CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;29 of 29 results for author: <span class="mathjax">Baranov, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Baranov%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Baranov, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Baranov%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Baranov, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09627">arXiv:2410.09627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09627">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Mid-Infrared Frequency Combs and Pulse Generation based on Single Section Interband Cascade Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abajyan%2C+P">Pavel Abajyan</a>, <a href="/search/physics?searchtype=author&amp;query=Chomet%2C+B">Baptiste Chomet</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz-Thomas%2C+D+A">Daniel A. Diaz-Thomas</a>, <a href="/search/physics?searchtype=author&amp;query=Saemian%2C+M">Mohammadreza Saemian</a>, <a href="/search/physics?searchtype=author&amp;query=Mi%C4%8Dica%2C+M">Martin Mi膷ica</a>, <a href="/search/physics?searchtype=author&amp;query=Mangeney%2C+J">Juliette Mangeney</a>, <a href="/search/physics?searchtype=author&amp;query=Tignon%2C+J">Jerome Tignon</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A+N">Alexei N. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Pantzas%2C+K">Konstantinos Pantzas</a>, <a href="/search/physics?searchtype=author&amp;query=Sagnes%2C+I">Isabelle Sagnes</a>, <a href="/search/physics?searchtype=author&amp;query=Sirtori%2C+C">Carlo Sirtori</a>, <a href="/search/physics?searchtype=author&amp;query=Cerutti%2C+L">Laurent Cerutti</a>, <a href="/search/physics?searchtype=author&amp;query=Dhillon%2C+S">Sukhdeep Dhillon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09627v1-abstract-short" style="display: inline;"> Interband Cascade Lasers (ICLs) are semiconductor lasers emitting in the mid-wave infrared (MWIR 3-6 渭m) and can operate as frequency combs (FCs). These demonstrations are based on double section cavities that can reduce dispersion and/or are adapted for radio-frequency operation. Here we show that ICLs FCs at long wavelengths, where the refractive index dispersion reduces, can be realized in a si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09627v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09627v1-abstract-full" style="display: none;"> Interband Cascade Lasers (ICLs) are semiconductor lasers emitting in the mid-wave infrared (MWIR 3-6 渭m) and can operate as frequency combs (FCs). These demonstrations are based on double section cavities that can reduce dispersion and/or are adapted for radio-frequency operation. Here we show that ICLs FCs at long wavelengths, where the refractive index dispersion reduces, can be realized in a single long section cavity. We show FC generation for ICLs operating at 位 ~ 4.2 渭m, demonstrating narrow electrical beatnotes over a large current range. We also reconstruct the ultrafast temporal response through a modified SWIFT spectroscopy setup with two fast MWIR detectors, which shows a frequency modulated response in free-running operation. Further, we show that, through active modelocking, the ICL can be forced to generate short pulses on the order of 3 ps. This temporal response is in agreement with Maxwell Bloch simulations, highlighting that these devices possess long dynamics (~100ps) and potentially makes them appropriate for the generation of large peak powers in the MWIR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09627v1-abstract-full').style.display = 'none'; document.getElementById('2410.09627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17573">arXiv:2312.17573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17573">pdf</a>, <a href="https://arxiv.org/format/2312.17573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The BM@N spectrometer at the NICA accelerator complex </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Afanasiev%2C+S">S. Afanasiev</a>, <a href="/search/physics?searchtype=author&amp;query=Agakishiev%2C+G">G. Agakishiev</a>, <a href="/search/physics?searchtype=author&amp;query=Aleksandrov%2C+E">E. Aleksandrov</a>, <a href="/search/physics?searchtype=author&amp;query=Aleksandrov%2C+I">I. Aleksandrov</a>, <a href="/search/physics?searchtype=author&amp;query=Alekseev%2C+P">P. Alekseev</a>, <a href="/search/physics?searchtype=author&amp;query=Alishina%2C+K">K. Alishina</a>, <a href="/search/physics?searchtype=author&amp;query=Astakhov%2C+V">V. Astakhov</a>, <a href="/search/physics?searchtype=author&amp;query=Atkin%2C+E">E. Atkin</a>, <a href="/search/physics?searchtype=author&amp;query=Aushev%2C+T">T. Aushev</a>, <a href="/search/physics?searchtype=author&amp;query=Azorskiy%2C+V">V. Azorskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Babkin%2C+V">V. Babkin</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">N. Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Barak%2C+R">R. Barak</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+D">D. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Baranova%2C+N">N. Baranova</a>, <a href="/search/physics?searchtype=author&amp;query=Barbashina%2C+N">N. Barbashina</a>, <a href="/search/physics?searchtype=author&amp;query=Baznat%2C+M">M. Baznat</a>, <a href="/search/physics?searchtype=author&amp;query=Bazylev%2C+S">S. Bazylev</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+M">M. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Blau%2C+D">D. Blau</a>, <a href="/search/physics?searchtype=author&amp;query=Bocharnikov%2C+V">V. Bocharnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bogdanova%2C+G">G. Bogdanova</a>, <a href="/search/physics?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+E">E. Bondar</a> , et al. (187 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17573v2-abstract-short" style="display: inline;"> BM@N (Baryonic Matter at Nuclotron) is the first experiment operating and taking data at the Nuclotron/NICA ion-accelerating complex.The aim of the BM@N experiment is to study interactions of relativistic heavy-ion beams with fixed targets. We present a technical description of the BM@N spectrometer including all its subsystems. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17573v2-abstract-full" style="display: none;"> BM@N (Baryonic Matter at Nuclotron) is the first experiment operating and taking data at the Nuclotron/NICA ion-accelerating complex.The aim of the BM@N experiment is to study interactions of relativistic heavy-ion beams with fixed targets. We present a technical description of the BM@N spectrometer including all its subsystems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17573v2-abstract-full').style.display = 'none'; document.getElementById('2312.17573v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 47 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16460">arXiv:2310.16460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16460">pdf</a>, <a href="https://arxiv.org/format/2310.16460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Demonstration and frequency noise characterization of a 17 $渭$m quantum cascade laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Manceau%2C+M">M Manceau</a>, <a href="/search/physics?searchtype=author&amp;query=Wall%2C+T+E">T E Wall</a>, <a href="/search/physics?searchtype=author&amp;query=Philip%2C+H">H Philip</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A+N">A N Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Tarbutt%2C+M+R">M R Tarbutt</a>, <a href="/search/physics?searchtype=author&amp;query=Teissier%2C+R">R Teissier</a>, <a href="/search/physics?searchtype=author&amp;query=Darqui%C3%A9%2C+B">B Darqui茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16460v1-abstract-short" style="display: inline;"> We describe the properties of a continuous-wave room-temperature quantum cascade laser operating at the long wavelength of 17 $渭$m. Long wavelength mid-infrared quantum cascade lasers offer new opportunities for chemical detection, vibrational spectroscopy and metrological measurements using molecular species. In particular, probing low energy vibrational transitions would be beneficial to the spe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16460v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16460v1-abstract-full" style="display: none;"> We describe the properties of a continuous-wave room-temperature quantum cascade laser operating at the long wavelength of 17 $渭$m. Long wavelength mid-infrared quantum cascade lasers offer new opportunities for chemical detection, vibrational spectroscopy and metrological measurements using molecular species. In particular, probing low energy vibrational transitions would be beneficial to the spectroscopy of large and complex molecules, reducing intramolecular vibrational energy redistribution which acts as a decoherence channel. By performing linear absorption spectroscopy of the v2 fundamental vibrational mode of N2O molecules, we have demonstrated the spectral range and spectroscopic potential of this laser, and characterized its free-running frequency noise properties. Finally, we also discuss the potential application of this specific laser in an experiment to test fundamental physics with ultra-cold molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16460v1-abstract-full').style.display = 'none'; document.getElementById('2310.16460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02424">arXiv:2210.02424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02424">pdf</a>, <a href="https://arxiv.org/format/2210.02424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Halide Perovskite Light Emitting Photodetector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Marunchenko%2C+A+A">A. A. Marunchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Kondratiev%2C+V+I">V. I. Kondratiev</a>, <a href="/search/physics?searchtype=author&amp;query=Pushkarev%2C+A+P">A. P. Pushkarev</a>, <a href="/search/physics?searchtype=author&amp;query=Khubezhov%2C+S+A">S. A. Khubezhov</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+M+A">M. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Nasibulin%2C+A+G">A. G. Nasibulin</a>, <a href="/search/physics?searchtype=author&amp;query=Makarov%2C+S+V">S. V. Makarov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02424v1-abstract-short" style="display: inline;"> Light emission and detection are the two fundamental attributes of optoelectronic communication systems. Until now, both functions have been demonstrated using the p-n diode which is exploited across a wide range of applications. However, due to the competing dynamics of carrier injection and photocarrier collection, with this device light emission and detection are realized separately by switchin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02424v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02424v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02424v1-abstract-full" style="display: none;"> Light emission and detection are the two fundamental attributes of optoelectronic communication systems. Until now, both functions have been demonstrated using the p-n diode which is exploited across a wide range of applications. However, due to the competing dynamics of carrier injection and photocarrier collection, with this device light emission and detection are realized separately by switching the direction of the applied electrical bias. Here we use mobile ions in halide perovskites to demonstrate light-emitting photodetection in either condition of applied electrical bias. Our device consists of a CsPbBr$_3$ microwire which is integrated with single-walled carbon nanotube thin film electrodes. The dual functionality stems from the modulation of an energetic barrier caused by the cooperative action of mobile ions with the photogenerated charge carriers at the perovskite-electrode interface. Furthermore, such complex charge dynamics also result in a novel effect: light-enhanced electroluminescence. The observed new optoelectronic phenomena in our simple lateral device design will expand the applications for mixed ionic-electronic conductors in multifunctional optoelectronic devices . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02424v1-abstract-full').style.display = 'none'; document.getElementById('2210.02424v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04692">arXiv:2204.04692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04692">pdf</a>, <a href="https://arxiv.org/format/2204.04692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/03/P03010">10.1088/1748-0221/17/03/P03010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Setup of Compton polarimeters for measuring entangled annihilation photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abdurashitov%2C+D">D. Abdurashitov</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Borisenko%2C+D">D. Borisenko</a>, <a href="/search/physics?searchtype=author&amp;query=Guber%2C+F">F. Guber</a>, <a href="/search/physics?searchtype=author&amp;query=Ivashkin%2C+A">A. Ivashkin</a>, <a href="/search/physics?searchtype=author&amp;query=Morozov%2C+S">S. Morozov</a>, <a href="/search/physics?searchtype=author&amp;query=Musin%2C+S">S. Musin</a>, <a href="/search/physics?searchtype=author&amp;query=Strizhak%2C+A">A. Strizhak</a>, <a href="/search/physics?searchtype=author&amp;query=Tkachev%2C+I">I. Tkachev</a>, <a href="/search/physics?searchtype=author&amp;query=Volkov%2C+V">V. Volkov</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuikov%2C+B">B. Zhuikov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04692v1-abstract-short" style="display: inline;"> An experimental setup for studying the Compton scattering of annihilation photons in various (entangled and decoherent) quantum states is presented. Two entangled $纬$-quanta with an energy of 511 keV and mutually orthogonal polarizations are produced by positron-electron annihilation in a thin aluminum plate and are emitted in opposite directions. To measure both photons, the setup provides two eq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04692v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04692v1-abstract-full" style="display: none;"> An experimental setup for studying the Compton scattering of annihilation photons in various (entangled and decoherent) quantum states is presented. Two entangled $纬$-quanta with an energy of 511 keV and mutually orthogonal polarizations are produced by positron-electron annihilation in a thin aluminum plate and are emitted in opposite directions. To measure both photons, the setup provides two equivalent arms of Compton polarimeters. A Compton polarimeter consists of a plastic scintillation scatterer and an array of NaI(Tl) detectors for measuring photons deflected at an angle of 90$^\circ$. The intermediate scatterer of the GAGG scintillator with SiPM readout is inserted into one of the arms to create a tagged decoherence process prior to the measurement of annihilation photons in polarimeters. The performance of Compton scatterers and NaI(Tl) counters is discussed. The polarization modulation factor and the analyzing power of Compton polarimeters are evaluated from the angular distributions of scattered gammas. The Compton scattering of photons in entangled and decoherent states is compared reliably for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04692v1-abstract-full').style.display = 'none'; document.getElementById('2204.04692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages with 7 PDF figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 P03010 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08970">arXiv:2202.08970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08970">pdf</a>, <a href="https://arxiv.org/format/2202.08970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/s10050-022-00750-6">10.1140/epja/s10050-022-00750-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Status and initial physics performance studies of the MPD experiment at NICA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MPD+Collaboration"> MPD Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abgaryan%2C+V">V. Abgaryan</a>, <a href="/search/physics?searchtype=author&amp;query=Kado%2C+R+A">R. Acevedo Kado</a>, <a href="/search/physics?searchtype=author&amp;query=Afanasyev%2C+S+V">S. V. Afanasyev</a>, <a href="/search/physics?searchtype=author&amp;query=Agakishiev%2C+G+N">G. N. Agakishiev</a>, <a href="/search/physics?searchtype=author&amp;query=Alpatov%2C+E">E. Alpatov</a>, <a href="/search/physics?searchtype=author&amp;query=Altsybeev%2C+G">G. Altsybeev</a>, <a href="/search/physics?searchtype=author&amp;query=Hern%C3%A1ndez%2C+M+A">M. Alvarado Hern谩ndez</a>, <a href="/search/physics?searchtype=author&amp;query=Andreeva%2C+S+V">S. V. Andreeva</a>, <a href="/search/physics?searchtype=author&amp;query=Andreeva%2C+T+V">T. V. Andreeva</a>, <a href="/search/physics?searchtype=author&amp;query=Andronov%2C+E+V">E. V. Andronov</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N+V">N. V. Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Aparin%2C+A+A">A. A. Aparin</a>, <a href="/search/physics?searchtype=author&amp;query=Astakhov%2C+V+I">V. I. Astakhov</a>, <a href="/search/physics?searchtype=author&amp;query=Atkin%2C+E">E. Atkin</a>, <a href="/search/physics?searchtype=author&amp;query=Aushev%2C+T">T. Aushev</a>, <a href="/search/physics?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/physics?searchtype=author&amp;query=Averyanov%2C+A+V">A. V. Averyanov</a>, <a href="/search/physics?searchtype=author&amp;query=Ayala%2C+A">A. Ayala</a>, <a href="/search/physics?searchtype=author&amp;query=Babkin%2C+V+A">V. A. Babkin</a>, <a href="/search/physics?searchtype=author&amp;query=Babutsidze%2C+T">T. Babutsidze</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+I+A">I. A. Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Bancer%2C+A">A. Bancer</a>, <a href="/search/physics?searchtype=author&amp;query=Barabanov%2C+M+Y">M. Yu. Barabanov</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+D+A">D. A. Baranov</a> , et al. (454 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08970v1-abstract-short" style="display: inline;"> The Nuclotron-base Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08970v1-abstract-full').style.display = 'inline'; document.getElementById('2202.08970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08970v1-abstract-full" style="display: none;"> The Nuclotron-base Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document provides an overview of the landscape of the investigation of the QCD phase diagram in the region of maximum baryonic density, where NICA and MPD will be able to provide significant and unique input. It also provides a detailed description of the MPD set-up, including its various subsystems as well as its support and computing infrastructures. Selected performance studies for particular physics measurements at MPD are presented and discussed in the context of existing data and theoretical expectations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08970v1-abstract-full').style.display = 'none'; document.getElementById('2202.08970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 68 figures, submitted as a Review article to EPJA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A 58, 140 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13658">arXiv:2106.13658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13658">pdf</a>, <a href="https://arxiv.org/format/2106.13658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JLT.2021.3134837">10.1109/JLT.2021.3134837 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of long turn-on delay in pulsed quantum cascade lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cherotchenko%2C+E+D">E. D. Cherotchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Dudelev%2C+V+V">V. V. Dudelev</a>, <a href="/search/physics?searchtype=author&amp;query=Mikhailov%2C+D+A">D. A. Mikhailov</a>, <a href="/search/physics?searchtype=author&amp;query=Losev%2C+S+N">S. N. Losev</a>, <a href="/search/physics?searchtype=author&amp;query=Babichev%2C+A+V">A. V. Babichev</a>, <a href="/search/physics?searchtype=author&amp;query=Gladyshev%2C+A+G">A. G. Gladyshev</a>, <a href="/search/physics?searchtype=author&amp;query=Novikov%2C+I+I">I. I. Novikov</a>, <a href="/search/physics?searchtype=author&amp;query=Lutetskiy%2C+A+V">A. V. Lutetskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Veselov%2C+D+A">D. A. Veselov</a>, <a href="/search/physics?searchtype=author&amp;query=Slipchenko%2C+S+O">S. O. Slipchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Pikhtin%2C+N+A">N. A. Pikhtin</a>, <a href="/search/physics?searchtype=author&amp;query=Karachinsky%2C+L+Y">L. Ya. Karachinsky</a>, <a href="/search/physics?searchtype=author&amp;query=Denisov%2C+D+V">D. V. Denisov</a>, <a href="/search/physics?searchtype=author&amp;query=Kuchinskii%2C+V+I">V. I. Kuchinskii</a>, <a href="/search/physics?searchtype=author&amp;query=Kognovitskaya%2C+E+A">E. A. Kognovitskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Egorov%2C+A+Y">A. Yu. Egorov</a>, <a href="/search/physics?searchtype=author&amp;query=Teissier%2C+R">R. Teissier</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A+N">A. N. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Sokolovskii%2C+G+S">G. S. Sokolovskii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13658v2-abstract-short" style="display: inline;"> We present an experimental study of the turn-on delay in pulsed mid-infrared quantum cascade lasers. We report the unexpectedly long delay time depending on the pumping current, which does not agree with conventional theoretical predictions for step-like excitation. Similar behavior has been observed in InP- and InAs-based QCLs emitting near 8$渭$m. Numerical simulations performed using a model bas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13658v2-abstract-full').style.display = 'inline'; document.getElementById('2106.13658v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13658v2-abstract-full" style="display: none;"> We present an experimental study of the turn-on delay in pulsed mid-infrared quantum cascade lasers. We report the unexpectedly long delay time depending on the pumping current, which does not agree with conventional theoretical predictions for step-like excitation. Similar behavior has been observed in InP- and InAs-based QCLs emitting near 8$渭$m. Numerical simulations performed using a model based on rate equations for excitation by current pulses with non-zero rise time provide fair agreement with our observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13658v2-abstract-full').style.display = 'none'; document.getElementById('2106.13658v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06930">arXiv:2104.06930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.06930">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.455191">10.1364/OL.455191 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical power detector with broad spectral coverage, high detectivity and large dynamic range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rossi%2C+J">Jussi Rossi</a>, <a href="/search/physics?searchtype=author&amp;query=Uotila%2C+J">Juho Uotila</a>, <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+S">Sucheta Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Hieta%2C+T">Tuomas Hieta</a>, <a href="/search/physics?searchtype=author&amp;query=Laurila%2C+T">Toni Laurila</a>, <a href="/search/physics?searchtype=author&amp;query=Teissier%2C+R">Roland Teissier</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">Alexei Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Ikonen%2C+E">Erkki Ikonen</a>, <a href="/search/physics?searchtype=author&amp;query=Vainio%2C+M">Markku Vainio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06930v1-abstract-short" style="display: inline;"> Optical power measurements are needed in practically all technologies based on light. Here we report a general-purpose optical power detector based on the photoacoustic effect. Optical power incident on the detector&#39;s black absorber produces an acoustic signal, which is further converted into an electrical signal using a silicon-cantilever pressure transducer. We demonstrate an exceptionally large&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06930v1-abstract-full').style.display = 'inline'; document.getElementById('2104.06930v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06930v1-abstract-full" style="display: none;"> Optical power measurements are needed in practically all technologies based on light. Here we report a general-purpose optical power detector based on the photoacoustic effect. Optical power incident on the detector&#39;s black absorber produces an acoustic signal, which is further converted into an electrical signal using a silicon-cantilever pressure transducer. We demonstrate an exceptionally large spectral coverage from ultraviolet to far infrared, with the possibility for further extension to the terahertz region. The linear dynamic range of the detector reaches 80 dB, ranging from a noise-equivalent power of 6 nW to 600 mW. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06930v1-abstract-full').style.display = 'none'; document.getElementById('2104.06930v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.03240">arXiv:2104.03240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.03240">pdf</a>, <a href="https://arxiv.org/format/2104.03240">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.24.044002">10.1103/PhysRevAccelBeams.24.044002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Albahri%2C+T">T. Albahri</a>, <a href="/search/physics?searchtype=author&amp;query=Anastasi%2C+A">A. Anastasi</a>, <a href="/search/physics?searchtype=author&amp;query=Badgley%2C+K">K. Badgley</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%C3%9Fler%2C+S">S. Bae脽ler</a>, <a href="/search/physics?searchtype=author&amp;query=Bailey%2C+I">I. Bailey</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+V+A">V. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Barlas-Yucel%2C+E">E. Barlas-Yucel</a>, <a href="/search/physics?searchtype=author&amp;query=Barrett%2C+T">T. Barrett</a>, <a href="/search/physics?searchtype=author&amp;query=Bedeschi%2C+F">F. Bedeschi</a>, <a href="/search/physics?searchtype=author&amp;query=Berz%2C+M">M. Berz</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Binney%2C+H+P">H. P. Binney</a>, <a href="/search/physics?searchtype=author&amp;query=Bloom%2C+P">P. Bloom</a>, <a href="/search/physics?searchtype=author&amp;query=Bono%2C+J">J. Bono</a>, <a href="/search/physics?searchtype=author&amp;query=Bottalico%2C+E">E. Bottalico</a>, <a href="/search/physics?searchtype=author&amp;query=Bowcock%2C+T">T. Bowcock</a>, <a href="/search/physics?searchtype=author&amp;query=Cantatore%2C+G">G. Cantatore</a>, <a href="/search/physics?searchtype=author&amp;query=Carey%2C+R+M">R. M. Carey</a>, <a href="/search/physics?searchtype=author&amp;query=Casey%2C+B+C+K">B. C. K. Casey</a>, <a href="/search/physics?searchtype=author&amp;query=Cauz%2C+D">D. Cauz</a>, <a href="/search/physics?searchtype=author&amp;query=Chakraborty%2C+R">R. Chakraborty</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+S+P">S. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chapelain%2C+A">A. Chapelain</a>, <a href="/search/physics?searchtype=author&amp;query=Charity%2C+S">S. Charity</a>, <a href="/search/physics?searchtype=author&amp;query=Chislett%2C+R">R. Chislett</a> , et al. (152 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.03240v2-abstract-short" style="display: inline;"> This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency $蠅_a^m$ are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is fe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03240v2-abstract-full').style.display = 'inline'; document.getElementById('2104.03240v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.03240v2-abstract-full" style="display: none;"> This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency $蠅_a^m$ are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to $蠅_a^m$ is 0.50 $\pm$ 0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of $蠅_a^m$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03240v2-abstract-full').style.display = 'none'; document.getElementById('2104.03240v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 29 figures. Accepted by Phys. Rev. Accel. Beams</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-133-E </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 24, 044002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12266">arXiv:2012.12266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.12266">pdf</a>, <a href="https://arxiv.org/format/2012.12266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165460">10.1016/j.nima.2021.165460 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beam particle tracking with a low-mass mini time projection chamber in the PEN experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Glaser%2C+C+J">C. J. Glaser</a>, <a href="/search/physics?searchtype=author&amp;query=Pocanic%2C+D">D. Pocanic</a>, <a href="/search/physics?searchtype=author&amp;query=van+der+Schaaf%2C+A">A. van der Schaaf</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+V+A">V. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Khomutov%2C+N+V">N. V. Khomutov</a>, <a href="/search/physics?searchtype=author&amp;query=Kravchuk%2C+N+P">N. P. Kravchuk</a>, <a href="/search/physics?searchtype=author&amp;query=Kuchinsky%2C+N+A">N. A. Kuchinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12266v2-abstract-short" style="display: inline;"> The international PEN collaboration aims to obtain the branching ratio for the pion electronic decay $蟺^+ \to e^+谓_e(纬)$, aka $蟺_{e2}$, to a relative precision of $5\times 10^{-4}$ or better. The PEN apparatus comprises a number of detection systems, all contributing vital information to the PEN event reconstruction. This paper discusses the design, performance, and Monte Carlo simulation of the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12266v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12266v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12266v2-abstract-full" style="display: none;"> The international PEN collaboration aims to obtain the branching ratio for the pion electronic decay $蟺^+ \to e^+谓_e(纬)$, aka $蟺_{e2}$, to a relative precision of $5\times 10^{-4}$ or better. The PEN apparatus comprises a number of detection systems, all contributing vital information to the PEN event reconstruction. This paper discusses the design, performance, and Monte Carlo simulation of the mini time projection chamber (mTPC) used for pion, muon, and positron beam particle tracking. We also review the use of the extracted trajectory coordinates in the analysis, in particular in constructing observables critical for discriminating background processes, and in maximizing the fiducial volume of the target in which decay event vertices can be accepted for branching ratio extraction without introducing bias. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12266v2-abstract-full').style.display = 'none'; document.getElementById('2012.12266v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08303">arXiv:2012.08303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08303">pdf</a>, <a href="https://arxiv.org/ps/2012.08303">ps</a>, <a href="https://arxiv.org/format/2012.08303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1134/S0202289318040059">10.1134/S0202289318040059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Open Universe Models as Analogs of Multidimensional Electric Capacitors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A+M">A. M. Baranov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08303v1-abstract-short" style="display: inline;"> A new approach to obtaining open Universes models as exact solutions of gravitational equations is considered. The proposed method is based on an analogy between electrostatics of conductors and open cosmological models which have a conformally-flat 4-metric in the Fock form. These cosmological models are solutions of the Einstein equations with the energy-momentum tensor of a Pascal perfect fluid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08303v1-abstract-full').style.display = 'inline'; document.getElementById('2012.08303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08303v1-abstract-full" style="display: none;"> A new approach to obtaining open Universes models as exact solutions of gravitational equations is considered. The proposed method is based on an analogy between electrostatics of conductors and open cosmological models which have a conformally-flat 4-metric in the Fock form. These cosmological models are solutions of the Einstein equations with the energy-momentum tensor of a Pascal perfect fluid. As a result, it is shown that the capacity of the multidimensional &#34;ball&#34; electric capacitor in multidimensional Euclidean auxiliary space is connected with harmonic functions by which the potentials of multidimensional capacitors are described. In turn, the conformal factor of the metric describing an open universe model in the Fock representation is a power function of this potential for each dimensionality of the Euclidean space. In particular, for 3D auxiliary Euclidean space in 4D space-time, there is the Friedman solution for an open universe filled with incoherent dust (with flat metric at spatial infinity). Further for 4D Euclidean space, we have an analogue of the open cosmological model with the equation of state of an ultra-relativistic gas. Other cases are listed in a table. A table of the matter states which generalizes this approach to multidimensional space-times is also constructed. Thus, the possibility of replacing the modelling problem in cosmology with the equivalent electrostatic problem for finding the capacity of capacitors is shown under specified boundary conditions. Exceptions from the general approach are also presented in the article. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08303v1-abstract-full').style.display = 'none'; document.getElementById('2012.08303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 columns, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Gravitation and Cosmology, Vol.24, No.4, 344-349 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01568">arXiv:2012.01568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01568">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Photoacoustic characteristics of carbon-based infrared absorbers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rossi%2C+J">Jussi Rossi</a>, <a href="/search/physics?searchtype=author&amp;query=Uotila%2C+J">Juho Uotila</a>, <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+S">Sucheta Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Laurila%2C+T">Toni Laurila</a>, <a href="/search/physics?searchtype=author&amp;query=Teissier%2C+R">Roland Teissier</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">Alexei Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Ikonen%2C+E">Erkki Ikonen</a>, <a href="/search/physics?searchtype=author&amp;query=Vainio%2C+M">Markku Vainio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01568v1-abstract-short" style="display: inline;"> We present an experimental comparison of photoacoustic responsivities of common highly absorbing carbon-based materials. The comparison was carried out with parameters relevant for photoacoustic power detectors and Fourier-transform infrared (FTIR) spectroscopy: we covered a broad wavelength range from the visible red to far infrared (633 nm to 25 um) and the regime of low acoustic frequencies (&lt;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01568v1-abstract-full').style.display = 'inline'; document.getElementById('2012.01568v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01568v1-abstract-full" style="display: none;"> We present an experimental comparison of photoacoustic responsivities of common highly absorbing carbon-based materials. The comparison was carried out with parameters relevant for photoacoustic power detectors and Fourier-transform infrared (FTIR) spectroscopy: we covered a broad wavelength range from the visible red to far infrared (633 nm to 25 um) and the regime of low acoustic frequencies (&lt; 1 kHz). The investigated materials include a candle soot-based coating, a black paint coating and two different carbon nanotube coatings. Of these, the low-cost soot absorber produced clearly the highest photoacoustic response over the entire measurement range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01568v1-abstract-full').style.display = 'none'; document.getElementById('2012.01568v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.08722">arXiv:2002.08722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.08722">pdf</a>, <a href="https://arxiv.org/format/2002.08722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> SND@LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=SHiP+Collaboration"> SHiP Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">C. Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Akmete%2C+A">A. Akmete</a>, <a href="/search/physics?searchtype=author&amp;query=Albanese%2C+R">R. Albanese</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandrov%2C+A">A. Alexandrov</a>, <a href="/search/physics?searchtype=author&amp;query=Andreini%2C+M">M. Andreini</a>, <a href="/search/physics?searchtype=author&amp;query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Arduini%2C+G">G. Arduini</a>, <a href="/search/physics?searchtype=author&amp;query=Atkin%2C+E">E. Atkin</a>, <a href="/search/physics?searchtype=author&amp;query=Azorskiy%2C+N">N. Azorskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J+J">J. J. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Bagulya%2C+A">A. Bagulya</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+F+B+D">F. Baaltasar Dos Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Bardou%2C+F">F. Bardou</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Battistin%2C+M">M. Battistin</a>, <a href="/search/physics?searchtype=author&amp;query=Bauche%2C+J">J. Bauche</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+A">A. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&amp;query=Bencivenni%2C+G">G. Bencivenni</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+A+Y">A. Y. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+Y+A">Y. A. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a> , et al. (319 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.08722v1-abstract-short" style="display: inline;"> We propose to build and operate a detector that, for the first time, will measure the process $pp\to谓X$ at the LHC and search for feebly interacting particles (FIPs) in an unexplored domain. The TI18 tunnel has been identified as a suitable site to perform these measurements due to very low machine-induced background. The detector will be off-axis with respect to the ATLAS interaction point (IP1)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08722v1-abstract-full').style.display = 'inline'; document.getElementById('2002.08722v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.08722v1-abstract-full" style="display: none;"> We propose to build and operate a detector that, for the first time, will measure the process $pp\to谓X$ at the LHC and search for feebly interacting particles (FIPs) in an unexplored domain. The TI18 tunnel has been identified as a suitable site to perform these measurements due to very low machine-induced background. The detector will be off-axis with respect to the ATLAS interaction point (IP1) and, given the pseudo-rapidity range accessible, the corresponding neutrinos will mostly come from charm decays: the proposed experiment will thus make the first test of the heavy flavour production in a pseudo-rapidity range that is not accessible by the current LHC detectors. In order to efficiently reconstruct neutrino interactions and identify their flavour, the detector will combine in the target region nuclear emulsion technology with scintillating fibre tracking layers and it will adopt a muon identification system based on scintillating bars that will also play the role of a hadronic calorimeter. The time of flight measurement will be achieved thanks to a dedicated timing detector. The detector will be a small-scale prototype of the scattering and neutrino detector (SND) of the SHiP experiment: the operation of this detector will provide an important test of the neutrino reconstruction in a high occupancy environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08722v1-abstract-full').style.display = 'none'; document.getElementById('2002.08722v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Letter of Intent</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-LHCC-2020-002, LHCC-I-035 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.12285">arXiv:1910.12285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.12285">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dipolar cation accumulation at interfaces of perovskite light emitting solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gets%2C+D">Dmitry Gets</a>, <a href="/search/physics?searchtype=author&amp;query=Verkhogliadov%2C+G">Grigorii Verkhogliadov</a>, <a href="/search/physics?searchtype=author&amp;query=Danilovskiy%2C+E">Eduard Danilovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">Artem Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Makarov%2C+S">Sergey Makarov</a>, <a href="/search/physics?searchtype=author&amp;query=Zakhidov%2C+A">Anvar Zakhidov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.12285v1-abstract-short" style="display: inline;"> Ionic migration in organo-halide perovskites plays an important role in operation of perovskite based solar cells and light emitting diodes. Despite the ionic migration being a reversible process, it often leads to worsening of perovskite based device performance, hysteresis in current-voltage characteristics, and phase segregation in mixed halide perovskites being as the most harmful effect. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.12285v1-abstract-full').style.display = 'inline'; document.getElementById('1910.12285v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.12285v1-abstract-full" style="display: none;"> Ionic migration in organo-halide perovskites plays an important role in operation of perovskite based solar cells and light emitting diodes. Despite the ionic migration being a reversible process, it often leads to worsening of perovskite based device performance, hysteresis in current-voltage characteristics, and phase segregation in mixed halide perovskites being as the most harmful effect. The reason is in dynamical band structure changes, which controllable engineering would solve one of the biggest challenges for development of light-emitting solar cells. Here we demonstrate controllable band bending due to migration of both cation and anion ions in mixed halide perovskite devices. The band structure rearrangement is demonstrated in light emitting solar cells based on the perovskite with organic cations methylammonium (MA+) and formamidinium (FA+), possessing non-zero dipole momentum of 2.29 and 0.21 Debye, respectively, and with PEDOT:PSS and C60 transport layers having a high barrier of 0.8 eV for charge injection. Under applied external voltage MA+ and FA+ cations move towards the electron transport layer and form a dipole layer at the perovskite/electron transport interface, which lowers threshold voltage for electroluminescence down to 1.7 V for MAPbBr2I and 2.6 V for FAPbBr2I, whereas monohalide perovskite MAPbBr3 does not demonstrate such behavior. This ability to in-situ change the device band structure paves the way developing of dual-functional devices based on simple design. It also makes mixed halide perovskites more flexible than mono halides ones for developing different optoelectronic devices without the use of special types of work function modifying transport materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.12285v1-abstract-full').style.display = 'none'; document.getElementById('1910.12285v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04483">arXiv:1905.04483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.04483">pdf</a>, <a href="https://arxiv.org/format/1905.04483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1134/S0021364019130010">10.1134/S0021364019130010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing Low-Radiative Modes of Nanoresonators with Internal Raman Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baryshnikova%2C+K+V">K. V. Baryshnikova</a>, <a href="/search/physics?searchtype=author&amp;query=Frizyuk%2C+K">K. Frizyuk</a>, <a href="/search/physics?searchtype=author&amp;query=Zograf%2C+G">G. Zograf</a>, <a href="/search/physics?searchtype=author&amp;query=Makarov%2C+S">S. Makarov</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+M+A">M. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Zuev%2C+D">D. Zuev</a>, <a href="/search/physics?searchtype=author&amp;query=Milichko%2C+V+A">V. A. Milichko</a>, <a href="/search/physics?searchtype=author&amp;query=Mukhin%2C+I">I. Mukhin</a>, <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+M">M. Petrov</a>, <a href="/search/physics?searchtype=author&amp;query=Evlyukhin%2C+A+B">A. B. Evlyukhin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04483v1-abstract-short" style="display: inline;"> Revealing hidden non-radiative (dark) of resonant nanostructures using optical methods such as dark-field spectroscopy often becomes a sophisticated problem due to a weak coupling of these modes with a far-field radiation, whereas methods of dark-modes spectroscopy, e.g. cathodoluminescence or elastic energy losses, are not always convenient in use. Here, we suggest an approach for experimental de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04483v1-abstract-full').style.display = 'inline'; document.getElementById('1905.04483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04483v1-abstract-full" style="display: none;"> Revealing hidden non-radiative (dark) of resonant nanostructures using optical methods such as dark-field spectroscopy often becomes a sophisticated problem due to a weak coupling of these modes with a far-field radiation, whereas methods of dark-modes spectroscopy, e.g. cathodoluminescence or elastic energy losses, are not always convenient in use. Here, we suggest an approach for experimental determining the mode structure of a nanoresonator basing on utilizing intrinsic incoherent Raman scattering. We theoretically predict the efficiency of this approach and realize it experimentally for silicon nanoparticle resonators possessing strong Raman line at 520 cm^-1. With this method, we studied a silicon nanoparticle placed on a gold substrate and reveal the spectral position of a low-radiative magnetic quadrupole mode which is hardly observable with common dark-field optical spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04483v1-abstract-full').style.display = 'none'; document.getElementById('1905.04483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.06462">arXiv:1904.06462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.06462">pdf</a>, <a href="https://arxiv.org/format/1904.06462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Broadband plasmonic nanoparticles: fabrication, optical properties, and implications in liquid light chemiluminescence enhancement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dadadzhanov%2C+D+R">Daler R. Dadadzhanov</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyan%2C+T+A">Tigran A. Vartanyan</a>, <a href="/search/physics?searchtype=author&amp;query=Parfenov%2C+P+S">Peter S. Parfenov</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+M+A">Mikhail A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Karabchevsky%2C+A">Alina Karabchevsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.06462v1-abstract-short" style="display: inline;"> Chemiphores are entities, which exhibit wide-band light emission without any external light source but just due to the chemical reaction resulting in the chemiluminescence effect. Since the chemiphores usually have low quantum efficiency, chemiluminescence is a weak optical effect. We found that plasmonic nanoparticles can efficiently enhance the peculiar effect of chemiluminescence due to the acc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06462v1-abstract-full').style.display = 'inline'; document.getElementById('1904.06462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.06462v1-abstract-full" style="display: none;"> Chemiphores are entities, which exhibit wide-band light emission without any external light source but just due to the chemical reaction resulting in the chemiluminescence effect. Since the chemiphores usually have low quantum efficiency, chemiluminescence is a weak optical effect. We found that plasmonic nanoparticles can efficiently enhance the peculiar effect of chemiluminescence due to the acceleration of the radiative decay of the chemiphore excited state which, in turn, enlarges the chemiluminescence yield. Correspondingly, plasmonic nanoparticles are nanoparticles with sub-wavelength sizes experiencing the absorption band in specific wavelength which are characterized by unique optical properties, as well as high localization of electromagnetic radiation. However, the broadband properties of plasmonic nanoparticles and their implications in liquid light, the chemiluminescence effect, is overlooked. Therefore, they can attract attention as novel materials for photonics, sensing, and forensic science. Here, fabrication techniques of broadband plasmonic nanoparticles are reported, and their interesting optical properties together with their applications in chemiluminescence effect are discussed, as well. We fabricated the nanoparticles with laser ablation in liquids (LAL) technique and propose the physical vapor deposition (PVD) synthesis with annealing-assisted treatment for further studies. Both techniques are accessible and allow production of ensembles of nanoparticles having shape and size distributions to exhibit broad plasmonic resonance which fit the wide-band emission of a chemiphore. Our results, in particular, a specific design for plasmonic nanoparticles placed on the dielectric material, lead the way toward a new generation of chemiluminescence-based devices starting from sensing, healthcare, biomedical research and quantum systems such as pump-free laser sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06462v1-abstract-full').style.display = 'none'; document.getElementById('1904.06462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.03749">arXiv:1902.03749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.03749">pdf</a>, <a href="https://arxiv.org/ps/1902.03749">ps</a>, <a href="https://arxiv.org/format/1902.03749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.99.022410">10.1103/PhysRevE.99.022410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuation-induced free energy of thin peptide films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+M+A">M. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Klimchitskaya%2C+G+L">G. L. Klimchitskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Mostepanenko%2C+V+M">V. M. Mostepanenko</a>, <a href="/search/physics?searchtype=author&amp;query=Velichko%2C+E+N">E. N. Velichko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.03749v1-abstract-short" style="display: inline;"> We apply the Lifshitz theory of dispersion forces to find a contribution to the free energy of peptide films which is caused by the zero-point and thermal fluctuations of the electromagnetic field. For this purpose, using available information about the imaginary parts of dielectric permittivity of peptides, the analytic representation for permittivity of typical peptide along the imaginary freque&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.03749v1-abstract-full').style.display = 'inline'; document.getElementById('1902.03749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.03749v1-abstract-full" style="display: none;"> We apply the Lifshitz theory of dispersion forces to find a contribution to the free energy of peptide films which is caused by the zero-point and thermal fluctuations of the electromagnetic field. For this purpose, using available information about the imaginary parts of dielectric permittivity of peptides, the analytic representation for permittivity of typical peptide along the imaginary frequency axis is devised. Numerical computations of the fluctuation-induced free energy are performed at room temperature for the freestanding peptide films, containing different fractions of water, and for similar films deposited on dielectric (SiO$_2$) and metal (Au) substrates. It is shown that the free energy of a freestanding peptide film is negative and, thus, contributes to its stability. The magnitude of the free energy increases with increasing fraction of water and decreases with increasing thickness of a film. For peptide films deposited on a dielectric substrate the free energy is nonmonotonous. It is negative for thicker than 100 nm films, reaches the maximum value at some film thickness, but vanishes and changes its sign for thinner than 100 nm films. The fluctuation-induced free energy of peptide films deposited on metallic substrate is found to be positive which makes films less stable. In all three cases, simple analytic expressions for the free energy of sufficiently thick films are found. The obtained results may be useful to attain film stability in the next generation of organic microdevices with further shrinked dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.03749v1-abstract-full').style.display = 'none'; document.getElementById('1902.03749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, 1 table; accepted for publication in Phys. Rev. E</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E, v.99, 022410 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.10790">arXiv:1812.10790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.10790">pdf</a>, <a href="https://arxiv.org/format/1812.10790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/04/P04013">10.1088/1748-0221/14/04/P04013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and performance of the LHCb trigger and full real-time reconstruction in Run 2 of the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/physics?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Albero%2C+A+A">A. Alfonso Albero</a>, <a href="/search/physics?searchtype=author&amp;query=Amerio%2C+S">S. Amerio</a>, <a href="/search/physics?searchtype=author&amp;query=Anderlini%2C+L">L. Anderlini</a>, <a href="/search/physics?searchtype=author&amp;query=d%27Argent%2C+P">P. d&#39;Argent</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Barter%2C+W">W. Barter</a>, <a href="/search/physics?searchtype=author&amp;query=Benson%2C+S">S. Benson</a>, <a href="/search/physics?searchtype=author&amp;query=Bobulska%2C+D">D. Bobulska</a>, <a href="/search/physics?searchtype=author&amp;query=Boettcher%2C+T">T. Boettcher</a>, <a href="/search/physics?searchtype=author&amp;query=Borghi%2C+S">S. Borghi</a>, <a href="/search/physics?searchtype=author&amp;query=Bowen%2C+E+E">E. E. Bowen</a>, <a href="/search/physics?searchtype=author&amp;query=Brarda%2C+L">L. Brarda</a>, <a href="/search/physics?searchtype=author&amp;query=Burr%2C+C">C. Burr</a>, <a href="/search/physics?searchtype=author&amp;query=Cachemiche%2C+J+-">J. -P. Cachemiche</a>, <a href="/search/physics?searchtype=author&amp;query=Gomez%2C+M+C">M. Calvo Gomez</a>, <a href="/search/physics?searchtype=author&amp;query=Cattaneo%2C+M">M. Cattaneo</a>, <a href="/search/physics?searchtype=author&amp;query=Chanal%2C+H">H. Chanal</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+M">M. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Chebbi%2C+M">M. Chebbi</a>, <a href="/search/physics?searchtype=author&amp;query=Chefdeville%2C+M">M. Chefdeville</a>, <a href="/search/physics?searchtype=author&amp;query=Ciambrone%2C+P">P. Ciambrone</a> , et al. (116 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.10790v2-abstract-short" style="display: inline;"> The LHCb collaboration has redesigned its trigger to enable the full offline detector reconstruction to be performed in real time. Together with the real-time alignment and calibration of the detector, and a software infrastructure to make persistent the high-level physics objects produced during real-time processing, this redesign enabled the widespread deployment of real-time analysis during Run&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.10790v2-abstract-full').style.display = 'inline'; document.getElementById('1812.10790v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.10790v2-abstract-full" style="display: none;"> The LHCb collaboration has redesigned its trigger to enable the full offline detector reconstruction to be performed in real time. Together with the real-time alignment and calibration of the detector, and a software infrastructure to make persistent the high-level physics objects produced during real-time processing, this redesign enabled the widespread deployment of real-time analysis during Run 2. We describe the design of the Run 2 trigger and real-time reconstruction, and present data-driven performance measurements for a representative sample of LHCb&#39;s physics programme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.10790v2-abstract-full').style.display = 'none'; document.getElementById('1812.10790v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 35 figures, 1 table. All figures and tables are available at https://cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-DP-2019-001.html</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-LHCb-DP-2019-001 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 14 (2019) P04013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.07304">arXiv:1712.07304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.07304">pdf</a>, <a href="https://arxiv.org/format/1712.07304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Effective surface conductivity of plasmonic metasurfaces: from far-field characterization to surface wave analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yermakov%2C+O+Y">Oleh Y. Yermakov</a>, <a href="/search/physics?searchtype=author&amp;query=Permyakov%2C+D+V">Dmitry V. Permyakov</a>, <a href="/search/physics?searchtype=author&amp;query=Porubaev%2C+F+V">Filipp V. Porubaev</a>, <a href="/search/physics?searchtype=author&amp;query=Dmitriev%2C+P+A">Pavel A. Dmitriev</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+D+A">Dmitry A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Samusev%2C+A+K">Anton K. Samusev</a>, <a href="/search/physics?searchtype=author&amp;query=Iorsh%2C+I+V">Ivan V. Iorsh</a>, <a href="/search/physics?searchtype=author&amp;query=Malureanu%2C+R">Radu Malureanu</a>, <a href="/search/physics?searchtype=author&amp;query=Bogdanov%2C+A+A">Andrey A. Bogdanov</a>, <a href="/search/physics?searchtype=author&amp;query=Lavrinenko%2C+A+V">Andrei V. Lavrinenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.07304v1-abstract-short" style="display: inline;"> Metasurfaces offer great potential to control near- and far-fields through engineering of optical properties of elementary cells or meta-atoms. Such perspective opens a route to efficient manipulation of the optical signals both at nanoscale and in photonics applications. In this paper we show that by using an effective surface conductivity tensor it is possible to unambigiously describe optical p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07304v1-abstract-full').style.display = 'inline'; document.getElementById('1712.07304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.07304v1-abstract-full" style="display: none;"> Metasurfaces offer great potential to control near- and far-fields through engineering of optical properties of elementary cells or meta-atoms. Such perspective opens a route to efficient manipulation of the optical signals both at nanoscale and in photonics applications. In this paper we show that by using an effective surface conductivity tensor it is possible to unambigiously describe optical properties of an anisotropic metasurface in the far- and near-field regimes. We begin with retrieving the effective surface conductivity tensor from the comparative analysis of experimental and numerical reflectance spectra of a metasurface composed of elliptical gold nanoparticles. Afterwards restored conductivities are validated in the crosscheck versus semianalytic parameters obtained with the discrete dipole model with and without dipoles interaction contribution. The obtained effective parameters are further used for the dispersion analysis of surface plasmons localized at the metasurface. The effective medium model predicts existence of both TE- and TM-polarized plasmons in a wide range of optical frequencies and describes peculiarities of their dispersion, in particularly, topological transition from the elliptical to hyperbolic regime with eligible accuracy. The analysis in question offers a simple practical way to describe properties of metasurfaces including ones in the near-field zone by extracting effective parameters from the convenient far-field characterisation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07304v1-abstract-full').style.display = 'none'; document.getElementById('1712.07304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.03612">arXiv:1703.03612</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.03612">pdf</a>, <a href="https://arxiv.org/format/1703.03612">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/05/P05011">10.1088/1748-0221/12/05/P05011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The active muon shield in the SHiP experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=SHiP+collaboration"> SHiP collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Akmete%2C+A">A. Akmete</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandrov%2C+A">A. Alexandrov</a>, <a href="/search/physics?searchtype=author&amp;query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Atkin%2C+E">E. Atkin</a>, <a href="/search/physics?searchtype=author&amp;query=Azorskiy%2C+N">N. Azorskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J+J">J. J. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Bagulya%2C+A">A. Bagulya</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+A">A. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&amp;query=Bencivenni%2C+G">G. Bencivenni</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+A+Y">A. Y. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+Y+A">Y. A. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Betancourt%2C+C">C. Betancourt</a>, <a href="/search/physics?searchtype=author&amp;query=Bezshyiko%2C+I">I. Bezshyiko</a>, <a href="/search/physics?searchtype=author&amp;query=Bezshyyko%2C+O">O. Bezshyyko</a>, <a href="/search/physics?searchtype=author&amp;query=Bick%2C+D">D. Bick</a>, <a href="/search/physics?searchtype=author&amp;query=Bieschke%2C+S">S. Bieschke</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+A">A. Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Boehm%2C+J">J. Boehm</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a> , et al. (207 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.03612v2-abstract-short" style="display: inline;"> The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model background level to less than 0.1 event after $2\times 10^{20}$ protons on target. In the beam dump, around $10^{11}$ muons will be produced per second. The mu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03612v2-abstract-full').style.display = 'inline'; document.getElementById('1703.03612v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.03612v2-abstract-full" style="display: none;"> The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model background level to less than 0.1 event after $2\times 10^{20}$ protons on target. In the beam dump, around $10^{11}$ muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muon-induced combinatorial background. A novel active muon shield is used to magnetically deflect the muons out of the acceptance of the spectrometer. This paper describes the basic principle of such a shield, its optimization and its performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03612v2-abstract-full').style.display = 'none'; document.getElementById('1703.03612v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures; added clarifications to the penalty function and emphasized that we care about neutrino interactions in the air</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2017_JINST_12_P05011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.02026">arXiv:1601.02026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.02026">pdf</a>, <a href="https://arxiv.org/format/1601.02026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.41.000749">10.1364/OL.41.000749 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark-field imaging as a non-invasive method for characterization of whispering gallery modes in microdisk cavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+D+A">D. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Samusev%2C+K+B">K. B. Samusev</a>, <a href="/search/physics?searchtype=author&amp;query=Shishkin%2C+I+I">I. I. Shishkin</a>, <a href="/search/physics?searchtype=author&amp;query=Samusev%2C+A+K">A. K. Samusev</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+P+A">P. A. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bogdanov%2C+A+A">A. A. Bogdanov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.02026v1-abstract-short" style="display: inline;"> Whispering gallery mode microdisk cavities fabricated by direct laser writing are studied using dark-field imaging and spectroscopy in the visible spectral range. {Dark-field imaging allows us to directly visualize the spatial intensity distribution of whispering gallery modes. We extract their azimuthal and radial mode indices from dark-field images, and find the axial mode number from the disper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.02026v1-abstract-full').style.display = 'inline'; document.getElementById('1601.02026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.02026v1-abstract-full" style="display: none;"> Whispering gallery mode microdisk cavities fabricated by direct laser writing are studied using dark-field imaging and spectroscopy in the visible spectral range. {Dark-field imaging allows us to directly visualize the spatial intensity distribution of whispering gallery modes. We extract their azimuthal and radial mode indices from dark-field images, and find the axial mode number from the dispersion relation. The scattering spectrum obtained in the confocal arrangement provides information on the density of optical states in the resonator. The proposed technique is a simple non-invasive way to characterize the optical properties of microdisk cavities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.02026v1-abstract-full').style.display = 'none'; document.getElementById('1601.02026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.00624">arXiv:1510.00624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.00624">pdf</a>, <a href="https://arxiv.org/format/1510.00624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/664/5/052022">10.1088/1742-6596/664/5/052022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reproducible Experiment Platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Likhomanenko%2C+T">Tatiana Likhomanenko</a>, <a href="/search/physics?searchtype=author&amp;query=Rogozhnikov%2C+A">Alex Rogozhnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">Alexander Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Khairullin%2C+E">Egor Khairullin</a>, <a href="/search/physics?searchtype=author&amp;query=Ustyuzhanin%2C+A">Andrey Ustyuzhanin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.00624v1-abstract-short" style="display: inline;"> Data analysis in fundamental sciences nowadays is an essential process that pushes frontiers of our knowledge and leads to new discoveries. At the same time we can see that complexity of those analyses increases fast due to a)~enormous volumes of datasets being analyzed, b)~variety of techniques and algorithms one have to check inside a single analysis, c)~distributed nature of research teams that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00624v1-abstract-full').style.display = 'inline'; document.getElementById('1510.00624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.00624v1-abstract-full" style="display: none;"> Data analysis in fundamental sciences nowadays is an essential process that pushes frontiers of our knowledge and leads to new discoveries. At the same time we can see that complexity of those analyses increases fast due to a)~enormous volumes of datasets being analyzed, b)~variety of techniques and algorithms one have to check inside a single analysis, c)~distributed nature of research teams that requires special communication media for knowledge and information exchange between individual researchers. There is a lot of resemblance between techniques and problems arising in the areas of industrial information retrieval and particle physics. To address those problems we propose Reproducible Experiment Platform (REP), a software infrastructure to support collaborative ecosystem for computational science. It is a Python based solution for research teams that allows running computational experiments on shared datasets, obtaining repeatable results, and consistent comparisons of the obtained results. We present some key features of REP based on case studies which include trigger optimization and physics analysis studies at the LHCb experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00624v1-abstract-full').style.display = 'none'; document.getElementById('1510.00624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21st International Conference on Computing in High Energy Physics (CHEP2015), 6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.04956">arXiv:1504.04956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.04956">pdf</a>, <a href="https://arxiv.org/format/1504.04956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A facility to Search for Hidden Particles (SHiP) at the CERN SPS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=SHiP+Collaboration"> SHiP Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Anelli%2C+M">M. Anelli</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Arduini%2C+G">G. Arduini</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J+J">J. J. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Bagulya%2C+A">A. Bagulya</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">W. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+A">A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barsuk%2C+S">S. Barsuk</a>, <a href="/search/physics?searchtype=author&amp;query=Battistin%2C+M">M. Battistin</a>, <a href="/search/physics?searchtype=author&amp;query=Bauche%2C+J">J. Bauche</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+A">A. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Bencivenni%2C+G">G. Bencivenni</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bezshyyko%2C+O">O. Bezshyyko</a>, <a href="/search/physics?searchtype=author&amp;query=Bick%2C+D">D. Bick</a>, <a href="/search/physics?searchtype=author&amp;query=Bingefors%2C+N">N. Bingefors</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Boyarsky%2C+A">A. Boyarsky</a>, <a href="/search/physics?searchtype=author&amp;query=Bonacorsi%2C+D">D. Bonacorsi</a>, <a href="/search/physics?searchtype=author&amp;query=Bondarenko%2C+D">D. Bondarenko</a> , et al. (211 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.04956v1-abstract-short" style="display: inline;"> A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.04956v1-abstract-full').style.display = 'inline'; document.getElementById('1504.04956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.04956v1-abstract-full" style="display: none;"> A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below ${\cal O}$(10)~GeV/c$^2$, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.04956v1-abstract-full').style.display = 'none'; document.getElementById('1504.04956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Technical Proposal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-SPSC-2015-016, SPSC-P-350, 8 April 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.05363">arXiv:1502.05363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.05363">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> 2-D straw detectors with high rate capability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kuchinskiy%2C+N+A">N. A. Kuchinskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+V+A">V. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Duginov%2C+V+N">V. N. Duginov</a>, <a href="/search/physics?searchtype=author&amp;query=Zyazyulya%2C+F+E">F. E. Zyazyulya</a>, <a href="/search/physics?searchtype=author&amp;query=Korenchenko%2C+A+S">A. S. Korenchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Kolesnikov%2C+A+O">A. O. Kolesnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Kravchuk%2C+N+P">N. P. Kravchuk</a>, <a href="/search/physics?searchtype=author&amp;query=Movchan%2C+S+A">S. A. Movchan</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A+I">A. I. Rudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Smirnov%2C+V+S">V. S. Smirnov</a>, <a href="/search/physics?searchtype=author&amp;query=Khomutov%2C+N+V">N. V. Khomutov</a>, <a href="/search/physics?searchtype=author&amp;query=Chekhovsky%2C+V+A">V. A. Chekhovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Lobko%2C+A+S">A. S. Lobko</a>, <a href="/search/physics?searchtype=author&amp;query=Misevich%2C+O+V">O. V. Misevich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.05363v1-abstract-short" style="display: inline;"> Precise measurement of straw axial coordinate (along the anode wire) with accuracy compatible with straw radial coordinate determination by drift time measurement and increase of straw detector rate capability by using straw cathode readout instead of anode readout are presented. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.05363v1-abstract-full" style="display: none;"> Precise measurement of straw axial coordinate (along the anode wire) with accuracy compatible with straw radial coordinate determination by drift time measurement and increase of straw detector rate capability by using straw cathode readout instead of anode readout are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.05363v1-abstract-full').style.display = 'none'; document.getElementById('1502.05363v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.06858">arXiv:1501.06858</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.06858">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Muon (g-2) Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grange%2C+J">J. Grange</a>, <a href="/search/physics?searchtype=author&amp;query=Guarino%2C+V">V. Guarino</a>, <a href="/search/physics?searchtype=author&amp;query=Winter%2C+P">P. Winter</a>, <a href="/search/physics?searchtype=author&amp;query=Wood%2C+K">K. Wood</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H">H. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Carey%2C+R+M">R. M. Carey</a>, <a href="/search/physics?searchtype=author&amp;query=Gastler%2C+D">D. Gastler</a>, <a href="/search/physics?searchtype=author&amp;query=Hazen%2C+E">E. Hazen</a>, <a href="/search/physics?searchtype=author&amp;query=Kinnaird%2C+N">N. Kinnaird</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+J+P">J. P. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Mott%2C+J">J. Mott</a>, <a href="/search/physics?searchtype=author&amp;query=Roberts%2C+B+L">B. L. Roberts</a>, <a href="/search/physics?searchtype=author&amp;query=Benante%2C+J">J. Benante</a>, <a href="/search/physics?searchtype=author&amp;query=Crnkovic%2C+J">J. Crnkovic</a>, <a href="/search/physics?searchtype=author&amp;query=Morse%2C+W+M">W. M. Morse</a>, <a href="/search/physics?searchtype=author&amp;query=Sayed%2C+H">H. Sayed</a>, <a href="/search/physics?searchtype=author&amp;query=Tishchenko%2C+V">V. Tishchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Druzhinin%2C+V+P">V. P. Druzhinin</a>, <a href="/search/physics?searchtype=author&amp;query=Khazin%2C+B+I">B. I. Khazin</a>, <a href="/search/physics?searchtype=author&amp;query=Koop%2C+I+A">I. A. Koop</a>, <a href="/search/physics?searchtype=author&amp;query=Logashenko%2C+I">I. Logashenko</a>, <a href="/search/physics?searchtype=author&amp;query=Shatunov%2C+Y+M">Y. M. Shatunov</a>, <a href="/search/physics?searchtype=author&amp;query=Solodov%2C+E">E. Solodov</a>, <a href="/search/physics?searchtype=author&amp;query=Korostelev%2C+M">M. Korostelev</a>, <a href="/search/physics?searchtype=author&amp;query=Newton%2C+D">D. Newton</a> , et al. (176 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.06858v2-abstract-short" style="display: inline;"> The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06858v2-abstract-full').style.display = 'inline'; document.getElementById('1501.06858v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.06858v2-abstract-full" style="display: none;"> The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06858v2-abstract-full').style.display = 'none'; document.getElementById('1501.06858v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">666 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-FN-0992-E </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.5065">arXiv:1310.5065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.5065">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The use of segmented cathode of a drift tube for designing a track detector with a high rate capability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kuchinskiy%2C+N+A">N. A. Kuchinskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+V+A">V. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Duginov%2C+V+N">V. N. Duginov</a>, <a href="/search/physics?searchtype=author&amp;query=Zyazyulya%2C+F+E">F. E. Zyazyulya</a>, <a href="/search/physics?searchtype=author&amp;query=Korenchenko%2C+A+S">A. S. Korenchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Kolesnikov%2C+A+O">A. O. Kolesnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Kravchuk%2C+N+P">N. P. Kravchuk</a>, <a href="/search/physics?searchtype=author&amp;query=Movchan%2C+S+A">S. A. Movchan</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A+I">A. I. Rudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Smirnov%2C+V+S">V. S. Smirnov</a>, <a href="/search/physics?searchtype=author&amp;query=Khomutov%2C+N+V">N. V. Khomutov</a>, <a href="/search/physics?searchtype=author&amp;query=Chekhovsky%2C+V+A">V. A. Chekhovsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.5065v1-abstract-short" style="display: inline;"> Detector rate capability is one of the main parameters for designing a new detector for high energy physics due to permanent rise of the beam luminosity of modern accelerators. One of the widely used detectors for particle track reconstruction is a straw detector based on drift tubes. The rate capability of such detectors is limited by the parameters of readout electronics. The traditional method&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.5065v1-abstract-full').style.display = 'inline'; document.getElementById('1310.5065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.5065v1-abstract-full" style="display: none;"> Detector rate capability is one of the main parameters for designing a new detector for high energy physics due to permanent rise of the beam luminosity of modern accelerators. One of the widely used detectors for particle track reconstruction is a straw detector based on drift tubes. The rate capability of such detectors is limited by the parameters of readout electronics. The traditional method of increasing detector rate capability is increasing their granularity (a number of readout channels) by reducing the straw diameter and/or by dividing the straw anode wire into two parts (for decreasing the rate per readout channel). A new method of designing straw detectors with a high rate capability is presented and tested. The method is based on dividing the straw cathode into parts and independent readout of each part. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.5065v1-abstract-full').style.display = 'none'; document.getElementById('1310.5065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.2258">arXiv:1105.2258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.2258">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Using the cathode surface of straw tube for measuring the track coordinates along the wire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+V+A">V. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Chekhovskiy%2C+B+A">B. A. Chekhovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Kravchuk%2C+N+P">N. P. Kravchuk</a>, <a href="/search/physics?searchtype=author&amp;query=Korenchenko%2C+A+S">A. S. Korenchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Kuchinskiy%2C+N+A">N. A. Kuchinskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Khomutov%2C+N+V">N. V. Khomutov</a>, <a href="/search/physics?searchtype=author&amp;query=Movchan%2C+S+A">S. A. Movchan</a>, <a href="/search/physics?searchtype=author&amp;query=Smirnov%2C+V+S">V. S. Smirnov</a>, <a href="/search/physics?searchtype=author&amp;query=Zyazyulya%2C+F+E">F. E. Zyazyulya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.2258v2-abstract-short" style="display: inline;"> The coordinate detectors based on straw tubes provide a high accuracy of the radial coordinate measurement using the drift time and a small amount of matter in the way of the measured particles. However, the measurement of the coordinate along the wire constitutes a problem. This paper proposes a method for measuring the hit coordinate along the wire with an accuracy better than 1 mm in a straw tu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2258v2-abstract-full').style.display = 'inline'; document.getElementById('1105.2258v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.2258v2-abstract-full" style="display: none;"> The coordinate detectors based on straw tubes provide a high accuracy of the radial coordinate measurement using the drift time and a small amount of matter in the way of the measured particles. However, the measurement of the coordinate along the wire constitutes a problem. This paper proposes a method for measuring the hit coordinate along the wire with an accuracy better than 1 mm in a straw tube detector using the signals from the cathodes of the detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2258v2-abstract-full').style.display = 'none'; document.getElementById('1105.2258v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, submitted to Instrum. Exper. Tech.(Pribory i Tekhnika Eksperimenta)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.5420">arXiv:1004.5420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1004.5420">pdf</a>, <a href="https://arxiv.org/format/1004.5420">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.073202">10.1103/PhysRevLett.105.073202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal rates for reactive ultracold polar molecules in reduced dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Micheli%2C+A">Andrea Micheli</a>, <a href="/search/physics?searchtype=author&amp;query=Idziaszek%2C+Z">Zbigniew Idziaszek</a>, <a href="/search/physics?searchtype=author&amp;query=Pupillo%2C+G">Guido Pupillo</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+M+A">Mikhail A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Zoller%2C+P">Peter Zoller</a>, <a href="/search/physics?searchtype=author&amp;query=Julienne%2C+P+S">Paul S. Julienne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.5420v1-abstract-short" style="display: inline;"> Analytic expressions describe universal elastic and reactive rates of quasi-two-dimensional and quasi-one-dimensional collisions of highly reactive ultracold molecules interacting by a van der Waals potential. Exact and approximate calculations for the example species of KRb show that stability and evaporative cooling can be realized for spin-polarized fermions at moderate dipole and trapping str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.5420v1-abstract-full').style.display = 'inline'; document.getElementById('1004.5420v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.5420v1-abstract-full" style="display: none;"> Analytic expressions describe universal elastic and reactive rates of quasi-two-dimensional and quasi-one-dimensional collisions of highly reactive ultracold molecules interacting by a van der Waals potential. Exact and approximate calculations for the example species of KRb show that stability and evaporative cooling can be realized for spin-polarized fermions at moderate dipole and trapping strength, whereas bosons or unlike fermions require significantly higher dipole or trapping strengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.5420v1-abstract-full').style.display = 'none'; document.getElementById('1004.5420v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 105, 073202 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ex/0312017">arXiv:hep-ex/0312017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-ex/0312017">pdf</a>, <a href="https://arxiv.org/ps/hep-ex/0312017">ps</a>, <a href="https://arxiv.org/format/hep-ex/0312017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2004.03.137">10.1016/j.nima.2004.03.137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design, Commissioning and Performance of the PIBETA Detector at PSI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Frlez%2C+E">E. Frlez</a>, <a href="/search/physics?searchtype=author&amp;query=Pocanic%2C+D">D. Pocanic</a>, <a href="/search/physics?searchtype=author&amp;query=Assamagan%2C+K+A">K. A. Assamagan</a>, <a href="/search/physics?searchtype=author&amp;query=Bagaturia%2C+Y">Yu. Bagaturia</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+V+A">V. A. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Bertl%2C+W">W. Bertl</a>, <a href="/search/physics?searchtype=author&amp;query=Broennimann%2C+C">Ch. Broennimann</a>, <a href="/search/physics?searchtype=author&amp;query=Bychkov%2C+M+A">M. A. Bychkov</a>, <a href="/search/physics?searchtype=author&amp;query=Crawford%2C+J+F">J. F. Crawford</a>, <a href="/search/physics?searchtype=author&amp;query=Daum%2C+M">M. Daum</a>, <a href="/search/physics?searchtype=author&amp;query=Fluegel%2C+T">Th. Fluegel</a>, <a href="/search/physics?searchtype=author&amp;query=Frosch%2C+R">R. Frosch</a>, <a href="/search/physics?searchtype=author&amp;query=Horisberger%2C+R">R. Horisberger</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinnikov%2C+V+A">V. A. Kalinnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Karpukhin%2C+V+V">V. V. Karpukhin</a>, <a href="/search/physics?searchtype=author&amp;query=Khomutov%2C+N+V">N. V. Khomutov</a>, <a href="/search/physics?searchtype=author&amp;query=Koglin%2C+J+E">J. E. Koglin</a>, <a href="/search/physics?searchtype=author&amp;query=Korenchenko%2C+A+S">A. S. Korenchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Korenchenko%2C+S+M">S. M. Korenchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Kozlowski%2C+T">T. Kozlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Krause%2C+B">B. Krause</a>, <a href="/search/physics?searchtype=author&amp;query=Kravchuk%2C+N+P">N. P. Kravchuk</a>, <a href="/search/physics?searchtype=author&amp;query=Kuchinsky%2C+N+A">N. A. Kuchinsky</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">W. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lawrence%2C+D+W">D. W. Lawrence</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ex/0312017v1-abstract-short" style="display: inline;"> We describe the design, construction and performance of the PIBETA detector built for the precise measurement of the branching ratio of pion beta decay, pi+ -&gt; pi0 e+ nu, at the Paul Scherrer Institute. The central part of the detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid angle. The calorimeter is supplemented with an active collimator/beam degrader system, an ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ex/0312017v1-abstract-full').style.display = 'inline'; document.getElementById('hep-ex/0312017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ex/0312017v1-abstract-full" style="display: none;"> We describe the design, construction and performance of the PIBETA detector built for the precise measurement of the branching ratio of pion beta decay, pi+ -&gt; pi0 e+ nu, at the Paul Scherrer Institute. The central part of the detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid angle. The calorimeter is supplemented with an active collimator/beam degrader system, an active segmented plastic target, a pair of low-mass cylindrical wire chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole detector system is housed inside a temperature-controlled lead brick enclosure which in turn is lined with cosmic muon plastic veto counters. Commissioning and calibration data were taken during two three-month beam periods in 1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We examine the timing, energy and angular detector resolution for photons, positrons and protons in the energy range of 5-150 MeV, as well as the response of the detector to cosmic muons. We illustrate the detector signatures for the assorted rare pion and muon decays and their associated backgrounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ex/0312017v1-abstract-full').style.display = 'none'; document.getElementById('hep-ex/0312017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A526:300-347,2004 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10