulence model with the non-equilibrium wall function was tested with both cases. In addition, the k-&omega; turbulence model, which is claimed to be computationally stable, was also investigated with the source/sink terms. All numerical results were compared to the experimental results obtained at the study site Mason Bay, Stewart Island, New Zealand. In the near-surface region, it is found that the results obtained by using the source/sink term are more accurate than those using roughness parameters. The k-&omega; turbulence model with source/sink term is more appropriate as it is more accurate and more computationally stable than the RNG k-&epsilon; turbulence model. At higher region, there is no significant difference amongst the results obtained from all simulations.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=canopy%20flow" title=" canopy flow"> canopy flow</a>, <a href="https://publications.waset.org/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/search?q=turbulence%20models." title=" turbulence models."> turbulence models.</a> </p> <a href="https://publications.waset.org/3186/modeling-of-surface-roughness-for-flow-over-a-complex-vegetated-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3186/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3186/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3186/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3186/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3186/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3186/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3186/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3186/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3186/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3186/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2963</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7480</span> Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Elkhoury">M. Elkhoury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A recently developed one-equation turbulence model has been successfully applied to simulate turbulent flows with various complexities. The model, which is based on the transformation of the k-<span style="color: rgb(84, 84, 84); font-family: arial, sans-serif; font-size: small; line-height: 18.2px;">&epsilon;</span> closure, is wall-distance free and equipped with lagging destruction/dissipation terms. Test cases included shockboundary- layer interaction flows over the NACA 0012 airfoil, an axisymmetric bump, and the ONERA M6 wing. The capability of the model to operate in a Scale Resolved Simulation (SRS) mode is demonstrated through the simulation of a massive flow separation over a circular cylinder at Re= 1.2 x106. An assessment of the results against available experiments Menter (k-<span style="color: rgb(84, 84, 84); font-family: arial, sans-serif; font-size: small; line-height: 18.2px;">&epsilon;</span>)1Eq and the Spalart- Allmaras model that belongs to the single equation closure family is made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Turbulence%20modeling" title="Turbulence modeling">Turbulence modeling</a>, <a href="https://publications.waset.org/search?q=complex%20flow%20simulation" title=" complex flow simulation"> complex flow simulation</a>, <a href="https://publications.waset.org/search?q=scale%20adaptive%20simulation" title=" scale adaptive simulation"> scale adaptive simulation</a>, <a href="https://publications.waset.org/search?q=one-equation%20turbulence%20model." title=" one-equation turbulence model."> one-equation turbulence model.</a> </p> <a href="https://publications.waset.org/10004576/complex-flow-simulation-using-a-partially-lagging-one-equation-turbulence-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004576/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004576/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004576/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004576/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004576/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004576/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004576/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004576/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004576/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004576/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1470</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7479</span> Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zoran%20Jovanovic">Zoran Jovanovic</a>, <a href="https://publications.waset.org/search?q=Zoran%20Masonicic"> Zoran Masonicic</a>, <a href="https://publications.waset.org/search?q=S.%20Dragutinovic"> S. Dragutinovic</a>, <a href="https://publications.waset.org/search?q=Z.%20Sakota"> Z. Sakota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-&epsilon; model of turbulence and k-&xi;-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Automotive%20flows" title="Automotive flows">Automotive flows</a>, <a href="https://publications.waset.org/search?q=flame%20propagation" title=" flame propagation"> flame propagation</a>, <a href="https://publications.waset.org/search?q=combustion%20modelling." title=" combustion modelling."> combustion modelling.</a> </p> <a href="https://publications.waset.org/10004158/aspects-concerning-flame-propagation-of-various-fuels-in-combustion-chamber-of-four-valve-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004158/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004158/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004158/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004158/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004158/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004158/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004158/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004158/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004158/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004158/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1293</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7478</span> Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pankaj%20K.%20Gupta">Pankaj K. Gupta</a>, <a href="https://publications.waset.org/search?q=Krishnan%20V.%20Pagalthivarthi"> Krishnan V. Pagalthivarthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Rotating%20channel" title="Rotating channel">Rotating channel</a>, <a href="https://publications.waset.org/search?q=maximum%20wear%20rate" title=" maximum wear rate"> maximum wear rate</a>, <a href="https://publications.waset.org/search?q=multi-sizeparticulate%20flow" title=" multi-sizeparticulate flow"> multi-sizeparticulate flow</a>, <a href="https://publications.waset.org/search?q=k%20%E2%88%92%CE%B5%20turbulence%20models." title=" k −ε turbulence models."> k −ε turbulence models.</a> </p> <a href="https://publications.waset.org/3553/comparison-of-three-turbulence-models-in-wear-prediction-of-multi-size-particulate-flow-through-rotating-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3553/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3553/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3553/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3553/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3553/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3553/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3553/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3553/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3553/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3553/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1772</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7477</span> Average Turbulent Pipe Flow with Heat Transfer Using a Three-Equation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khalid%20Alammar">Khalid Alammar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Aim of this study is to evaluate a new three-equation turbulence model applied to flow and heat transfer through a pipe. Uncertainty is approximated by comparing with published direct numerical simulation results for fully-developed flow. Error in the mean axial velocity, temperature, friction, and heat transfer is found to be negligible.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20Transfer" title="Heat Transfer">Heat Transfer</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/search?q=Skin%20friction" title=" Skin friction"> Skin friction</a>, <a href="https://publications.waset.org/search?q=Turbulence." title=" Turbulence."> Turbulence.</a> </p> <a href="https://publications.waset.org/16763/average-turbulent-pipe-flow-with-heat-transfer-using-a-three-equation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16763/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16763/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16763/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16763/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16763/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16763/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16763/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16763/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16763/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16763/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2447</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7476</span> Effect of Turbulence Models on Simulated Iced Aircraft Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Muhammad%20Afzal">Muhammad Afzal</a>, <a href="https://publications.waset.org/search?q=Cao%20Yihua"> Cao Yihua</a>, <a href="https://publications.waset.org/search?q=Zhao%20Ming"> Zhao Ming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerodynamics" title="Aerodynamics">Aerodynamics</a>, <a href="https://publications.waset.org/search?q=Airfoil%20GLC305" title=" Airfoil GLC305"> Airfoil GLC305</a>, <a href="https://publications.waset.org/search?q=Iced%20Airfoil" title=" Iced Airfoil"> Iced Airfoil</a>, <a href="https://publications.waset.org/search?q=Turbulence%20Model" title="Turbulence Model">Turbulence Model</a> </p> <a href="https://publications.waset.org/1163/effect-of-turbulence-models-on-simulated-iced-aircraft-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1163/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1163/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1163/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1163/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1163/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1163/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1163/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1163/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1163/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1163/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2468</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7475</span> A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20P.%20Panda">J. P. Panda</a>, <a href="https://publications.waset.org/search?q=K.%20Sasmal"> K. Sasmal</a>, <a href="https://publications.waset.org/search?q=H.%20V.%20Warrior"> H. V. Warrior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX&#39; 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Eddy%20viscosity" title="Eddy viscosity">Eddy viscosity</a>, <a href="https://publications.waset.org/search?q=turbulence%20modeling" title=" turbulence modeling"> turbulence modeling</a>, <a href="https://publications.waset.org/search?q=GOTM" title=" GOTM"> GOTM</a>, <a href="https://publications.waset.org/search?q=CFD." title=" CFD."> CFD.</a> </p> <a href="https://publications.waset.org/10008609/a-non-linear-eddy-viscosity-model-for-turbulent-natural-convection-in-geophysical-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008609/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008609/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008609/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008609/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008609/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008609/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008609/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008609/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008609/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008609/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">954</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7474</span> An Optimized Multi-block Method for Turbulent Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Goodarzi">M. Goodarzi</a>, <a href="https://publications.waset.org/search?q=P.%20Lashgari"> P. Lashgari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major part of the flow field involves no complicated turbulent behavior in many turbulent flows. In this research work, in order to reduce required memory and CPU time, the flow field was decomposed into several blocks, each block including its special turbulence. A two dimensional backward facing step was considered here. Four combinations of the Prandtl mixing length and standard k- E models were implemented as well. Computer memory and CPU time consumption in addition to numerical convergence and accuracy of the obtained results were mainly investigated. Observations showed that, a suitable combination of turbulence models in different blocks led to the results with the same accuracy as the high order turbulence model for all of the blocks, in addition to the reductions in memory and CPU time consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer%20memory" title="Computer memory">Computer memory</a>, <a href="https://publications.waset.org/search?q=CPU%20time" title=" CPU time"> CPU time</a>, <a href="https://publications.waset.org/search?q=Multi-block%20method" title=" Multi-block method"> Multi-block method</a>, <a href="https://publications.waset.org/search?q=Turbulence%20modeling." title="Turbulence modeling.">Turbulence modeling.</a> </p> <a href="https://publications.waset.org/12149/an-optimized-multi-block-method-for-turbulent-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12149/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12149/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12149/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12149/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12149/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12149/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12149/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12149/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12149/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12149/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1565</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7473</span> Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Elghorab">Mohamed Elghorab</a>, <a href="https://publications.waset.org/search?q=Vendra%20C.%20Madhav%20Rao"> Vendra C. Madhav Rao</a>, <a href="https://publications.waset.org/search?q=Jennifer%20X.%20Wen"> Jennifer X. Wen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, Re<sub>T</sub> = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flux%20limiters" title="Flux limiters">Flux limiters</a>, <a href="https://publications.waset.org/search?q=MILES" title=" MILES"> MILES</a>, <a href="https://publications.waset.org/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/search?q=turbulence%20structures" title=" turbulence structures"> turbulence structures</a>, <a href="https://publications.waset.org/search?q=TVD%20schemes." title=" TVD schemes. "> TVD schemes. </a> </p> <a href="https://publications.waset.org/10008641/evaluating-the-capability-of-the-flux-limiter-schemes-in-capturing-the-turbulence-structures-in-a-fully-developed-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008641/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008641/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008641/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008641/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008641/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008641/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008641/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008641/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008641/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008641/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1124</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7472</span> Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Md%20Abdullah%20Al%20Faruque">Md Abdullah Al Faruque</a>, <a href="https://publications.waset.org/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Open%20channel%20flow" title="Open channel flow">Open channel flow</a>, <a href="https://publications.waset.org/search?q=Reynolds%20Number" title=" Reynolds Number"> Reynolds Number</a>, <a href="https://publications.waset.org/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/search?q=turbulence." title=" turbulence."> turbulence.</a> </p> <a href="https://publications.waset.org/10005885/effect-of-reynolds-number-on-wall-normal-turbulence-intensity-in-a-smooth-and-rough-open-channel-using-both-outer-and-inner-scaling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005885/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005885/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005885/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005885/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005885/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005885/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005885/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005885/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005885/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005885/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1080</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7471</span> Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Md%20Abdullah%20Al%20Faruque">Md Abdullah Al Faruque</a>, <a href="https://publications.waset.org/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions, which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Open%20channel%20flow" title="Open channel flow">Open channel flow</a>, <a href="https://publications.waset.org/search?q=smooth%20bed" title=" smooth bed"> smooth bed</a>, <a href="https://publications.waset.org/search?q=rough%20bed" title=" rough bed"> rough bed</a>, <a href="https://publications.waset.org/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/search?q=turbulence." title=" turbulence."> turbulence.</a> </p> <a href="https://publications.waset.org/10002636/variation-of-streamwise-and-vertical-turbulence-intensity-in-a-smooth-and-rough-bed-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002636/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002636/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002636/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002636/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002636/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002636/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002636/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002636/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002636/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002636/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2244</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7470</span> Vehicle Aerodynamics: Drag Reduction by Surface Dimples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20K.%20Chear">C. K. Chear</a>, <a href="https://publications.waset.org/search?q=S.%20S.%20Dol"> S. S. Dol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>For a bluff body, dimples behave like roughness elements in stimulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake and lower form drag. This is very different in principle from the application of dimples to streamlined body, where any reduction in drag would be predominantly due to a reduction in skin friction. In the present work, a car model with different dimple geometry is simulated using k-&epsilon; turbulence modeling to determine its effect to the aerodynamics performance. Overall, the results show that the application of dimples manages to reduce the drag coefficient of the car model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerodynamics" title="Aerodynamics">Aerodynamics</a>, <a href="https://publications.waset.org/search?q=Boundary%20Layer" title=" Boundary Layer"> Boundary Layer</a>, <a href="https://publications.waset.org/search?q=Dimple" title=" Dimple"> Dimple</a>, <a href="https://publications.waset.org/search?q=Drag" title=" Drag"> Drag</a>, <a href="https://publications.waset.org/search?q=Kinetic%20Energy" title=" Kinetic Energy"> Kinetic Energy</a>, <a href="https://publications.waset.org/search?q=Turbulence." title=" Turbulence."> Turbulence.</a> </p> <a href="https://publications.waset.org/10000829/vehicle-aerodynamics-drag-reduction-by-surface-dimples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000829/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000829/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000829/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000829/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000829/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000829/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000829/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000829/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000829/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000829/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6333</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7469</span> Interface Location in Single Phase Stirred Tanks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=I.%20Mahdavi">I. Mahdavi</a>, <a href="https://publications.waset.org/search?q=R.%20Janamiri"> R. Janamiri</a>, <a href="https://publications.waset.org/search?q=A.%20Sinkakarimi"> A. Sinkakarimi</a>, <a href="https://publications.waset.org/search?q=M.%20Safdari"> M. Safdari</a>, <a href="https://publications.waset.org/search?q=M.%20H.%20Sedaghat"> M. H. Sedaghat</a>, <a href="https://publications.waset.org/search?q=A.%20Zamani"> A. Zamani</a>, <a href="https://publications.waset.org/search?q=A.%20Hoseini"> A. Hoseini</a>, <a href="https://publications.waset.org/search?q=M.%20Karimi"> M. Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this work, study the location of interface in a stirred vessel with Rushton impeller by computational fluid dynamic was presented. To modeling rotating the impeller, sliding mesh (SM) technique was used and standard k-&epsilon; model was selected for turbulence closure. Mean tangential, radial and axial velocities and also turbulent kinetic energy (k) and turbulent dissipation rate (&epsilon;) in various points of tank was investigated. Results show sensitivity of system to location of interface and radius of 7 to 10cm for interface in the vessel with existence characteristics cause to increase the accuracy of simulation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=Interface" title=" Interface"> Interface</a>, <a href="https://publications.waset.org/search?q=Rushton%20impeller" title=" Rushton impeller"> Rushton impeller</a>, <a href="https://publications.waset.org/search?q=Turbulence%20model." title=" Turbulence model."> Turbulence model.</a> </p> <a href="https://publications.waset.org/16632/interface-location-in-single-phase-stirred-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16632/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16632/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16632/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16632/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16632/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16632/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16632/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16632/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16632/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16632/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1725</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7468</span> CFD Investigation of Interface Location in Stirred Tanks with a Concave Impeller </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Parvasi">P. Parvasi</a>, <a href="https://publications.waset.org/search?q=R.%20Janamiri"> R. Janamiri</a>, <a href="https://publications.waset.org/search?q=A.%20Sinkakarimi"> A. Sinkakarimi</a>, <a href="https://publications.waset.org/search?q=I.%20Mahdavi"> I. Mahdavi</a>, <a href="https://publications.waset.org/search?q=M.%20Safdari"> M. Safdari</a>, <a href="https://publications.waset.org/search?q=M.%20H.%20Sedaghat"> M. H. Sedaghat</a>, <a href="https://publications.waset.org/search?q=A.%20Hosseini"> A. Hosseini</a>, <a href="https://publications.waset.org/search?q=M.%20Karimi"> M. Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this work study the location of interface in a stirred vessel with a Concave impeller by computational fluid dynamic was presented. To modeling rotating the impeller, sliding mesh (SM) technique was used and standard k-&epsilon; model was selected for turbulence closure. Mean tangential, radial and axial velocities and also turbulent kinetic energy (k) and turbulent dissipation rate (&epsilon;) in various points of tank was investigated. Results show sensitivity of system to location of interface and radius of 7 to 10cm for interface in the vessel with existence characteristics cause to increase the accuracy of simulation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=Interface" title=" Interface"> Interface</a>, <a href="https://publications.waset.org/search?q=Concave%20impeller" title=" Concave impeller"> Concave impeller</a>, <a href="https://publications.waset.org/search?q=turbulence%20model." title=" turbulence model."> turbulence model.</a> </p> <a href="https://publications.waset.org/16633/cfd-investigation-of-interface-location-in-stirred-tanks-with-a-concave-impeller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16633/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16633/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16633/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16633/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16633/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16633/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16633/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16633/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16633/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16633/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2261</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7467</span> CFD Analysis of Incompressible Turbulent Swirling Flow through Circle Grids Space Filling Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Manshoor">B. Manshoor</a>, <a href="https://publications.waset.org/search?q=M.%20Jaat"> M. Jaat</a>, <a href="https://publications.waset.org/search?q=Amir%20Khalid"> Amir Khalid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Circle grid space filling plate is a flow conditioner with a fractal pattern and used to eliminate turbulence originating from pipe fittings in experimental fluid flow applications. In this paper, steady state, incompressible, swirling turbulent flow through circle grid space filling plate has been studied. The solution and the analysis were carried out using finite volume CFD solver FLUENT 6.2. Three turbulence models were used in the numerical investigation and their results were compared with the pressure drop correlation of BS EN ISO 5167-2:2003. The turbulence models investigated here are the standard k-&epsilon;, realizable k-&epsilon;, and the Reynolds Stress Model (RSM). The results showed that the RSM model gave the best agreement with the ISO pressure drop correlation. The effects of circle grids space filling plate thickness and Reynolds number on the flow characteristics have been investigated as well.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flow%20conditioning" title="Flow conditioning">Flow conditioning</a>, <a href="https://publications.waset.org/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a>, <a href="https://publications.waset.org/search?q=turbulent%0D%0Amodeling" title=" turbulent modeling"> turbulent modeling</a>, <a href="https://publications.waset.org/search?q=CFD." title=" CFD."> CFD.</a> </p> <a href="https://publications.waset.org/1997/cfd-analysis-of-incompressible-turbulent-swirling-flow-through-circle-grids-space-filling-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1997/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1997/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1997/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1997/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1997/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1997/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1997/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1997/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1997/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1997/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2077</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7466</span> Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Y.%20Liu">T. Y. Liu</a>, <a href="https://publications.waset.org/search?q=C.%20H%20Lin."> C. H Lin.</a>, <a href="https://publications.waset.org/search?q=Y.%20M%20Ferng"> Y. M Ferng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt">Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyze the flow field and pressure distributions of the wing blades.<o:p></o:p></p> <p class="Abstract" style="margin-top:0cm">Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm.<o:p></o:p></p> <p class="Abstract" style="margin-top:0cm">Four kinds of RANS-based turbulence models, Standard k-&epsilon;, Realizable k-&epsilon;, SST k-&omega;, and v2f, were used to predict and analyze the results in the present work. The results show that the predictions on pressure distributions with SST k-&omega; and v2f turbulence models have good agreements with experimental data.<o:p></o:p></p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Horizontal%20Axis%20Wind%20Turbine" title="Horizontal Axis Wind Turbine">Horizontal Axis Wind Turbine</a>, <a href="https://publications.waset.org/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/search?q=noise." title=" noise."> noise.</a> </p> <a href="https://publications.waset.org/9997915/investigations-of-flow-field-with-different-turbulence-models-on-nrel-phase-vi-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997915/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997915/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997915/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997915/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997915/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997915/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997915/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997915/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997915/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997915/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2161</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7465</span> Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hechmi%20Saidi">Hechmi Saidi</a>, <a href="https://publications.waset.org/search?q=Noureddine%20Hamdi"> Noureddine Hamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=FSO" title="FSO">FSO</a>, <a href="https://publications.waset.org/search?q=RF" title=" RF"> RF</a>, <a href="https://publications.waset.org/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/search?q=AF" title=" AF"> AF</a>, <a href="https://publications.waset.org/search?q=DF" title=" DF"> DF</a>, <a href="https://publications.waset.org/search?q=SER" title=" SER"> SER</a>, <a href="https://publications.waset.org/search?q=SNR" title=" SNR"> SNR</a>, <a href="https://publications.waset.org/search?q=GG%20channel." title=" GG channel."> GG channel.</a> </p> <a href="https://publications.waset.org/10008906/performance-analysis-of-a-hybrid-df-af-hybrid-rffso-system-under-gamma-gamma-atmospheric-turbulence-channel-using-mppm-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008906/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008906/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008906/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008906/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008906/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008906/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008906/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008906/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008906/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008906/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1064</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7464</span> Numerical Simulation of Flow and Combustionin an Axisymmetric Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nureddin%20Dinler">Nureddin Dinler</a>, <a href="https://publications.waset.org/search?q=Nuri%20Yucel"> Nuri Yucel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the performance of internal combustion engines is one of the major concerns of researchers. Experimental studies are more expensive than computational studies. Also using computational techniques allows one to obtain all the required data for the cylinder, some of which could not be measured. In this study, an axisymmetric homogeneous charged spark ignition engine was modeled. Fluid motion and combustion process were investigated numerically. Turbulent flow conditions were considered. Standard k- ε turbulence model for fluid flow and eddy break-up model for turbulent combustion were utilized. The effects of valve angle on the fluid flow and combustion are analyzed for constant air/fuel and compression ratios. It is found that, velocities and strength of tumble increases in-cylinder flow and due to increase in turbulence strength, the flame propagation is faster for small valve angles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD%20simulation" title="CFD simulation">CFD simulation</a>, <a href="https://publications.waset.org/search?q=eddy%20break-up%20model" title=" eddy break-up model"> eddy break-up model</a>, <a href="https://publications.waset.org/search?q=k-%CE%B5turbulence%20model" title=" k-εturbulence model"> k-εturbulence model</a>, <a href="https://publications.waset.org/search?q=reciprocating%20engine%20flow%20and%20combustion." title=" reciprocating engine flow and combustion."> reciprocating engine flow and combustion.</a> </p> <a href="https://publications.waset.org/7993/numerical-simulation-of-flow-and-combustionin-an-axisymmetric-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7993/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7993/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7993/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7993/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7993/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7993/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7993/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7993/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7993/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7993/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2251</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7463</span> Numerical Investigation of Displacement Ventilation Effectiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ramy%20H.%20Mohammed">Ramy H. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Displacement ventilation of a room with an occupant is modeled using CFD. The geometry of manikin is accurately represented in CFD model to minimize potential. Indoor zero equation turbulence model is used to simulate all cases and the effect of the thermal radiation from manikin is taken into account. After validation of the code, predicted mean vote, mean age of air, and ventilation effectiveness are used to predict the thermal comfort zones and indoor air quality. The effect of the inlet velocity and temperature on the thermal comfort and indoor air quality is investigated. The results show that the inlet velocity has great effect on the thermal comfort and indoor air quality and low inlet velocity is sufficient to establish comfortable conditions inside the room. In addition, the displacement ventilation system achieves not only thermal comfort in ventilated rooms, but also energy saving of fan power.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Displacement%20ventilation" title="Displacement ventilation">Displacement ventilation</a>, <a href="https://publications.waset.org/search?q=Energy%20saving" title=" Energy saving"> Energy saving</a>, <a href="https://publications.waset.org/search?q=Thermal%20comfort" title=" Thermal comfort"> Thermal comfort</a>, <a href="https://publications.waset.org/search?q=Turbulence%20model." title=" Turbulence model."> Turbulence model.</a> </p> <a href="https://publications.waset.org/9997350/numerical-investigation-of-displacement-ventilation-effectiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997350/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997350/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997350/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997350/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997350/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997350/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997350/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997350/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997350/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997350/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2595</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7462</span> A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nkongho%20Ayuketang%20Arreyndip">Nkongho Ayuketang Arreyndip</a>, <a href="https://publications.waset.org/search?q=Ebobenow%20Joseph"> Ebobenow Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Probability" title="Probability">Probability</a>, <a href="https://publications.waset.org/search?q=Stochastic" title=" Stochastic"> Stochastic</a>, <a href="https://publications.waset.org/search?q=Probability%20density%20function" title=" Probability density function"> Probability density function</a>, <a href="https://publications.waset.org/search?q=Turbulence." title=" Turbulence."> Turbulence.</a> </p> <a href="https://publications.waset.org/10002346/a-stochastic-approach-to-extreme-wind-speeds-conditions-on-a-small-axial-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002346/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002346/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002346/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002346/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002346/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002346/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002346/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002346/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002346/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002346/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1745</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=249">249</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=250">250</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Turbulence%20model.&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10