CINXE.COM
Search results for: reservoir surveillance
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: reservoir surveillance</title> <meta name="description" content="Search results for: reservoir surveillance"> <meta name="keywords" content="reservoir surveillance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="reservoir surveillance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="reservoir surveillance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 985</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: reservoir surveillance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Microseismics: Application in Hydrocarbon Reservoir Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Kumar%20Singh">Rahul Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurva%20Sharma"> Apurva Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20Kumar%20Srivastava"> Dilip Kumar Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tilting of our interest towards unconventional exploitation of hydrocarbons has raised a serious concern to environmentalists. Emerging technologies like horizontal/multi-lateral drilling with subsequent hydraulic fracturing or fracking etc., for exploitation of different conventional/unconventional hydrocarbon reservoirs, are related to creating micro-level seismic events below the surface of the earth. Monitoring of these micro-level seismic events is not possible by the conventional methodology of the seismic method. So, to tackle this issue, a new technology that is microseismic is very much in discussions around the globe. Multiple researches are being carried out these days around the globe in order to prove microseismic as a new essential in the E & P industry, especially for unconventional reservoir management. Microseismic monitoring is now used for reservoir surveillance, and the best application is checking the integrity of the caprock and containment of fluid in it. In general, in whatever terms we want to use micro-seismic related events monitoring and understanding the effectiveness of stimulation, this technology offers a lot of value in terms of insight into the subsurface characteristics and processes, and this makes it really a good geophysical method to be used in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microseismic" title="microseismic">microseismic</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20fracturing%20or%20fracking" title=" hydraulic fracturing or fracking"> hydraulic fracturing or fracking</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance" title=" reservoir surveillance"> reservoir surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazards" title=" seismic hazards"> seismic hazards</a> </p> <a href="https://publications.waset.org/abstracts/140429/microseismics-application-in-hydrocarbon-reservoir-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Reservoir Properties Effect on Estimating Initial Gas in Place Using Flowing Material Balance Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20S.%20Kh.%20S.%20Hashem">Yousef S. Kh. S. Hashem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate estimation of initial gas in place (IGIP) plays an important factor in the decision to develop a gas field. One of the methods that are available in the industry to estimate the IGIP is material balance. This method required that the well has to be shut-in while pressure is measured as it builds to average reservoir pressure. Since gas demand is high and shut-in well surveys are very expensive, flowing gas material balance (FGMB) is sometimes used instead of material balance. This work investigated the effect of reservoir properties (pressure, permeability, and reservoir size) on the estimation of IGIP when using FGMB. A gas reservoir simulator that accounts for friction loss, wellbore storage, and the non-Darcy effect was used to simulate 165 different possible causes (3 pressures, 5 reservoir sizes, and 11 permeabilities). Both tubing pressure and bottom-hole pressure were analyzed using FGMB. The results showed that the FGMB method is very sensitive for tied reservoirs (k < 10). Also, it showed which method is best to be used for different reservoir properties. This study can be used as a guideline for the application of the FGMB method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowing%20material%20balance" title="flowing material balance">flowing material balance</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20reservoir" title=" gas reservoir"> gas reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=reserves" title=" reserves"> reserves</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20simulator" title=" gas simulator"> gas simulator</a> </p> <a href="https://publications.waset.org/abstracts/132251/reservoir-properties-effect-on-estimating-initial-gas-in-place-using-flowing-material-balance-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Intervention of Threat and Surveillance on the Obedience of Preschool Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Mhae%20Diaz">Sarah Mhae Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20Anna%20De%20Leon"> Erika Anna De Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacklin%20Alwil%20Cartagena"> Jacklin Alwil Cartagena</a>, <a href="https://publications.waset.org/abstracts/search?q=Geordan%20Caruncong"> Geordan Caruncong</a>, <a href="https://publications.waset.org/abstracts/search?q=Micah%20Riezl%20Gonzales"> Micah Riezl Gonzales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the intervention of threat and surveillance on the obedience of 100 preschool children through a task variable experiment replicated from the previous studies of Higbee (1979), and Chua, J., Chua, M., & Pico (1983). Nowadays, obedience among Filipino children to authority is disregarded since they are more outspoken and rebel due to social influences. With this, aside from corporal punishment, threat and surveillance became a mean of inducing obedience. Threat, according to the Dissonance Theory, can give attitudinal change. On the other hand, surveillance, according to the Theory of Social Facilitation, can either contribute to the completion or failure to do a task. Through a 2x2 factorial design, results show; (1) threat (F(1,96) = 12.487, p < 0.05) and (2) surveillance (F(1,96)=9.942, p<.05) had a significant main effect on obedience, suggesting that the Dissonance Theory and Theory of Social Facilitation is respectively true in the study. On the other hand, (3) no interaction (F(1,96)=1.303, p > .05) was seen since threat and surveillance both have a main effect that could be positive or negative, or could be because of their complementary property as supported by the post-hoc results. Also, (4) most effective commanding style is threat and surveillance setting (M = 30.04, SD = 7.971) due to the significant main effect of the two variables. With this, in the Filipino Setting, threat and surveillance has proven to be a very effective strategy to discipline and induce obedience from a child. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20study" title="experimental study">experimental study</a>, <a href="https://publications.waset.org/abstracts/search?q=obedience" title=" obedience"> obedience</a>, <a href="https://publications.waset.org/abstracts/search?q=preschool%20children" title=" preschool children"> preschool children</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance" title=" surveillance"> surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=threat" title=" threat"> threat</a> </p> <a href="https://publications.waset.org/abstracts/27034/intervention-of-threat-and-surveillance-on-the-obedience-of-preschool-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Dewangan">Nitin Dewangan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Kattula"> Nitin Kattula</a>, <a href="https://publications.waset.org/abstracts/search?q=Megha%20Anawat"> Megha Anawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reservoir" title="reservoir">reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20model" title=" transient model"> transient model</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set" title=" level set"> level set</a>, <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow" title=" free-surface flow"> free-surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20frame%20of%20reference" title=" moving frame of reference "> moving frame of reference </a> </p> <a href="https://publications.waset.org/abstracts/111068/computational-fluid-dynamics-simulation-of-reservoir-for-dwell-time-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> Reservoir Fluids: Occurrence, Classification, and Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Banbi">Ahmed El-Banbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVT%20models" title="PVT models">PVT models</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20types" title=" fluid types"> fluid types</a>, <a href="https://publications.waset.org/abstracts/search?q=PVT%20properties" title=" PVT properties"> PVT properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fluids%20classification" title=" fluids classification"> fluids classification</a> </p> <a href="https://publications.waset.org/abstracts/174091/reservoir-fluids-occurrence-classification-and-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Architectural and Sedimentological Parameterization for Reservoir Quality of Miocene Onshore Sandstone, Borneo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Numair%20A.%20Siddiqui">Numair A. Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Muhammad"> Usman Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20J.%20Mathew"> Manoj J. Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramkumar%20M."> Ramkumar M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Sautter"> Benjamin Sautter</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20K.%20El-Ghali"> Muhammad A. K. El-Ghali</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Menier"> David Menier</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiqi%20Zhang"> Shiqi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sedimentological parameterization of shallow-marine siliciclastic reservoirs in terms of reservoir quality and heterogeneity from outcrop study can help improve the subsurface reservoir prediction. An architectural analysis has documented variations in sandstone geometry and rock properties within shallow-marine sandstone exposed in the Miocene Sandakan Formation of Sabah, Borneo. This study demonstrates reservoir sandstone quality assessment for subsurface rock evaluation, from well-exposed successions of the Sandakan Formation, Borneo, with which applicable analogues can be identified. The analyses were based on traditional conventional field investigation of outcrops, grain-size and petrographic studies of hand specimens of different sandstone facies and gamma-ray and permeability measurements. On the bases of these evaluations, the studied sandstone was grouped into three qualitative reservoir rock classes; high (Ø=18.10 – 43.60%; k=1265.20 – 5986.25 mD), moderate (Ø=17.60 – 37%; k=21.36 – 568 mD) and low quality (Ø=3.4 – 15.7%; k=3.21 – 201.30 mD) for visualization and prediction of subsurface reservoir quality. These results provided analogy for shallow marine sandstone reservoir complexity that can be utilized in the evaluation of reservoir quality of regional and subsurface analogues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture%20and%20sedimentology" title="architecture and sedimentology">architecture and sedimentology</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20rock%20evaluation" title=" subsurface rock evaluation"> subsurface rock evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20quality" title=" reservoir quality"> reservoir quality</a>, <a href="https://publications.waset.org/abstracts/search?q=borneo" title=" borneo "> borneo </a> </p> <a href="https://publications.waset.org/abstracts/117322/architectural-and-sedimentological-parameterization-for-reservoir-quality-of-miocene-onshore-sandstone-borneo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20L.%20Roberts">Stephen L. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithms" title="algorithms">algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20health" title=" global health"> global health</a>, <a href="https://publications.waset.org/abstracts/search?q=pandemic" title=" pandemic"> pandemic</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance" title=" surveillance"> surveillance</a> </p> <a href="https://publications.waset.org/abstracts/80131/signs-signals-and-syndromes-algorithmic-surveillance-and-global-health-security-in-the-21st-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> A Method for Processing Unwanted Target Caused by Reflection in Secondary Surveillance Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khanh%20D.Do">Khanh D.Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Loi%20V.Nguyen"> Loi V.Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh%20N.Nguyen"> Thanh N.Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thang%20M.Nguyen"> Thang M.Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Vu%20T.Tran"> Vu T.Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with the development of Secondary surveillance radar (SSR) in air traffic surveillance systems, the Multipath phenomena has always been a noticeable problem. This following article discusses the geometrical aspect and power aspect of the Multipath interference caused by reflection in SSR and proposes a method to deal with these unwanted multipath targets (ghosts) by false-target position predicting and adaptive target suppressing. A field-experiment example is mentioned at the end of the article to demonstrate the efficiency of this measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multipath" title="multipath">multipath</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20surveillance%20radar" title=" secondary surveillance radar"> secondary surveillance radar</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20signal%20processing" title=" digital signal processing"> digital signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection" title=" reflection"> reflection</a> </p> <a href="https://publications.waset.org/abstracts/154203/a-method-for-processing-unwanted-target-caused-by-reflection-in-secondary-surveillance-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">977</span> A Study on the Influence of Aswan High Dam Reservoir Loading on Earthquake Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Abdallah%20Mohamed%20Dahy">Sayed Abdallah Mohamed Dahy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aswan High Dam Reservoir extends for 500 km along the Nile River; it is a vast reservoir in southern Egypt and northern Sudan. It was created as a result of the construction of the Aswan High Dam between 1958 and 1970; about 95% of the main water resources for Egypt are from it. The purpose of this study is to discuss and understand the effect of the fluctuation of the water level in the reservoir on natural and human-induced environmental like earthquakes in the Aswan area, Egypt. In summary, the correlation between the temporal variations of earthquake activity and water level changes in the Aswan reservoir from 1982 to 2014 are investigated and analyzed. This analysis confirms a weak relation between the fluctuation of the water level and earthquake activity in the area around Aswan reservoir. The result suggests that the seismicity in the area becomes active during a period when the water level is decreasing from the maximum to the minimum. Behavior of the water level in this reservoir characterized by a special manner that is the unloading season extends to July or August, and the loading season starts to reach its maximum in October or November every year. Finally, daily rate of change in the water level did not show any direct relation with the size of the earthquakes, hence, it is not possible to be used as a single tool for prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswan%20high%20dam%20reservoir" title="Aswan high dam reservoir">Aswan high dam reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20activity" title=" earthquake activity"> earthquake activity</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a> </p> <a href="https://publications.waset.org/abstracts/35385/a-study-on-the-influence-of-aswan-high-dam-reservoir-loading-on-earthquake-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">976</span> Evaluation of the Notifiable Diseases Surveillance System, South, Haiti, 2022</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djeamsly%20Salomon">Djeamsly Salomon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Epidemiological surveillance is a dynamic national system used to observe all aspects of the evolution of priority health problems, through: collection, analysis, systematic interpretation of information, and dissemination of results with necessary recommendations. The study was conducted to assess the mandatory disease surveillance system in the Sud Department. Methods: A study was conducted from March to May 2021 with key players involved in surveillance at the level of health institutions in the department . The CDC's 2021 updated guideline was used to evaluate the system. We collected information about the operation, attributes, and usefulness of the surveillance system using interviewer-administered questionnaires. Epi-Info7.2 and Excel 2016 were used to generate the mean, frequencies and proportions. Results: Of 30 participants, 23 (77%) were women. The average age was 39 years[30-56]. 25 (83%) had training in epidemiological surveillance. (50%) of the forms checked were signed by the supervisor. Collection tools were available at (80%). Knowledge of at least 7 notifiable diseases was high (100%). Among the respondents, 29 declared that the collection tools were simple, 27 had already filled in a notification form. The maximum time taken to fill out a form was 10 minutes. The feedback between the different levels was done at (60%). Conclusion: The surveillance system is useful, simple, acceptable, representative, flexible, stable and responsive. The data generated was of high quality. However, it is threatened by the lack of supervision of sentinel sites, lack of investigation and weak feedback. This evaluation demonstrated the urgent need to improve supervision in the sites and to feedback information. Strengthen epidemiological surveillance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaluation" title="evaluation">evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=notifiable%20diseases" title=" notifiable diseases"> notifiable diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance" title=" surveillance"> surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a> </p> <a href="https://publications.waset.org/abstracts/160211/evaluation-of-the-notifiable-diseases-surveillance-system-south-haiti-2022" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">975</span> Real-Time Aerial Marine Surveillance System for Safe Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinesh%20Thiruchelvam">Vinesh Thiruchelvam</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20Mumtaz%20Chowdry"> Umar Mumtaz Chowdry</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathish%20Kumar%20Selvaperumal"> Sathish Kumar Selvaperumal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prime purpose of the project is to provide a sophisticated system for surveillance specialized for the Port Authorities in the Maritime Industry. The current aerial surveillance does not have a wide dimensioning view. The channels of communication is shared and not exclusive allowing for communications errors or disturbance mainly due to traffic. The scope is to analyze the various aspects as real-time aerial and marine surveillance is one of the most important methods which could ensure the domain security of