CINXE.COM
Glossary of mathematical symbols - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Glossary of mathematical symbols - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"508201f1-dde7-4b0a-88c5-ca35ef018673","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Glossary_of_mathematical_symbols","wgTitle":"Glossary of mathematical symbols","wgCurRevisionId":1259267463,"wgRevisionId":1259267463,"wgArticleId":73634,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from November 2020","Articles containing Latin-language text","Wikipedia glossaries using description lists","Pages that use a deprecated format of the math tags","Mathematical symbols","Mathematical notation","Lists of symbols","Mathematical logic","Mathematical tables", "Glossaries of mathematics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Glossary_of_mathematical_symbols","wgRelevantArticleId":73634,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false, "wgWikibaseItemId":"Q180159","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready", "jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Glossary of mathematical symbols - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Glossary_of_mathematical_symbols"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Glossary_of_mathematical_symbols"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Glossary_of_mathematical_symbols rootpage-Glossary_of_mathematical_symbols skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Glossary+of+mathematical+symbols" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Glossary+of+mathematical+symbols" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Glossary+of+mathematical+symbols" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Glossary+of+mathematical+symbols" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Layout_of_this_article" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Layout_of_this_article"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Layout of this article</span> </div> </a> <ul id="toc-Layout_of_this_article-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arithmetic_operators" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Arithmetic_operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Arithmetic operators</span> </div> </a> <ul id="toc-Arithmetic_operators-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Equality,_equivalence_and_similarity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Equality,_equivalence_and_similarity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Equality, equivalence and similarity</span> </div> </a> <ul id="toc-Equality,_equivalence_and_similarity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Comparison" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Comparison"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Comparison</span> </div> </a> <ul id="toc-Comparison-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Set_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Set_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Set theory</span> </div> </a> <ul id="toc-Set_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Basic_logic" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Basic_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Basic logic</span> </div> </a> <ul id="toc-Basic_logic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Blackboard_bold" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Blackboard_bold"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Blackboard bold</span> </div> </a> <ul id="toc-Blackboard_bold-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calculus" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Calculus</span> </div> </a> <ul id="toc-Calculus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linear_and_multilinear_algebra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Linear_and_multilinear_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Linear and multilinear algebra</span> </div> </a> <ul id="toc-Linear_and_multilinear_algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Advanced_group_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Advanced_group_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Advanced group theory</span> </div> </a> <ul id="toc-Advanced_group_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Infinite_numbers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Infinite_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Infinite numbers</span> </div> </a> <ul id="toc-Infinite_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Brackets" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Brackets"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Brackets</span> </div> </a> <button aria-controls="toc-Brackets-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Brackets subsection</span> </button> <ul id="toc-Brackets-sublist" class="vector-toc-list"> <li id="toc-Parentheses" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Parentheses"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1</span> <span>Parentheses</span> </div> </a> <ul id="toc-Parentheses-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Square_brackets" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Square_brackets"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2</span> <span>Square brackets</span> </div> </a> <ul id="toc-Square_brackets-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Braces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Braces"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.3</span> <span>Braces</span> </div> </a> <ul id="toc-Braces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_brackets" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_brackets"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.4</span> <span>Other brackets</span> </div> </a> <ul id="toc-Other_brackets-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Symbols_that_do_not_belong_to_formulas" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Symbols_that_do_not_belong_to_formulas"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Symbols that do not belong to formulas</span> </div> </a> <ul id="toc-Symbols_that_do_not_belong_to_formulas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Miscellaneous" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Miscellaneous"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Miscellaneous</span> </div> </a> <ul id="toc-Miscellaneous-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>See also</span> </div> </a> <button aria-controls="toc-See_also-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle See also subsection</span> </button> <ul id="toc-See_also-sublist" class="vector-toc-list"> <li id="toc-Related_articles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Related_articles"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.1</span> <span>Related articles</span> </div> </a> <ul id="toc-Related_articles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_lists" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Related_lists"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.2</span> <span>Related lists</span> </div> </a> <ul id="toc-Related_lists-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unicode_symbols" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unicode_symbols"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.3</span> <span>Unicode symbols</span> </div> </a> <ul id="toc-Unicode_symbols-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Glossary of mathematical symbols</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 56 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-56" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">56 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8B%A8%E1%88%92%E1%88%B3%E1%89%A5_%E1%88%9D%E1%88%8D%E1%8A%AD%E1%89%B6%E1%89%BD" title="የሒሳብ ምልክቶች – Amharic" lang="am" hreflang="am" data-title="የሒሳብ ምልክቶች" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D8%A7%D8%A6%D9%85%D8%A9_%D8%A7%D9%84%D8%B1%D9%85%D9%88%D8%B2_%D8%A7%D9%84%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A9" title="قائمة الرموز الرياضية – Arabic" lang="ar" hreflang="ar" data-title="قائمة الرموز الرياضية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%97%E0%A6%BE%E0%A6%A3%E0%A6%BF%E0%A6%A4%E0%A6%BF%E0%A6%95_%E0%A6%AA%E0%A7%8D%E0%A6%B0%E0%A6%A4%E0%A7%80%E0%A6%95%E0%A7%87%E0%A6%B0_%E0%A6%A4%E0%A6%BE%E0%A6%B2%E0%A6%BF%E0%A6%95%E0%A6%BE" title="গাণিতিক প্রতীকের তালিকা – Bangla" lang="bn" hreflang="bn" data-title="গাণিতিক প্রতীকের তালিকা" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0_%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D1%81%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB%D0%B8" title="Таблица на математически символи – Bulgarian" lang="bg" hreflang="bg" data-title="Таблица на математически символи" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Tabela_matemati%C4%8Dkih_simbola" title="Tabela matematičkih simbola – Bosnian" lang="bs" hreflang="bs" data-title="Tabela matematičkih simbola" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Taula_de_s%C3%ADmbols_matem%C3%A0tics" title="Taula de símbols matemàtics – Catalan" lang="ca" hreflang="ca" data-title="Taula de símbols matemàtics" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Matematick%C3%A9_symboly_a_zna%C4%8Dky" title="Matematické symboly a značky – Czech" lang="cs" hreflang="cs" data-title="Matematické symboly a značky" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhestr_symbolau_mathemategol" title="Rhestr symbolau mathemategol – Welsh" lang="cy" hreflang="cy" data-title="Rhestr symbolau mathemategol" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Liste_mathematischer_Symbole" title="Liste mathematischer Symbole – German" lang="de" hreflang="de" data-title="Liste mathematischer Symbole" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Matemaatiliste_s%C3%BCmbolite_loend" title="Matemaatiliste sümbolite loend – Estonian" lang="et" hreflang="et" data-title="Matemaatiliste sümbolite loend" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Anexo:S%C3%ADmbolos_matem%C3%A1ticos" title="Anexo:Símbolos matemáticos – Spanish" lang="es" hreflang="es" data-title="Anexo:Símbolos matemáticos" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zerrenda:Sinbolo_matematikoak" title="Zerrenda:Sinbolo matematikoak – Basque" lang="eu" hreflang="eu" data-title="Zerrenda:Sinbolo matematikoak" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D9%87%D8%B1%D8%B3%D8%AA_%D8%A7%D8%B5%D8%B7%D9%84%D8%A7%D8%AD%D8%A7%D8%AA_%D9%86%D9%85%D8%A7%D8%AF%D9%87%D8%A7%DB%8C_%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C" title="فهرست اصطلاحات نمادهای ریاضی – Persian" lang="fa" hreflang="fa" data-title="فهرست اصطلاحات نمادهای ریاضی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Table_de_symboles_math%C3%A9matiques" title="Table de symboles mathématiques – French" lang="fr" hreflang="fr" data-title="Table de symboles mathématiques" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/S%C3%ADmbolos_matem%C3%A1ticos" title="Símbolos matemáticos – Galician" lang="gl" hreflang="gl" data-title="Símbolos matemáticos" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%88%98%ED%95%99_%EA%B8%B0%ED%98%B8" title="수학 기호 – Korean" lang="ko" hreflang="ko" data-title="수학 기호" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1%D5%AF%D5%A1%D5%B6_%D5%B6%D5%B7%D5%A1%D5%B6%D5%B6%D5%A5%D6%80" title="Մաթեմատիկական նշաններ – Armenian" lang="hy" hreflang="hy" data-title="Մաթեմատիկական նշաններ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A5%80%E0%A4%AF_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%A4%E0%A5%80%E0%A4%95%E0%A5%8B%E0%A4%82_%E0%A4%95%E0%A5%80_%E0%A4%B8%E0%A4%BE%E0%A4%B0%E0%A4%A3%E0%A5%80" title="गणितीय प्रतीकों की सारणी – Hindi" lang="hi" hreflang="hi" data-title="गणितीय प्रतीकों की सारणी" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Daftar_simbol_matematika" title="Daftar simbol matematika – Indonesian" lang="id" hreflang="id" data-title="Daftar simbol matematika" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Tabella_de_symbolos_mathematic" title="Tabella de symbolos mathematic – Interlingua" lang="ia" hreflang="ia" data-title="Tabella de symbolos mathematic" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Glossario_della_simbologia_matematica" title="Glossario della simbologia matematica – Italian" lang="it" hreflang="it" data-title="Glossario della simbologia matematica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A1%D7%99%D7%9E%D7%95%D7%9F_%D7%9E%D7%AA%D7%9E%D7%98%D7%99" title="סימון מתמטי – Hebrew" lang="he" hreflang="he" data-title="סימון מתמטי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4_%E0%B2%AA%E0%B3%8D%E0%B2%B0%E0%B2%A4%E0%B3%80%E0%B2%95%E0%B2%97%E0%B2%B3%E0%B3%81" title="ಗಣಿತ ಪ್ರತೀಕಗಳು – Kannada" lang="kn" hreflang="kn" data-title="ಗಣಿತ ಪ್ರತೀಕಗಳು" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0%D0%BB%D1%8B%D2%9B_%D0%B1%D0%B5%D0%BB%D0%B3%D1%96%D0%BB%D0%B5%D1%80" title="Математикалық белгілер – Kazakh" lang="kk" hreflang="kk" data-title="Математикалық белгілер" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/N%C3%AE%C5%9Faney%C3%AAn_b%C3%AErkariy%C3%AA" title="Nîşaneyên bîrkariyê – Kurdish" lang="ku" hreflang="ku" data-title="Nîşaneyên bîrkariyê" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Simboles_matematical" title="Simboles matematical – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Simboles matematical" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Tavula_de_s%C3%ACmboli_matem%C3%A0tich" title="Tavula de sìmboli matemàtich – Lombard" lang="lmo" hreflang="lmo" data-title="Tavula de sìmboli matemàtich" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Matematikai_szimb%C3%B3lumok_list%C3%A1ja" title="Matematikai szimbólumok listája – Hungarian" lang="hu" hreflang="hu" data-title="Matematikai szimbólumok listája" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%97%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B4%A4%E0%B5%8D%E0%B4%A4%E0%B4%BF%E0%B4%B2%E0%B5%81%E0%B4%AA%E0%B4%AF%E0%B5%8B%E0%B4%97%E0%B4%BF%E0%B4%95%E0%B5%8D%E0%B4%95%E0%B5%81%E0%B4%A8%E0%B5%8D%E0%B4%A8_%E0%B4%9A%E0%B4%BF%E0%B4%B9%E0%B5%8D%E0%B4%A8%E0%B4%99%E0%B5%8D%E0%B4%99%E0%B4%B3%E0%B5%81%E0%B4%9F%E0%B5%86_%E0%B4%AA%E0%B4%9F%E0%B5%8D%E0%B4%9F%E0%B4%BF%E0%B4%95" title="ഗണിതത്തിലുപയോഗിക്കുന്ന ചിഹ്നങ്ങളുടെ പട്ടിക – Malayalam" lang="ml" hreflang="ml" data-title="ഗണിതത്തിലുപയോഗിക്കുന്ന ചിഹ്നങ്ങളുടെ പട്ടിക" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D9%84%D8%B3%D8%AA%D8%A9_%D8%A7%D9%84%D8%B1%D9%85%D9%88%D8%B2_%D8%A7%D9%84%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D9%87" title="لستة الرموز الرياضيه – Egyptian Arabic" lang="arz" hreflang="arz" data-title="لستة الرموز الرياضيه" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Glosari_simbol_matematik" title="Glosari simbol matematik – Malay" lang="ms" hreflang="ms" data-title="Glosari simbol matematik" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lijst_van_wiskundige_symbolen" title="Lijst van wiskundige symbolen – Dutch" lang="nl" hreflang="nl" data-title="Lijst van wiskundige symbolen" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E8%A8%98%E5%8F%B7%E3%81%AE%E8%A1%A8" title="数学記号の表 – Japanese" lang="ja" hreflang="ja" data-title="数学記号の表" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Matematiske_symboler" title="Matematiske symboler – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Matematiske symboler" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Symbol_i_matematikk" title="Symbol i matematikk – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Symbol i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D8%AF_%D8%B1%DB%8C%D8%A7%D8%B6%D9%8A_%D8%AF_%D8%B3%D9%85%D8%A8%D9%88%D9%84%D9%88%D9%86%D9%88_%D9%84%DA%93%D9%84%DB%8C%DA%A9" title="د ریاضي د سمبولونو لړلیک – Pashto" lang="ps" hreflang="ps" data-title="د ریاضي د سمبولونو لړلیک" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Lista_symboli_matematycznych" title="Lista symboli matematycznych – Polish" lang="pl" hreflang="pl" data-title="Lista symboli matematycznych" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Lista_de_s%C3%ADmbolos_matem%C3%A1ticos" title="Lista de símbolos matemáticos – Portuguese" lang="pt" hreflang="pt" data-title="Lista de símbolos matemáticos" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Tabel_de_simboluri_matematice" title="Tabel de simboluri matematice – Romanian" lang="ro" hreflang="ro" data-title="Tabel de simboluri matematice" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D1%81%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB%D0%BE%D0%B2" title="Таблица математических символов – Russian" lang="ru" hreflang="ru" data-title="Таблица математических символов" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/List_of_mathematical_symbols" title="List of mathematical symbols – Simple English" lang="en-simple" hreflang="en-simple" data-title="List of mathematical symbols" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Matematick%C3%A9_zna%C4%8Dky" title="Matematické značky – Slovak" lang="sk" hreflang="sk" data-title="Matematické značky" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Seznam_matemati%C4%8Dnih_simbolov" title="Seznam matematičnih simbolov – Slovenian" lang="sl" hreflang="sl" data-title="Seznam matematičnih simbolov" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Sumad_xisaabeed" title="Sumad xisaabeed – Somali" lang="so" hreflang="so" data-title="Sumad xisaabeed" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Tabel_lambang_matematis" title="Tabel lambang matematis – Sundanese" lang="su" hreflang="su" data-title="Tabel lambang matematis" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Luettelo_matemaattisista_merkeist%C3%A4" title="Luettelo matemaattisista merkeistä – Finnish" lang="fi" hreflang="fi" data-title="Luettelo matemaattisista merkeistä" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Lista_%C3%B6ver_matematiska_symboler" title="Lista över matematiska symboler – Swedish" lang="sv" hreflang="sv" data-title="Lista över matematiska symboler" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B2%E0%B8%A2%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B1%E0%B8%8D%E0%B8%A5%E0%B8%B1%E0%B8%81%E0%B8%A9%E0%B8%93%E0%B9%8C%E0%B8%97%E0%B8%B2%E0%B8%87%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C" title="รายการสัญลักษณ์ทางคณิตศาสตร์ – Thai" lang="th" hreflang="th" data-title="รายการสัญลักษณ์ทางคณิตศาสตร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Matematiksel_sembollerin_listesi" title="Matematiksel sembollerin listesi – Turkish" lang="tr" hreflang="tr" data-title="Matematiksel sembollerin listesi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D1%8F_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B8%D1%85_%D1%81%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB%D1%96%D0%B2" title="Таблиця математичних символів – Ukrainian" lang="uk" hreflang="uk" data-title="Таблиця математичних символів" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Danh_s%C3%A1ch_k%C3%BD_hi%E1%BB%87u_to%C3%A1n_h%E1%BB%8Dc" title="Danh sách ký hiệu toán học – Vietnamese" lang="vi" hreflang="vi" data-title="Danh sách ký hiệu toán học" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Mat%C3%B5maatigat%C3%A4ht" title="Matõmaatigatäht – Võro" lang="vro" hreflang="vro" data-title="Matõmaatigatäht" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%95%B8%E5%AD%B8%E7%AC%A6%E8%A1%A8" title="數學符表 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="數學符表" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%AC%A6%E5%8F%B7%E8%A1%A8" title="数学符号表 – Wu" lang="wuu" hreflang="wuu" data-title="数学符号表" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%95%B8%E5%AD%B8%E7%AC%A6%E8%99%9F" title="數學符號 – Cantonese" lang="yue" hreflang="yue" data-title="數學符號" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%AC%A6%E5%8F%B7%E8%A1%A8" title="数学符号表 – Chinese" lang="zh" hreflang="zh" data-title="数学符号表" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q180159#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Glossary_of_mathematical_symbols" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Glossary_of_mathematical_symbols" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Glossary_of_mathematical_symbols"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Glossary_of_mathematical_symbols"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Glossary_of_mathematical_symbols" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Glossary_of_mathematical_symbols" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_mathematical_symbols&oldid=1259267463" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Glossary_of_mathematical_symbols&id=1259267463&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlossary_of_mathematical_symbols"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlossary_of_mathematical_symbols"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Glossary_of_mathematical_symbols&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_mathematical_symbols&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Skyscrapers_in_Europe" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q180159" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p> A <b>mathematical symbol</b> is a figure or a combination of figures that is used to represent a <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical object</a>, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a <a href="/wiki/Formula" title="Formula">formula</a>. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics. </p><p>The most basic symbols are the <a href="/wiki/Decimal_digit" class="mw-redirect" title="Decimal digit">decimal digits</a> (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), and the letters of the <a href="/wiki/Latin_alphabet" title="Latin alphabet">Latin alphabet</a>. The decimal digits are used for representing numbers through the <a href="/wiki/Hindu%E2%80%93Arabic_numeral_system" title="Hindu–Arabic numeral system">Hindu–Arabic numeral system</a>. Historically, upper-case letters were used for representing <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a> in geometry, and lower-case letters were used for <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a> and <a href="/wiki/Constant_(mathematics)" title="Constant (mathematics)">constants</a>. Letters are used for representing many other sorts of <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical objects</a>. As the number of these sorts has remarkably increased in modern mathematics, the <a href="/wiki/Greek_alphabet" title="Greek alphabet">Greek alphabet</a> and some <a href="/wiki/Hebrew_alphabet" title="Hebrew alphabet">Hebrew letters</a> are also used. In mathematical <a href="/wiki/Formula" title="Formula">formulas</a>, the standard <a href="/wiki/Typeface" title="Typeface">typeface</a> is <a href="/wiki/Italic_type" title="Italic type">italic type</a> for Latin letters and lower-case Greek letters, and upright type for upper case Greek letters. For having more symbols, other typefaces are also used, mainly <a href="/wiki/Boldface" class="mw-redirect" title="Boldface">boldface</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a,A,b,B} ,\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> <mo mathvariant="bold">,</mo> <mi mathvariant="bold">A</mi> <mo mathvariant="bold">,</mo> <mi mathvariant="bold">b</mi> <mo mathvariant="bold">,</mo> <mi mathvariant="bold">B</mi> </mrow> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a,A,b,B} ,\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3142a9c980db3fa2c296c61070f1314b6bf16192" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.85ex; height:2.509ex;" alt="{\displaystyle \mathbf {a,A,b,B} ,\ldots }"></span>, <a href="/wiki/Script_typeface" title="Script typeface">script typeface</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {A,B}},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">A</mi> <mo class="MJX-tex-caligraphic" mathvariant="script">,</mo> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {A,B}},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad450ebee43ba59fd5b1637f8db2e5612477f9b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.238ex; height:2.676ex;" alt="{\displaystyle {\mathcal {A,B}},\ldots }"></span> (the lower-case script face is rarely used because of the possible confusion with the standard face), <a href="/wiki/Fraktur" title="Fraktur">German fraktur</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a,A,b,B}},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> <mo mathvariant="fraktur">,</mo> <mi mathvariant="fraktur">A</mi> <mo mathvariant="fraktur">,</mo> <mi mathvariant="fraktur">b</mi> <mo mathvariant="fraktur">,</mo> <mi mathvariant="fraktur">B</mi> </mrow> </mrow> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a,A,b,B}},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5a10069edb64682b1e478309c43eea22d6b155e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.937ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a,A,b,B}},\ldots }"></span>, and <a href="/wiki/Blackboard_bold" title="Blackboard bold">blackboard bold</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N,Z,Q,R,C,H,F} _{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> <mo mathvariant="double-struck">,</mo> <mi mathvariant="double-struck">Z</mi> <mo mathvariant="double-struck">,</mo> <mi mathvariant="double-struck">Q</mi> <mo mathvariant="double-struck">,</mo> <mi mathvariant="double-struck">R</mi> <mo mathvariant="double-struck">,</mo> <mi mathvariant="double-struck">C</mi> <mo mathvariant="double-struck">,</mo> <mi mathvariant="double-struck">H</mi> <mo mathvariant="double-struck">,</mo> <mi mathvariant="double-struck">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N,Z,Q,R,C,H,F} _{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9b0161f396cc2a249d4106fc2364337027dd592" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:18.813ex; height:3.009ex;" alt="{\displaystyle \mathbb {N,Z,Q,R,C,H,F} _{q}}"></span> (the other letters are rarely used in this face, or their use is unconventional). </p><p>The use of Latin and Greek letters as symbols for denoting mathematical objects is not described in this article. For such uses, see <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">Variable (mathematics)</a> and <a href="/wiki/List_of_mathematical_constants" title="List of mathematical constants">List of mathematical constants</a>. However, some symbols that are described here have the same shape as the letter from which they are derived, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \prod {}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \prod {}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea33ea4f80bcf98a55c46d7b86267fe5fa74df1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.581ex; height:2.843ex;" alt="{\displaystyle \textstyle \prod {}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum {}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum {}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac6f70c9bf4aa9214bd3f9d56bae2d173a3ffda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.841ex; height:2.843ex;" alt="{\displaystyle \textstyle \sum {}}"></span>. </p><p>These letters alone are not sufficient for the needs of mathematicians, and many other symbols are used. Some take their origin in <a href="/wiki/Punctuation_mark" class="mw-redirect" title="Punctuation mark">punctuation marks</a> and <a href="/wiki/Diacritic" title="Diacritic">diacritics</a> traditionally used in <a href="/wiki/Typography" title="Typography">typography</a>; others by deforming <a href="/wiki/Letter_form" class="mw-redirect" title="Letter form">letter forms</a>, as in the cases of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \in }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∈<!-- ∈ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \in }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe4d5b0a594c1da89b5e78e7dfbeed90bdcc32f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:1.843ex;" alt="{\displaystyle \in }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc1a1a9c4c0f8d5df989c98aa2773ed657c5937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \forall }"></span>. Others, such as <span class="texhtml">+</span> and <span class="texhtml">=</span>, were specially designed for mathematics. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Layout_of_this_article">Layout of this article</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=1" title="Edit section: Layout of this article"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Normally, entries of a <a href="/wiki/Glossary" title="Glossary">glossary</a> are structured by topics and sorted alphabetically. This is not possible here, as there is no natural order on symbols, and many symbols are used in different parts of mathematics with different meanings, often completely unrelated. Therefore, some arbitrary choices had to be made, which are summarized below.</li> <li>The article is split into sections that are sorted by an increasing level of technicality. That is, the first sections contain the symbols that are encountered in most mathematical texts, and that are supposed to be known even by beginners. On the other hand, the last sections contain symbols that are specific to some area of mathematics and are ignored outside these areas. However, the long <a href="#Brackets">section on brackets</a> has been placed near to the end, although most of its entries are elementary: this makes it easier to search for a symbol entry by scrolling.</li> <li>Most symbols have multiple meanings that are generally distinguished either by the area of mathematics where they are used or by their <i>syntax</i>, that is, by their position inside a formula and the nature of the other parts of the formula that are close to them.</li> <li>As readers may not be aware of the area of mathematics to which the symbol that they are looking for is related, the different meanings of a symbol are grouped in the section corresponding to their most common meaning.</li> <li>When the meaning depends on the syntax, a symbol may have different entries depending on the syntax. For summarizing the syntax in the entry name, the symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Box }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>◻<!-- ◻ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Box }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/029b77f09ebeaf7528fc831fe57848be51f2240b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Box }"></span> is used for representing the neighboring parts of a formula that contains the symbol. See <a href="#Brackets">§ Brackets</a> for examples of use.</li> <li>Most symbols have two printed versions. They can be displayed as <a href="/wiki/Unicode" title="Unicode">Unicode</a> characters, or in <a href="/wiki/LaTeX" title="LaTeX">LaTeX</a> format. With the Unicode version, using <a href="/wiki/Search_engine" title="Search engine">search engines</a> and <a href="/wiki/Copy_and_paste" class="mw-redirect" title="Copy and paste">copy-pasting</a> are easier. On the other hand, the LaTeX rendering is often much better (more aesthetic), and is generally considered a standard in mathematics. Therefore, in this article, the Unicode version of the symbols is used (when possible) for labelling their entry, and the LaTeX version is used in their description. So, for finding how to type a symbol in LaTeX, it suffices to look at the source of the article.</li> <li>For most symbols, the entry name is the corresponding Unicode symbol. So, for searching the entry of a symbol, it suffices to type or copy the Unicode symbol into the search textbox. Similarly, when possible, the entry name of a symbol is also an <a href="/wiki/Wikipedia:ANCHOR" class="mw-redirect" title="Wikipedia:ANCHOR">anchor</a>, which allows linking easily from another Wikipedia article. When an entry name contains special characters such as [,], and |, there is also an anchor, but one has to look at the article source to know it.</li> <li>Finally, when there is an article on the symbol itself (not its mathematical meaning), it is linked to in the entry name.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Arithmetic_operators">Arithmetic operators</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=2" title="Edit section: Arithmetic operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1228772891">.mw-parser-output .glossary dt{margin-top:0.4em}.mw-parser-output .glossary dt+dt{margin-top:-0.2em}.mw-parser-output .glossary .templatequote{margin-top:0;margin-bottom:-0.5em}</style> <dl class="glossary"> <dt id="+"><dfn><span class="texhtml">+</span> <span class="nowrap">   </span>(<a href="/wiki/Plus_sign" class="mw-redirect" title="Plus sign">plus sign</a>)</dfn></dt> <dd>1.  Denotes <a href="/wiki/Addition" title="Addition">addition</a> and is read as <i>plus</i>; for example, <span class="texhtml">3 + 2</span>.</dd> <dd>2.  Denotes that a number is <a href="/wiki/Sign_(mathematics)#Terminology_for_signs" title="Sign (mathematics)">positive</a> and is read as <i>plus</i>. Redundant, but sometimes used for emphasizing that a number is <a href="/wiki/Positive_number" class="mw-redirect" title="Positive number">positive</a>, specially when other numbers in the context are or may be negative; for example, <span class="texhtml">+2</span>.</dd> <dd>3.  Sometimes used instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sqcup }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊔<!-- ⊔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sqcup }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1596aedf354da694149e44ce2bf53ede54eca8cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \sqcup }"></span> for a <a href="/wiki/Disjoint_union" title="Disjoint union">disjoint union</a> of <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">sets</a>.</dd> <dt id="−"><dfn><span class="texhtml">−</span> <span class="nowrap">   </span>(<a href="/wiki/Minus_sign" class="mw-redirect" title="Minus sign">minus sign</a>)</dfn></dt> <dd>1.  Denotes <a href="/wiki/Subtraction" title="Subtraction">subtraction</a> and is read as <i>minus</i>; for example, <span class="texhtml">3 – 2</span>.</dd> <dd>2.  Denotes the <a href="/wiki/Additive_inverse" title="Additive inverse">additive inverse</a> and is read as <i>minus</i>, <i> the negative of</i>, or <i>the opposite of</i>; for example, <span class="texhtml">–2</span>.</dd> <dd>3.  Also used in place of <span class="texhtml">\</span> for denoting the <a href="/wiki/Set-theoretic_complement" class="mw-redirect" title="Set-theoretic complement">set-theoretic complement</a>; see <a href="#\">\</a> in <a href="#Set_theory">§ Set theory</a>.</dd> <dt id="×"><dfn><span class="texhtml">×</span> <span class="nowrap">   </span>(<a href="/wiki/Multiplication_sign" title="Multiplication sign">multiplication sign</a>)</dfn></dt> <dd>1.  In <a href="/wiki/Elementary_arithmetic" title="Elementary arithmetic">elementary arithmetic</a>, denotes <a href="/wiki/Multiplication" title="Multiplication">multiplication</a>, and is read as <i>times</i>; for example, <span class="texhtml">3 × 2</span>.</dd> <dd>2.  In <a href="/wiki/Geometry" title="Geometry">geometry</a> and <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, denotes the <a href="/wiki/Cross_product" title="Cross product">cross product</a>.</dd> <dd>3.  In <a href="/wiki/Set_theory" title="Set theory">set theory</a> and <a href="/wiki/Category_theory" title="Category theory">category theory</a>, denotes the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> and the <a href="/wiki/Direct_product" title="Direct product">direct product</a>. See also <a href="#cartesian">×</a> in <a href="#Set_theory">§ Set theory</a>.</dd> <dt id="·"><dfn><span class="texhtml">·</span> <span class="nowrap">   </span>(<a href="/wiki/Interpunct" title="Interpunct">dot</a>)</dfn></dt> <dd>1.  Denotes <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> and is read as <i>times</i>; for example, <span class="texhtml">3 ⋅ 2</span>.</dd> <dd>2.  In <a href="/wiki/Geometry" title="Geometry">geometry</a> and <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, denotes the <a href="/wiki/Dot_product" title="Dot product">dot product</a>.</dd> <dd>3.  Placeholder used for replacing an indeterminate element. For example, saying "the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> is denoted by <span class="texhtml">| · |</span>" is perhaps clearer than saying that it is denoted as <span class="texhtml">| |</span>.</dd> <dt id="±"><dfn><span class="texhtml">±</span> <span class="nowrap">   </span>(<a href="/wiki/Plus%E2%80%93minus_sign" title="Plus–minus sign">plus–minus sign</a>)</dfn></dt> <dd>1.  Denotes either a plus sign or a minus sign.</dd> <dd>2.  Denotes the range of values that a measured quantity may have; for example, <span class="texhtml">10 ± 2</span> denotes an unknown value that lies between 8 and 12.</dd> <dt id="∓"><dfn><span class="texhtml">∓</span> <span class="nowrap">   </span>(<a href="/wiki/Minus-plus_sign" class="mw-redirect" title="Minus-plus sign">minus-plus sign</a>)</dfn></dt> <dd>Used paired with <span class="texhtml">±</span>, denotes the opposite sign; that is, <span class="texhtml">+</span> if <span class="texhtml">±</span> is <span class="texhtml">–</span>, and <span class="texhtml">–</span> if <span class="texhtml">±</span> is <span class="texhtml">+</span>.</dd> <dt id="÷"><dfn><span class="texhtml">÷</span> <span class="nowrap">   </span>(<a href="/wiki/Division_sign" title="Division sign">division sign</a>)</dfn></dt> <dd>Widely used for denoting <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a> in <a href="/wiki/English-speaking_world" title="English-speaking world"> Anglophone</a> countries, it is no longer in common use in mathematics and its use is "not recommended".<sup id="cite_ref-ISO_1-0" class="reference"><a href="#cite_note-ISO-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> In some countries, it can indicate subtraction.</dd> <dt id="ratio"><dfn><span class="texhtml">:</span> <span class="nowrap">   </span>(<a href="/wiki/Colon_(punctuation)" title="Colon (punctuation)">colon</a>)</dfn></dt> <dd>1.  Denotes the <a href="/wiki/Ratio" title="Ratio">ratio</a> of two quantities.</dd> <dd>2.  In some countries, may denote <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a>.</dd> <dd>3.  In <a href="/wiki/Set-builder_notation" title="Set-builder notation">set-builder notation</a>, it is used as a separator meaning "such that"; see <a href="#b:b"><span class="texhtml">{□ : □}</span></a>.</dd> <dt id="/"><dfn><span class="texhtml">/</span> <span class="nowrap">   </span>(<a href="/wiki/Slash_(punctuation)" title="Slash (punctuation)">slash</a>)</dfn></dt> <dd>1.  Denotes <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a> and is read as <i>divided by</i> or <i>over</i>. Often replaced by a horizontal bar. For example, <span class="texhtml">3 / 2</span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {3}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {3}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff4d39a9f7beda4ddbeffafaca691c386d3142cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:1.999ex; height:5.176ex;" alt="{\displaystyle {\frac {3}{2}}}"></span>.</dd> <dd>2.  Denotes a <a href="/wiki/Quotient_(disambiguation)#Mathematics" class="mw-disambig" title="Quotient (disambiguation)">quotient structure</a>. For example, <a href="/wiki/Quotient_set" class="mw-redirect" title="Quotient set">quotient set</a>, <a href="/wiki/Quotient_group" title="Quotient group">quotient group</a>, <a href="/wiki/Quotient_category" title="Quotient category">quotient category</a>, etc.</dd> <dd>3.  In <a href="/wiki/Number_theory" title="Number theory">number theory</a> and <a href="/wiki/Field_theory_(mathematics)" class="mw-redirect" title="Field theory (mathematics)">field theory</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F/E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F/E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ba04c235083fd37db07fce9ec43901e0cb6d1d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.679ex; height:2.843ex;" alt="{\displaystyle F/E}"></span> denotes a <a href="/wiki/Field_extension" title="Field extension">field extension</a>, where <span class="texhtml mvar" style="font-style:italic;">F</span> is an <a href="/wiki/Extension_field" class="mw-redirect" title="Extension field">extension field</a> of the <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml mvar" style="font-style:italic;">E</span>.</dd> <dd>4.  In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, denotes a <a href="/wiki/Conditional_probability" title="Conditional probability">conditional probability</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A/B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A/B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e8ea898d35e8bbd6aad8df7328635a699751856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.224ex; height:2.843ex;" alt="{\displaystyle P(A/B)}"></span> denotes the probability of <span class="texhtml mvar" style="font-style:italic;">A</span>, given that <span class="texhtml mvar" style="font-style:italic;">B</span> occurs. Usually denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∣<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8f30f4da85b53901e0871eb41ed8827f511bb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.999ex; height:2.843ex;" alt="{\displaystyle P(A\mid B)}"></span>: see "<a href="#vbar"><span class="texhtml">|</span></a>".</dd> <dt id="√"><dfn><span class="texhtml">√</span> <span class="nowrap">   </span>(<a href="/wiki/Radical_symbol#Encoding" title="Radical symbol">square-root symbol</a>)</dfn></dt> <dd>Denotes <a href="/wiki/Square_root" title="Square root">square root</a> and is read as <i>the square root of</i>. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, <span class="texhtml">√2</span>.</dd> <dt id="sqrt"><dfn><span class="texhtml"><span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">  </span></span></span> <span class="nowrap">  </span>(<a href="/wiki/Radical_symbol" title="Radical symbol">radical symbol</a>)</dfn></dt> <dd>1.  Denotes <a href="/wiki/Square_root" title="Square root">square root</a> and is read as <i>the square root of</i>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3+2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> <mo>+</mo> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3+2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bc70eb95fd7972cbb4a2ebf5adb1b62577062d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.101ex; height:3.009ex;" alt="{\displaystyle {\sqrt {3+2}}}"></span>.</dd> <dd>2.  With an integer greater than 2 as a left superscript, denotes an <a href="/wiki/Nth_root" title="Nth root"><span class="texhtml mvar" style="font-style:italic;">n</span>th root</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{7}]{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{7}]{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c775908a306fe7496d4302ab87bfd414e1261c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{7}]{3}}}"></span> denotes the 7th root of 3.</dd> <dt id="caret"><dfn><span class="texhtml">^</span> <span class="nowrap">   </span>(<a href="/wiki/Caret" title="Caret">caret</a>)</dfn></dt> <dd>1.  <a href="/wiki/Exponentiation" title="Exponentiation">Exponentiation</a> is normally denoted with a <a href="/wiki/Superscript" class="mw-redirect" title="Superscript">superscript</a>. However, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8561c712e86598255e8434a70affa18ffd7e0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.379ex; height:2.343ex;" alt="{\displaystyle x^{y}}"></span> is often denoted <span class="texhtml"><i>x</i>^<i>y</i></span> when superscripts are not easily available, such as in <a href="/wiki/Programming_language" title="Programming language">programming languages</a> (including <a href="/wiki/LaTeX" title="LaTeX">LaTeX</a>) or plain text <a href="/wiki/Email" title="Email">emails</a>.</dd> <dd>2.  Not to be confused with <a href="#∧">∧</a></dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Equality,_equivalence_and_similarity"><span id="Equality.2C_equivalence_and_similarity"></span>Equality, equivalence and similarity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=3" title="Edit section: Equality, equivalence and similarity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="equal"><dfn><span class="texhtml">=</span> <span class="nowrap">   </span>(<a href="/wiki/Equals_sign" title="Equals sign">equals sign</a>)</dfn></dt> <dd>1.  Denotes <a href="/wiki/Equality_(mathematics)" title="Equality (mathematics)">equality</a>.</dd> <dd>2.  Used for naming a <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical object</a> in a sentence like "let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c10dd6f167d5c527a1dd2d5b38c2b0acfdc8b13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.204ex; height:2.176ex;" alt="{\displaystyle x=E}"></span><span class="nowrap"> </span>", where <span class="texhtml mvar" style="font-style:italic;">E</span> is an <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expression</a>. See also <span class="texhtml">≝</span>, <span class="texhtml">≜</span> <span class="nowrap">or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle :=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>:=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle :=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b9a320a04a814e22f58952141fd0d92cd5ac402" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.455ex; height:1.676ex;" alt="{\displaystyle :=}"></span>.</span> </dd> <dt id="≝"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangleq \quad {\stackrel {\scriptscriptstyle \mathrm {def} }{=}}\quad :=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≜<!-- ≜ --></mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="2"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mstyle> </mrow> </mover> </mrow> </mrow> <mspace width="1em" /> <mo>:=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangleq \quad {\stackrel {\scriptscriptstyle \mathrm {def} }{=}}\quad :=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de0286754a5820d8c399d517ed37823425a43045" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.03ex; height:3.009ex;" alt="{\displaystyle \triangleq \quad {\stackrel {\scriptscriptstyle \mathrm {def} }{=}}\quad :=}"></span></dfn></dt> <dd>Any of these is sometimes used for naming a <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical object</a>. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\triangleq E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>≜<!-- ≜ --></mo> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\triangleq E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84982af2eb248f5a7cfd263fed633e0823f2e710" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.851ex; height:2.843ex;" alt="{\displaystyle x\triangleq E,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mathrel {\stackrel {\scriptscriptstyle \mathrm {def} }{=}} E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mrow class="MJX-TeXAtom-REL"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="2"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mstyle> </mrow> </mover> </mrow> </mrow> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mathrel {\stackrel {\scriptscriptstyle \mathrm {def} }{=}} E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a21ee4e84a4d9c4c434a9ac799f4fc696518e1a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.874ex; height:3.343ex;" alt="{\displaystyle x\mathrel {\stackrel {\scriptscriptstyle \mathrm {def} }{=}} E,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mathrel {:=} E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mrow class="MJX-TeXAtom-REL"> <mo>:=</mo> </mrow> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mathrel {:=} E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bf2585d24c48dcd4df885ddc97fad29fce36aae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.851ex; height:2.176ex;" alt="{\displaystyle x\mathrel {:=} E}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\mathrel {=:} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mrow class="MJX-TeXAtom-REL"> <mo>=:</mo> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\mathrel {=:} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38955eb5c1108d6449c35e2630bb29b61b39a9e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.851ex; height:2.176ex;" alt="{\displaystyle E\mathrel {=:} x}"></span> are each an abbreviation of the phrase "let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c10dd6f167d5c527a1dd2d5b38c2b0acfdc8b13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.204ex; height:2.176ex;" alt="{\displaystyle x=E}"></span>", where <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>⁠</span> is an <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expression</a> and <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>⁠</span> is a <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a>. This is similar to the concept of <a href="/wiki/Assignment_(computer_science)" title="Assignment (computer science)">assignment</a> in computer science, which is variously denoted (depending on the <a href="/wiki/Programming_language" title="Programming language">programming language</a> used) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =,:=,\leftarrow ,\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo>,</mo> <mo>:=</mo> <mo>,</mo> <mo stretchy="false">←<!-- ← --></mo> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =,:=,\leftarrow ,\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61fae5b3fdf4de85acb3ad8370af4763ca969c4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.412ex; height:2.176ex;" alt="{\displaystyle =,:=,\leftarrow ,\ldots }"></span></dd> <dt id="inequal"><dfn><span class="texhtml">≠</span> <span class="nowrap">   </span>(<a href="/wiki/Not-equal_sign" class="mw-redirect" title="Not-equal sign">not-equal sign</a>)</dfn></dt> <dd>Denotes <a href="/wiki/Inequality_(mathematics)" title="Inequality (mathematics)">inequality</a> and means "not equal".</dd> <dt id="approx"><dfn><span class="texhtml">≈</span></dfn></dt> <dd>The most common symbol for denoting <a href="/wiki/Approximate_equality" class="mw-redirect" title="Approximate equality">approximate equality</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi \approx 3.14159.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo>≈<!-- ≈ --></mo> <mn>3.14159.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi \approx 3.14159.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e445b5e559460acd65d84c2333d7ab78fe2833d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.699ex; height:2.176ex;" alt="{\displaystyle \pi \approx 3.14159.}"></span> </dd> <dt id="tilde"><dfn><span class="texhtml">~</span> <span class="nowrap">   </span>(<a href="/wiki/Tilde" title="Tilde">tilde</a>)</dfn></dt> <dd>1.  Between two numbers, either it is used instead of <span class="texhtml">≈</span> to mean "approximatively equal", or it means "has the same <a href="/wiki/Order_of_magnitude" title="Order of magnitude">order of magnitude</a> as".</dd> <dd>2.  Denotes the <a href="/wiki/Asymptotic_equivalence" class="mw-redirect" title="Asymptotic equivalence">asymptotic equivalence</a> of two functions or sequences.</dd> <dd>3.  Often used for denoting other types of similarity, for example, <a href="/wiki/Matrix_similarity" title="Matrix similarity">matrix similarity</a> or <a href="/wiki/Similarity_(geometry)" title="Similarity (geometry)">similarity of geometric shapes</a>.</dd> <dd>4.  Standard notation for an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a>.</dd> <dd>5.  In <a href="/wiki/Probability" title="Probability">probability</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, may specify the <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> of a <a href="/wiki/Random_variable" title="Random variable">random variable</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim N(0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>N</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim N(0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21715fc79ffc6f31cbbcacb5cda0e82f08d807f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.31ex; height:2.843ex;" alt="{\displaystyle X\sim N(0,1)}"></span> means that the distribution of the random variable <span class="texhtml mvar" style="font-style:italic;">X</span> is <a href="/wiki/Standard_normal_distribution" class="mw-redirect" title="Standard normal distribution">standard normal</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></dd> <dd>6.  Notation for <a href="/wiki/Proportionality_(mathematics)" title="Proportionality (mathematics)">proportionality</a>. See also <a href="#∝"><span class="texhtml">∝</span></a> for a less ambiguous symbol.</dd> <dt id="triple_bar"><dfn><span class="texhtml">≡</span> <span class="nowrap">   </span>(<a href="/wiki/Triple_bar" title="Triple bar">triple bar</a>)</dfn></dt> <dd>1.  Denotes an <a href="/wiki/Identity_(mathematics)" title="Identity (mathematics)">identity</a>; that is, an equality that is true whichever values are given to the variables occurring in it.</dd> <dd>2.  In <a href="/wiki/Number_theory" title="Number theory">number theory</a>, and more specifically in <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modular arithmetic</a>, denotes the <a href="/wiki/Congruence_modulo_n" class="mw-redirect" title="Congruence modulo n">congruence</a> modulo an integer.</dd> <dd>3.  May denote a <a href="/wiki/Logical_equivalence" title="Logical equivalence">logical equivalence</a>.</dd> <dt id="≅"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cong }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≅<!-- ≅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cong }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a725ebc5ab8de11d7b71a8aa5a3706c2ea467885" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.049ex; margin-bottom: -0.22ex; width:1.808ex; height:1.843ex;" alt="{\displaystyle \cong }"></span></dfn></dt> <dd>1.  May denote an <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a> between two <a href="/wiki/Mathematical_structures" class="mw-redirect" title="Mathematical structures">mathematical structures</a>, and is read as "is isomorphic to".</dd> <dd>2.  In <a href="/wiki/Geometry" title="Geometry">geometry</a>, may denote the <a href="/wiki/Congruence_(geometry)" title="Congruence (geometry)">congruence</a> of two <a href="/wiki/Geometric_shape" class="mw-redirect" title="Geometric shape">geometric shapes</a> (that is the equality <a href="/wiki/Up_to" title="Up to">up to</a> a <a href="/wiki/Displacement_(geometry)" title="Displacement (geometry)">displacement</a>), and is read "is congruent to".</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Comparison">Comparison</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=4" title="Edit section: Comparison"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="less"><dfn><span class="texhtml"><</span> <span class="nowrap">   </span>(<a href="/wiki/Less-than_sign" title="Less-than sign">less-than sign</a>)</dfn></dt> <dd>1.  <a href="/wiki/Strict_inequality" class="mw-redirect" title="Strict inequality">Strict inequality</a> between two numbers; means and is read as "<a href="/wiki/Less_than" class="mw-redirect" title="Less than">less than</a>".</dd> <dd>2.  Commonly used for denoting any <a href="/wiki/Strict_order" class="mw-redirect" title="Strict order">strict order</a>.</dd> <dd>3.  Between two <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a>, may mean that the first one is a <a href="/wiki/Proper_subgroup" class="mw-redirect" title="Proper subgroup">proper subgroup</a> of the second one.</dd> <dt id="greater"><dfn><span class="texhtml">></span> <span class="nowrap">   </span>(<a href="/wiki/Greater-than_sign" title="Greater-than sign">greater-than sign</a>)</dfn></dt> <dd>1.  <a href="/wiki/Strict_inequality" class="mw-redirect" title="Strict inequality">Strict inequality</a> between two numbers; means and is read as "<a href="/wiki/Greater_than" class="mw-redirect" title="Greater than">greater than</a>".</dd> <dd>2.  Commonly used for denoting any <a href="/wiki/Strict_order" class="mw-redirect" title="Strict order">strict order</a>.</dd> <dd>3.  Between two <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a>, may mean that the second one is a <a href="/wiki/Proper_subgroup" class="mw-redirect" title="Proper subgroup">proper subgroup</a> of the first one.</dd> <dt id="less-equal_sign"><dfn><span class="texhtml">≤</span></dfn></dt> <dd>1.  Means "<a href="/wiki/Less_than_or_equal_to" class="mw-redirect" title="Less than or equal to">less than or equal to</a>". That is, whatever <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are, <span class="texhtml"><i>A</i> ≤ <i>B</i></span> is equivalent to <span class="texhtml"><i>A</i> < <i>B</i> or <i>A</i> = <i>B</i></span>.</dd> <dd>2.  Between two <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a>, may mean that the first one is a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of the second one.</dd> <dt id="greater-equal_sign"><dfn><span class="texhtml">≥</span></dfn></dt> <dd>1.  Means "<a href="/wiki/Greater_than_or_equal_to" class="mw-redirect" title="Greater than or equal to">greater than or equal to</a>". That is, whatever <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are, <span class="texhtml"><i>A</i> ≥ <i>B</i></span> is equivalent to <span class="texhtml"><i>A</i> > <i>B</i> or <i>A</i> = <i>B</i></span>.</dd> <dd>2.  Between two <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a>, may mean that the second one is a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of the first one.</dd> <dt id="much-greater-or-less"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ll {\text{ and }}\gg }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≪<!-- ≪ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mo>≫<!-- ≫ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ll {\text{ and }}\gg }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1be1a37d6af9566bc9a3b5e79d5dec111dedacbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.847ex; height:2.176ex;" alt="{\displaystyle \ll {\text{ and }}\gg }"></span></dfn></dt> <dd>1.  Means "<a href="/wiki/Much_less_than" class="mw-redirect" title="Much less than">much less than</a>" and "<a href="/wiki/Much_greater_than" class="mw-redirect" title="Much greater than">much greater than</a>". Generally, <i>much</i> is not formally defined, but means that the lesser quantity can be neglected with respect to the other. This is generally the case when the lesser quantity is smaller than the other by one or several <a href="/wiki/Orders_of_magnitude" class="mw-redirect" title="Orders of magnitude">orders of magnitude</a>.</dd> <dd>2.  In <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure theory</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu \ll \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>≪<!-- ≪ --></mo> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu \ll \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57cb96c52c3ac95056970f5973908ee3e7c134bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.248ex; height:2.343ex;" alt="{\displaystyle \mu \ll \nu }"></span> means that the measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is absolutely continuous with respect to the measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span>.</dd> <dt id="less-equal_sign"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leqq }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≦<!-- ≦ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leqq }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1dd3e3e5dbf6fc91ddef46a531a96e5e3f57143" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.676ex;" alt="{\displaystyle \leqq }"></span></dfn></dt> <dd>A rarely used symbol, generally a synonym of <span class="texhtml">≤</span>.</dd> <dt id="pred-succ"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prec {\text{ and }}\succ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≺<!-- ≺ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mo>≻<!-- ≻ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prec {\text{ and }}\succ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8da58a796d9630e18278d55d8dd03e897a24860" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.815ex; height:2.176ex;" alt="{\displaystyle \prec {\text{ and }}\succ }"></span></dfn></dt> <dd>1.  Often used for denoting an <a href="/wiki/Partial_order" class="mw-redirect" title="Partial order">order</a> or, more generally, a <a href="/wiki/Preorder" title="Preorder">preorder</a>, when it would be confusing or not convenient to use <span class="texhtml"><</span> and <span class="texhtml">></span>.</dd> <dd>2.  <a href="/wiki/Sequention" class="mw-redirect" title="Sequention">Sequention</a> in <a href="/wiki/Asynchronous_logic" class="mw-redirect" title="Asynchronous logic">asynchronous logic</a>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Set_theory">Set theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=5" title="Edit section: Set theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="∅"><dfn><span class="texhtml">∅</span></dfn></dt> <dd>Denotes the <a href="/wiki/Empty_set" title="Empty set">empty set</a>, and is more often written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \emptyset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∅<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \emptyset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af50205f42bb2ec3c666b7b847d2c7f96e464c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \emptyset }"></span>. Using <a href="/wiki/Set-builder_notation" title="Set-builder notation">set-builder notation</a>, it may also be denoted <a href="#bb"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e6f1caa524dfcc90158ad69a51b5f9577fe5f1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.325ex; height:2.843ex;" alt="{\displaystyle \{\}}"></span></a>.</dd> <dt id="sharp"><dfn><span class="texhtml">#</span> <span class="nowrap">   </span>(<a href="/wiki/Number_sign" title="Number sign">number sign</a>)</dfn></dt> <dd id="sharp-defn1">1.  Number of elements: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \#{}S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">#<!-- # --></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \#{}S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d090ffa4d8ba010cce1e735ecbe698456e2119d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.435ex; height:2.509ex;" alt="{\displaystyle \#{}S}"></span> may denote the <a href="/wiki/Cardinality" title="Cardinality">cardinality</a> of the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <span class="texhtml mvar" style="font-style:italic;">S</span>. An alternative notation is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |S|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |S|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28d901e98a035ff4c0e37fe6dd8e750ece6c1f0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.793ex; height:2.843ex;" alt="{\displaystyle |S|}"></span>; see <a href="#!□!"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\square |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>◻<!-- ◻ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\square |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44a50c3115f8152b08b0b34d3c821933b7a31049" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.102ex; height:2.843ex;" alt="{\displaystyle |\square |}"></span></a>.</dd> <dd id="sharp-defn2">2.  <a href="/wiki/Primorial" title="Primorial">Primorial</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n{}\#}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mi mathvariant="normal">#<!-- # --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n{}\#}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05b4740012a136055c90e15adfb910615d4a0fd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.331ex; height:2.509ex;" alt="{\displaystyle n{}\#}"></span> denotes the product of the <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> that are not greater than <span class="texhtml mvar" style="font-style:italic;">n</span>.</dd> <dd id="sharp-defn3">3.  In <a href="/wiki/Topology" title="Topology">topology</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\#N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mi mathvariant="normal">#<!-- # --></mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\#N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff7b0504c47f566ed4fdc6a6850e4538f20a62df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.442ex; height:2.509ex;" alt="{\displaystyle M\#N}"></span> denotes the <a href="/wiki/Connected_sum" title="Connected sum">connected sum</a> of two <a href="/wiki/Manifolds" class="mw-redirect" title="Manifolds">manifolds</a> or two <a href="/wiki/Knot_(mathematics)" title="Knot (mathematics)">knots</a>.</dd> <dt id="∈"><dfn><span class="texhtml">∈</span></dfn></dt> <dd>Denotes <a href="/wiki/Set_membership" class="mw-redirect" title="Set membership">set membership</a>, and is read "is in", "belongs to", or "is a member of". That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51186ba8afb2067573a9082d55dd383df1ea9214" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.67ex; height:2.176ex;" alt="{\displaystyle x\in S}"></span> means that <span class="texhtml mvar" style="font-style:italic;">x</span> is an element of the set <span class="texhtml mvar" style="font-style:italic;">S</span>.</dd> <dt id="∉"><dfn><span class="texhtml">∉</span></dfn></dt> <dd>Means "is not in". That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\notin S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∉<!-- ∉ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\notin S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/142de939258c1dcfad19ba4988d890f05afb769e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.67ex; height:2.676ex;" alt="{\displaystyle x\notin S}"></span> means <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg (x\in S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg (x\in S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8c906af95a0dfd43c3b116fc88cbc256e44f54e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.029ex; height:2.843ex;" alt="{\displaystyle \neg (x\in S)}"></span>.</dd> <dt id="⊂"><dfn><span class="texhtml">⊂</span></dfn></dt> <dd>Denotes <a href="/wiki/Set_inclusion" class="mw-redirect" title="Set inclusion">set inclusion</a>. However two slightly different definitions are common.</dd> <dd id="⊂-defn1">1.  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subset B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊂<!-- ⊂ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subset B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/010e98bb4c817357e3ef7e8fa7fbe2385b2aec6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle A\subset B}"></span> may mean that <span class="texhtml mvar" style="font-style:italic;">A</span> is a <a href="/wiki/Subset" title="Subset">subset</a> of <span class="texhtml mvar" style="font-style:italic;">B</span>, and is possibly equal to <span class="texhtml mvar" style="font-style:italic;">B</span>; that is, every element of <span class="texhtml mvar" style="font-style:italic;">A</span> belongs to <span class="texhtml mvar" style="font-style:italic;">B</span>; expressed as a formula, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall {}x,\,x\in A\Rightarrow x\in B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall {}x,\,x\in A\Rightarrow x\in B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94a68cd9952be5300dc6a54b57bc059c9cced3e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.505ex; height:2.509ex;" alt="{\displaystyle \forall {}x,\,x\in A\Rightarrow x\in B}"></span>.</dd> <dd id="⊂-defn2">2.  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subset B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊂<!-- ⊂ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subset B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/010e98bb4c817357e3ef7e8fa7fbe2385b2aec6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle A\subset B}"></span> may mean that <span class="texhtml mvar" style="font-style:italic;">A</span> is a <a href="/wiki/Proper_subset" class="mw-redirect" title="Proper subset">proper subset</a> of <span class="texhtml mvar" style="font-style:italic;">B</span>, that is the two sets are different, and every element of <span class="texhtml mvar" style="font-style:italic;">A</span> belongs to <span class="texhtml mvar" style="font-style:italic;">B</span>; expressed as a formula, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\neq B\land \forall {}x,\,x\in A\Rightarrow x\in B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>≠<!-- ≠ --></mo> <mi>B</mi> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\neq B\land \forall {}x,\,x\in A\Rightarrow x\in B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c8f0be836f38bd475082d895cc73b3fa1c278a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.693ex; height:2.676ex;" alt="{\displaystyle A\neq B\land \forall {}x,\,x\in A\Rightarrow x\in B}"></span>.</dd> <dt id="⊆"><dfn><span class="texhtml">⊆</span></dfn></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊆<!-- ⊆ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b09068bd2f7ba899aeb883ebe670b2ad07b0c851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.606ex; height:2.343ex;" alt="{\displaystyle A\subseteq B}"></span> means that <span class="texhtml mvar" style="font-style:italic;">A</span> is a <a href="/wiki/Subset" title="Subset">subset</a> of <span class="texhtml mvar" style="font-style:italic;">B</span>. Used for emphasizing that equality is possible, or when <a href="#⊂-defn2"><span title="See entry on this page at § ⊂-defn2" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subset B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊂<!-- ⊂ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subset B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/010e98bb4c817357e3ef7e8fa7fbe2385b2aec6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle A\subset B}"></span></span></a> means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is a proper subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0eccf5bca7cdc1fa4439af2d31831db6bde00473" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.411ex; height:2.176ex;" alt="{\displaystyle B.}"></span></dd> <dt id="⊊"><dfn><span class="texhtml">⊊</span></dfn></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subsetneq B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊊<!-- ⊊ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subsetneq B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bf81e9a4a81df2d596b4db1cde6b9bdf82c73db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.606ex; height:2.676ex;" alt="{\displaystyle A\subsetneq B}"></span> means that <span class="texhtml mvar" style="font-style:italic;">A</span> is a <a href="/wiki/Proper_subset" class="mw-redirect" title="Proper subset">proper subset</a> of <span class="texhtml mvar" style="font-style:italic;">B</span>. Used for emphasizing that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\neq B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>≠<!-- ≠ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\neq B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c78362703472ea51edc4614b6b7a7bda8e83131c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.606ex; height:2.676ex;" alt="{\displaystyle A\neq B}"></span>, or when <a href="#⊂-defn1"><span title="See entry on this page at § ⊂-defn1" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subset B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊂<!-- ⊂ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subset B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/010e98bb4c817357e3ef7e8fa7fbe2385b2aec6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle A\subset B}"></span></span></a> does not imply that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is a proper subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0eccf5bca7cdc1fa4439af2d31831db6bde00473" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.411ex; height:2.176ex;" alt="{\displaystyle B.}"></span></dd> <dt id="⊃"><dfn><span class="texhtml">⊃, ⊇, ⊋</span></dfn></dt> <dd>Denote the converse relation of <a href="#⊂"><span title="See entry on this page at § ⊂" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \subset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊂<!-- ⊂ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \subset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f51f0eeff0c2a9dcb9c856f87ca0359e701ef01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:1.843ex;" alt="{\displaystyle \subset }"></span></span></a>, <a href="#⊆"><span title="See entry on this page at § ⊆" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \subseteq }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊆<!-- ⊆ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \subseteq }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a924f8dcb2847bb8871edfdbf4c6b5cca0669228" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \subseteq }"></span></span></a>, and <a href="#⊊"><span title="See entry on this page at § ⊊" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \subsetneq }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊊<!-- ⊊ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \subsetneq }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ccda11a9c5eb10088602771f7c0f05ffea7f41c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \subsetneq }"></span></span></a> respectively. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\supset A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>⊃<!-- ⊃ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\supset A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/450398271587fcd521f7313ee3ebfdb5023e1c07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle B\supset A}"></span> is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subset B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊂<!-- ⊂ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subset B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/010e98bb4c817357e3ef7e8fa7fbe2385b2aec6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle A\subset B}"></span>.</dd> <dt id="∪"><dfn><span class="texhtml">∪</span></dfn></dt> <dd>Denotes <a href="/wiki/Set-theoretic_union" class="mw-redirect" title="Set-theoretic union">set-theoretic union</a>, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∪<!-- ∪ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb575990bcfbcdf616aa6fd76e8b30bf7fd2169" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cup B}"></span> is the set formed by the elements of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> together. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup B=\{x\mid (x\in A)\lor (x\in B)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∪<!-- ∪ --></mo> <mi>B</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>∣<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>∨<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup B=\{x\mid (x\in A)\lor (x\in B)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a39dca33012cd10a5c33d39dc72e75d83d3890f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.829ex; height:2.843ex;" alt="{\displaystyle A\cup B=\{x\mid (x\in A)\lor (x\in B)\}}"></span>.</dd> <dt id="∩"><dfn><span class="texhtml">∩</span></dfn></dt> <dd>Denotes <a href="/wiki/Set-theoretic_intersection" class="mw-redirect" title="Set-theoretic intersection">set-theoretic intersection</a>, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∩<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span> is the set formed by the elements of both <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B=\{x\mid (x\in A)\land (x\in B)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∩<!-- ∩ --></mo> <mi>B</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>∣<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B=\{x\mid (x\in A)\land (x\in B)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc1a3c3c0e6404731c06d2dce0f84ae2dd0a3daf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.829ex; height:2.843ex;" alt="{\displaystyle A\cap B=\{x\mid (x\in A)\land (x\in B)\}}"></span>.</dd> <dt id="∖"><dfn><span class="texhtml">∖</span> <span class="nowrap">   </span>(<a href="/wiki/Backslash" title="Backslash">backslash</a>)</dfn></dt> <dd><a href="/wiki/Set_difference" class="mw-redirect" title="Set difference">Set difference</a>; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\setminus B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\setminus B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aef797ed5deb971321592e34281d9fac27c3249d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.702ex; height:2.843ex;" alt="{\displaystyle A\setminus B}"></span> is the set formed by the elements of <span class="texhtml mvar" style="font-style:italic;">A</span> that are not in <span class="texhtml mvar" style="font-style:italic;">B</span>. Sometimes, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>−<!-- − --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fc58c452f31f578fdf98cafc1c53fe98a0c0975" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\displaystyle A-B}"></span> is used instead; see <a href="#–">–</a> in <a href="#Arithmetic_operators">§ Arithmetic operators</a>.</dd> <dt id="⊖"><dfn><span class="texhtml">⊖</span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">△<!-- △ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d909fe94e8277a4c44a50853cb7dbbf0fa3148ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle \triangle }"></span></dfn></dt> <dd><a href="/wiki/Symmetric_difference" title="Symmetric difference">Symmetric difference</a>: that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\ominus B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊖<!-- ⊖ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\ominus B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd5c8d3fdf145dc31b779da31b1d8793d4fc059" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\displaystyle A\ominus B}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\operatorname {\triangle } B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">△<!-- △ --></mi> </mrow> <mo>⁡<!-- --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\operatorname {\triangle } B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/981e8f252c4ed3ccf8237db6114ebb00f296621d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.347ex; height:2.176ex;" alt="{\displaystyle A\operatorname {\triangle } B}"></span> is the set formed by the elements that belong to exactly one of the two sets <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span>.</dd> <dt id="∁"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \complement }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>∁<!-- ∁ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \complement }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b2479e2cdb7ce0c5be60408f111d2354369189f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \complement }"></span></dfn></dt> <dd>1.  With a subscript, denotes a <a href="/wiki/Set_complement" class="mw-redirect" title="Set complement">set complement</a>: that is, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\subseteq A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>⊆<!-- ⊆ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\subseteq A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb8124cb68686ede7083aa2a5a821f262eb62954" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.606ex; height:2.343ex;" alt="{\displaystyle B\subseteq A}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \complement _{A}B=A\setminus B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>∁<!-- ∁ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>B</mi> <mo>=</mo> <mi>A</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \complement _{A}B=A\setminus B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2488b249ebb02b1630b89853088b9525da7636a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.192ex; height:3.009ex;" alt="{\displaystyle \complement _{A}B=A\setminus B}"></span>.</dd> <dd>2.  Without a subscript, denotes the <a href="/wiki/Absolute_complement" class="mw-redirect" title="Absolute complement">absolute complement</a>; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \complement A=\complement _{U}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>∁<!-- ∁ --></mi> <mi>A</mi> <mo>=</mo> <msub> <mi>∁<!-- ∁ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \complement A=\complement _{U}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8eb4e64079605c31d77038fab45156dd6d80da4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.402ex; height:2.843ex;" alt="{\displaystyle \complement A=\complement _{U}A}"></span>, where <span class="texhtml mvar" style="font-style:italic;">U</span> is a set implicitly defined by the context, which contains all sets under consideration. This set <span class="texhtml mvar" style="font-style:italic;">U</span> is sometimes called the <a href="/wiki/Universe_of_discourse" class="mw-redirect" title="Universe of discourse">universe of discourse</a>. </dd> <dt id="cartesian"><dfn><span class="texhtml">×</span> <span class="nowrap">   </span>(<a href="/wiki/Multiplication_sign" title="Multiplication sign">multiplication sign</a>)</dfn></dt> <dd>See also <a href="#×">×</a> in <a href="#Arithmetic_operators">§ Arithmetic operators</a>.</dd> <dd>1.  Denotes the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> of two sets. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\times B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>×<!-- × --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\times B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65f31ae45b0098f06b5d22c38d317eb097a88fa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.348ex; height:2.176ex;" alt="{\displaystyle A\times B}"></span> is the set formed by all <a href="/wiki/Pair_(mathematics)" class="mw-redirect" title="Pair (mathematics)">pairs</a> of an element of <span class="texhtml mvar" style="font-style:italic;">A</span> and an element of <span class="texhtml mvar" style="font-style:italic;">B</span>.</dd> <dd>2.  Denotes the <a href="/wiki/Direct_product" title="Direct product">direct product</a> of two <a href="/wiki/Mathematical_structure" title="Mathematical structure">mathematical structures</a> of the same type, which is the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> of the underlying sets, equipped with a structure of the same type. For example, <a href="/wiki/Direct_product_of_rings" class="mw-redirect" title="Direct product of rings">direct product of rings</a>, <a href="/wiki/Product_topology" title="Product topology">direct product of topological spaces</a>.</dd> <dd>3.  In <a href="/wiki/Category_theory" title="Category theory">category theory</a>, denotes the <a href="/wiki/Product_(category_theory)" title="Product (category theory)">direct product</a> (often called simply <i>product</i>) of two objects, which is a generalization of the preceding concepts of product.</dd> <dt id="⊔"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sqcup }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊔<!-- ⊔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sqcup }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1596aedf354da694149e44ce2bf53ede54eca8cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \sqcup }"></span></dfn></dt> <dd>Denotes the <a href="/wiki/Disjoint_union" title="Disjoint union">disjoint union</a>. That is, if <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are sets then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\sqcup B=\left(A\times \{i_{A}\}\right)\cup \left(B\times \{i_{B}\}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊔<!-- ⊔ --></mo> <mi>B</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>×<!-- × --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mrow> <mo>)</mo> </mrow> <mo>∪<!-- ∪ --></mo> <mrow> <mo>(</mo> <mrow> <mi>B</mi> <mo>×<!-- × --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\sqcup B=\left(A\times \{i_{A}\}\right)\cup \left(B\times \{i_{B}\}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cad9e18591b61ca1d7ed9a8fb3a3a7144bd4bb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.776ex; height:2.843ex;" alt="{\displaystyle A\sqcup B=\left(A\times \{i_{A}\}\right)\cup \left(B\times \{i_{B}\}\right)}"></span> is a set of <a href="/wiki/Ordered_pair" title="Ordered pair">pairs</a> where <span class="texhtml mvar" style="font-style:italic;">i<sub>A</sub></span> and <span class="texhtml mvar" style="font-style:italic;">i<sub>B</sub></span> are distinct indices discriminating the members of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> in <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\sqcup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊔<!-- ⊔ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\sqcup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30206a16da3623a1244336c395f9f268b69c4aef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\sqcup B}"></span>⁠</span>.</dd> <dt id="∐"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigsqcup {\text{ or }}\coprod }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⨆<!-- ⨆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> or </mtext> </mrow> <mo>∐<!-- ∐ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigsqcup {\text{ or }}\coprod }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f111b54a788f2892a1626068e74ca9d521b7445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:9.561ex; height:3.843ex;" alt="{\displaystyle \bigsqcup {\text{ or }}\coprod }"></span></dfn></dt> <dd>1.  Used for the <a href="/wiki/Disjoint_union" title="Disjoint union">disjoint union</a> of a family of sets, such as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \bigsqcup _{i\in I}A_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>⨆<!-- ⨆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \bigsqcup _{i\in I}A_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae6dbe70b85b840226996445fda38350347c9648" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.237ex; height:3.009ex;" alt="{\textstyle \bigsqcup _{i\in I}A_{i}.}"></span></dd> <dd>2.  Denotes the <a href="/wiki/Coproduct" title="Coproduct">coproduct</a> of <a href="/wiki/Mathematical_structure" title="Mathematical structure">mathematical structures</a> or of objects in a <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Basic_logic">Basic logic</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=6" title="Edit section: Basic logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Several <a href="/wiki/Logical_symbol" class="mw-redirect" title="Logical symbol">logical symbols</a> are widely used in all mathematics, and are listed here. For symbols that are used only in <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a>, or are rarely used, see <a href="/wiki/List_of_logic_symbols" title="List of logic symbols">List of logic symbols</a>. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="¬"><dfn><span class="texhtml">¬</span> <span class="nowrap">   </span>(<a href="/wiki/Not_sign" class="mw-redirect" title="Not sign">not sign</a>)</dfn></dt> <dd>Denotes <a href="/wiki/Logical_negation" class="mw-redirect" title="Logical negation">logical negation</a>, and is read as "not". If <span class="texhtml mvar" style="font-style:italic;">E</span> is a <a href="/wiki/Logical_predicate" class="mw-redirect" title="Logical predicate">logical predicate</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d2771dd525bad1bb656104318ae9d6986459164" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.326ex; height:2.176ex;" alt="{\displaystyle \neg E}"></span> is the predicate that evaluates to <i>true</i> if and only if <span class="texhtml mvar" style="font-style:italic;">E</span> evaluates to <i>false</i>. For clarity, it is often replaced by the word "not". In <a href="/wiki/Programming_language" title="Programming language">programming languages</a> and some mathematical texts, it is sometimes replaced by "<span class="texhtml">~</span>" or "<span class="texhtml">!</span>", which are easier to type on some keyboards.</dd> <dt id="∨"><dfn><span class="texhtml">∨</span> <span class="nowrap">   </span>(<a href="/wiki/Descending_wedge" title="Descending wedge">descending wedge</a>)</dfn></dt> <dd>1.  Denotes the <a href="/wiki/Logical_or" class="mw-redirect" title="Logical or">logical or</a>, and is read as "or". If <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">F</span> are <a href="/wiki/Logical_predicate" class="mw-redirect" title="Logical predicate">logical predicates</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\lor F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>∨<!-- ∨ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\lor F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adf9c188ff01798007e2d2a0ebc39389390537e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.099ex; height:2.176ex;" alt="{\displaystyle E\lor F}"></span> is true if either <span class="texhtml mvar" style="font-style:italic;">E</span>, <span class="texhtml mvar" style="font-style:italic;">F</span>, or both are true. It is often replaced by the word "or".</dd> <dd>2.  In <a href="/wiki/Lattice_theory" class="mw-redirect" title="Lattice theory">lattice theory</a>, denotes the <a href="/wiki/Join_(lattice_theory)" class="mw-redirect" title="Join (lattice theory)">join</a> or <a href="/wiki/Least_upper_bound" class="mw-redirect" title="Least upper bound">least upper bound</a> operation.</dd> <dd>3.  In <a href="/wiki/Topology" title="Topology">topology</a>, denotes the <a href="/wiki/Wedge_sum" title="Wedge sum">wedge sum</a> of two <a href="/wiki/Pointed_space" title="Pointed space">pointed spaces</a>.</dd> <dt id="∧"><dfn><span class="texhtml">∧</span> <span class="nowrap">   </span>(<a href="/wiki/Wedge_(symbol)" title="Wedge (symbol)">wedge</a>)</dfn></dt> <dd>1.  Denotes the <a href="/wiki/Logical_and" class="mw-redirect" title="Logical and">logical and</a>, and is read as "and". If <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">F</span> are <a href="/wiki/Logical_predicate" class="mw-redirect" title="Logical predicate">logical predicates</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\land F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>∧<!-- ∧ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\land F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec4f514d64c7e8ab06025e7341af09430796d9bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.099ex; height:2.176ex;" alt="{\displaystyle E\land F}"></span> is true if <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">F</span> are both true. It is often replaced by the word "and" or the symbol "<span class="texhtml">&</span>".</dd> <dd>2.  In <a href="/wiki/Lattice_theory" class="mw-redirect" title="Lattice theory">lattice theory</a>, denotes the <a href="/wiki/Meet_(lattice_theory)" class="mw-redirect" title="Meet (lattice theory)">meet</a> or <a href="/wiki/Greatest_lower_bound" class="mw-redirect" title="Greatest lower bound">greatest lower bound</a> operation.</dd> <dd>3.  In <a href="/wiki/Multilinear_algebra" title="Multilinear algebra">multilinear algebra</a>, <a href="/wiki/Geometry" title="Geometry">geometry</a>, and <a href="/wiki/Multivariable_calculus" title="Multivariable calculus">multivariable calculus</a>, denotes the <a href="/wiki/Wedge_product" class="mw-redirect" title="Wedge product">wedge product</a> or the <a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">exterior product</a>.</dd> <dt id="⊻"><dfn><span class="texhtml">⊻</span></dfn></dt> <dd><a href="/wiki/Exclusive_or" title="Exclusive or">Exclusive or</a>: if <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">F</span> are two <a href="/wiki/Boolean_variable" class="mw-redirect" title="Boolean variable">Boolean variables</a> or <a href="/wiki/Predicate_(mathematical_logic)#Simplified_overview" title="Predicate (mathematical logic)">predicates</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\veebar F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>⊻<!-- ⊻ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\veebar F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a178813e18a7dde9424964f919f76ffb4b87955" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.969ex; height:2.176ex;" alt="{\displaystyle E\veebar F}"></span> denotes the exclusive or. Notations <span class="texhtml"><i>E</i> <small><b>XOR</b></small> <i>F</i></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\oplus F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>⊕<!-- ⊕ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\oplus F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4548df9d548d438b02c47efd6eabca20aa46aabf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.357ex; height:2.343ex;" alt="{\displaystyle E\oplus F}"></span> are also commonly used; see <a href="#⊕">⊕</a>.</dd> <dt id="∀"><dfn><span class="texhtml">∀</span> <span class="nowrap">   </span>(<a href="/wiki/Turned_A" title="Turned A">turned A</a>)</dfn></dt> <dd>1.  Denotes <a href="/wiki/Universal_quantification" title="Universal quantification">universal quantification</a> and is read as "for all". If <span class="texhtml mvar" style="font-style:italic;">E</span> is a <a href="/wiki/Logical_predicate" class="mw-redirect" title="Logical predicate">logical predicate</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\;E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\;E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb331871cd0cd60fb9f03082e5ab92050c346de7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.043ex; height:2.176ex;" alt="{\displaystyle \forall x\;E}"></span> means that <span class="texhtml mvar" style="font-style:italic;">E</span> is true for all possible values of the variable <span class="texhtml mvar" style="font-style:italic;">x</span>.</dd> <dd>2.  Often used in plain text as an abbreviation of "for all" or "for every".</dd> <dt id="∃"><dfn><span class="texhtml">∃</span></dfn></dt> <dd>1.  Denotes <a href="/wiki/Existential_quantification" title="Existential quantification">existential quantification</a> and is read "there exists ... such that". If <span class="texhtml mvar" style="font-style:italic;">E</span> is a <a href="/wiki/Logical_predicate" class="mw-redirect" title="Logical predicate">logical predicate</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists x\;E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>x</mi> <mspace width="thickmathspace" /> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists x\;E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4b7c99fd6f045db473ead91387550cdee77cf21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.043ex; height:2.176ex;" alt="{\displaystyle \exists x\;E}"></span> means that there exists at least one value of <span class="texhtml mvar" style="font-style:italic;">x</span> for which <span class="texhtml mvar" style="font-style:italic;">E</span> is true.</dd> <dd>2.  Often used in plain text as an abbreviation of "there exists".</dd> <dt id="∃!"><dfn><span class="texhtml">∃!</span></dfn></dt> <dd>Denotes <a href="/wiki/Uniqueness_quantification" title="Uniqueness quantification">uniqueness quantification</a>, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists !x\;P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mo>!</mo> <mi>x</mi> <mspace width="thickmathspace" /> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists !x\;P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e7934d5574713dba21190bf397dd91612d4e9f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.66ex; height:2.176ex;" alt="{\displaystyle \exists !x\;P}"></span> means "there exists exactly one <span class="texhtml mvar" style="font-style:italic;">x</span> such that <span class="texhtml mvar" style="font-style:italic;">P</span> (is true)". In other words, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists !x\;P(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mo>!</mo> <mi>x</mi> <mspace width="thickmathspace" /> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists !x\;P(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75d7392d43aba3d5c891f26058524ba009d6a19f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.799ex; height:2.843ex;" alt="{\displaystyle \exists !x\;P(x)}"></span> is an abbreviation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists x\,(P(x)\,\wedge \neg \exists y\,(P(y)\wedge y\neq x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>x</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>y</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo>≠<!-- ≠ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists x\,(P(x)\,\wedge \neg \exists y\,(P(y)\wedge y\neq x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8b0c09aa1715e6cb2a804f56f464f06f68df671" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.744ex; height:2.843ex;" alt="{\displaystyle \exists x\,(P(x)\,\wedge \neg \exists y\,(P(y)\wedge y\neq x))}"></span>.</dd> <dt id="⇒"><dfn><span class="texhtml">⇒</span></dfn></dt> <dd>1.  Denotes <a href="/wiki/Material_conditional" title="Material conditional">material conditional</a>, and is read as "implies". If <span class="texhtml mvar" style="font-style:italic;">P</span> and <span class="texhtml mvar" style="font-style:italic;">Q</span> are <a href="/wiki/Logical_predicate" class="mw-redirect" title="Logical predicate">logical predicates</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\Rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\Rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a57c9bc077d0b20e4f5ec006f5342cfbb18fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\Rightarrow Q}"></span> means that if <span class="texhtml mvar" style="font-style:italic;">P</span> is true, then <span class="texhtml mvar" style="font-style:italic;">Q</span> is also true. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\Rightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\Rightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a57c9bc077d0b20e4f5ec006f5342cfbb18fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\Rightarrow Q}"></span> is logically equivalent with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q\lor \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>∨<!-- ∨ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q\lor \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e5375ce9a1f158c980e10549dde74f8b8c39677" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.717ex; height:2.509ex;" alt="{\displaystyle Q\lor \neg P}"></span>.</dd> <dd>2.  Often used in plain text as an abbreviation of "implies".</dd> <dt id="⇔"><dfn><span class="texhtml">⇔</span></dfn></dt> <dd>1.  Denotes <a href="/wiki/Logical_equivalence" title="Logical equivalence">logical equivalence</a>, and is read "is equivalent to" or "<a href="/wiki/If_and_only_if" title="If and only if">if and only if</a>". If <span class="texhtml mvar" style="font-style:italic;">P</span> and <span class="texhtml mvar" style="font-style:italic;">Q</span> are <a href="/wiki/Logical_predicate" class="mw-redirect" title="Logical predicate">logical predicates</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\Leftrightarrow Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\Leftrightarrow Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe75af42226920bc628ac7bbd53c023928f346ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\Leftrightarrow Q}"></span> is thus an abbreviation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (P\Rightarrow Q)\land (Q\Rightarrow P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (P\Rightarrow Q)\land (Q\Rightarrow P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eec3bd1f9b1c8698baba9e3124f6077575a0ff15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.597ex; height:2.843ex;" alt="{\displaystyle (P\Rightarrow Q)\land (Q\Rightarrow P)}"></span>, or of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (P\land Q)\lor (\neg P\land \neg Q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>P</mi> <mo>∧<!-- ∧ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>∨<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>P</mi> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>Q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (P\land Q)\lor (\neg P\land \neg Q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acba17910384f15b1f928005ea6311ad59028898" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.635ex; height:2.843ex;" alt="{\displaystyle (P\land Q)\lor (\neg P\land \neg Q)}"></span>.</dd> <dd>2.  Often used in plain text as an abbreviation of "<a href="/wiki/If_and_only_if" title="If and only if">if and only if</a>".</dd> <dt id="⊤"><dfn><span class="texhtml">⊤</span> <span class="nowrap">   </span>(<a href="/wiki/Tee_(symbol)" title="Tee (symbol)">tee</a>)</dfn></dt> <dd>1.  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \top }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \top }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf12e436fef2365e76fcb1034a51179d8328bb33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \top }"></span> denotes the <a href="/wiki/Logical_predicate" class="mw-redirect" title="Logical predicate">logical predicate</a> <i>always true</i>.</dd> <dd>2.  Denotes also the <a href="/wiki/Truth_value" title="Truth value">truth value</a> <i>true</i>.</dd> <dd>3.  Sometimes denotes the <a href="/wiki/Top_element" class="mw-redirect" title="Top element">top element</a> of a <a href="/wiki/Bounded_lattice" class="mw-redirect" title="Bounded lattice">bounded lattice</a> (previous meanings are specific examples).</dd> <dd>4.  For the use as a superscript, see <a href="#□⊤"><span class="texhtml">□<sup>⊤</sup></span></a>.</dd> <dt id="⊥"><dfn><span class="texhtml">⊥</span> <span class="nowrap">   </span>(<a href="/wiki/Up_tack" title="Up tack">up tack</a>)</dfn></dt> <dd>1.  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">⊥<!-- ⊥ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f282c7bc331cc3bfcf1c57f1452cc23c022f58de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \bot }"></span> denotes the <a href="/wiki/Logical_predicate" class="mw-redirect" title="Logical predicate">logical predicate</a> <i>always false</i>.</dd> <dd>2.  Denotes also the <a href="/wiki/Truth_value" title="Truth value">truth value</a> <i>false</i>.</dd> <dd>3.  Sometimes denotes the <a href="/wiki/Bottom_element" class="mw-redirect" title="Bottom element">bottom element</a> of a <a href="/wiki/Bounded_lattice" class="mw-redirect" title="Bounded lattice">bounded lattice</a> (previous meanings are specific examples).</dd> <dd>4.  In <a href="/wiki/Cryptography" title="Cryptography">Cryptography</a> often denotes an error in place of a regular value.</dd> <dd>5.  For the use as a superscript, see <a href="#□⊥"><span class="texhtml">□<sup>⊥</sup></span></a>.</dd> <dd>6.  For the similar symbol, see <a href="#⟂"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \perp }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊥<!-- ⊥ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \perp }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afb90d6db42aa12f9e2f31176a4ed4e741c69eca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \perp }"></span></a>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Blackboard_bold">Blackboard bold</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=7" title="Edit section: Blackboard bold"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Blackboard_bold" title="Blackboard bold">blackboard bold</a> <a href="/wiki/Typeface" title="Typeface">typeface</a> is widely used for denoting the basic <a href="/wiki/Number_system" class="mw-redirect" title="Number system">number systems</a>. These systems are often also denoted by the corresponding uppercase bold letter. A clear advantage of blackboard bold is that these symbols cannot be confused with anything else. This allows using them in any area of mathematics, without having to recall their definition. For example, if one encounters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> in <a href="/wiki/Combinatorics" title="Combinatorics">combinatorics</a>, one should immediately know that this denotes the <a href="/wiki/Real_number" title="Real number">real numbers</a>, although combinatorics does not study the real numbers (but it uses them for many proofs). <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> </p> <dl class="glossary"> <dt id="ℕ"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span></dfn></dt> <dd>Denotes the set of <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1,2,\ldots \},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1,2,\ldots \},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c507fade9c89210bf99dc52b7a6e991add6c7990" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.088ex; height:2.843ex;" alt="{\displaystyle \{1,2,\ldots \},}"></span> or sometimes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0,1,2,\ldots \}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0,1,2,\ldots \}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebe90224ed80730c05540c56ed9e1644218817ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.284ex; height:2.843ex;" alt="{\displaystyle \{0,1,2,\ldots \}.}"></span> When the distinction is important and readers might assume either definition, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cca915d54ae835781191ae19599e11c7ff3d066" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.732ex; height:2.509ex;" alt="{\displaystyle \mathbb {N} _{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77ab7e98123f0def29a1cd3df96a0b7a58f4202c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.732ex; height:2.509ex;" alt="{\displaystyle \mathbb {N} _{0}}"></span> are used, respectively, to denote one of them unambiguously. Notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2f63b6cd6d63ee9b7be0b7e4d14099d7153bd43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.091ex; height:2.176ex;" alt="{\displaystyle \mathbf {N} }"></span> is also commonly used.</dd> <dt id="ℤ"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span></dfn></dt> <dd>Denotes the set of <a href="/wiki/Integer" title="Integer">integers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\ldots ,-2,-1,0,1,2,\ldots \}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\ldots ,-2,-1,0,1,2,\ldots \}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/958d9f8708cd5376adc925553b8f3dc66ed29e3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.438ex; height:2.843ex;" alt="{\displaystyle \{\ldots ,-2,-1,0,1,2,\ldots \}.}"></span> It is often denoted also by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Z} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Z} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ddd2dc6678fbf5b336535dd6f25bb5681bc5f20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.281ex; height:2.176ex;" alt="{\displaystyle \mathbf {Z} .}"></span></dd> <dt id="ℤp"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc1df7227ef11fe88dccd2dae3adc7bbdeae5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}}"></span></dfn></dt> <dd>1.  Denotes the set of <a href="/wiki/P-adic_integer" class="mw-redirect" title="P-adic integer"><span class="texhtml mvar" style="font-style:italic;">p</span>-adic integers</a>, where <span class="texhtml mvar" style="font-style:italic;">p</span> is a <a href="/wiki/Prime_number" title="Prime number">prime number</a>.</dd> <dd>2.  Sometimes, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b729c334a9863c47f0b7e3ad61342c2f0881bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{n}}"></span> denotes the <a href="/wiki/Integers_modulo_n" class="mw-redirect" title="Integers modulo n">integers modulo <span class="texhtml mvar" style="font-style:italic;">n</span></a>, where <span class="texhtml mvar" style="font-style:italic;">n</span> is an <a href="/wiki/Integer" title="Integer">integer</a> greater than 0. The notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /n\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /n\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2120ebbc85f91df66c6de5446367bf9fd620844" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.658ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /n\mathbb {Z} }"></span> is also used, and is less ambiguous.</dd> <dt id="ℚ"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span></dfn></dt> <dd>Denotes the set of <a href="/wiki/Rational_number" title="Rational number">rational numbers</a> (fractions of two integers). It is often denoted also by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Q} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4001d22c846e1ec4b5cf71650a58e9fed5df4f76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.655ex; height:2.509ex;" alt="{\displaystyle \mathbf {Q} .}"></span></dd> <dt id="ℚp"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f44bc6894c682710705f3ea74f33042e0acc3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.867ex; height:2.843ex;" alt="{\displaystyle \mathbb {Q} _{p}}"></span></dfn></dt> <dd>Denotes the set of <a href="/wiki/P-adic_number" title="P-adic number"><span class="texhtml mvar" style="font-style:italic;">p</span>-adic numbers</a>, where <span class="texhtml mvar" style="font-style:italic;">p</span> is a <a href="/wiki/Prime_number" title="Prime number">prime number</a>.</dd> <dt id="ℝ"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span></dfn></dt> <dd>Denotes the set of <a href="/wiki/Real_number" title="Real number">real numbers</a>. It is often denoted also by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a067bb21dcf0642bdce48f05a55e218efab3b85e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.65ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} .}"></span></dd> <dt id="ℂ"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span></dfn></dt> <dd>Denotes the set of <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>. It is often denoted also by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {C} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b8decdc57398394307879276418d46bc88b01de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.578ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} .}"></span></dd> <dt id="ℍ"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e050965453c42bcc6bd544546703c836bdafeac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {H} }"></span></dfn></dt> <dd>Denotes the set of <a href="/wiki/Quaternion" title="Quaternion">quaternions</a>. It is often denoted also by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {H} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {H} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/012ed6cd8c75bd4227713d2bc3db339ef30d8aaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.738ex; height:2.176ex;" alt="{\displaystyle \mathbf {H} .}"></span></dd> <dt id="fq"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {F} _{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {F} _{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbb96e056c071d13fc7702013f9273e7f5cd88a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.409ex; height:2.843ex;" alt="{\displaystyle \mathbb {F} _{q}}"></span></dfn></dt> <dd>Denotes the <a href="/wiki/Finite_field" title="Finite field">finite field</a> with <span class="texhtml mvar" style="font-style:italic;">q</span> elements, where <span class="texhtml mvar" style="font-style:italic;">q</span> is a <a href="/wiki/Prime_power" title="Prime power">prime power</a> (including <a href="/wiki/Prime_number" title="Prime number">prime numbers</a>). It is denoted also by <span class="texhtml">GF(<i>q</i>)</span>.</dd> <dt id="o"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {O} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">O</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {O} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1ed2664a4fe515e6fbed25a7193ce663b82920c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {O} }"></span></dfn></dt> <dd>Used on rare occasions to denote the set of <a href="/wiki/Octonion" title="Octonion">octonions</a>. It is often denoted also by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {O} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">O</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {O} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77bb2976419493443d2fc0b0be6325d211e6a48b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.655ex; height:2.176ex;" alt="{\displaystyle \mathbf {O} .}"></span></dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Calculus">Calculus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=8" title="Edit section: Calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="□'"><dfn><span class="texhtml">□<span class="nowrap" style="padding-left:0.1em;">'</span></span></dfn></dt> <dd><a href="/wiki/Lagrange%27s_notation" class="mw-redirect" title="Lagrange's notation">Lagrange's notation</a> for the <a href="/wiki/Derivative" title="Derivative">derivative</a>: If <span class="texhtml mvar" style="font-style:italic;">f</span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of a single variable, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f'}"></span>, read as "f <a href="/wiki/Prime_(symbol)#Use_in_mathematics,_statistics,_and_science" title="Prime (symbol)">prime</a>", is the derivative of <span class="texhtml mvar" style="font-style:italic;">f</span> with respect to this variable. The <a href="/wiki/Second_derivative" title="Second derivative">second derivative</a> is the derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f'}"></span>, and is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbbdf186092f4353b7630fa8dda903e493cbbdc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.458ex; height:2.843ex;" alt="{\displaystyle f''}"></span>.</dd> <dt id="\dot"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\Box }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>◻<!-- ◻ --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\Box }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/957f5d3dffde5c82bd1098e67013f25f9b0eb78d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.676ex;" alt="{\displaystyle {\dot {\Box }}}"></span></dfn></dt> <dd><a href="/wiki/Newton%27s_notation" class="mw-redirect" title="Newton's notation">Newton's notation</a>, most commonly used for the <a href="/wiki/Derivative" title="Derivative">derivative</a> with respect to time. If <span class="texhtml mvar" style="font-style:italic;">x</span> is a variable depending on time, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {x}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {x}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/447dd24107959e59e1389e419eafcff61f25bcfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.509ex;" alt="{\displaystyle {\dot {x}},}"></span> read as "x dot", is its derivative with respect to time. In particular, if <span class="texhtml mvar" style="font-style:italic;">x</span> represents a moving point, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a82c85f33714da82ab42d6b69eae07ab7e5e234b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.176ex;" alt="{\displaystyle {\dot {x}}}"></span> is its <a href="/wiki/Velocity" title="Velocity">velocity</a>.</dd> <dt id="\ddot"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {\Box }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>◻<!-- ◻ --></mi> <mo>¨<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {\Box }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b2d7f9eb79e6460dc0a8ec8cd2534d79193125d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.676ex;" alt="{\displaystyle {\ddot {\Box }}}"></span></dfn></dt> <dd><a href="/wiki/Newton%27s_notation" class="mw-redirect" title="Newton's notation">Newton's notation</a>, for the <a href="/wiki/Second_derivative" title="Second derivative">second derivative</a>: If <span class="texhtml mvar" style="font-style:italic;">x</span> is a variable that represents a moving point, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>¨<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06e0e705ddda28c6cd06cdc6e18be9abf88bb395" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.176ex;" alt="{\displaystyle {\ddot {x}}}"></span> is its <a href="/wiki/Acceleration" title="Acceleration">acceleration</a>.</dd> <dt id="leibnitz"><dfn><span class="texhtml"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">d □</span><span class="sr-only">/</span><span class="den">d □</span></span>⁠</span></span></dfn></dt> <dd><a href="/wiki/Leibniz%27s_notation" title="Leibniz's notation">Leibniz's notation</a> for the <a href="/wiki/Derivative" title="Derivative">derivative</a>, which is used in several slightly different ways.</dd> <dd>1.  If <span class="texhtml mvar" style="font-style:italic;">y</span> is a variable that <a href="/wiki/Dependent_variable" class="mw-redirect" title="Dependent variable">depends</a> on <span class="texhtml mvar" style="font-style:italic;">x</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\frac {\mathrm {d} y}{\mathrm {d} x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\frac {\mathrm {d} y}{\mathrm {d} x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc7db6fcc647d0372d744d4880ea45bf7e3cadb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.69ex; height:4.176ex;" alt="{\displaystyle \textstyle {\frac {\mathrm {d} y}{\mathrm {d} x}}}"></span>, read as "d y over d x" (commonly shortened to "d y d x"), is the derivative of <span class="texhtml mvar" style="font-style:italic;">y</span> with respect to <span class="texhtml mvar" style="font-style:italic;">x</span>.</dd> <dd>2.  If <span class="texhtml mvar" style="font-style:italic;">f</span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of a single variable <span class="texhtml mvar" style="font-style:italic;">x</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>f</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b6b600ec47290dd76692d146af0908122667fcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.69ex; height:4.176ex;" alt="{\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}}"></span> is the derivative of <span class="texhtml mvar" style="font-style:italic;">f</span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>f</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14d280d766623d30f31fc42fa4a07d4a7b9bd9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.729ex; height:4.176ex;" alt="{\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}(a)}"></span> is the value of the derivative at <span class="texhtml mvar" style="font-style:italic;">a</span>.</dd> <dd>3.  <a href="/wiki/Total_derivative" title="Total derivative">Total derivative</a>: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1},\ldots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1},\ldots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d6311d8c66acc1a5755c4c7cb688d3b1fa0fcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.198ex; height:2.843ex;" alt="{\displaystyle f(x_{1},\ldots ,x_{n})}"></span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of several variables that <a href="/wiki/Dependent_variable" class="mw-redirect" title="Dependent variable">depend</a> on <span class="texhtml mvar" style="font-style:italic;">x</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>f</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b6b600ec47290dd76692d146af0908122667fcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.69ex; height:4.176ex;" alt="{\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}}"></span> is the derivative of <span class="texhtml mvar" style="font-style:italic;">f</span> considered as a function of <span class="texhtml mvar" style="font-style:italic;">x</span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\frac {\mathrm {d} f}{dx}}=\sum _{i=1}^{n}{\frac {\partial f}{\partial x_{i}}}\,{\frac {\mathrm {d} x_{i}}{\mathrm {d} x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\frac {\mathrm {d} f}{dx}}=\sum _{i=1}^{n}{\frac {\partial f}{\partial x_{i}}}\,{\frac {\mathrm {d} x_{i}}{\mathrm {d} x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/470f0cde8d93adb73922e79c1c327a64826a79f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:18.529ex; height:4.509ex;" alt="{\displaystyle \textstyle {\frac {\mathrm {d} f}{dx}}=\sum _{i=1}^{n}{\frac {\partial f}{\partial x_{i}}}\,{\frac {\mathrm {d} x_{i}}{\mathrm {d} x}}}"></span>.</dd> <dt id="partial"><dfn><span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">∂ □</span><span class="sr-only">/</span><span class="den">∂ □</span></span>⁠</span></span></dfn></dt> <dd><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a>: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1},\ldots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1},\ldots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d6311d8c66acc1a5755c4c7cb688d3b1fa0fcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.198ex; height:2.843ex;" alt="{\displaystyle f(x_{1},\ldots ,x_{n})}"></span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of several variables, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\frac {\partial f}{\partial x_{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\frac {\partial f}{\partial x_{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa89b17348526def30043c1a4f2e6b4284748bb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:3.333ex; height:4.509ex;" alt="{\displaystyle \textstyle {\frac {\partial f}{\partial x_{i}}}}"></span> is the derivative with respect to the <span class="texhtml mvar" style="font-style:italic;">i</span>th variable considered as an <a href="/wiki/Independent_variable" class="mw-redirect" title="Independent variable">independent variable</a>, the other variables being considered as constants.</dd> <dt id="functional"><dfn><span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">𝛿 □</span><span class="sr-only">/</span><span class="den">𝛿 □</span></span>⁠</span></span></dfn></dt> <dd><a href="/wiki/Functional_derivative" title="Functional derivative">Functional derivative</a>: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(y_{1},\ldots ,y_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(y_{1},\ldots ,y_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41b7345c44e8c45c9128819e3bd755210a2ec478" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.817ex; height:2.843ex;" alt="{\displaystyle f(y_{1},\ldots ,y_{n})}"></span> is a <a href="/wiki/Functional_(mathematics)" title="Functional (mathematics)">functional</a> of several <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\frac {\delta f}{\delta y_{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>δ<!-- δ --></mi> <mi>f</mi> </mrow> <mrow> <mi>δ<!-- δ --></mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\frac {\delta f}{\delta y_{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9935d7dda8a2fd9993a1979decf2502d5f51d1b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:3.008ex; height:4.509ex;" alt="{\displaystyle \textstyle {\frac {\delta f}{\delta y_{i}}}}"></span> is the functional derivative with respect to the <span class="texhtml mvar" style="font-style:italic;">n</span>th function considered as an <a href="/wiki/Independent_variable" class="mw-redirect" title="Independent variable">independent variable</a>, the other functions being considered constant.</dd> <dt id="overline"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\Box }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>◻<!-- ◻ --></mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\Box }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2af38ccf16894144a32ec5fa63b9690339fc831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.923ex; height:3.009ex;" alt="{\displaystyle {\overline {\Box }}}"></span></dfn></dt> <dd>1.  <a href="/wiki/Complex_conjugate" title="Complex conjugate">Complex conjugate</a>: If <span class="texhtml mvar" style="font-style:italic;">z</span> is a <a href="/wiki/Complex_number" title="Complex number">complex number</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64281d029a1d4bef9545644f01821c713f876f76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.208ex; height:2.343ex;" alt="{\displaystyle {\overline {z}}}"></span> is its complex conjugate. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {a+bi}}=a-bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {a+bi}}=a-bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4f3fe032bfaad1f9bea098118677ccab943176f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.954ex; height:3.176ex;" alt="{\displaystyle {\overline {a+bi}}=a-bi}"></span>.</dd> <dd>2.  <a href="/wiki/Topological_closure" class="mw-redirect" title="Topological closure">Topological closure</a>: If <span class="texhtml mvar" style="font-style:italic;">S</span> is a <a href="/wiki/Subset" title="Subset">subset</a> of a <a href="/wiki/Topological_space" title="Topological space">topological space</a> <span class="texhtml mvar" style="font-style:italic;">T</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0353b71f671221a0796d94febf9079b11dcca124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.663ex; height:3.009ex;" alt="{\displaystyle {\overline {S}}}"></span> is its topological closure, that is, the smallest <a href="/wiki/Closed_subset" class="mw-redirect" title="Closed subset">closed subset</a> of <span class="texhtml mvar" style="font-style:italic;">T</span> that contains <span class="texhtml mvar" style="font-style:italic;">S</span>.</dd> <dd>3.  <a href="/wiki/Algebraic_closure" title="Algebraic closure">Algebraic closure</a>: If <span class="texhtml mvar" style="font-style:italic;">F</span> is a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d122dfa2be8a341b1c30e7b3405af6ac2c157105" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.016ex; height:3.009ex;" alt="{\displaystyle {\overline {F}}}"></span> is its algebraic closure, that is, the smallest <a href="/wiki/Algebraically_closed_field" title="Algebraically closed field">algebraically closed field</a> that contains <span class="texhtml mvar" style="font-style:italic;">F</span>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\mathbb {Q} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\mathbb {Q} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/377a8814b1ca454c488e409813988dd5dd906148" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.923ex; height:3.343ex;" alt="{\displaystyle {\overline {\mathbb {Q} }}}"></span> is the field of all <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic numbers</a>.</dd> <dd>4.  <a href="/wiki/Mean_value" class="mw-redirect" title="Mean value">Mean value</a>: If <span class="texhtml mvar" style="font-style:italic;">x</span> is a <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a> that takes its values in some sequence of numbers <span class="texhtml mvar" style="font-style:italic;">S</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fa4039bbc2a0048c3a3c02e5fd24390cab0dc97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.445ex; height:2.343ex;" alt="{\displaystyle {\overline {x}}}"></span> may denote the mean of the elements of <span class="texhtml mvar" style="font-style:italic;">S</span>.</dd> <dd>5.  <a href="/wiki/Negation" title="Negation">Negation</a>: Sometimes used to denote negation of the entire expression under the bar, particularly when dealing with <a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a>. For example, one of <a href="/wiki/De_Morgan%27s_laws" title="De Morgan's laws">De Morgan's laws</a> says that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A\land B}}={\overline {A}}\lor {\overline {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>∨<!-- ∨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A\land B}}={\overline {A}}\lor {\overline {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed12be97d3f36682b9322c53247b927a3d254d8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.623ex; height:3.009ex;" alt="{\displaystyle {\overline {A\land B}}={\overline {A}}\lor {\overline {B}}}"></span> .</dd> <dt id="→"><dfn><span class="texhtml">→</span></dfn></dt> <dd>1.  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5b8dd84619daff17b52a08b77d15db2b9ad6c2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\to B}"></span> denotes a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> with <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> <span class="texhtml mvar" style="font-style:italic;">A</span> and <a href="/wiki/Codomain" title="Codomain">codomain</a> <span class="texhtml mvar" style="font-style:italic;">B</span>. For naming such a function, one writes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:A\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:A\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20040a52d9391f2fe271f0aaa300bf7887a0c7b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.337ex; height:2.509ex;" alt="{\displaystyle f:A\to B}"></span>, which is read as "<span class="texhtml mvar" style="font-style:italic;">f</span> from <span class="texhtml mvar" style="font-style:italic;">A</span> to <span class="texhtml mvar" style="font-style:italic;">B</span>".</dd> <dd>2.  More generally, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5b8dd84619daff17b52a08b77d15db2b9ad6c2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\to B}"></span> denotes a <a href="/wiki/Homomorphism" title="Homomorphism">homomorphism</a> or a <a href="/wiki/Morphism" title="Morphism">morphism</a> from <span class="texhtml mvar" style="font-style:italic;">A</span> to <span class="texhtml mvar" style="font-style:italic;">B</span>.</dd> <dd>3.  May denote a <a href="/wiki/Logical_implication" class="mw-redirect" title="Logical implication">logical implication</a>. For the <a href="/wiki/Material_conditional" title="Material conditional">material implication</a> that is widely used in mathematics reasoning, it is nowadays generally replaced by <a href="#⇒">⇒</a>. In <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a>, it remains used for denoting implication, but its exact meaning depends on the specific theory that is studied.</dd> <dd>4.  Over a <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable name</a>, means that the variable represents a <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">vector</a>, in a context where ordinary variables represent <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalars</a>; for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo>→<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdbb1a68c861cbd0cfda4f71510f67eed27c7cb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.388ex; height:3.009ex;" alt="{\displaystyle {\overrightarrow {v}}}"></span>. Boldface (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span>) or a <a href="/wiki/Circumflex" title="Circumflex">circumflex</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2790b6cafab4cc0f98a9ae8beb550947e60062f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.227ex; height:2.176ex;" alt="{\displaystyle {\hat {v}}}"></span>) are often used for the same purpose.</dd> <dd>5.  In <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a> and more generally in <a href="/wiki/Affine_geometry" title="Affine geometry">affine geometry</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {PQ}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>P</mi> <mi>Q</mi> </mrow> <mo>→<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {PQ}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/675febeea8e91072fb11994af206714d0bc598a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-top: -0.4ex; width:3.714ex; height:4.176ex;" alt="{\displaystyle {\overrightarrow {PQ}}}"></span> denotes the <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">vector</a> defined by the two points <span class="texhtml mvar" style="font-style:italic;">P</span> and <span class="texhtml mvar" style="font-style:italic;">Q</span>, which can be identified with the <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translation</a> that maps <span class="texhtml mvar" style="font-style:italic;">P</span> to <span class="texhtml mvar" style="font-style:italic;">Q</span>. The same vector can be denoted also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q-P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>−<!-- − --></mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q-P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0eb4781c90e13f7a69c3762ca5a29b1aa54c566" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.424ex; height:2.509ex;" alt="{\displaystyle Q-P}"></span>; see <a href="/wiki/Affine_space" title="Affine space">Affine space</a>.</dd> <dt id="↦"><dfn><span class="texhtml">↦</span></dfn></dt> <dd>"<a href="/wiki/Maps_to" title="Maps to">Maps to</a>": Used for defining a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> without having to name it. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40b49de3850ec5b2be3acb8db45514958c5e80ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.328ex; height:2.676ex;" alt="{\displaystyle x\mapsto x^{2}}"></span> is the <a href="/wiki/Square_function" class="mw-redirect" title="Square function">square function</a>.</dd> <dt id="∘"><dfn><span class="texhtml">○</span><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup></dfn></dt> <dd>1.  <a href="/wiki/Function_composition" title="Function composition">Function composition</a>: If <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are two functions, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>∘<!-- ∘ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10b5ad4985af48d0fb7efa3c8afa5ad7d42bfc92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle g\circ f}"></span> is the function such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g\circ f)(x)=g(f(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>∘<!-- ∘ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g\circ f)(x)=g(f(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8a73f8d834a602ee506ac323b8a36ce17ac2b9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.979ex; height:2.843ex;" alt="{\displaystyle (g\circ f)(x)=g(f(x))}"></span> for every value of <span class="texhtml mvar" style="font-style:italic;">x</span>.</dd> <dd>2.  <a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product of matrices</a>: If <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are two matrices of the same size, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\circ B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∘<!-- ∘ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\circ B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c341d3106d2763836b32f992b74e73f4cef0d24d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.702ex; height:2.176ex;" alt="{\displaystyle A\circ B}"></span> is the matrix such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\circ B)_{i,j}=(A)_{i,j}(B)_{i,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∘<!-- ∘ --></mo> <mi>B</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>A</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\circ B)_{i,j}=(A)_{i,j}(B)_{i,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c463ca925b4af07b1ac93b1c9a56d562ba1c2dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.539ex; height:3.009ex;" alt="{\displaystyle (A\circ B)_{i,j}=(A)_{i,j}(B)_{i,j}}"></span>. Possibly, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \circ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∘<!-- ∘ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \circ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99add39d2b681e2de7ff62422c32704a05c7ec31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.125ex; margin-bottom: -0.297ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle \circ }"></span> is also used instead of <a href="#⊙"><span class="texhtml">⊙</span></a> for the <a href="/wiki/Hadamard_product_(series)" class="mw-redirect" title="Hadamard product (series)">Hadamard product of power series</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2020)">citation needed</span></a></i>]</sup></dd> <dt id="∂"><dfn><span class="texhtml">∂</span></dfn></dt> <dd>1.  <a href="/wiki/Boundary_(topology)" title="Boundary (topology)">Boundary</a> of a <a href="/wiki/Topological_subspace" class="mw-redirect" title="Topological subspace">topological subspace</a>: If <span class="texhtml mvar" style="font-style:italic;">S</span> is a subspace of a topological space, then its <i>boundary</i>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c609f4d3c5692ea4495479ef47594dc67f9fa464" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.817ex; height:2.176ex;" alt="{\displaystyle \partial S}"></span>, is the <a href="/wiki/Set_difference" class="mw-redirect" title="Set difference">set difference</a> between the <a href="/wiki/Closure_(topology)" title="Closure (topology)">closure</a> and the <a href="/wiki/Interior_(topology)" title="Interior (topology)">interior</a> of <span class="texhtml mvar" style="font-style:italic;">S</span>.</dd> <dd>2.  <a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a>: see <a href="#partial"><span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">∂□</span><span class="sr-only">/</span><span class="den">∂□</span></span>⁠</span></span></a>.</dd> <dt id="integral"><dfn><span class="texhtml">∫</span></dfn></dt> <dd>1.  Without a subscript, denotes an <a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int x^{2}dx={\frac {x^{3}}{3}}+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int x^{2}dx={\frac {x^{3}}{3}}+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/784a38f079bd887e8e311be5c4aa8da4f38053f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:17.048ex; height:4.176ex;" alt="{\displaystyle \textstyle \int x^{2}dx={\frac {x^{3}}{3}}+C}"></span>.</dd> <dd>2.  With a subscript and a superscript, or expressions placed below and above it, denotes a <a href="/wiki/Definite_integral" class="mw-redirect" title="Definite integral">definite integral</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int _{a}^{b}x^{2}dx={\frac {b^{3}-a^{3}}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int _{a}^{b}x^{2}dx={\frac {b^{3}-a^{3}}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/788d4bfdfabd75b9fa2ca28745ac4ff6aa525976" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:16.22ex; height:4.343ex;" alt="{\displaystyle \textstyle \int _{a}^{b}x^{2}dx={\frac {b^{3}-a^{3}}{3}}}"></span>.</dd> <dd>3.  With a subscript that denotes a curve, denotes a <a href="/wiki/Line_integral" title="Line integral">line integral</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int _{C}f=\int _{a}^{b}f(r(t))r'(t)\operatorname {d} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mi>f</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">d</mi> <mo>⁡<!-- --></mo> <mi>t</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int _{C}f=\int _{a}^{b}f(r(t))r'(t)\operatorname {d} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5ac62efef15ab1a68ad52ce999a551f49d885dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.256ex; height:3.676ex;" alt="{\displaystyle \textstyle \int _{C}f=\int _{a}^{b}f(r(t))r'(t)\operatorname {d} t}"></span>, if <span class="texhtml mvar" style="font-style:italic;">r</span> is a parametrization of the curve <span class="texhtml mvar" style="font-style:italic;">C</span>, from <span class="texhtml mvar" style="font-style:italic;">a</span> to <span class="texhtml mvar" style="font-style:italic;">b</span>.</dd> <dt id="oint"><dfn><span class="texhtml">∮</span></dfn></dt> <dd>Often used, typically in physics, instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20aefa830c82b373910d5d569b67f11fe5acf74c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.418ex; height:3.176ex;" alt="{\displaystyle \textstyle \int }"></span> for <a href="/wiki/Line_integral" title="Line integral">line integrals</a> over a <a href="/wiki/Closed_curve" class="mw-redirect" title="Closed curve">closed curve</a>.</dd> <dt id="iint"><dfn><span class="texhtml">∬, ∯</span></dfn></dt> <dd>Similar to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20aefa830c82b373910d5d569b67f11fe5acf74c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.418ex; height:3.176ex;" alt="{\displaystyle \textstyle \int }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \oint }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∮<!-- ∮ --></mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \oint }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc0c73b2f6624a2aa31528983c8f0a53b450a476" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.418ex; height:3.176ex;" alt="{\displaystyle \textstyle \oint }"></span> for <a href="/wiki/Surface_integral" title="Surface integral">surface integrals</a>.</dd> <dt id="∇"><dfn><a href="/wiki/Nabla_symbol" title="Nabla symbol"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\nabla }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">∇<!-- ∇ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\nabla }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86517a50dbbbc3ab9b4e9071f9c3627594dd0040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.226ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {\nabla }}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\nabla }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\nabla }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65eeb56775c5bb9a9645ca773c8b8f744ca6ce0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.843ex;" alt="{\displaystyle {\vec {\nabla }}}"></span></a></dfn></dt> <dd><a href="/wiki/Del" title="Del">Nabla</a>, the <a href="/wiki/Gradient" title="Gradient">gradient</a>, vector derivative operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \left({\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \left({\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d230ab1c50528c0640da5e9a78827504eb5ed4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.675ex; height:4.843ex;" alt="{\displaystyle \textstyle \left({\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}}\right)}"></span>, also called <i>del</i> or <i>grad</i>,</dd> or the <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a>. <dt id="laplacian"><dfn><span class="texhtml">∇<sup>2</sup></span> or <span class="texhtml">∇⋅∇</span></dfn></dt> <dd><a href="/wiki/Laplace_operator" title="Laplace operator">Laplace operator</a> or <i>Laplacian</i>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738a3f7fd623c3ccda4bb14047a7d2d6dfcf34f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.012ex; height:4.676ex;" alt="{\displaystyle \textstyle {\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}}"></span>. The forms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4be87ad083e5ead48d92b0c82f2d4e719cb34a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.99ex; height:2.676ex;" alt="{\displaystyle \nabla ^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {\nabla }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">∇<!-- ∇ --></mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">∇<!-- ∇ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {\nabla }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d48fadc100d258f78fc0ec2f8d33eba7c7759dfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.132ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {\nabla }}}"></span> represent the dot product of the <a href="#∇">gradient</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\nabla }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">∇<!-- ∇ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\nabla }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86517a50dbbbc3ab9b4e9071f9c3627594dd0040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.226ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {\nabla }}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\nabla }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\nabla }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65eeb56775c5bb9a9645ca773c8b8f744ca6ce0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.843ex;" alt="{\displaystyle {\vec {\nabla }}}"></span>) with itself. Also notated <span class="texhtml">Δ</span> (next item).</dd> <dt id="delta"><dfn><span class="texhtml">Δ</span></dfn></dt> (Capital Greek letter <a href="/wiki/Delta_(letter)" title="Delta (letter)">delta</a>—not to be confused with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">△<!-- △ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d909fe94e8277a4c44a50853cb7dbbf0fa3148ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle \triangle }"></span>, which may denote a geometric <a href="/wiki/Triangle" title="Triangle">triangle</a> or, alternatively, the <a href="/wiki/Symmetric_difference" title="Symmetric difference">symmetric difference</a> of two sets.) <dd>1.  Another notation for the <a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a> (see above).</dd> <dd>2.  Operator of <a href="/wiki/Finite_difference" title="Finite difference">finite difference</a>.</dd> <dt id="four-gradient"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\partial }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">∂<!-- ∂ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\partial }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b5eea7d641ff8530d15afea312051dfe8ab8716" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.527ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {\partial }}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1be3e5cf12940b60f8569a9927ad28823277177a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.458ex; height:2.843ex;" alt="{\displaystyle \partial _{\mu }}"></span></dfn></dt> (Note: the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Box }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>◻<!-- ◻ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Box }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/029b77f09ebeaf7528fc831fe57848be51f2240b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Box }"></span> is not recommended for the four-gradient since both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Box }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>◻<!-- ◻ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Box }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/029b77f09ebeaf7528fc831fe57848be51f2240b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Box }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\Box }^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>◻<!-- ◻ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\Box }^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc359533bf8adb4d1b6d94d147732aeabd22f2f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.862ex; height:2.676ex;" alt="{\displaystyle {\Box }^{2}}"></span> are used to denote the <a href="/wiki/D%27Alembertian" class="mw-redirect" title="D'Alembertian">d'Alembertian</a>; see below.) <dd><a href="/wiki/Four-gradient" title="Four-gradient">Quad</a>, the <a href="/wiki/Four-gradient" title="Four-gradient">4-vector gradient operator</a> or <a href="/wiki/Four-gradient" title="Four-gradient">four-gradient</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \left({\frac {\partial }{\partial t}},{\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \left({\frac {\partial }{\partial t}},{\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96ffe07900a2c97ce093a2a12eab95ad79df2906" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.07ex; height:4.843ex;" alt="{\displaystyle \textstyle \left({\frac {\partial }{\partial t}},{\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}}\right)}"></span>.</dd> <dt id="d'alembertian"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Box }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>◻<!-- ◻ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Box }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/029b77f09ebeaf7528fc831fe57848be51f2240b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Box }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\Box }^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>◻<!-- ◻ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\Box }^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc359533bf8adb4d1b6d94d147732aeabd22f2f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.862ex; height:2.676ex;" alt="{\displaystyle {\Box }^{2}}"></span></dfn></dt> (here an actual box, not a placeholder) <dd>Denotes the <a href="/wiki/D%27Alembertian" class="mw-redirect" title="D'Alembertian">d'Alembertian</a> or squared <a href="/wiki/Four-gradient" title="Four-gradient">four-gradient</a>, which is a generalization of the <a href="/wiki/Laplacian" class="mw-redirect" title="Laplacian">Laplacian</a> to four-dimensional spacetime. In flat spacetime with Euclidean coordinates, this may mean either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\textstyle -{\frac {\partial ^{2}}{\partial t^{2}}}+{\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}~\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mstyle displaystyle="false" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mtext> </mtext> <mspace width="thickmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\textstyle -{\frac {\partial ^{2}}{\partial t^{2}}}+{\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}~\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6688cd8387ff1bc95836f7b032745037757b6fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.692ex; height:4.676ex;" alt="{\displaystyle ~\textstyle -{\frac {\partial ^{2}}{\partial t^{2}}}+{\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}~\;}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;~\textstyle +{\frac {\partial ^{2}}{\partial t^{2}}}-{\frac {\partial ^{2}}{\partial x^{2}}}-{\frac {\partial ^{2}}{\partial y^{2}}}-{\frac {\partial ^{2}}{\partial z^{2}}}~\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mtext> </mtext> <mstyle displaystyle="false" scriptlevel="0"> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mtext> </mtext> <mspace width="thickmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;~\textstyle +{\frac {\partial ^{2}}{\partial t^{2}}}-{\frac {\partial ^{2}}{\partial x^{2}}}-{\frac {\partial ^{2}}{\partial y^{2}}}-{\frac {\partial ^{2}}{\partial z^{2}}}~\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3032338a76ce05ba71206ee0aa6ebef1759c7c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.338ex; height:4.676ex;" alt="{\displaystyle \;~\textstyle +{\frac {\partial ^{2}}{\partial t^{2}}}-{\frac {\partial ^{2}}{\partial x^{2}}}-{\frac {\partial ^{2}}{\partial y^{2}}}-{\frac {\partial ^{2}}{\partial z^{2}}}~\;}"></span>; the sign convention must be specified. In curved spacetime (or flat spacetime with non-Euclidean coordinates), the definition is more complicated. Also called <i>box</i> or <i>quabla</i>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Linear_and_multilinear_algebra">Linear and multilinear algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=9" title="Edit section: Linear and multilinear algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="\sum"><dfn><span class="texhtml">∑</span> <span class="nowrap">   </span>(<a href="/wiki/Capital-sigma_notation" class="mw-redirect" title="Capital-sigma notation">capital-sigma notation</a>)</dfn></dt> <dd>1.  Denotes the <a href="/wiki/Summation" title="Summation">sum</a> of a finite number of terms, which are determined by subscripts and superscripts (which can also be placed below and above), such as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{i=1}^{n}i^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{i=1}^{n}i^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/903324fc6af69cc735307ebf24a7e54776913611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.598ex; height:3.176ex;" alt="{\displaystyle \textstyle \sum _{i=1}^{n}i^{2}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{0<i<j<n}j-i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo><</mo> <mi>i</mi> <mo><</mo> <mi>j</mi> <mo><</mo> <mi>n</mi> </mrow> </munder> <mi>j</mi> <mo>−<!-- − --></mo> <mi>i</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{0<i<j<n}j-i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d985dbdbd790e940dbf9dd8b3fdb3441970766c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:14.563ex; height:3.343ex;" alt="{\displaystyle \textstyle \sum _{0<i<j<n}j-i}"></span>.</dd> <dd>2.  Denotes a <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a> and, if the series is <a href="/wiki/Convergent_series" title="Convergent series">convergent</a>, the <a href="/wiki/Sum_of_series" class="mw-redirect" title="Sum of series">sum of the series</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{i=0}^{\infty }{\frac {x^{i}}{i!}}=e^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow> <mi>i</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{i=0}^{\infty }{\frac {x^{i}}{i!}}=e^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32c30bcd697ab79c49d0a611ea1b2e8923a85cae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:13.497ex; height:4.176ex;" alt="{\displaystyle \textstyle \sum _{i=0}^{\infty }{\frac {x^{i}}{i!}}=e^{x}}"></span>.</dd> <dt id="\prod"><dfn><span class="texhtml">∏</span><span class="nowrap">   </span> (<a href="/wiki/Capital-pi_notation" class="mw-redirect" title="Capital-pi notation">capital-pi notation</a>)</dfn></dt> <dd>1.  Denotes the <a href="/wiki/Product_(mathematics)#Product_of_sequences" title="Product (mathematics)">product</a> of a finite number of terms, which are determined by subscripts and superscripts (which can also be placed below and above), such as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \prod _{i=1}^{n}i^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \prod _{i=1}^{n}i^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54656df0ea189908b2e2188af40ce6af6a36f6ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.338ex; height:3.176ex;" alt="{\displaystyle \textstyle \prod _{i=1}^{n}i^{2}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \prod _{0<i<j<n}j-i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo><</mo> <mi>i</mi> <mo><</mo> <mi>j</mi> <mo><</mo> <mi>n</mi> </mrow> </munder> <mi>j</mi> <mo>−<!-- − --></mo> <mi>i</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \prod _{0<i<j<n}j-i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1c0d7064292f977663a3ef1f932add5e0c896f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:14.303ex; height:3.343ex;" alt="{\displaystyle \textstyle \prod _{0<i<j<n}j-i}"></span>.</dd> <dd>2.  Denotes an <a href="/wiki/Infinite_product" title="Infinite product">infinite product</a>. For example, the <a href="/wiki/Riemann_zeta_function#Euler's_product_formula" title="Riemann zeta function">Euler product formula for the Riemann zeta function</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \zeta (z)=\prod _{n=1}^{\infty }{\frac {1}{1-p_{n}^{-z}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>z</mi> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \zeta (z)=\prod _{n=1}^{\infty }{\frac {1}{1-p_{n}^{-z}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98b60bb66bee039b6a047bd4adec1938b2eb7244" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.581ex; height:4.176ex;" alt="{\displaystyle \textstyle \zeta (z)=\prod _{n=1}^{\infty }{\frac {1}{1-p_{n}^{-z}}}}"></span>.</dd> <dd>3.  Also used for the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> of any number of sets and the <a href="/wiki/Direct_product" title="Direct product">direct product</a> of any number of <a href="/wiki/Mathematical_structure" title="Mathematical structure">mathematical structures</a>.</dd> <dt id="⊕"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊕<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span></dfn></dt> <dd>1.  Internal <a href="/wiki/Direct_sum" title="Direct sum">direct sum</a>: if <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">F</span> are <a href="/wiki/Abelian_subgroup" class="mw-redirect" title="Abelian subgroup">abelian subgroups</a> of an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> <span class="texhtml mvar" style="font-style:italic;">V</span>, notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=E\oplus F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mi>E</mi> <mo>⊕<!-- ⊕ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=E\oplus F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85c0580aad131758ec88f37027fe55582ffa8bf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.242ex; height:2.343ex;" alt="{\displaystyle V=E\oplus F}"></span> means that <span class="texhtml mvar" style="font-style:italic;">V</span> is the direct sum of <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">F</span>; that is, every element of <span class="texhtml mvar" style="font-style:italic;">V</span> can be written in a unique way as the sum of an element of <span class="texhtml mvar" style="font-style:italic;">E</span> and an element of <span class="texhtml mvar" style="font-style:italic;">F</span>. This applies also when <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">F</span> are <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspaces</a> or <a href="/wiki/Submodule" class="mw-redirect" title="Submodule">submodules</a> of the <a href="/wiki/Vector_space" title="Vector space">vector space</a> or <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a> <span class="texhtml mvar" style="font-style:italic;">V</span>.</dd> <dd>2.  <a href="/wiki/Direct_sum" title="Direct sum">Direct sum</a>: if <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">F</span> are two <a href="/wiki/Abelian_group" title="Abelian group">abelian groups</a>, <a href="/wiki/Vector_space" title="Vector space">vector spaces</a>, or <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">modules</a>, then their direct sum, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\oplus F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>⊕<!-- ⊕ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\oplus F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4548df9d548d438b02c47efd6eabca20aa46aabf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.357ex; height:2.343ex;" alt="{\displaystyle E\oplus F}"></span> is an abelian group, vector space, or module (respectively) equipped with two <a href="/wiki/Monomorphism" title="Monomorphism">monomorphisms</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:E\to E\oplus F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>E</mi> <mo stretchy="false">→<!-- → --></mo> <mi>E</mi> <mo>⊕<!-- ⊕ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:E\to E\oplus F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25f5f810a85f547fd4945be3236d90b4a0c0df51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.962ex; height:2.509ex;" alt="{\displaystyle f:E\to E\oplus F}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:F\to E\oplus F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> <mi>E</mi> <mo>⊕<!-- ⊕ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:F\to E\oplus F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4083080da88c12812252429b6aed0ed72ea491d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.765ex; height:2.509ex;" alt="{\displaystyle g:F\to E\oplus F}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\oplus F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>⊕<!-- ⊕ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\oplus F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4548df9d548d438b02c47efd6eabca20aa46aabf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.357ex; height:2.343ex;" alt="{\displaystyle E\oplus F}"></span> is the internal direct sum of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3465496148d29e6543003de4cdbac8e9ce6beda7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.864ex; height:2.843ex;" alt="{\displaystyle f(E)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80d8a54002fd4a644d4960aa5e495152da0d37f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.666ex; height:2.843ex;" alt="{\displaystyle g(F)}"></span>. This definition makes sense because this direct sum is unique up to a unique <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a>.</dd> <dd>3.  <a href="/wiki/Exclusive_or" title="Exclusive or">Exclusive or</a>: if <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">F</span> are two <a href="/wiki/Boolean_variable" class="mw-redirect" title="Boolean variable">Boolean variables</a> or <a href="/wiki/Predicate_(mathematical_logic)#Simplified_overview" title="Predicate (mathematical logic)">predicates</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\oplus F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>⊕<!-- ⊕ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\oplus F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4548df9d548d438b02c47efd6eabca20aa46aabf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.357ex; height:2.343ex;" alt="{\displaystyle E\oplus F}"></span> may denote the exclusive or. Notations <span class="texhtml"><i>E</i> <small><b>XOR</b></small> <i>F</i></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\veebar F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>⊻<!-- ⊻ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\veebar F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a178813e18a7dde9424964f919f76ffb4b87955" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.969ex; height:2.176ex;" alt="{\displaystyle E\veebar F}"></span> are also commonly used; see <a href="#⊻">⊻</a>.</dd> <dt id="⊗"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \otimes }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊗<!-- ⊗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \otimes }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de29098f5a34ee296a505681a0d5e875070f2aea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \otimes }"></span></dfn></dt> <dd>1.  Denotes the <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> of <a href="/wiki/Abelian_group" title="Abelian group">abelian groups</a>, <a href="/wiki/Vector_space" title="Vector space">vector spaces</a>, <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">modules</a>, or other mathematical structures, such as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\otimes F,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>⊗<!-- ⊗ --></mo> <mi>F</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\otimes F,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a865a1e952cdeb9987b1fa68879770c8d95a87ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.004ex; height:2.509ex;" alt="{\displaystyle E\otimes F,}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\otimes _{K}F.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <msub> <mo>⊗<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mi>F</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\otimes _{K}F.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/871ed2f2f257298c9067ca65e735b1d31a6ef985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.697ex; height:2.509ex;" alt="{\displaystyle E\otimes _{K}F.}"></span></dd> <dd>2.  Denotes the <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> of elements: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30b1971b01bc31d5b816f03cc7e1d9215d6c2ad8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.946ex; height:2.176ex;" alt="{\displaystyle x\in E}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in F,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>F</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in F,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/280cbc261f07373469be0454ff54d4c0d237e845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.384ex; height:2.509ex;" alt="{\displaystyle y\in F,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\otimes y\in E\otimes F.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>⊗<!-- ⊗ --></mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>E</mi> <mo>⊗<!-- ⊗ --></mo> <mi>F</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\otimes y\in E\otimes F.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00cd6c71b2b6b1fe7bfc82bdc396ce9cb617f2a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.17ex; height:2.509ex;" alt="{\displaystyle x\otimes y\in E\otimes F.}"></span></dd> <dt id="□⊤"><dfn><span class="texhtml">□<sup>⊤</sup></span></dfn></dt> <dd>1.  <a href="/wiki/Transpose" title="Transpose">Transpose</a>: if <span class="texhtml mvar" style="font-style:italic;">A</span> is a matrix, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\top }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\top }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e39088f8137b6309ed7585fc60f3bfe4f62bb0d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.254ex; height:2.676ex;" alt="{\displaystyle A^{\top }}"></span> denotes the <i>transpose</i> of <span class="texhtml mvar" style="font-style:italic;">A</span>, that is, the matrix obtained by exchanging rows and columns of <span class="texhtml mvar" style="font-style:italic;">A</span>. Notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{\top }\!\!A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{\top }\!\!A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e958a0dc305dc5b424fee9df3e53fd593fdedd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.48ex; height:2.676ex;" alt="{\displaystyle ^{\top }\!\!A}"></span> is also used. The symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \top }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \top }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf12e436fef2365e76fcb1034a51179d8328bb33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \top }"></span> is often replaced by the letter <span class="texhtml">T</span> or <span class="texhtml mvar" style="font-style:italic;">t</span>.</dd> <dd>2.  For inline uses of the symbol, see <a href="#⊤">⊤</a>.</dd> <dt id="□⊥"><dfn><span class="texhtml">□<sup>⊥</sup></span></dfn></dt> <dd>1.  <a href="/wiki/Orthogonal_complement" title="Orthogonal complement">Orthogonal complement</a>: If <span class="texhtml mvar" style="font-style:italic;">W</span> is a <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspace</a> of an <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a> <span class="texhtml mvar" style="font-style:italic;">V</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W^{\bot }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊥<!-- ⊥ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W^{\bot }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f522b1d57d040199a6a66c9b60a7121625693e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.019ex; height:2.676ex;" alt="{\displaystyle W^{\bot }}"></span> denotes its <i>orthogonal complement</i>, that is, the linear space of the elements of <span class="texhtml mvar" style="font-style:italic;">V</span> whose inner products with the elements of <span class="texhtml mvar" style="font-style:italic;">W</span> are all zero.</dd> <dd>2.  <a href="/wiki/Orthogonal_subspace" class="mw-redirect" title="Orthogonal subspace">Orthogonal subspace</a> in the <a href="/wiki/Dual_space" title="Dual space">dual space</a>: If <span class="texhtml mvar" style="font-style:italic;">W</span> is a <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspace</a> (or a <a href="/wiki/Submodule" class="mw-redirect" title="Submodule">submodule</a>) of a <a href="/wiki/Vector_space" title="Vector space">vector space</a> (or of a <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a>) <span class="texhtml mvar" style="font-style:italic;">V</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W^{\bot }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊥<!-- ⊥ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W^{\bot }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f522b1d57d040199a6a66c9b60a7121625693e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.019ex; height:2.676ex;" alt="{\displaystyle W^{\bot }}"></span> may denote the <i>orthogonal subspace</i> of <span class="texhtml mvar" style="font-style:italic;">W</span>, that is, the set of all <a href="/wiki/Linear_forms" class="mw-redirect" title="Linear forms">linear forms</a> that map <span class="texhtml mvar" style="font-style:italic;">W</span> to zero.</dd> <dd>3.  For inline uses of the symbol, see <a href="#⊥">⊥</a>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Advanced_group_theory">Advanced group theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=10" title="Edit section: Advanced group theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="⋉"><dfn><span class="texhtml">⋉</span><br /><span class="texhtml">⋊</span></dfn></dt> <dd>1.  Inner <a href="/wiki/Semidirect_product" title="Semidirect product">semidirect product</a>: if <span class="texhtml mvar" style="font-style:italic;">N</span> and <span class="texhtml mvar" style="font-style:italic;">H</span> are subgroups of a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> <span class="texhtml mvar" style="font-style:italic;">G</span>, such that <span class="texhtml mvar" style="font-style:italic;">N</span> is a <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroup</a> of <span class="texhtml mvar" style="font-style:italic;">G</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=N\rtimes H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mi>N</mi> <mo>⋊<!-- ⋊ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=N\rtimes H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e88cf0169ffa6973fdcea1a8fc8c0ffe9b6ced" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.893ex; height:2.176ex;" alt="{\displaystyle G=N\rtimes H}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=H\ltimes N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mi>H</mi> <mo>⋉<!-- ⋉ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=H\ltimes N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b942f1e1938f7d9942d5b0dee0544e2c3e6e9087" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.893ex; height:2.176ex;" alt="{\displaystyle G=H\ltimes N}"></span> mean that <span class="texhtml mvar" style="font-style:italic;">G</span> is the semidirect product of <span class="texhtml mvar" style="font-style:italic;">N</span> and <span class="texhtml mvar" style="font-style:italic;">H</span>, that is, that every element of <span class="texhtml mvar" style="font-style:italic;">G</span> can be uniquely decomposed as the product of an element of <span class="texhtml mvar" style="font-style:italic;">N</span> and an element of <span class="texhtml mvar" style="font-style:italic;">H</span>. (Unlike for the <a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product of groups</a>, the element of <span class="texhtml mvar" style="font-style:italic;">H</span> may change if the order of the factors is changed.)</dd> <dd>2.  Outer <a href="/wiki/Semidirect_product" title="Semidirect product">semidirect product</a>: if <span class="texhtml mvar" style="font-style:italic;">N</span> and <span class="texhtml mvar" style="font-style:italic;">H</span> are two <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is a <a href="/wiki/Group_homomorphism" title="Group homomorphism">group homomorphism</a> from <span class="texhtml mvar" style="font-style:italic;">N</span> to the <a href="/wiki/Automorphism_group" title="Automorphism group">automorphism group</a> of <span class="texhtml mvar" style="font-style:italic;">H</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\rtimes _{\varphi }H=H\ltimes _{\varphi }N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <msub> <mo>⋊<!-- ⋊ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>φ<!-- φ --></mi> </mrow> </msub> <mi>H</mi> <mo>=</mo> <mi>H</mi> <msub> <mo>⋉<!-- ⋉ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>φ<!-- φ --></mi> </mrow> </msub> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\rtimes _{\varphi }H=H\ltimes _{\varphi }N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eeb0a8988d823df9bc7ba5b81e4ce5d73609bee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.648ex; height:2.843ex;" alt="{\displaystyle N\rtimes _{\varphi }H=H\ltimes _{\varphi }N}"></span> denotes a group <span class="texhtml mvar" style="font-style:italic;">G</span>, unique up to a <a href="/wiki/Group_isomorphism" title="Group isomorphism">group isomorphism</a>, which is a semidirect product of <span class="texhtml mvar" style="font-style:italic;">N</span> and <span class="texhtml mvar" style="font-style:italic;">H</span>, with the commutation of elements of <span class="texhtml mvar" style="font-style:italic;">N</span> and <span class="texhtml mvar" style="font-style:italic;">H</span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>.</dd> <dt id="≀"><dfn><span class="texhtml texhtml-big" style="font-size:165%;">≀</span></dfn></dt> <dd>In <a href="/wiki/Group_theory" title="Group theory">group theory</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\wr H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>≀<!-- ≀ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\wr H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36d84e640a7afb56fa8262747d2d135138a12153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.569ex; height:2.343ex;" alt="{\displaystyle G\wr H}"></span> denotes the <a href="/wiki/Wreath_product" title="Wreath product">wreath product</a> of the <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a> <span class="texhtml">G</span> and <span class="texhtml">H</span>. It is also denoted as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\operatorname {wr} H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mi>wr</mi> <mo>⁡<!-- --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\operatorname {wr} H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9700045f97e530e4fa1a1a11a0ba0ce527d1e2a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.254ex; height:2.176ex;" alt="{\displaystyle G\operatorname {wr} H}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\operatorname {Wr} H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mi>Wr</mi> <mo>⁡<!-- --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\operatorname {Wr} H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccfd038aa24a7d563602cd3d7d8f8b57bc7157a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.965ex; height:2.176ex;" alt="{\displaystyle G\operatorname {Wr} H}"></span>; see <a href="/wiki/Wreath_product#Notation_and_conventions" title="Wreath product">Wreath product § Notation and conventions</a> for several notation variants.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Infinite_numbers">Infinite numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=11" title="Edit section: Infinite numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="infinity"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span> <span class="nowrap">   </span>(<a href="/wiki/Infinity_symbol" title="Infinity symbol">infinity symbol</a>)</dfn></dt> <dd>1.  The symbol is read as <a href="/wiki/Infinity_(mathematics)" class="mw-redirect" title="Infinity (mathematics)">infinity</a>. As an upper bound of a <a href="/wiki/Summation" title="Summation">summation</a>, an <a href="/wiki/Infinite_product" title="Infinite product">infinite product</a>, an <a href="/wiki/Integral" title="Integral">integral</a>, etc., means that the computation is unlimited. Similarly, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span> in a lower bound means that the computation is not limited toward negative values.</dd> <dd>2.  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bddbb0e4420a7e744cf71bd71216e11b0bf88831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle +\infty }"></span> are the generalized numbers that are added to the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a> to form the <a href="/wiki/Extended_real_line" class="mw-redirect" title="Extended real line">extended real line</a>.</dd> <dd>3.  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span> is the generalized number that is added to the real line to form the <a href="/wiki/Projectively_extended_real_line" title="Projectively extended real line">projectively extended real line</a>.</dd> <dt id="𝔠"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21924b960341255be18e538e51404718f29cbc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.905ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {c}}}"></span><span class="nowrap">   </span>(<a href="/wiki/Fraktur" title="Fraktur">fraktur</a> 𝔠)</dfn></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21924b960341255be18e538e51404718f29cbc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.905ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {c}}}"></span> denotes the <a href="/wiki/Cardinality_of_the_continuum" title="Cardinality of the continuum">cardinality of the continuum</a>, which is the <a href="/wiki/Cardinality" title="Cardinality">cardinality</a> of the set of <a href="/wiki/Real_number" title="Real number">real numbers</a>.</dd> <dt id="ℵ"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/306c55e6bc96d94db729ff5821c8f45a34c72bce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.42ex; height:2.176ex;" alt="{\displaystyle \aleph }"></span><span class="nowrap">   </span>(<a href="/wiki/Aleph" title="Aleph">aleph</a>)</dfn></dt> <dd>With an <a href="/wiki/Ordinal_number" title="Ordinal number">ordinal</a> <span class="texhtml mvar" style="font-style:italic;">i</span> as a subscript, denotes the <span class="texhtml mvar" style="font-style:italic;">i</span>th <a href="/wiki/Aleph_number" title="Aleph number">aleph number</a>, that is the <span class="texhtml mvar" style="font-style:italic;">i</span>th infinite <a href="/wiki/Cardinal_number" title="Cardinal number">cardinal</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span> is the smallest infinite cardinal, that is, the cardinal of the natural numbers.</dd> <dt id="ℶ"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beth }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ℶ<!-- ℶ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beth }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6ca52be7fa2a32db700e775beb85f6dec33cc4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.05ex; width:1.647ex; height:2.343ex;" alt="{\displaystyle \beth }"></span><span class="nowrap">   </span>(<a href="/wiki/Bet_(letter)" title="Bet (letter)">bet (letter)</a>)</dfn></dt> <dd>With an <a href="/wiki/Ordinal_number" title="Ordinal number">ordinal</a> <span class="texhtml mvar" style="font-style:italic;">i</span> as a subscript, denotes the <span class="texhtml mvar" style="font-style:italic;">i</span>th <a href="/wiki/Beth_number" title="Beth number">beth number</a>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beth _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ℶ<!-- ℶ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beth _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3054002c3a3306a18292717a9c955d761210783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.05ex; width:2.655ex; height:2.676ex;" alt="{\displaystyle \beth _{0}}"></span> is the <a href="/wiki/Cardinal_number" title="Cardinal number">cardinal</a> of the natural numbers, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beth _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ℶ<!-- ℶ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beth _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb3462a86543187911778e6ff64ed1dc27b19f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.05ex; width:2.655ex; height:2.676ex;" alt="{\displaystyle \beth _{1}}"></span> is the <a href="/wiki/Cardinal_of_the_continuum" class="mw-redirect" title="Cardinal of the continuum">cardinal of the continuum</a>.</dd> <dt id="omega"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span><span class="nowrap">   </span>(<a href="/wiki/Omega" title="Omega">omega</a>)</dfn></dt> <dd>1.  Denotes the first <a href="/wiki/Limit_ordinal" title="Limit ordinal">limit ordinal</a>. It is also denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a713d16c489051d4f515e12b1f86061c6be799b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{0}}"></span> and can be identified with the <a href="/wiki/Ordered_set" class="mw-redirect" title="Ordered set">ordered set</a> of the <a href="/wiki/Natural_number" title="Natural number">natural numbers</a>.</dd> <dd>2.  With an <a href="/wiki/Ordinal_number" title="Ordinal number">ordinal</a> <span class="texhtml mvar" style="font-style:italic;">i</span> as a subscript, denotes the <span class="texhtml mvar" style="font-style:italic;">i</span>th <a href="/wiki/Limit_ordinal" title="Limit ordinal">limit ordinal</a> that has a <a href="/wiki/Cardinality" title="Cardinality">cardinality</a> greater than that of all preceding ordinals.</dd> <dd>3.  In <a href="/wiki/Computer_science" title="Computer science">computer science</a>, denotes the (unknown) greatest lower bound for the exponent of the <a href="/wiki/Computational_complexity" title="Computational complexity">computational complexity</a> of <a href="/wiki/Matrix_multiplication#Complexity" title="Matrix multiplication">matrix multiplication</a>.</dd> <dd>4.  Written as a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of another function, it is used for comparing the <a href="/wiki/Asymptotic_growth" class="mw-redirect" title="Asymptotic growth">asymptotic growth</a> of two functions. See <a href="/wiki/Big_O_notation#Related_asymptotic_notations" title="Big O notation">Big O notation § Related asymptotic notations</a>.</dd> <dd>5.  In <a href="/wiki/Number_theory" title="Number theory">number theory</a>, may denote the <a href="/wiki/Prime_omega_function" title="Prime omega function">prime omega function</a>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9e1e190faf1ba7931e4e98594df6097d297bed1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.65ex; height:2.843ex;" alt="{\displaystyle \omega (n)}"></span> is the number of distinct prime factors of the integer <span class="texhtml mvar" style="font-style:italic;">n</span>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Brackets">Brackets</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=12" title="Edit section: Brackets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many sorts of <a href="/wiki/Bracket_(mathematics)" title="Bracket (mathematics)">brackets</a> are used in mathematics. Their meanings depend not only on their shapes, but also on the nature and the arrangement of what is delimited by them, and sometimes what appears between or before them. For this reason, in the entry titles, the symbol <span class="texhtml">□</span> is used as a placeholder for schematizing the syntax that underlies the meaning. </p> <div class="mw-heading mw-heading3"><h3 id="Parentheses">Parentheses</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=13" title="Edit section: Parentheses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="()"><dfn><span class="texhtml">(□)</span></dfn></dt> <dd>Used in an <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expression</a> for specifying that the sub-expression between the parentheses has to be considered as a single entity; typically used for specifying the <a href="/wiki/Order_of_operations" title="Order of operations">order of operations</a>.</dd> <dt id="functional"><dfn><span class="texhtml">□(□)</span><br /><span class="texhtml">□(□, □)</span><br /> <span class="texhtml">□(□, ..., □)</span></dfn></dt> <dd>1.  <a href="/wiki/Functional_notation" class="mw-redirect" title="Functional notation">Functional notation</a>: if the first <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Box }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>◻<!-- ◻ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Box }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/029b77f09ebeaf7528fc831fe57848be51f2240b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Box }"></span> is the name (symbol) of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>, denotes the value of the function applied to the expression between the parentheses; for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(x+y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(x+y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af84037b516d93ba4a9ff505fb4d6d187fba9e24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.99ex; height:2.843ex;" alt="{\displaystyle \sin(x+y)}"></span>. In the case of a <a href="/wiki/Multivariate_function" class="mw-redirect" title="Multivariate function">multivariate function</a>, the parentheses contain several expressions separated by commas, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29473ed0c4e838ac9dbe074535e507166c0e9101" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.607ex; height:2.843ex;" alt="{\displaystyle f(x,y)}"></span>.</dd> <dd>2.  May also denote a product, such as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(b+c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(b+c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/859c3dfc96fbd18909140e34574e4347fd3459f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.884ex; height:2.843ex;" alt="{\displaystyle a(b+c)}"></span>. When the confusion is possible, the context must distinguish which symbols denote functions, and which ones denote <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a>.</dd> <dt id="pair"><dfn><span class="texhtml">(□, □)</span></dfn></dt> <dd>1.  Denotes an <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pair</a> of <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical objects</a>, for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\pi ,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>π<!-- π --></mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\pi ,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed72c324f3867ace349afdfd89b028dc9e79b80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.338ex; height:2.843ex;" alt="{\displaystyle (\pi ,0)}"></span>.</dd> <dd>2.  If <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> are <a href="/wiki/Real_number" title="Real number">real numbers</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bddbb0e4420a7e744cf71bd71216e11b0bf88831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle +\infty }"></span>, and <span class="texhtml"><i>a</i> < <i>b</i></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> denotes the <a href="/wiki/Open_interval" class="mw-redirect" title="Open interval">open interval</a> delimited by <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span>. See <a href="#open_interval"><span class="texhtml">]□, □[</span></a> for an alternative notation.</dd> <dd>3.  If <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> are <a href="/wiki/Integer" title="Integer">integers</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> may denote the <a href="/wiki/Greatest_common_divisor" title="Greatest common divisor">greatest common divisor</a> of <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span>. Notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gcd(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gcd(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b490efc5104ccce7d1908b5cf921f7142a56316" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.558ex; height:2.843ex;" alt="{\displaystyle \gcd(a,b)}"></span> is often used instead.</dd> <dt id="(□,□,□)"><dfn><span class="texhtml">(□, □, □)</span></dfn></dt> <dd>If <span class="texhtml"><i>x</i>, <i>y</i>, <i>z</i></span> are vectors in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22a8c93372e8f8b6e24d523bd5545aed3430baf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.45ex; height:2.843ex;" alt="{\displaystyle (x,y,z)}"></span> may denote the <a href="/wiki/Scalar_triple_product" class="mw-redirect" title="Scalar triple product">scalar triple product</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2020)">citation needed</span></a></i>]</sup> See also <a href="#sqb3">[□,□,□]</a> in <a href="#Square_brackets">§ Square brackets</a>.</dd> <dt id="tuple"><dfn><span class="texhtml">(□, ..., □)</span></dfn></dt> <dd>Denotes a <a href="/wiki/Tuple" title="Tuple">tuple</a>. If there are <span class="texhtml mvar" style="font-style:italic;">n</span> objects separated by commas, it is an <span class="texhtml mvar" style="font-style:italic;">n</span>-tuple.</dd> <dt id="sequence"><dfn><span class="texhtml">(□, □, ...)</span><br /><span class="texhtml">(□, ..., □, ...)</span></dfn></dt> <dd>Denotes an <a href="/wiki/Infinite_sequence" class="mw-redirect" title="Infinite sequence">infinite sequence</a>.</dd> <dt id="pmatrix"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}\Box &\cdots &\Box \\\vdots &\ddots &\vdots \\\Box &\cdots &\Box \end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}\Box &\cdots &\Box \\\vdots &\ddots &\vdots \\\Box &\cdots &\Box \end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae8604d0d0e8ff7da39de440448683e2743a0fb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:16.058ex; height:11.009ex;" alt="{\displaystyle {\begin{pmatrix}\Box &\cdots &\Box \\\vdots &\ddots &\vdots \\\Box &\cdots &\Box \end{pmatrix}}}"></span></dfn></dt> <dd>Denotes a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a>. Often denoted with <a href="#bmatrix">square brackets</a>.</dd> <dt id="binomial"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {\Box }{\Box }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>◻<!-- ◻ --></mi> <mi>◻<!-- ◻ --></mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {\Box }{\Box }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa9ca5c00f150e9758881f85b7373f7a183aeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:5.229ex; height:6.176ex;" alt="{\displaystyle {\binom {\Box }{\Box }}}"></span></dfn></dt> <dd>Denotes a <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a>: Given two <a href="/wiki/Nonnegative_integer" class="mw-redirect" title="Nonnegative integer">nonnegative integers</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {n}{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {n}{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/963a810ba39e3e0725c523d0c98b18f39786ebb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:4.816ex; height:6.176ex;" alt="{\displaystyle {\binom {n}{k}}}"></span> is read as "<span class="texhtml mvar" style="font-style:italic;">n</span> choose <span class="texhtml mvar" style="font-style:italic;">k</span>", and is defined as the integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n(n-1)\cdots (n-k+1)}{1\cdot 2\cdots k}}={\frac {n!}{k!\,(n-k)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⋯<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋯<!-- ⋯ --></mo> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n(n-1)\cdots (n-k+1)}{1\cdot 2\cdots k}}={\frac {n!}{k!\,(n-k)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/444a8adee8acae618036298a0c175c10cd4d77bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:38.276ex; height:6.509ex;" alt="{\displaystyle {\frac {n(n-1)\cdots (n-k+1)}{1\cdot 2\cdots k}}={\frac {n!}{k!\,(n-k)!}}}"></span> (if <span class="texhtml"><i>k</i> = 0</span>, its value is conventionally <span class="texhtml">1</span>). Using the left-hand-side expression, it denotes a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> in <span class="texhtml mvar" style="font-style:italic;">n</span>, and is thus defined and used for any <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> value of <span class="texhtml mvar" style="font-style:italic;">n</span>.</dd> <dt id="legendre"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {\Box }{\Box }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>◻<!-- ◻ --></mi> <mi>◻<!-- ◻ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {\Box }{\Box }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a18069a10c948f5e78675d85e9b528db6351ad3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:6.065ex; height:6.176ex;" alt="{\displaystyle \left({\frac {\Box }{\Box }}\right)}"></span></dfn></dt> <dd><a href="/wiki/Legendre_symbol" title="Legendre symbol">Legendre symbol</a>: If <span class="texhtml mvar" style="font-style:italic;">p</span> is an odd <a href="/wiki/Prime_number" title="Prime number">prime number</a> and <span class="texhtml mvar" style="font-style:italic;">a</span> is an <a href="/wiki/Integer" title="Integer">integer</a>, the value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {a}{p}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>p</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {a}{p}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aad4dd123bb7bc0da377dec595d91761753ba294" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:5.487ex; height:6.176ex;" alt="{\displaystyle \left({\frac {a}{p}}\right)}"></span> is 1 if <span class="texhtml mvar" style="font-style:italic;">a</span> is a <a href="/wiki/Quadratic_residue" title="Quadratic residue">quadratic residue</a> modulo <span class="texhtml mvar" style="font-style:italic;">p</span>; it is –1 if <span class="texhtml mvar" style="font-style:italic;">a</span> is a <a href="/wiki/Quadratic_non-residue" class="mw-redirect" title="Quadratic non-residue">quadratic non-residue</a> modulo <span class="texhtml mvar" style="font-style:italic;">p</span>; it is 0 if <span class="texhtml mvar" style="font-style:italic;">p</span> divides <span class="texhtml mvar" style="font-style:italic;">a</span>. The same notation is used for the <a href="/wiki/Jacobi_symbol" title="Jacobi symbol">Jacobi symbol</a> and <a href="/wiki/Kronecker_symbol" title="Kronecker symbol">Kronecker symbol</a>, which are generalizations where <span class="texhtml mvar" style="font-style:italic;">p</span> is respectively any odd positive integer, or any integer.</dd> </dl> <div class="mw-heading mw-heading3"><h3 id="Square_brackets">Square brackets</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=14" title="Edit section: Square brackets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="sqb1"><dfn><span class="texhtml">[□]</span></dfn></dt> <dd>1.  Sometimes used as a synonym of <a href="#()"><span class="texhtml">(□)</span></a> for avoiding nested parentheses.</dd> <dd>2.  <a href="/wiki/Equivalence_class" title="Equivalence class">Equivalence class</a>: given an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07548563c21e128890501e14eb7c80ee2d6fda4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.623ex; height:2.843ex;" alt="{\displaystyle [x]}"></span> often denotes the equivalence class of the element <span class="texhtml mvar" style="font-style:italic;">x</span>.</dd> <dd>3.  <a href="/wiki/Integral_part" class="mw-redirect" title="Integral part">Integral part</a>: if <span class="texhtml mvar" style="font-style:italic;">x</span> is a <a href="/wiki/Real_number" title="Real number">real number</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07548563c21e128890501e14eb7c80ee2d6fda4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.623ex; height:2.843ex;" alt="{\displaystyle [x]}"></span> often denotes the integral part or <a href="/wiki/Truncation" title="Truncation">truncation</a> of <span class="texhtml mvar" style="font-style:italic;">x</span>, that is, the integer obtained by removing all digits after the <a href="/wiki/Decimal_mark" class="mw-redirect" title="Decimal mark">decimal mark</a>. This notation has also been used for other variants of <a href="/wiki/Floor_and_ceiling_functions" title="Floor and ceiling functions">floor and ceiling functions</a>.</dd> <dd>4.  <a href="/wiki/Iverson_bracket" title="Iverson bracket">Iverson bracket</a>: if <span class="texhtml mvar" style="font-style:italic;">P</span> is a <a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">predicate</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [P]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>P</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [P]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25d78ad4ad13872df07ac9b02a2574250a0e54fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.039ex; height:2.843ex;" alt="{\displaystyle [P]}"></span> may denote the Iverson bracket, that is the <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> that takes the value <span class="texhtml">1</span> for the values of the <a href="/wiki/Free_variable" class="mw-redirect" title="Free variable">free variables</a> in <span class="texhtml mvar" style="font-style:italic;">P</span> for which <span class="texhtml mvar" style="font-style:italic;">P</span> is true, and takes the value <span class="texhtml">0</span> otherwise. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x=y]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x=y]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8def35f48e2c2bc951587c405ab300430749af9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.877ex; height:2.843ex;" alt="{\displaystyle [x=y]}"></span> is the <a href="/wiki/Kronecker_delta_function" class="mw-redirect" title="Kronecker delta function">Kronecker delta function</a>, which equals one if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/409a91214d63eabe46ec10ff3cbba689ab687366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.009ex;" alt="{\displaystyle x=y}"></span>, and zero otherwise.</dd> <dd>5.  In combinatorics or computer science, sometimes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a26847bfc29bbeb4d6ef62ac3fd076378c0fd1db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.688ex; height:2.843ex;" alt="{\displaystyle [n]}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {N} }"></span> denotes the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1,2,3,\ldots ,n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1,2,3,\ldots ,n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd810c6a53156f56190667aebf3c8db25d49d2e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.453ex; height:2.843ex;" alt="{\displaystyle \{1,2,3,\ldots ,n\}}"></span> of positive integers up to <span class="texhtml mvar" style="font-style:italic;">n</span>, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0]=\emptyset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo stretchy="false">]</mo> <mo>=</mo> <mi mathvariant="normal">∅<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0]=\emptyset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df7f7c88970c268ccf8699cddb116455663ff35a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.717ex; height:2.843ex;" alt="{\displaystyle [0]=\emptyset }"></span>.</dd> <dt id="sqbf"><dfn><span class="texhtml">□[□]</span></dfn></dt> <dd><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">Image of a subset</a>: if <span class="texhtml mvar" style="font-style:italic;">S</span> is a <a href="/wiki/Subset" title="Subset">subset</a> of the <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain of the function</a> <span class="texhtml mvar" style="font-style:italic;">f</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[S]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>S</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[S]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc136e58f23572a4001b784eea645e59b735ce49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.071ex; height:2.843ex;" alt="{\displaystyle f[S]}"></span> is sometimes used for denoting the image of <span class="texhtml mvar" style="font-style:italic;">S</span>. When no confusion is possible, notation <a href="#functional"><span class="texhtml"><i>f</i>(<i>S</i>)</span></a> is commonly used.</dd> <dt id="sqb2"><dfn><span class="texhtml">[□, □]</span></dfn></dt> <dd>1.  <a href="/wiki/Closed_interval" class="mw-redirect" title="Closed interval">Closed interval</a>: if <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> are <a href="/wiki/Real_number" title="Real number">real numbers</a> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\leq b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>≤<!-- ≤ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\leq b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41558abc50886fdf38817495b243958d7b3dd39b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.326ex; height:2.343ex;" alt="{\displaystyle a\leq b}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> denotes the closed interval defined by them.</dd> <dd>2.  <a href="/wiki/Commutator_(group_theory)" class="mw-redirect" title="Commutator (group theory)">Commutator (group theory)</a>: if <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> belong to a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]=a^{-1}b^{-1}ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]=a^{-1}b^{-1}ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eee1488a4b71310ca17e1c49f541be2e548731f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.774ex; height:3.176ex;" alt="{\displaystyle [a,b]=a^{-1}b^{-1}ab}"></span>.</dd> <dd>3.  <a href="/wiki/Commutator_(ring_theory)" class="mw-redirect" title="Commutator (ring theory)">Commutator (ring theory)</a>: if <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> belong to a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]=ab-ba}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>a</mi> <mi>b</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]=ab-ba}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23bf78c808a8f58515d59d520bdfac43cf80114f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.949ex; height:2.843ex;" alt="{\displaystyle [a,b]=ab-ba}"></span>.</dd> <dd>4.  Denotes the <a href="/wiki/Lie_bracket" class="mw-redirect" title="Lie bracket">Lie bracket</a>, the operation of a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a>.</dd> <dt id="sqb2:"><dfn><span class="texhtml">[□ : □]</span></dfn></dt> <dd>1.  <a href="/wiki/Degree_of_a_field_extension" title="Degree of a field extension">Degree of a field extension</a>: if <span class="texhtml mvar" style="font-style:italic;">F</span> is an <a href="/wiki/Extension_field" class="mw-redirect" title="Extension field">extension</a> of a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml mvar" style="font-style:italic;">E</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [F:E]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>F</mi> <mo>:</mo> <mi>E</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [F:E]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a21f70810a14f4262ae495020e16fa79b62f93a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.747ex; height:2.843ex;" alt="{\displaystyle [F:E]}"></span> denotes the degree of the <a href="/wiki/Field_extension" title="Field extension">field extension</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F/E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F/E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ba04c235083fd37db07fce9ec43901e0cb6d1d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.679ex; height:2.843ex;" alt="{\displaystyle F/E}"></span>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbb {C} :\mathbb {R} ]=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">]</mo> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mathbb {C} :\mathbb {R} ]=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca0d230d77b8b6b954c39a9bd67d9ccb31e5547f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.848ex; height:2.843ex;" alt="{\displaystyle [\mathbb {C} :\mathbb {R} ]=2}"></span>.</dd> <dd>2.  <a href="/wiki/Index_of_a_subgroup" title="Index of a subgroup">Index of a subgroup</a>: if <span class="texhtml mvar" style="font-style:italic;">H</span> is a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> <span class="texhtml mvar" style="font-style:italic;">E</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [G:H]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>G</mi> <mo>:</mo> <mi>H</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [G:H]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c19ed6f18e6db133b5a0257ecde8026808fd1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.121ex; height:2.843ex;" alt="{\displaystyle [G:H]}"></span> denotes the index of <span class="texhtml mvar" style="font-style:italic;">H</span> in <span class="texhtml mvar" style="font-style:italic;">G</span>. The notation <a href="#!:!"><span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">G:H</span>|</span></a> is also used</dd> <dt id="sqb3"><dfn><span class="texhtml">[□, □, □]</span></dfn></dt> <dd>If <span class="texhtml"><i>x</i>, <i>y</i>, <i>z</i></span> are vectors in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x,y,z]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x,y,z]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0bfedf9a4341d42ead3affff487ec9debd8365" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.935ex; height:2.843ex;" alt="{\displaystyle [x,y,z]}"></span> may denote the <a href="/wiki/Scalar_triple_product" class="mw-redirect" title="Scalar triple product">scalar triple product</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> See also <a href="#(□,□,□)">(□,□,□)</a> in <a href="#Parentheses">§ Parentheses</a>.</dd> <dt id="bmatrix"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\Box &\cdots &\Box \\\vdots &\ddots &\vdots \\\Box &\cdots &\Box \end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\Box &\cdots &\Box \\\vdots &\ddots &\vdots \\\Box &\cdots &\Box \end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bcf199536acfd9f1424bdaeb0899584ab3b3c03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:15.092ex; height:11.009ex;" alt="{\displaystyle {\begin{bmatrix}\Box &\cdots &\Box \\\vdots &\ddots &\vdots \\\Box &\cdots &\Box \end{bmatrix}}}"></span></dfn></dt> <dd>Denotes a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a>. Often denoted with <a href="#pmatrix">parentheses</a>.</dd> </dl> <div class="mw-heading mw-heading3"><h3 id="Braces">Braces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=15" title="Edit section: Braces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="bb"><dfn><span class="texhtml">{ }</span></dfn></dt> <dd><a href="/wiki/Set-builder_notation" title="Set-builder notation">Set-builder notation</a> for the <a href="/wiki/Empty_set" title="Empty set">empty set</a>, also denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \emptyset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∅<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \emptyset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af50205f42bb2ec3c666b7b847d2c7f96e464c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \emptyset }"></span> or <a href="#∅">∅</a>.</dd> <dt id="b□b"><dfn><span class="texhtml">{□} </span></dfn></dt> <dd>1.  Sometimes used as a synonym of <a href="#()"><span class="texhtml">(□)</span></a> and <a href="#sqb1"><span class="texhtml">[□]</span></a> for avoiding nested parentheses.</dd> <dd>2.  <a href="/wiki/Set-builder_notation" title="Set-builder notation">Set-builder notation</a> for a <a href="/wiki/Singleton_set" class="mw-redirect" title="Singleton set">singleton set</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a120eeb8a091b516595765bd08b306f2394e7721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.655ex; height:2.843ex;" alt="{\displaystyle \{x\}}"></span> denotes the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> that has <span class="texhtml mvar" style="font-style:italic;">x</span> as a single element.</dd> <dt id="b,...,b"><dfn><span class="texhtml">{□, ..., □} </span></dfn></dt> <dd><a href="/wiki/Set-builder_notation" title="Set-builder notation">Set-builder notation</a>: denotes the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> whose elements are listed between the braces, separated by commas.</dd> <dt id="b:b"><dfn><span class="texhtml">{□ : □} </span><br /><span class="texhtml">{□ | □} </span></dfn></dt> <dd><a href="/wiki/Set-builder_notation" title="Set-builder notation">Set-builder notation</a>: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89833156eff2c51bfb8750db3306a0544ce34e14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.884ex; height:2.843ex;" alt="{\displaystyle P(x)}"></span> is a <a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">predicate</a> depending on a <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a> <span class="texhtml mvar" style="font-style:italic;">x</span>, then both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x:P(x)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>:</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x:P(x)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecb31656e1c3e70f24620da1b97d708eb7d089d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.476ex; height:2.843ex;" alt="{\displaystyle \{x:P(x)\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x\mid P(x)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>∣<!-- ∣ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x\mid P(x)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50d836860f856fa5d612f0d9c2a727ba498bfe32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.476ex; height:2.843ex;" alt="{\displaystyle \{x\mid P(x)\}}"></span> denote the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> formed by the values of <span class="texhtml mvar" style="font-style:italic;">x</span> for which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89833156eff2c51bfb8750db3306a0544ce34e14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.884ex; height:2.843ex;" alt="{\displaystyle P(x)}"></span> is true.</dd> <dt id="single_brace"><dfn>Single brace</dfn></dt> <dd>1.  Used for emphasizing that several <a href="/wiki/Equation_(mathematics)" class="mw-redirect" title="Equation (mathematics)">equations</a> have to be considered as <a href="/wiki/Simultaneous_equations" class="mw-redirect" title="Simultaneous equations">simultaneous equations</a>; for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\begin{cases}2x+y=1\\3x-y=1\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\begin{cases}2x+y=1\\3x-y=1\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70cc6206a4a4e23beedb84b41f81846b7480e5f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.244ex; height:6.176ex;" alt="{\displaystyle \textstyle {\begin{cases}2x+y=1\\3x-y=1\end{cases}}}"></span>.</dd> <dd>2.  <a href="/wiki/Piecewise" class="mw-redirect" title="Piecewise">Piecewise</a> definition; for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle |x|={\begin{cases}x&{\text{if }}x\geq 0\\-x&{\text{if }}x<0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>x</mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>x</mi> <mo><</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle |x|={\begin{cases}x&{\text{if }}x\geq 0\\-x&{\text{if }}x<0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0c8d1ba2fd2fd75cb66e6d257f5fee4f734bc43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.207ex; height:6.176ex;" alt="{\displaystyle \textstyle |x|={\begin{cases}x&{\text{if }}x\geq 0\\-x&{\text{if }}x<0\end{cases}}}"></span>.</dd> <dd>3.  Used for grouped annotation of elements in a formula; for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \underbrace {(a,b,\ldots ,z)} _{26}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>26</mn> </mrow> </munder> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \underbrace {(a,b,\ldots ,z)} _{26}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c463f3857fda1f3fbaf69d8f1e900a97b6808bcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; margin-right: -0.028ex; width:11.365ex; height:6.343ex;" alt="{\displaystyle \textstyle \underbrace {(a,b,\ldots ,z)} _{26}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \overbrace {1+2+\cdots +100} ^{=5050}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mn>100</mn> </mrow> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>=</mo> <mn>5050</mn> </mrow> </mover> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \overbrace {1+2+\cdots +100} ^{=5050}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22d5686d332a08b864f56d86bafe4d1af52dfcfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; margin-right: -0.028ex; width:17.085ex; height:5.676ex;" alt="{\displaystyle \textstyle \overbrace {1+2+\cdots +100} ^{=5050}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \left.{\begin{bmatrix}A\\B\end{bmatrix}}\right\}m+n{\text{ rows}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>A</mi> </mtd> </mtr> <mtr> <mtd> <mi>B</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>}</mo> </mrow> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> rows</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \left.{\begin{bmatrix}A\\B\end{bmatrix}}\right\}m+n{\text{ rows}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ef0be0b8ac969fc1332501681b91f5660a9f445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.625ex; height:6.176ex;" alt="{\displaystyle \textstyle \left.{\begin{bmatrix}A\\B\end{bmatrix}}\right\}m+n{\text{ rows}}}"></span></dd> </dl> <div class="mw-heading mw-heading3"><h3 id="Other_brackets">Other brackets</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=16" title="Edit section: Other brackets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="!□!"><dfn><span class="texhtml">|□|</span></dfn></dt> <dd>1.  <a href="/wiki/Absolute_value" title="Absolute value">Absolute value</a>: if <span class="texhtml mvar" style="font-style:italic;">x</span> is a <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> number, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4eb41e5fd5dc37eaa1718dfbf4bc082edb991936" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.623ex; height:2.843ex;" alt="{\displaystyle |x|}"></span> denotes its absolute value.</dd> <dd>2.  Number of elements: If <span class="texhtml">S</span> is a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |S|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |S|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28d901e98a035ff4c0e37fe6dd8e750ece6c1f0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.793ex; height:2.843ex;" alt="{\displaystyle |S|}"></span> may denote its <a href="/wiki/Cardinality" title="Cardinality">cardinality</a>, that is, its number of elements. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \#S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">#<!-- # --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \#S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d640f54650fa5701b7fa00bffadb192aa43131b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.435ex; height:2.509ex;" alt="{\displaystyle \#S}"></span> is also often used, see <a href="#sharp"><span class="texhtml">#</span></a>.</dd> <dd>3.  Length of a <a href="/wiki/Line_segment" title="Line segment">line segment</a>: If <span class="texhtml mvar" style="font-style:italic;">P</span> and <span class="texhtml mvar" style="font-style:italic;">Q</span> are two points in a <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |PQ|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>P</mi> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |PQ|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bce9b5b9a3507edea5dd51e5fe92e446776e4c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.877ex; height:2.843ex;" alt="{\displaystyle |PQ|}"></span> often denotes the length of the line segment that they define, which is the <a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">distance</a> from <span class="texhtml mvar" style="font-style:italic;">P</span> to <span class="texhtml mvar" style="font-style:italic;">Q</span>, and is often denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P,Q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P,Q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3b0da2776d38a8b78a8eea2fbb9a10cf8cce485" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.643ex; height:2.843ex;" alt="{\displaystyle d(P,Q)}"></span>.</dd> <dd>4.  For a similar-looking operator, see <a href="#vbar"><span class="texhtml">|</span></a>.</dd> <dt id="!:!"><dfn><span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">□:□</span>|</span></dfn></dt> <dd><a href="/wiki/Index_of_a_subgroup" title="Index of a subgroup">Index of a subgroup</a>: if <span class="texhtml mvar" style="font-style:italic;">H</span> is a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> <span class="texhtml mvar" style="font-style:italic;">G</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |G:H|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>G</mi> <mo>:</mo> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |G:H|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5114d15a8b2d77dae8c98f1c523d7fdd1a03d814" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.121ex; height:2.843ex;" alt="{\displaystyle |G:H|}"></span> denotes the index of <span class="texhtml mvar" style="font-style:italic;">H</span> in <span class="texhtml mvar" style="font-style:italic;">G</span>. The notation <a href="#sqb2:"><span class="texhtml">[G:H]</span></a> is also used</dd> <dt id="determinant"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\begin{vmatrix}\Box &\cdots &\Box \\\vdots &\ddots &\vdots \\\Box &\cdots &\Box \end{vmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mi>◻<!-- ◻ --></mi> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\begin{vmatrix}\Box &\cdots &\Box \\\vdots &\ddots &\vdots \\\Box &\cdots &\Box \end{vmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f922ebc9d04e6f7ac34b3c8e4f538abf4efaa9cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:13.285ex; height:11.009ex;" alt="{\displaystyle \textstyle {\begin{vmatrix}\Box &\cdots &\Box \\\vdots &\ddots &\vdots \\\Box &\cdots &\Box \end{vmatrix}}}"></span></dfn></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{vmatrix}x_{1,1}&\cdots &x_{1,n}\\\vdots &\ddots &\vdots \\x_{n,1}&\cdots &x_{n,n}\end{vmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{vmatrix}x_{1,1}&\cdots &x_{1,n}\\\vdots &\ddots &\vdots \\x_{n,1}&\cdots &x_{n,n}\end{vmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f7d1fd8783d4c95105b7d4c7ff59a3492ef5968" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:17.488ex; height:11.509ex;" alt="{\displaystyle {\begin{vmatrix}x_{1,1}&\cdots &x_{1,n}\\\vdots &\ddots &\vdots \\x_{n,1}&\cdots &x_{n,n}\end{vmatrix}}}"></span> denotes the <a href="/wiki/Determinant" title="Determinant">determinant</a> of the <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}x_{1,1}&\cdots &x_{1,n}\\\vdots &\ddots &\vdots \\x_{n,1}&\cdots &x_{n,n}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}x_{1,1}&\cdots &x_{1,n}\\\vdots &\ddots &\vdots \\x_{n,1}&\cdots &x_{n,n}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e17f140a02f2b7ca739780b9f2e8c4a20c616575" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:19.295ex; height:11.509ex;" alt="{\displaystyle {\begin{bmatrix}x_{1,1}&\cdots &x_{1,n}\\\vdots &\ddots &\vdots \\x_{n,1}&\cdots &x_{n,n}\end{bmatrix}}}"></span>.</dd> <dt id="norm"><dfn><span class="texhtml">||□||</span></dfn></dt> <dd>1.  Denotes the <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a> of an element of a <a href="/wiki/Normed_vector_space" title="Normed vector space">normed vector space</a>.</dd> <dd>2.  For the similar-looking operator named <i>parallel</i>, see <a href="#∥"><span class="texhtml">∥</span></a>.</dd> <dt id="⌊⌋"><dfn><span class="texhtml">⌊□⌋</span></dfn></dt> <dd><a href="/wiki/Floor_function" class="mw-redirect" title="Floor function">Floor function</a>: if <span class="texhtml mvar" style="font-style:italic;">x</span> is a real number, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor x\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor x\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738c94c88678dd08a289f90a47a609ce44eedf14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.394ex; height:2.843ex;" alt="{\displaystyle \lfloor x\rfloor }"></span> is the greatest <a href="/wiki/Integer" title="Integer">integer</a> that is not greater than <span class="texhtml mvar" style="font-style:italic;">x</span>.</dd> <dt id="⌈⌉"><dfn><span class="texhtml">⌈□⌉</span></dfn></dt> <dd><a href="/wiki/Ceiling_function" class="mw-redirect" title="Ceiling function">Ceiling function</a>: if <span class="texhtml mvar" style="font-style:italic;">x</span> is a real number, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lceil x\rceil }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⌈<!-- ⌈ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌉<!-- ⌉ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lceil x\rceil }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ac7f37c8288700904b4a22a2f7c94d45ba917de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.394ex; height:2.843ex;" alt="{\displaystyle \lceil x\rceil }"></span> is the lowest <a href="/wiki/Integer" title="Integer">integer</a> that is not lesser than <span class="texhtml mvar" style="font-style:italic;">x</span>.</dd> <dt id="⌊⌉"><dfn><span class="texhtml">⌊□⌉</span></dfn></dt> <dd><a href="/wiki/Nearest_integer_function" class="mw-redirect" title="Nearest integer function">Nearest integer function</a>: if <span class="texhtml mvar" style="font-style:italic;">x</span> is a real number, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor x\rceil }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌉<!-- ⌉ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor x\rceil }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d85f3c359bd3e3aee2a21e06fe49b7bf847dcaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.394ex; height:2.843ex;" alt="{\displaystyle \lfloor x\rceil }"></span> is the <a href="/wiki/Integer" title="Integer">integer</a> that is the closest to <span class="texhtml mvar" style="font-style:italic;">x</span>.</dd> <dt id="open_interval"><dfn><span class="texhtml">]□, □[</span></dfn></dt> <dd><a href="/wiki/Open_interval" class="mw-redirect" title="Open interval">Open interval</a>: If a and b are real numbers, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bddbb0e4420a7e744cf71bd71216e11b0bf88831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle +\infty }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a<b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo><</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a<b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a<b}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ]a,b[}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">]</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">[</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ]a,b[}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b51ec208e9582e11a4f340a42d4f17fb4748fcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle ]a,b[}"></span> denotes the open interval delimited by a and b. See <a href="#pair"><span class="texhtml">(□, □)</span></a> for an alternative notation.</dd> <dt id="left-open"><dfn><span class="texhtml">(□, □]</span><br /><span class="texhtml">]□, □]</span></dfn></dt> <dd>Both notations are used for a <a href="/wiki/Half-open_interval" class="mw-redirect" title="Half-open interval">left-open interval</a>.</dd> <dt id="right-open"><dfn><span class="texhtml">[□, □)</span><br /><span class="texhtml">[□, □[</span></dfn></dt> <dd>Both notations are used for a <a href="/wiki/Half-open_interval" class="mw-redirect" title="Half-open interval">right-open interval</a>.</dd> <dt id="⟨⟩"><dfn><span class="texhtml">⟨□⟩</span></dfn></dt> <dd>1.  <a href="/wiki/Generating_set" class="mw-redirect" title="Generating set">Generated object</a>: if <span class="texhtml">S</span> is a set of elements in an algebraic structure, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle S\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>S</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle S\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43e09a95f17a6c1836a61f42b133a066fd2edd0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.309ex; height:2.843ex;" alt="{\displaystyle \langle S\rangle }"></span> denotes often the object generated by <span class="texhtml">S</span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\{s_{1},\ldots ,s_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\{s_{1},\ldots ,s_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a903a482227b7d87cf54bc3f76e3edf55e40861" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.554ex; height:2.843ex;" alt="{\displaystyle S=\{s_{1},\ldots ,s_{n}\}}"></span>, one writes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle s_{1},\ldots ,s_{n}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle s_{1},\ldots ,s_{n}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e57a73bba913cf67bd07d9a82582c03069aa9460" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.441ex; height:2.843ex;" alt="{\displaystyle \langle s_{1},\ldots ,s_{n}\rangle }"></span> (that is, braces are omitted). In particular, this may denote <ul><li>the <a href="/wiki/Linear_span" title="Linear span">linear span</a> in a <a href="/wiki/Vector_space" title="Vector space">vector space</a> (also often denoted <span class="texhtml">Span(<i>S</i>)</span>),</li> <li>the generated <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> in a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a>,</li> <li>the generated <a href="/wiki/Ideal_(ring_theory)" title="Ideal (ring theory)">ideal</a> in a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a>,</li> <li>the generated <a href="/wiki/Submodule" class="mw-redirect" title="Submodule">submodule</a> in a <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a>.</li></ul></dd> <dd>2.  Often used, mainly in physics, for denoting an <a href="/wiki/Expected_value" title="Expected value">expected value</a>. In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2f694d1a54e7ca685e042c3fe5a94a4cfb97317" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.565ex; height:2.843ex;" alt="{\displaystyle E(X)}"></span> is generally used instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle S\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>S</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle S\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43e09a95f17a6c1836a61f42b133a066fd2edd0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.309ex; height:2.843ex;" alt="{\displaystyle \langle S\rangle }"></span>.</dd> <dt id="⟨,⟩"><dfn><span class="texhtml">⟨□, □⟩</span><br /><span class="texhtml">⟨□ | □⟩</span></dfn></dt> <dd>Both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,y\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,y\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9df1806ebe1fed1a728b18aed82c30be8b2a0acb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle \langle x,y\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x\mid y\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo>∣<!-- ∣ --></mo> <mi>y</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x\mid y\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5074ba53554d9c746e5ab98e1a336e5d709b5a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.232ex; height:2.843ex;" alt="{\displaystyle \langle x\mid y\rangle }"></span> are commonly used for denoting the <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> in an <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a>.</dd> <dt id="bra–ket"><dfn><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \Box |{\text{ and }}|\Box \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>◻<!-- ◻ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>◻<!-- ◻ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \Box |{\text{ and }}|\Box \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04f66e0a5be8336fbbc34e2be273ed3e600ce41d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.628ex; height:2.843ex;" alt="{\displaystyle \langle \Box |{\text{ and }}|\Box \rangle }"></span></dfn></dt> <dd><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a> or <i>Dirac notation</i>: if <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> are elements of an <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48004887d8f9dfc489bd2bc793780b7f1d8039ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.881ex; height:2.843ex;" alt="{\displaystyle |x\rangle }"></span> is the vector defined by <span class="texhtml mvar" style="font-style:italic;">x</span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle y|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle y|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec16e25803f8f4c6fc2cf4d868b77ac1fedd4024" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.707ex; height:2.843ex;" alt="{\displaystyle \langle y|}"></span> is the <a href="/wiki/Covector" class="mw-redirect" title="Covector">covector</a> defined by <span class="texhtml mvar" style="font-style:italic;">y</span>; their inner product is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle y\mid x\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>y</mi> <mo>∣<!-- ∣ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle y\mid x\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e02551ab20798736dc0ab81cf07e3d7f47cb790b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.232ex; height:2.843ex;" alt="{\displaystyle \langle y\mid x\rangle }"></span>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Symbols_that_do_not_belong_to_formulas">Symbols that do not belong to formulas</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=17" title="Edit section: Symbols that do not belong to formulas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this section, the symbols that are listed are used as some sorts of punctuation marks in mathematical reasoning, or as abbreviations of natural language phrases. They are generally not used inside a formula. Some were used in <a href="/wiki/Classical_logic" title="Classical logic">classical logic</a> for indicating the logical dependence between sentences written in plain language. Except for the first two, they are normally not used in printed mathematical texts since, for readability, it is generally recommended to have at least one word between two formulas. However, they are still used on a <a href="/wiki/Black_board" class="mw-redirect" title="Black board">black board</a> for indicating relationships between formulas. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="qed"><dfn><a href="/wiki/Tombstone_(typography)" title="Tombstone (typography)"><span class="texhtml">■ , □</span></a></dfn></dt> <dd>Used for marking the end of a proof and separating it from the current text. The <a href="/wiki/Initialism" class="mw-redirect" title="Initialism">initialism</a> <a href="/wiki/Q.E.D." title="Q.E.D.">Q.E.D. or QED</a> (<a href="/wiki/Latin_language" class="mw-redirect" title="Latin language">Latin</a>: <i lang="la">quod erat demonstrandum</i>, "as was to be shown") is often used for the same purpose, either in its upper-case form or in lower case.</dd> <dt id="☡"><dfn><a href="/wiki/Bourbaki_dangerous_bend_symbol" title="Bourbaki dangerous bend symbol"><span class="texhtml texhtml-big" style="font-size:200%;">☡</span></a></dfn></dt> <dd><a href="/wiki/Bourbaki_dangerous_bend_symbol" title="Bourbaki dangerous bend symbol">Bourbaki dangerous bend symbol</a>: Sometimes used in the margin to forewarn readers against serious errors, where they risk falling, or to mark a passage that is tricky on a first reading because of an especially subtle argument.</dd> <dt id="therefore"><dfn><a href="/wiki/Therefore_sign" title="Therefore sign"><span class="texhtml">∴</span></a></dfn></dt> <dd>Abbreviation of "therefore". