CINXE.COM
Search results for: pressure effect
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pressure effect</title> <meta name="description" content="Search results for: pressure effect"> <meta name="keywords" content="pressure effect"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pressure effect" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pressure effect"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17770</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pressure effect</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17770</span> Effect of Inulin-Substituted Ice Cream on Waist Circumference and Blood Pressure of Adolescents with Abdominal Obesity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20H.%20Ahmad">Nur H. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20S.%20Inge"> Silvia S. Inge</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20A.%20Julliete"> Vanessa A. Julliete</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Veraditias"> A. Veraditias</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20F.%20Febinda"> Laila F. Febinda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abdominal obesity is a risk factor for metabolic syndrome and mostly found in adolescents. Waist circumference is related to abdominal obesity which has a significant effect on the increase of blood pressure. Inulin is one of prebiotic, that has health benefits by offering the potential for lipid management, that can be useful to decrease the risk factor of metabolic syndrome. The aim of the research is to evaluate the effect of 10 gram inulin-substituted ice cream in waist circumference and blood pressure of abdominal obesity adolescents. Inulin had the ability to produce Short Chain Fatty Acid which can improve blood pressure and waist circumference. Systolic blood pressure was significantly decreased in the treatment group (p=0.028) with the mean of reduction 7.35 ± 11.59 mmHg. However, diastolic blood pressure and waist circumference showed no significant effect. Waist circumference, systolic blood pressure and diastolic blood pressure was decreased in control group. These results suggest that inulin-substituted ice cream used as therapeutics and prevention for the early onset of metabolic syndrome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=inulin" title=" inulin"> inulin</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20syndrome" title=" metabolic syndrome"> metabolic syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=waist%20circumference" title=" waist circumference"> waist circumference</a> </p> <a href="https://publications.waset.org/abstracts/66625/effect-of-inulin-substituted-ice-cream-on-waist-circumference-and-blood-pressure-of-adolescents-with-abdominal-obesity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17769</span> Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Na%20Li">Na Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Simon%20Araya"> Samuel Simon Araya</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%B8ren%20Knudsen%20K%C3%A6r"> Søren Knudsen Kær</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEM%20electrolysis%20stack" title="PEM electrolysis stack">PEM electrolysis stack</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20density" title=" current density"> current density</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/131951/effect-of-current-density-temperature-and-pressure-on-proton-exchange-membrane-electrolyser-stack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17768</span> Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-Chang%20Yu">Ying-Chang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lung%20Lo"> Yuan-Lung Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20facade" title="multi-layer facade">multi-layer facade</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20damping" title=" wind damping"> wind damping</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20ventilation" title=" building ventilation "> building ventilation </a> </p> <a href="https://publications.waset.org/abstracts/111397/effect-of-porous-multi-layer-envelope-system-on-effective-wind-pressure-of-building-ventilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17767</span> CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Pourmahmoud">Nader Pourmahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hassanzadeh"> Amir Hassanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20separation" title="energy separation">energy separation</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20pressure" title=" inlet pressure"> inlet pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20chamber" title=" vortex chamber"> vortex chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a> </p> <a href="https://publications.waset.org/abstracts/18358/cfd-simulation-of-the-inlet-pressure-effects-on-the-cooling-capacity-enhancement-for-vortex-tube-with-couple-vortex-chambers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17766</span> Effect of Hypertension Exercise and Slow Deep Breathing Combination to Blood Pressure: A Mini Research in Elderly Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prima%20Khairunisa">Prima Khairunisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Febriana%20Tri%20Kusumawati"> Febriana Tri Kusumawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Endah%20Luthfiana"> Endah Luthfiana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hypertension in elderly, caused by cardiovascular system cannot work normally, because the valves thickened and inelastic blood vessels. It causes vasoconstriction of the blood vessels. Hypertension exercise, increase cardiovascular function and the elasticity of the blood vessels. While slow deep breathing helps the body and mind feel relax. Combination both of them will decrease the blood pressure. Objective: To know the effect of hypertension exercise and slow deep breathing combination to blood pressure in elderly. Method: The study conducted with one group pre-post test experimental design. The samples were 10 elderly both male and female in a Village in Semarang, Central Java, Indonesia. The tool was manual sphygmomanometer to measure blood pressure. Result: Based on paired t-test between hypertension exercise and slow deep breathing with systole blood pressure showed sig (2-tailed) was 0.045, while paired t-test between hypertension exercise hypertension exercise and slow deep breathing with diastole blood pressure showed sig (2-tailed) was 0,343. The changes of systole blood pressure were 127.5 mmHg, and diastole blood pressure was 80 mmHg. Systole blood pressure decreases significantly because the average of systole blood pressure before implementation was 135-160 mmHg. While diastole blood pressure was not decreased significantly. It was influenced by the average of diastole blood pressure before implementation of hypertension exercise was not too high. It was between 80- 90 mmHg. Conclusion: There was an effect of hypertension exercise and slow deep breathing combination to the blood pressure in elderly after 6 times implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertension%20exercise" title="hypertension exercise">hypertension exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20deep%20breathing" title=" slow deep breathing"> slow deep breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title=" blood pressure"> blood pressure</a> </p> <a href="https://publications.waset.org/abstracts/52609/effect-of-hypertension-exercise-and-slow-deep-breathing-combination-to-blood-pressure-a-mini-research-in-elderly-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17765</span> Influence of Stress Relaxation and Hysteresis Effect for Pressure Garment Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Wen%20Yeh">Chia-Wen Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting-Sheng%20Lin"> Ting-Sheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pressure garment has been used to prevent and treat the hypertrophic scars following serious burns since 1970s. The use of pressure garment is believed to hasten the maturation process and decrease the highness of scars. Pressure garment is custom made by reducing circumferential measurement of the patient by 10%~20%, called Reduction Factor. However the exact reducing value used depends on the subjective judgment of the therapist and the feeling of patients throughout the try and error process. The Laplace Law can be applied to calculate the pressure from the dimension of the pressure garment by the circumferential measurements of the patients and the tension profile of the fabrics. The tension profile currently obtained neglects the stress relaxation and hysteresis effect within most elastic fabrics. The purpose of this study was to investigate the influence of the tension attenuation, from stress relaxation and hysteresis effect of the fabrics. Samples of pressure garment were obtained from Sunshine Foundation Organization, a nonprofit organization for burn patients in Taiwan. The wall tension profile of pressure garments were measured on a material testing system. Specimens were extended to 10% of the original length, held for 1 hour for the influence of the stress relaxation effect to take place. Then, specimens were extended to 15% of the original length for 10 seconds, then reduced to 10% to simulate donning movement for the influence of the hysteresis effect to take place. The load history was recorded. The stress relaxation effect is obvious from the load curves. The wall tension is decreased by 8.5%~10% after 60mins of holding. The hysteresis effect is obvious from the load curves. The wall tension is increased slightly, then decreased by 1.5%~2.5% and lower than stress relaxation results after 60mins of holding. The wall tension attenuation of the fabric exists due to stress relaxation and hysteresis effect. The influence of hysteresis is more than stress relaxation. These effect should be considered in order to design and evaluate the pressure of pressure garment more accurately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertrophic%20scars" title="hypertrophic scars">hypertrophic scars</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis" title=" hysteresis"> hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20garment" title=" pressure garment"> pressure garment</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20relaxation" title=" stress relaxation"> stress relaxation</a> </p> <a href="https://publications.waset.org/abstracts/25458/influence-of-stress-relaxation-and-hysteresis-effect-for-pressure-garment-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17764</span> Effect of Swelling Pressure on Drug Release from Polyelectrolyte Micro-Hydrogel Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Boroujerdi">Mina Boroujerdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Tavakoli"> Javad Tavakoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogels are extensively studied as matrices for the controlled release of drugs. To evaluate the mobility of embedded molecules, these drug delivery systems are usually characterized by release studies. In this contribution, an electronic device for swelling pressure measurement during drug release from hydrogel network was developed. Also, poly acrylic acid micro particles were prepared for prolonged and sustained controlled acetaminophen release. Effect of swelling pressure on drug release from micro particles studied under different environment pH in order to predict release profile in gastro-intestine medium. Swelling ratio and swelling pressure were measured in different pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swelling%20pressure" title="swelling pressure">swelling pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolyte" title=" polyelectrolyte"> polyelectrolyte</a> </p> <a href="https://publications.waset.org/abstracts/54759/effect-of-swelling-pressure-on-drug-release-from-polyelectrolyte-micro-hydrogel-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17763</span> The Pressure Effect and First-Principles Study of Strontium Chalcogenides SrS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benallou%20Yassine">Benallou Yassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amara%20Kadda"> Amara Kadda</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouazza%20Boubakar"> Bouazza Boubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Soudini%20Belabbes"> Soudini Belabbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Arbouche%20Omar"> Arbouche Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zemouli"> M. Zemouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the pressure effect on the materials, their functionality and their properties is very important, insofar as it provides the opportunity to identify others applications such the optical properties in the alkaline earth chalcogenides, as like the SrS. Here we present the first-principles calculations which have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. The treatments of exchange and correlation effects were done by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential for the electronic. The pressure effect on the electronic properties was visualized by calculating the variations of the gap as a function of pressure. The obtained results are compared to available experimental data and to other theoretical calculations <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SrS" title="SrS">SrS</a>, <a href="https://publications.waset.org/abstracts/search?q=GGA-PBEsol%2BTB-MBJ" title=" GGA-PBEsol+TB-MBJ"> GGA-PBEsol+TB-MBJ</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional" title=" density functional"> density functional</a>, <a href="https://publications.waset.org/abstracts/search?q=Perdew%E2%80%93Burke%E2%80%93Ernzerhor" title=" Perdew–Burke–Ernzerhor"> Perdew–Burke–Ernzerhor</a>, <a href="https://publications.waset.org/abstracts/search?q=FP-LAPW" title=" FP-LAPW"> FP-LAPW</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20effect" title=" pressure effect"> pressure effect</a> </p> <a href="https://publications.waset.org/abstracts/32454/the-pressure-effect-and-first-principles-study-of-strontium-chalcogenides-srs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17762</span> Reservoir Properties Effect on Estimating Initial Gas in Place Using Flowing Material Balance Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20S.%20Kh.%20S.%20Hashem">Yousef S. Kh. S. Hashem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate estimation of initial gas in place (IGIP) plays an important factor in the decision to develop a gas field. One of the methods that are available in the industry to estimate the IGIP is material balance. This method required that the well has to be shut-in while pressure is measured as it builds to average reservoir pressure. Since gas demand is high and shut-in well surveys are very expensive, flowing gas material balance (FGMB) is sometimes used instead of material balance. This work investigated the effect of reservoir properties (pressure, permeability, and reservoir size) on the estimation of IGIP when using FGMB. A gas reservoir simulator that accounts for friction loss, wellbore storage, and the non-Darcy effect was used to simulate 165 different possible causes (3 pressures, 5 reservoir sizes, and 11 permeabilities). Both tubing pressure and bottom-hole pressure were analyzed using FGMB. The results showed that the FGMB method is very sensitive for tied reservoirs (k < 10). Also, it showed which method is best to be used for different reservoir properties. This study can be used as a guideline for the application of the FGMB method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowing%20material%20balance" title="flowing material balance">flowing material balance</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20reservoir" title=" gas reservoir"> gas reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=reserves" title=" reserves"> reserves</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20simulator" title=" gas simulator"> gas simulator</a> </p> <a href="https://publications.waset.org/abstracts/132251/reservoir-properties-effect-on-estimating-initial-gas-in-place-using-flowing-material-balance-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17761</span> Design of Impedance Box to Study Fluid Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20AlJimaz">K. AlJimaz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdullah"> A. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdulsalam"> A. Abdulsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ebdah"> K. Ebdah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdalrasheed"> A. Abdalrasheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding flow distribution and head losses is essential to design and calculate Thermo fluid parameters in order to reduce the pressure to a certain required pressure. This paper discusses the ways acquired in design and simulation to create and design an impedance box that reduces pressure. It's controlled by specific scientific principles such as Bernoulli’s principle and conservation of mass. In this paper, the design is made using SOLIDWORKS, and the simulation is done using ANSYS software to solve differential equations and study the parameters in the 3D model, also to understand how the design of this box reduced the pressure. The design was made so that fluid enters at a certain pressure of 3000 Pa in a single inlet; then, it exits from six outlets at a pressure of 300 Pa with respect to the conservation of mass principle. The effect of the distribution of flow and the head losses has been noticed that it has an impact on reducing the pressure since other factors, such as friction, were neglected and also the temperature, which was constant. The design showed that the increase in length and diameter of the pipe helped to reduce the pressure, and the head losses contributed significantly to reduce the pressure to 10% of the original pressure (from 3000 Pa to 300 Pa) at the outlets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=box" title="box">box</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=3D" title=" 3D"> 3D</a> </p> <a href="https://publications.waset.org/abstracts/160561/design-of-impedance-box-to-study-fluid-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17760</span> Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.Das">J.Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyan%20Wrat"> Gyan Wrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leakage%20causes" title="leakage causes">leakage causes</a>, <a href="https://publications.waset.org/abstracts/search?q=effect" title=" effect"> effect</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20simulation" title=" MATLAB simulation"> MATLAB simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20circuit" title=" hydraulic circuit "> hydraulic circuit </a> </p> <a href="https://publications.waset.org/abstracts/37533/simulation-and-analysis-of-different-parameters-in-hydraulic-circuit-due-to-leakage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17759</span> Pressure Sensitive v/s Pressure Resistance Institutional Investors towards Socially Responsible Investment Behavior: Evidence from Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Talha">Mohammad Talha</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Sallehhuddin%20Abdullah%20Salim"> Abdullah Sallehhuddin Abdullah Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aziz%20Abdul%20Jalil"> Abdul Aziz Abdul Jalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Norzarina%20Md%20Yatim"> Norzarina Md Yatim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The significant contribution of institutional investors across the globe in socially responsible investment (SRI) is well-documented in the literature. Nevertheless, how the SRI behavior of pressure-resistant, pressure-sensitive and pressure-indeterminate institutional investors remain unexplored extensively. This study examines the moderating effect of institutional investors towards socially responsible investment behavior in the context of emerging economies. This study involved 229 institutional investors in Malaysia. A total of 1,145 questionnaires were distributed. Out of these, 308 (130 pressure sensitive institutional investors and 178 pressure resistant institutional investors), representing a usable rate of 26.9 per cent, were found fit for data analysis. Utilizing multi-group analysis via AMOS, this study found evidence for the presence of moderating effect by a type of institutional investor topology in socially responsible investment behavior. At intentional level, it established that type of institutional investor was a significant moderator in the relationship between subjective norms, and caring ethical climate with intention among pressure-resistant institutional investors, as well as between perceived behavioral controls with intention among pressure-sensitive institutional investors. At the behavioral level, the results evidenced that there was only a significant moderating effect between intention and socially responsible investment behavior among pressure-resistant institutional investors. The outcomes are expected to benefit policy makers, regulators, and market participants in order to leap forward SRI growth in developing economies. Nevertheless, the outcomes are limited to a few factors, and it is believed that future studies shall address those limitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=socially%20responsible%20investment" title="socially responsible investment">socially responsible investment</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensitive%20investors" title=" pressure sensitive investors"> pressure sensitive investors</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20insensitive%20investors" title=" pressure insensitive investors"> pressure insensitive investors</a>, <a href="https://publications.waset.org/abstracts/search?q=Institutional%20Investment%20Malaysia" title=" Institutional Investment Malaysia"> Institutional Investment Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/79600/pressure-sensitive-vs-pressure-resistance-institutional-investors-towards-socially-responsible-investment-behavior-evidence-from-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17758</span> Effect of Number of Baffles on Pressure Drop and Heat Transfer in a Shell and Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Falavand%20Jozaei">A. Falavand Jozaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghafouri"> A. Ghafouri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mosavi%20Navaei"> M. Mosavi Navaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper for a given heat duty, study of number of baffles on pressure drop and heat transfer is considered in a STHX (Shell and Tube Heat Exchanger) with single segmental baffles. The effect of number of baffles from 9 to 52 baffles (baffle spacing variations from 4 to 24 inches) over OHTC (Overall Heat Hransfer Coefficient) to pressure drop ratio (U/Δp ratio). The results show that U/Δp ratio is low when baffle spacing is minimum (4 inches) because pressure drop is high; however, heat transfer coefficient is very significant. Then, with the increase of baffle spacing, pressure drop rapidly decreases and OHTC also decreases, but the decrease of OHTC is lower than pressure drop, so (U/Δp) ratio increases. After increasing baffles more than 12 inches, variation in pressure drop is gradual and approximately constant and OHTC decreases; Consequently, U/Δp ratio decreases again. If baffle spacing reaches to 24 inches, STHX will have minimum pressure drop, but OHTC decreases, so required heat transfer surface increases and U/Δp ratio decreases. After baffle spacing more than 12 inches, variation of shell side pressure drop is negligible. So optimum baffle spacing is suggested between 8 to 12 inches (43 to 63 percent of inside shell diameter) for a sufficient heat duty and low pressure drop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube%20heat%20exchanger" title="shell and tube heat exchanger">shell and tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20segmental%20baffle" title=" single segmental baffle"> single segmental baffle</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20heat%20transfer%20coefficient" title=" overall heat transfer coefficient"> overall heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/18303/effect-of-number-of-baffles-on-pressure-drop-and-heat-transfer-in-a-shell-and-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17757</span> The Universal Theory: Role of Imaginary Pressure on Different Relative Motions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahib%20Dino%20Naseerani">Sahib Dino Naseerani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented scientific text discusses the concept of imaginary pressure and its role in different relative motions. It explores how imaginary pressure, which is the combined effect of external atmospheric pressure and real pressure, affects various substances and their physical properties. The study aims to understand the impact of imaginary pressure and its potential applications in different contexts, such as spaceflight. The main objective of this study is to investigate the role of imaginary pressure on different relative motions. Specifically, the researchers aim to examine how imaginary pressure affects the contraction and mass variation of a body when it is in motion at the speed of light. The study seeks to provide insights into the behavior and consequences of imaginary pressure in various scenarios. The data was collected using three research papers. This research contributes to a better understanding of the theoretical implications of imaginary pressure. It elucidates how imaginary pressure is responsible for the contraction and mass variation of a body in motion, particularly at the speed of light. The findings shed light on the behavior of substances under the influence of imaginary pressure, providing valuable insights for future scientific studies. The study addresses the question of how imaginary pressure influences various relative motions and their associated physical properties. It aims to understand the role of imaginary pressure in the contraction and mass variation of a body, particularly at high speeds. By examining different substances in liquid and solid forms, the research explores the consequences of imaginary pressure on their volume, length, and mass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaginary%20pressure" title="imaginary pressure">imaginary pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=contraction" title=" contraction"> contraction</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20motion" title=" relative motion"> relative motion</a> </p> <a href="https://publications.waset.org/abstracts/169526/the-universal-theory-role-of-imaginary-pressure-on-different-relative-motions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17756</span> How Manufacturing Firm Manages Information Security: Need Pull and Technology Push Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geuna%20Kim">Geuna Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghyun%20Kim"> Sanghyun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates various factors that may influence the ISM process, including the organization’s internal needs and external pressure, and examines the role of regulatory pressure in ISM development and performance. The 105 sets of data collected in a survey were tested against the research model using SEM. The results indicate that NP and TP had positive effects on the ISM process, except for perceived benefits. Regulatory pressure had a positive effect on the relationship between ISM awareness and ISM development and performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20security%20management" title="information security management">information security management</a>, <a href="https://publications.waset.org/abstracts/search?q=need%20pull" title=" need pull"> need pull</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20push" title=" technology push"> technology push</a>, <a href="https://publications.waset.org/abstracts/search?q=regulatory%20pressure" title=" regulatory pressure"> regulatory pressure</a> </p> <a href="https://publications.waset.org/abstracts/12340/how-manufacturing-firm-manages-information-security-need-pull-and-technology-push-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17755</span> Valuation on MEMS Pressure Sensors and Device Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Amziah%20Md%20Yunus">Nurul Amziah Md Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Izhal%20Abdul%20Halin"> Izhal Abdul Halin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasri%20Sulaiman"> Nasri Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Faezah%20Ismail"> Noor Faezah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Kai%20Sheng"> Ong Kai Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MEMS pressure sensor has been introduced and presented in this paper. The types of pressure sensor and its theory of operation are also included. The latest MEMS technology, the fabrication processes of pressure sensor are explored and discussed. Besides, various device applications of pressure sensor such as tire pressure monitoring system, diesel particulate filter and others are explained. Due to further miniaturization of the device nowadays, the pressure sensor with nanotechnology (NEMS) is also reviewed. The NEMS pressure sensor is expected to have better performance as well as lower in its cost. It has gained an excellent popularity in many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title="pressure sensor">pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm" title=" diaphragm"> diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20application" title=" automotive application"> automotive application</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20application" title=" biomedical application"> biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=NEMS" title=" NEMS"> NEMS</a> </p> <a href="https://publications.waset.org/abstracts/28395/valuation-on-mems-pressure-sensors-and-device-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17754</span> An Experimental Study on the Effects of Aspect Ratio of a Rectangular Microchannel on the Two-Phase Frictional Pressure Drop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Louw%20Coetzee">J. A. Louw Coetzee</a>, <a href="https://publications.waset.org/abstracts/search?q=Josua%20P.%20Meyer"> Josua P. Meyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermodynamic properties of different refrigerants in combination with the variation in geometrical properties (hydraulic diameter, aspect ratio, and inclination angle) of a rectangular microchannel determine the two-phase frictional pressure gradient. The effect of aspect ratio on frictional pressure drop had not been investigated enough during adiabatic two-phase flow and condensation in rectangular microchannels. This experimental study was concerned with measurement of the frictional pressure gradient in a rectangular microchannel, with hydraulic diameter of 900 μm. The aspect ratio of this microchannel was varied over a range that stretched from 0.3 to 3 in order to capture the effect of aspect ratio variation. A commonly used refrigerant, R134a, was used in the tests that spanned over a mass flux range of 100 to 1000 kg m-2 s-1 as well as the whole vapour quality range. This study formed part of a refrigerant condensation experiment and was therefore conducted at a saturation temperature of 40 °C. The study found that there was little influence of the aspect ratio on the frictional pressure drop at the test conditions. The data was compared to some of the well known micro- and macro-channel two-phase pressure drop correlations. Most of the separated flow correlations predicted the pressure drop data well at mass fluxes larger than 400 kg m-2 s-1 and vapour qualities above 0.2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title="aspect ratio">aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase" title=" two-phase"> two-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20gradient" title=" pressure gradient"> pressure gradient</a> </p> <a href="https://publications.waset.org/abstracts/33001/an-experimental-study-on-the-effects-of-aspect-ratio-of-a-rectangular-microchannel-on-the-two-phase-frictional-pressure-drop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17753</span> Cavitating Flow through a Venturi Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imane%20Benghalia">Imane Benghalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Zamoum"> Mohammed Zamoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Boucetta"> Rachid Boucetta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrodynamic cavitation is a complex physical phenomenon that appears in hydraulic systems (pumps, turbines, valves, Venturi tubes, etc.) when the fluid pressure decreases below the saturated vapor pressure. The works carried out in this study aimed to get a better understanding of the cavitating flow phenomena. For this, we have numerically studied a cavitating bubbly flow through a Venturi nozzle. The cavitation model is selected and solved using a commercial computational fluid dynamics (CFD) code. The obtained results show the effect of the inlet pressure (10, 7, 5, and 2 bars) of the Venturi on pressure, the velocity of the fluid flow, and the vapor fraction. We found that the inlet pressure of the Venturi strongly affects the evolution of the pressure, velocity, and vapor fraction formation in the cavitating flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitating%20flow" title="cavitating flow">cavitating flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change" title=" phase change"> phase change</a>, <a href="https://publications.waset.org/abstracts/search?q=venturi" title=" venturi"> venturi</a> </p> <a href="https://publications.waset.org/abstracts/166565/cavitating-flow-through-a-venturi-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17752</span> Optimal Design of 3-Way Reversing Valve Considering Cavitation Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myeong-Gon%20Lee">Myeong-Gon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang-Gyun%20Kim"> Yang-Gyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Young%20Kim"> Tae-Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Ho%20Han"> Seung-Ho Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-pressure valve uses one set of 2-way valves for the purpose of reversing fluid direction. If there is no accurate control device for the 2-way valves, lots of surging can be generated. The surging is a kind of pressure ripple that occurs in rapid changes of fluid motions under inaccurate valve control. To reduce the surging effect, a 3-way reversing valve can be applied which provides a rapid and precise change of water flow directions without any accurate valve control system. However, a cavitation occurs due to a complicated internal trim shape of the 3-way reversing valve. The cavitation causes not only noise and vibration but also decreasing the efficiency of valve-operation, in which the bubbles generated below the saturated vapor pressure are collapsed rapidly at higher pressure zone. The shape optimization of the 3-way reversing valve to minimize the cavitation effect is necessary. In this study, the cavitation index according to the international standard ISA was introduced to estimate macroscopically the occurrence of the cavitation effect. Computational fluid dynamic analysis was carried out, and the cavitation effect was quantified by means of the percent of cavitation converted from calculated results of vapor volume fraction. In addition, the shape optimization of the 3-way reversing valve was performed by taking into account of the percent of cavitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-Way%20reversing%20valve" title="3-Way reversing valve">3-Way reversing valve</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization" title=" shape optimization"> shape optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor%20volume%20fraction" title=" vapor volume fraction"> vapor volume fraction</a> </p> <a href="https://publications.waset.org/abstracts/17230/optimal-design-of-3-way-reversing-valve-considering-cavitation-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17751</span> Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ansari%20Sadrabadi">S. Ansari Sadrabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20H.%20Rahimi"> G. H. Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FGM" title="FGM">FGM</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20pressure%20tubes" title=" cylindrical pressure tubes"> cylindrical pressure tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20deformation%20theory" title=" small deformation theory"> small deformation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20onset" title=" yield onset"> yield onset</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20loading" title=" thermal loading"> thermal loading</a> </p> <a href="https://publications.waset.org/abstracts/10627/yield-onset-of-thermo-mechanical-loading-of-fgm-thick-walled-cylindrical-pressure-vessels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17750</span> Optimization the Freeze Drying Conditions of Olive Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alev%20Y%C3%BCksel%20Aydar">Alev Yüksel Aydar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuncay%20Y%C4%B1lmaz"> Tuncay Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Melisa%20%C3%96z%C3%A7eli%CC%87k"> Melisa Özçeli̇k</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuba%20Ayd%C4%B1n"> Tuba Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Karaba%C5%9F"> Elif Karabaş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, response surface methodology (RSM) was used to obtain the optimum conditions for the freeze-drying of Gemlik variety olive seeds of to achieve the desired quality characteristics. The Box Behnken Design (BBD) was applied with three-variable and three replications in the center point. The effects of the different drying parameters including initial temperature of olive seed, pressure and time for freezing on the DPPH activity, total phenolic contents, and oleuropein absorbance value of the samples were investigated. Temperature (50 – 82 °C), pressure (0.2-0.5 mbar), time (6-10 hours) were chosen as independent variables. The analysis revealed that, while the temperature of the product prior to lyophilization and the drying time had no statistically significant effect on DPPH activity (p>0.05), the pressure was more important than the other two variables , and the quadratic effect of pressure had a significant effect on DPPH activity (p<0.05). The R2 and Adj-R2 values of the DPPH activity model were calculated to be 0.8962 and 0.7045, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20seed" title="olive seed">olive seed</a>, <a href="https://publications.waset.org/abstracts/search?q=gemlik%20variety" title=" gemlik variety"> gemlik variety</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/151139/optimization-the-freeze-drying-conditions-of-olive-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17749</span> Hypotensive effect of Cardiospermum halicacabum Linn. in Anesthetized Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huma%20Shareef">Huma Shareef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghazala%20H.%20Rizwani"> Ghazala H. Rizwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahsana%20Dar"> Ahsana Dar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional medicine Cardiospermum halicacabum L. (Sapindeaceae) is used against various ailments. In current investigation searching a new remedy that will available easily, non expensive, able to lower hypertension and standardize blood pressure, made us to develop an herbal medicine. Crude ethanol extract of C. halicacabum and its various fractions ethyl acetate and butanol showed a dose-dependent hypotensive effect in anaesthetized rats. The trachea was exposed and freed from connective tissue and incubated by cannula to facilitate spontaneous respiration. The right carotid artery and left jugular vein were cannulated with polyethylene tubing PE-50 for monitoring blood pressure changes via pressure transducer (Gould P23 ID) connected to a Grass model 79D polygraph and for i.v. injection, respectively. Drugs or the plant extracts were administered at a constant volume of 0.5 ml/kg, followed by injection of 0.2 ml of saline that flushed the cannula. Systolic, diastolic and mean arterial blood pressure (MABP) was measured in mm Hg and heart rate in beats/min. Ethanol extract of C. halicacabum showed a significant activity at 50 mg/kg dose. Ethyl acetate fraction (10, 20, 30, 40, and 50 mg/kg) induced dose dependent fall in systolic and diastolic blood pressure, heart rate of rats. At 10-30 mg/kg the hypotensive effect was non significantly reduced by 10 -15%. However, the extract at 40 mg/kg induced significant hypotensive effect calculated as 30.95±3.2% MABP and this effect persists till 50 mg/kg. The higher polar fraction (butanol) of the whole plant failed to produce any significant response against MABP at all the tested doses (10-50 mg/kg). C. halicacabum lowers blood pressure, exerts a dose-dependent hypotensive effect, can be used as hypotensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiospermum%20halicacabum" title="cardiospermum halicacabum">cardiospermum halicacabum</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20channel%20blocker" title=" calcium channel blocker"> calcium channel blocker</a>, <a href="https://publications.waset.org/abstracts/search?q=hypotensive" title=" hypotensive"> hypotensive</a>, <a href="https://publications.waset.org/abstracts/search?q=various%20extracts" title=" various extracts"> various extracts</a> </p> <a href="https://publications.waset.org/abstracts/15629/hypotensive-effect-of-cardiospermum-halicacabum-linn-in-anesthetized-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17748</span> Effect of Knowledge of Bubble Point Pressure on Estimating PVT Properties from Correlations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Banbi">Ahmed El-Banbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Maraghi"> Ahmed El-Maraghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PVT properties are needed as input data in all reservoir, production, and surface facilities engineering calculations. In the absence of PVT reports on valid reservoir fluid samples, engineers rely on PVT correlations to generate the required PVT data. The accuracy of PVT correlations varies, and no correlation group has been found to provide accurate results for all oil types. The effect of inaccurate PVT data can be significant in engineering calculations and is well documented in the literature. Bubble point pressure can sometimes be obtained from external sources. In this paper, we show how to utilize the known bubble point pressure to improve the accuracy of calculated PVT properties from correlations. We conducted a systematic study using around 250 reservoir oil samples to quantify the effect of pre-knowledge of bubble point pressure. The samples spanned a wide range of oils, from very volatile oils to black oils and all the way to low-GOR oils. A method for shifting both undersaturated and saturated sections of the PVT properties curves to the correct bubble point is explained. Seven PVT correlation families were used in this study. All PVT properties (e.g., solution gas-oil ratio, formation volume factor, density, viscosity, and compressibility) were calculated using the correct bubble point pressure and the correlation estimated bubble point pressure. Comparisons between the calculated PVT properties and actual laboratory-measured values were made. It was found that pre-knowledge of bubble point pressure and using the shifting technique presented in the paper improved the correlation-estimated values by 10% to more than 30%. The most improvement was seen in the solution gas-oil ratio and formation volume factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVT%20data" title="PVT data">PVT data</a>, <a href="https://publications.waset.org/abstracts/search?q=PVT%20properties" title=" PVT properties"> PVT properties</a>, <a href="https://publications.waset.org/abstracts/search?q=PVT%20correlations" title=" PVT correlations"> PVT correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20point%20pressure" title=" bubble point pressure"> bubble point pressure</a> </p> <a href="https://publications.waset.org/abstracts/174002/effect-of-knowledge-of-bubble-point-pressure-on-estimating-pvt-properties-from-correlations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17747</span> Effect of Pressing Pressure on Mechanical Properties of Elaeis guineensis Jacq. Fronds-Based Composite Board</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellisha%20Iling">Ellisha Iling</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayang%20Siti%20Hazimmah%20Ali"> Dayang Siti Hazimmah Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental composite boards were fabricated using oil palm (Elaeis guineensis Jacq) fronds particles by applying hot press pressure of 5MPa, 6MPa and 7MPa respectively. Modulus of rupture (MOR) and internal bond strength (IB) of the composite boards made with target density of 0.80 g/cm³ were evaluated. Composite board fabricated under hot press pressure of 5MPa had MOR and IB values of 16.27 and 4.34 N/mm² respectively. Corresponding values for composite board fabricated under hot press pressure of 6MPa were 16.76 and 5.41 N/mm² respectively. Whereas, the MOR and IB values of composite board fabricated under hot press pressure of 7MPa were 17.24 and 6.19 N/mm² respectively. All composite boards met the MOR and IB requirement stated in Japanese Industrial Standard (JIS). Based on results of this work, the strength of mechanical properties of composite board increased with increase of hot press pressure. This study revealed that the selection of applied pressure during fabrication of composite board is important to improve mechanical properties of composite boards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20board" title="composite board">composite board</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaeis%20guineensis%20Jacq.%20Fronds" title=" Elaeis guineensis Jacq. Fronds"> Elaeis guineensis Jacq. Fronds</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20press%20pressure" title=" hot press pressure"> hot press pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/99197/effect-of-pressing-pressure-on-mechanical-properties-of-elaeis-guineensis-jacq-fronds-based-composite-board" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17746</span> Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Osman">Manal Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20operating%20pressure" title="low operating pressure">low operating pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=sprinkler%20irrigation%20system" title=" sprinkler irrigation system"> sprinkler irrigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20distribution%20uniformity" title=" water distribution uniformity"> water distribution uniformity</a> </p> <a href="https://publications.waset.org/abstracts/7412/water-distribution-uniformity-of-solid-set-sprinkler-irrigation-under-low-operating-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17745</span> The Effect of Peer Pressure and Leisure Boredom on Substance Use Among Adolescents in Low-Income Communities in Capetown</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaironeesa%20Hendricks">Gaironeesa Hendricks</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazly%20Savahl"> Shazly Savahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Florence"> Maria Florence</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to determine whether peer pressure and leisure boredom influence substance use among adolescents in low-income communities in Cape Town. Non-probability sampling was used to select 296 adolescents between the ages of 16–18 from schools located in two low-income communities. The measurement tools included the Drug Use Disorders Identification Test, the Resistance to Peer Influence and Leisure Boredom Scales. Multiple regression revealed that the combined influence of peer pressure and leisure boredom predicted substance use, while peer pressure emerged as a stronger predictor than leisure boredom on substance use among adolescents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=substance%20use" title="substance use">substance use</a>, <a href="https://publications.waset.org/abstracts/search?q=peer%20pressure" title=" peer pressure"> peer pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=leisure%20boredom" title=" leisure boredom"> leisure boredom</a>, <a href="https://publications.waset.org/abstracts/search?q=adolescents" title=" adolescents"> adolescents</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20regression" title=" multiple regression"> multiple regression</a> </p> <a href="https://publications.waset.org/abstracts/17384/the-effect-of-peer-pressure-and-leisure-boredom-on-substance-use-among-adolescents-in-low-income-communities-in-capetown" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">598</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17744</span> Prediction of Excess Pore Pressure Variation of Reinforced Silty Sand by Stone Columns During Liquefaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeineb%20Ben%20Salem">Zeineb Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Wissem%20Frikha"> Wissem Frikha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Bouassida"> Mounir Bouassida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquefaction has been responsible for tremendous amounts of damage in historical earthquakes around the world. The installation of stone columns is widely adopted to prevent liquefaction. Stone columns provide a drainage path, and due to their high permeability, allow for the quick dissipation of earthquake generated excess pore water pressure. Several excess pore pressure generation models in silty sand have been developed and calibrated based on the results of shaking table and centrifuge tests focusing on the effect of silt content on liquefaction resistance. In this paper, the generation and dissipation of excess pore pressure variation of reinforced silty sand by stone columns during liquefaction are analyzedwith different silt content based on test results. In addition, the installation effect of stone columns is investigated. This effect is described by a decrease in horizontal permeability within a disturbed zone around the column. Obtained results show that reduced soil permeability and a larger disturbed zone around the stone column increases the generation of excess pore pressure during the cyclic loading and decreases the dissipation rate after cyclic loading. On the other hand, beneficial effects of silt content were observed in the form of a decrease in excess pore water pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title="stone column">stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20pressure" title=" excess pore pressure"> excess pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=silt%20content" title=" silt content"> silt content</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbed%20zone" title=" disturbed zone"> disturbed zone</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20permeability" title=" reduced permeability"> reduced permeability</a> </p> <a href="https://publications.waset.org/abstracts/146264/prediction-of-excess-pore-pressure-variation-of-reinforced-silty-sand-by-stone-columns-during-liquefaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17743</span> Effect of Fuel Injection Discharge Curve and Injection Pressure on Upgrading Power and Combustion Parameters in HD Diesel Engine with CFD Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Chamehsara">Saeed Chamehsara</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mostafa%20Mirsalim"> Seyed Mostafa Mirsalim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Tajdari"> Mehdi Tajdari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of fuel injection discharge curve and injection pressure simultaneously for upgrading power of heavy duty diesel engine by simulation of combustion process in AVL-Fire software are discussed. Hence, the fuel injection discharge curve was changed from semi-triangular to rectangular which is usual in common rail fuel injection system. Injection pressure with respect to amount of injected fuel and nozzle hole diameter are changed. Injection pressure is calculated by an experimental equation which is for heavy duty diesel engines with common rail fuel injection system. Upgrading power for 1000 and 2000 bar injection pressure are discussed. For 1000 bar injection pressure with 188 mg injected fuel and 3 mm nozzle hole diameter in compare with first state which is semi-triangular discharge curve with 139 mg injected fuel and 3 mm nozzle hole diameter, upgrading power is about 19% whereas the special change has not been observed in cylinder pressure. On the other hand, both the NOX emission and the Soot emission decreased about 30% and 6% respectively. Compared with first state, for 2000 bar injection pressure that injected fuel and nozzle diameter are 196 mg and 2.6 mm respectively, upgrading power is about 22% whereas cylinder pressure has been fixed and NOX emission and the Soot emissions are decreased 36% and 20%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title="CFD simulation">CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=HD%20diesel%20engine" title=" HD diesel engine"> HD diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading%20power" title=" upgrading power"> upgrading power</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20pressure" title=" injection pressure"> injection pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20injection%20discharge%20curve" title=" fuel injection discharge curve"> fuel injection discharge curve</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20process" title=" combustion process"> combustion process</a> </p> <a href="https://publications.waset.org/abstracts/14565/effect-of-fuel-injection-discharge-curve-and-injection-pressure-on-upgrading-power-and-combustion-parameters-in-hd-diesel-engine-with-cfd-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17742</span> Gas-Liquid Two Phase Flow Phenomenon in Near Horizontal Upward and Downward Inclined Pipe Orientations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20J.%20Ghajar">Afshin J. Ghajar</a>, <a href="https://publications.waset.org/abstracts/search?q=Swanand%20M.%20Bhagwat"> Swanand M. Bhagwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this work is to experimentally investigate the effect of pipe orientation on two phase flow phenomenon. Flow pattern, void fraction and two phase pressure drop is measured in a polycarbonate pipe with an inside diameter of 12.7mm for inclination angles ranging from -20° to +20° using air-water fluid combination. The experimental data covers all flow patterns and the entire range of void fraction typically observed in two phase flow. The effect of pipe orientation on void fraction and two phase pressure drop is justified with reference to the change in flow structure and two phase flow behavior. In addition to this, the top performing void fraction and two phase pressure drop correlations available in the literature are presented and their performance is assessed against the experimental data in the present study and that available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20patterns" title="flow patterns">flow patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20two%20phase%20flow" title=" inclined two phase flow"> inclined two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20fraction" title=" void fraction "> void fraction </a> </p> <a href="https://publications.waset.org/abstracts/6215/gas-liquid-two-phase-flow-phenomenon-in-near-horizontal-upward-and-downward-inclined-pipe-orientations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">681</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17741</span> The Effect of a Test Pump Supplement on the Physiological and Functional Performance of Futsal Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Rahsepar">Samaneh Rahsepar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrzad%20Moghadasi"> Mehrzad Moghadasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the effect of Test Pump supplement on the physiological and functional performance of futsal women, twenty female futsal subjects were divided into two groups: placebo (n = 10) and supplement (n = 10) and were given buccal tablets for 7 days and 12 g daily supplement each day. The placebo group used starch powder during this period. Speed, agility with ball, agility without ball and dribbling time were measured before and after supplementation. In addition, the rate of heart rate and blood pressure changes were measured before and after the YOYO test. The results showed that the test pump had no significant effect on improving speed, agility with ball, agility without ball, dribbling time and heart rate changes and diastolic blood pressure, and only affect the maximum oxygen consumption and systolic blood pressure (P <0.05). In general, the use of the test-pump supplement does not have a significant effect on the physiological and functional performance of futsal women. The results of this study showed that the use of supplementary pump tests on women's futsal heart rate changes after loading period had a significant difference between the two groups in resting heart rate with heart rate after exercise and 5 minutes after exercise. However, it did not have a significant effect on the increase in heart rate. Supplementation significantly increased systolic blood pressure after exercise compared to resting blood pressure, as well as a significant increase in systolic blood pressure after exercise compared to resting systolic blood pressure and 5 minutes after exercise in both groups from the loading period. On the other hand, there was a significant difference in systolic blood pressure in both placebo and supplemented groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20pump%20supplement" title="test pump supplement">test pump supplement</a>, <a href="https://publications.waset.org/abstracts/search?q=women" title=" women"> women</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a>, <a href="https://publications.waset.org/abstracts/search?q=dribble" title=" dribble"> dribble</a>, <a href="https://publications.waset.org/abstracts/search?q=agility" title=" agility"> agility</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20oxygen%20consumption" title=" maximum oxygen consumption"> maximum oxygen consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular" title=" cardiovascular"> cardiovascular</a> </p> <a href="https://publications.waset.org/abstracts/78788/the-effect-of-a-test-pump-supplement-on-the-physiological-and-functional-performance-of-futsal-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=592">592</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=593">593</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20effect&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>