the sailors. The system will improve real time data as obtained for the controller base station. The key implementation will be based on camera speed, angle and adherence to a sustainable power utilization module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SMS" title="SMS">SMS</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time" title=" real time"> real time</a>, <a href="https://publications.waset.org/abstracts/search?q=GUI" title=" GUI"> GUI</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20industry" title=" maritime industry "> maritime industry </a> </p> <a href="https://publications.waset.org/abstracts/6760/real-time-aerial-marine-surveillance-system-for-safe-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">974</span> Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mobarok%20Hossain%20Bhuyain">Mobarok Hossain Bhuyain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20detection" title="human detection">human detection</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20tracking" title=" target tracking"> target tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a> </p> <a href="https://publications.waset.org/abstracts/131472/detection-and-tracking-for-the-protection-of-the-elderly-and-socially-vulnerable-people-in-the-video-surveillance-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">973</span> Description and Evaluation of the Epidemiological Surveillance System for Meningitis in the Province of Taza Between 2016 and 2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bennasser%20Samira">Bennasser Samira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Meningitis, especially the meningococcal one, is a serious problem of public health. A system of vigilanceand surveillance is in place to allow effective actions to be taken on actual or potential health problems caused by all forms of meningitis. Objectives: 1. Describe the epidemiological surveillance system for meningitis in the province of Taza. 2. Evaluate the quality and responsiveness of the epidemiological surveillance system for meningitis in the province of Taza. 3. Propose measures to improve this system at the provincial level. Methods: This was a descriptive study with a purely quantitative approach by evaluating the quality and responsiveness of the system during 5 years between January 2016 and December 2020. We usedfor that the investigation files of meningitis cases and the provincial database of meningitis. We calculated some quality indicators of surveillance system already defined by the National Program for the Prevention and Control of Meningitis. Results: The notification is passive, the completeness of the data is quite good (94%), and the timeliness don’t exceed 71%. The quality of the data is acceptable (91% agreement). The systematic and rapid performance of lumbar punctures increases the diagnostic capabilities of the system. The local response actions are effected in 100%. Conclusion: The improvement of this surveillance system depends on strengthening the staff skills in diagnostic, reviewing surveillance tools, and encouraging judicious use of the data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaluation" title="evaluation">evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=meningitis" title=" meningitis"> meningitis</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a>, <a href="https://publications.waset.org/abstracts/search?q=taza" title=" taza"> taza</a>, <a href="https://publications.waset.org/abstracts/search?q=morocco" title=" morocco"> morocco</a> </p> <a href="https://publications.waset.org/abstracts/144392/description-and-evaluation-of-the-epidemiological-surveillance-system-for-meningitis-in-the-province-of-taza-between-2016-and-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">972</span> Study on Inverse Solution from Remote Displacements to Reservoir Process during Flow Injection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumei%20Cai">Sumei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li"> Hong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Either during water or gas injection into reservoir, in order to understand the areal flow pressure distribution underground, associated bounding deformation is prevalently monitored by ground or downhole tiltmeters. In this paper, an inverse solution to elastic response of far field displacements induced by reservoir pressure change due to flow injection was studied. Furthermore, the fundamental theory on inverse solution to elastic problem as well as its spatial smoothing approach is presented. Taking advantage of source code development based on Boundary Element Method, numerical analysis on the monitoring data of ground surface displacements to further understand the behavior of reservoir process was developed. Numerical examples were also conducted to verify the effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20displacement" title="remote displacement">remote displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title=" boundary element method"> boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=BEM" title=" BEM"> BEM</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20process" title=" reservoir process"> reservoir process</a> </p> <a href="https://publications.waset.org/abstracts/99769/study-on-inverse-solution-from-remote-displacements-to-reservoir-process-during-flow-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">971</span> Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odai%20Ibrahim%20Mohammed%20Al%20Balasmeh">Odai Ibrahim Mohammed Al Balasmeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Karmaker"> Tapas Karmaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa%20Babbar"> Richa Babbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20data" title="satellite data">satellite data</a>, <a href="https://publications.waset.org/abstracts/search?q=normalize%20differences%20vegetation%20index" title=" normalize differences vegetation index"> normalize differences vegetation index</a>, <a href="https://publications.waset.org/abstracts/search?q=NDVI" title=" NDVI"> NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=normalize%20differences%20water%20index" title=" normalize differences water index"> normalize differences water index</a>, <a href="https://publications.waset.org/abstracts/search?q=NDWI" title=" NDWI"> NDWI</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20capacity" title=" reservoir capacity"> reservoir capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=t-test%20hypothesis" title=" t-test hypothesis"> t-test hypothesis</a> </p> <a href="https://publications.waset.org/abstracts/125321/estimation-of-reservoir-capacity-and-sediment-deposition-using-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">970</span> An Assessment of Bathymetric Changes in the Lower Usuma Reservoir, Abuja, Nigera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20Dada%20Abu">Rayleigh Dada Abu</a>, <a href="https://publications.waset.org/abstracts/search?q=Halilu%20Ahmad%20Shaba"> Halilu Ahmad Shaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Siltation is a serious problem that affects public water supply infrastructures such as dams and reservoirs. It is a major problem which threatens the performance and sustainability of dams and reservoirs. It reduces the dam capacity for flood control, potable water supply, changes water stage, reduces water quality and recreational benefits. The focus of this study is the Lower Usuma reservoir. At completion the reservoir had a gross storage capacity of 100 × 106 m3 (100 million cubic metres), a maximum operational level of 587.440 m a.s.l., with a maximum depth of 49 m and a catchment area of 241 km2 at dam site with a daily designed production capacity of 10,000 cubic metres per hour. The reservoir is 1,300 m long and feeds the treatment plant mainly by gravity. The reservoir became operational in 1986 and no survey has been conducted to determine its current storage capacity and rate of siltation. Hydrographic survey of the reservoir by integrated acoustic echo-sounding technique was conducted in November 2012 to determine the level and rate of siltation. The result obtained shows that the reservoir has lost 12.0 meters depth to siltation in 26 years of its operation; indicating 24.5% loss in installed storage capacity. The present bathymetric survey provides baseline information for future work on siltation depth and annual rates of storage capacity loss for the Lower Usuma reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title="sedimentation">sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20Usuma%20reservoir" title=" lower Usuma reservoir"> lower Usuma reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20echo%20sounder" title=" acoustic echo sounder"> acoustic echo sounder</a>, <a href="https://publications.waset.org/abstracts/search?q=bathymetric%20survey" title=" bathymetric survey "> bathymetric survey </a> </p> <a href="https://publications.waset.org/abstracts/18965/an-assessment-of-bathymetric-changes-in-the-lower-usuma-reservoir-abuja-nigera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">969</span> Syndromic Surveillance Framework Using Tweets Data Analytics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Ming%20Liu">David Ming Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Hirsch"> Benjamin Hirsch</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Aden"> Bashir Aden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syndromic%20surveillance" title="Syndromic surveillance">Syndromic surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=Tweets" title=" Tweets"> Tweets</a>, <a href="https://publications.waset.org/abstracts/search?q=Machine%20Learning" title=" Machine Learning"> Machine Learning</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=Latent%20Dirichlet%20allocation%20%28LDA%29" title=" Latent Dirichlet allocation (LDA)"> Latent Dirichlet allocation (LDA)</a>, <a href="https://publications.waset.org/abstracts/search?q=Influenza" title=" Influenza"> Influenza</a> </p> <a href="https://publications.waset.org/abstracts/120850/syndromic-surveillance-framework-using-tweets-data-analytics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">968</span> An Approach to Correlate the Statistical-Based Lorenz Method, as a Way of Measuring Heterogeneity, with Kozeny-Carman Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Khanfari">H. Khanfari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Johari%20Fard"> M. Johari Fard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dealing with carbonate reservoirs can be mind-boggling for the reservoir engineers due to various digenetic processes that cause a variety of properties through the reservoir. A good estimation of the reservoir heterogeneity which is defined as the quality of variation in rock properties with location in a reservoir or formation, can better help modeling the reservoir and thus can offer better understanding of the behavior of that reservoir. Most of reservoirs are heterogeneous formations whose mineralogy, organic content, natural fractures, and other properties vary from place to place. Over years, reservoir engineers have tried to establish methods to describe the heterogeneity, because heterogeneity is important in modeling the reservoir flow and in well testing. Geological methods are used to describe the variations in the rock properties because of the similarities of environments in which different beds have deposited in. To illustrate the heterogeneity of a reservoir vertically, two methods are generally used in petroleum work: Dykstra-Parsons permeability variations (V) and Lorenz coefficient (L) that are reviewed briefly in this paper. The concept of Lorenz is based on statistics and has been used in petroleum from that point of view. In this paper, we correlated the statistical-based Lorenz method to a petroleum concept, i.e. Kozeny-Carman equation and derived the straight line plot of Lorenz graph for a homogeneous system. Finally, we applied the two methods on a heterogeneous field in South Iran and discussed each, separately, with numbers and figures. As expected, these methods show great departure from homogeneity. Therefore, for future investment, the reservoir needs to be treated carefully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonate%20reservoirs" title="carbonate reservoirs">carbonate reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20system" title=" homogeneous system"> homogeneous system</a>, <a href="https://publications.waset.org/abstracts/search?q=Dykstra-Parsons%20permeability%20variations%20%28V%29" title=" Dykstra-Parsons permeability variations (V)"> Dykstra-Parsons permeability variations (V)</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenz%20coefficient%20%28L%29" title=" Lorenz coefficient (L)"> Lorenz coefficient (L)</a> </p> <a href="https://publications.waset.org/abstracts/75457/an-approach-to-correlate-the-statistical-based-lorenz-method-as-a-way-of-measuring-heterogeneity-with-kozeny-carman-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">967</span> Combination of Geological, Geophysical and Reservoir Engineering Analyses in Field Development: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atif%20Zafar">Atif Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Haijun"> Fan Haijun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sequence of different Reservoir Engineering methods and tools in reservoir characterization and field development are presented in this paper. The real data of Jin Gas Field of L-Basin of Pakistan is used. The basic concept behind this work is to enlighten the importance of well test analysis in a broader way (i.e. reservoir characterization and field development) unlike to just determine the permeability and skin parameters. Normally in the case of reservoir characterization we rely on well test analysis to some extent but for field development plan, the well test analysis has become a forgotten tool specifically for locations of new development wells. This paper describes the successful implementation of well test analysis in Jin Gas Field where the main uncertainties are identified during initial stage of field development when location of new development well was marked only on the basis of G&G (Geologic and Geophysical) data. The seismic interpretation could not encounter one of the boundary (fault, sub-seismic fault, heterogeneity) near the main and only producing well of Jin Gas Field whereas the results of the model from the well test analysis played a very crucial rule in order to propose the location of second well of the newly discovered field. The results from different methods of well test analysis of Jin Gas Field are also integrated with and supported by other tools of Reservoir Engineering i.e. Material Balance Method and Volumetric Method. In this way, a comprehensive way out and algorithm is obtained in order to integrate the well test analyses with Geological and Geophysical analyses for reservoir characterization and field development. On the strong basis of this working and algorithm, it was successfully evaluated that the proposed location of new development well was not justified and it must be somewhere else except South direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=field%20development%20plan" title="field development plan">field development plan</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20characterization" title=" reservoir characterization"> reservoir characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20engineering" title=" reservoir engineering"> reservoir engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20test%20analysis" title=" well test analysis"> well test analysis</a> </p> <a href="https://publications.waset.org/abstracts/56927/combination-of-geological-geophysical-and-reservoir-engineering-analyses-in-field-development-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">966</span> Determination of Inflow Performance Relationship for Naturally Fractured Reservoirs: Numerical Simulation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Ramirez">Melissa Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Awal"> Mohammad Awal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Inflow Performance Relationship (IPR) of a well is a relation between the oil production rate and flowing bottom-hole pressure. This relationship is an important tool for petroleum engineers to understand and predict the well performance. In the petroleum industry, IPR correlations are used to design and evaluate well completion, optimizing well production, and designing artificial lift. The most commonly used IPR correlations models are Vogel and Wiggins, these models are applicable to homogeneous and isotropic reservoir data. In this work, a new IPR model is developed to determine inflow performance relationship of oil wells in a naturally fracture reservoir. A 3D black-oil reservoir simulator is used to develop the oil mobility function for the studied reservoir. Based on simulation runs, four flow rates are run to record the oil saturation and calculate the relative permeability for a naturally fractured reservoir. The new method uses the result of a well test analysis along with permeability and pressure-volume-temperature data in the fluid flow equations to obtain the oil mobility function. Comparisons between the new method and two popular correlations for non-fractured reservoirs indicate the necessity for developing and using an IPR correlation specifically developed for a fractured reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflow%20performance%20relationship" title="inflow performance relationship">inflow performance relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20function" title=" mobility function"> mobility function</a>, <a href="https://publications.waset.org/abstracts/search?q=naturally%20fractured%20reservoir" title=" naturally fractured reservoir"> naturally fractured reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20test%20analysis" title=" well test analysis"> well test analysis</a> </p> <a href="https://publications.waset.org/abstracts/75212/determination-of-inflow-performance-relationship-for-naturally-fractured-reservoirs-numerical-simulation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">965</span> Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Moktader%20A.%20El%20Sayed">Abdel Moktader A. El Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahla%20A.%20El%20Sayed"> Nahla A. El Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resevoir%20sandstone" title="resevoir sandstone">resevoir sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinai" title=" Sinai"> Sinai</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/162994/reservoir-characterization-of-the-pre-cenomanian-sandstone-central-sinai-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Mutahar%20Alrassas">Ayman Mutahar Alrassas</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaoran%20Ren"> Shaoran Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Renyuan%20Ren"> Renyuan Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Vo%20Thanh"> Hung Vo Thanh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hail%20Hakimi"> Mohammed Hail Hakimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenliang%20Guan"> Zhenliang Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20storage%20capacity" title="CO₂ storage capacity">CO₂ storage capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20geological%20model" title=" 3D geological model"> 3D geological model</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20uncertainty" title=" geological uncertainty"> geological uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20oil%20reservoir" title=" unconventional oil reservoir"> unconventional oil reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20Nv32" title=" block Nv32"> block Nv32</a> </p> <a href="https://publications.waset.org/abstracts/134941/estimating-co2-storage-capacity-under-geological-uncertainty-using-3d-geological-modeling-of-unconventional-reservoir-rocks-in-block-nv32-shenvsi-oilfield-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20U.%20Dampage">E. U. Dampage</a>, <a href="https://publications.waset.org/abstracts/search?q=Ovindi%20D.%20Bandara"> Ovindi D. Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinushi%20S.%20Waraketiya"> Vinushi S. Waraketiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Samitha%20S.%20R.%20De%20Silva"> Samitha S. R. De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasiru%20S.%20Gunarathne"> Yasiru S. Gunarathne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=inflow" title=" inflow"> inflow</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title=" long short-term memory"> long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20perceptron" title=" multi-layer perceptron"> multi-layer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=MLP" title=" MLP"> MLP</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/126767/artificial-neural-network-for-forecasting-of-daily-reservoir-inflow-case-study-of-the-kotmale-reservoir-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">962</span> Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Alavi">F. S. Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mowla"> D. Mowla</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Esmaeilzadeh"> F. Esmaeilzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-condensate%20reservoir" title="gas-condensate reservoir">gas-condensate reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=case-study" title=" case-study"> case-study</a>, <a href="https://publications.waset.org/abstracts/search?q=compositional%20modelling" title=" compositional modelling"> compositional modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20condensate%20recovery" title=" enhanced condensate recovery"> enhanced condensate recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection" title=" gas injection"> gas injection</a> </p> <a href="https://publications.waset.org/abstracts/153670/evaluating-the-effects-of-gas-injection-on-enhanced-gas-condensate-recovery-and-reservoir-pressure-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">961</span> Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Kewen">Li Kewen</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Zhaoxin"> Su Zhaoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xingmou"> Wang Xingmou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Jian%20Bing"> Zhu Jian Bing </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=lithology" title=" lithology"> lithology</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20of%20reservoir" title=" prediction of reservoir"> prediction of reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20attributes" title=" seismic attributes "> seismic attributes </a> </p> <a href="https://publications.waset.org/abstracts/121343/research-on-reservoir-lithology-prediction-based-on-residual-neural-network-and-squeeze-and-excitation-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">960</span> Medical Surveillance Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jina%20K.">Jina K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kittinan%20C.%20Athitaya%20J."> Kittinan C. Athitaya J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Weerapat%20B."> Weerapat B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amornrat%20T."> Amornrat T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Waraphan%20N."> Waraphan N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Working in the exploration and production of petroleum exposed workers to various health risks, including but not limited to physical and chemical risks. Although lots of barriers have been put in place, e.g., hazard monitoring in the workplace, appropriate training on health hazards, proper personal protective equipment (PPE), the health hazard may harm the workers if the barriers are not effectively implemented. To prove the effectiveness of these barriers, it is necessary to monitor exposure by putting in place the medical surveillance program via biological monitoring of chemical hazards and physical check-ups for physical hazards. Medical surveillance management is the systematic assessment and monitoring of employees exposed or potentially exposed to occupational hazards with the goal of reducing and ultimately preventing occupational illness and injury. The paper aims to demonstrate the effectiveness of medical surveillance management in mitigating health risks associated with physical and chemical hazards in the petroleum industry by focusing on implementing programs for biological monitoring and physical examinations, including defining procedures for biological monitoring, urine sample collection, physical examinations, and result management on offshore petroleum platforms. The implementation of medical surveillance management has proven effective in monitoring worker exposure to physical and chemical hazards, leading to reduced medical expenses and the risk associated with work-related diseases significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20surveillance" title="medical surveillance">medical surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20industry" title=" petroleum industry"> petroleum industry</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20hazards" title=" occupational hazards"> occupational hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20surveillance%20process" title=" medical surveillance process"> medical surveillance process</a> </p> <a href="https://publications.waset.org/abstracts/190592/medical-surveillance-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">959</span> Failure Analysis of Khaliqabad Landslide along Mangla Reservoir Rim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Mehmood">Fatima Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Farooq"> Khalid Farooq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the Mangla dam raising in 2010, the maximum reservoir impoundment level of 378.5 m SPD (Survey of Pakistan Datum) was achieved in September 2014. The reservoir drawdown was started on September 29, 2014 and a landslide occurred on Mirpur-Kotli Road near Khaliqabad on November 27, 2014. This landslide took place due to the failure of a slope along the reservoir rim. This study was undertaken to investigate the causative factors of Khaliqabad landslide. Site visits were carried out for recording the field observations and collection of the soil samples. The soil was subjected to different laboratory tests for the determination of index and engineering properties. The shear strength tests were performed at various levels of density and degrees of saturation. These soil parameters were used in an integrated SEEP-SLOPE/W analysis to obtain the drop in factor of safety with time and reservoir drawdown. The results showed the factor of safety dropped from 1.28 to 0.85 over a period of 60 days. The ultimate reduction in the shear strength of soil due to saturation with the simultaneous removal of the stabilizing effect of reservoir caused the disturbing forces to increase, and thus failure happened. The findings of this study can serve as a guideline for the modeling of the slopes experiencing rapid drawdown scenario with the consideration of more realistic distribution of soil moisture/ properties across the slope <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20investigation" title="geotechnical investigation">geotechnical investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20drawdown" title=" reservoir drawdown"> reservoir drawdown</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/112066/failure-analysis-of-khaliqabad-landslide-along-mangla-reservoir-rim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">958</span> Influence of Water Reservoir Parameters on the Climate and Coastal Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lia%20Matchavariani">Lia Matchavariani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water reservoir construction on the rivers flowing into the sea complicates the coast protection, seashore starts to degrade causing coast erosion and disaster on the backdrop of current climate change. The instruments of the impact of a water reservoir on the climate and coastal areas are its contact surface with the atmosphere and the area irrigated with its water or humidified with infiltrated waters. The Black Sea coastline is characterized by the highest ecological vulnerability. The type and intensity of the water reservoir impact are determined by its morphometry, type of regulation, level regime, and geomorphological and geological characteristics of the adjoining area. Studies showed the impact of the water reservoir on the climate, on its comfort parameters is positive if it is located in the zone of insufficient humidity and vice versa, is negative if the water reservoir is found in the zone with abundant humidity. There are many natural and anthropogenic factors determining the peculiarities of the impact of the water reservoir on the climate, which can be assessed with maximum accuracy by the so-called “long series” method, which operates on the meteorological elements (temperature, wind, precipitations, etc.) with the long series formed with the stationary observation data. This is the time series, which consists of two periods with statistically sufficient duration. The first period covers the observations up to the formation of the water reservoir and another period covers the observations accomplished during its operation. If no such data are available, or their series is statistically short, “an analog” method is used. Such an analog water reservoir is selected based on the similarity of the environmental conditions. It must be located within the zone of the designed water reservoir, under similar environmental conditions, and besides, a sufficient number of observations accomplished in its coastal zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coast-constituent%20sediment" title="coast-constituent sediment">coast-constituent sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=eustasy" title=" eustasy"> eustasy</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters" title=" meteorological parameters"> meteorological parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=seashore%20degradation" title=" seashore degradation"> seashore degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reservoirs%20impact" title=" water reservoirs impact"> water reservoirs impact</a> </p> <a href="https://publications.waset.org/abstracts/182611/influence-of-water-reservoir-parameters-on-the-climate-and-coastal-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">957</span> Effect of Wettability Alteration in Low Salt Water Injection Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Vahdani">H. Vahdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20salt%20water%20injection" title="low salt water injection">low salt water injection</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability%20alteration" title=" wettability alteration"> wettability alteration</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a> </p> <a href="https://publications.waset.org/abstracts/33827/effect-of-wettability-alteration-in-low-salt-water-injection-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">956</span> Study on Water Level Management Criteria of Reservoir Failure Alert System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Lee">B. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20H.%20Choi"> B. H. Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The loss of safety for reservoirs brought about by climate change and facility aging leads to reservoir failures, which results in the loss of lives and property damage in downstream areas. Therefore, it is necessary to provide a reservoir failure alert system for downstream residents to detect the early signs of failure (with sensors) in real-time and perform safety management to prevent and minimize possible damage. 10 case studies were carried out to verify the water level management criteria of four levels (attention, caution, alert, serious). Peak changes in water level data were analysed. The results showed that ‘Caution’ and ‘Alert’ were closed to 33% and 66% of difference in level between flood water level and full water level. Therefore, it is adequate to use initial water level management criteria of reservoir failure alert system for the first year. Acknowledgment: This research was supported by a grant (2017-MPSS31-002) from 'Supporting Technology Development Program for Disaster Management' funded by the Ministry of the Interior and Safety(MOIS) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alert%20system" title="alert system">alert system</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20criteria" title=" management criteria"> management criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20failure" title=" reservoir failure"> reservoir failure</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/89818/study-on-water-level-management-criteria-of-reservoir-failure-alert-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reservoir%20surveillance&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>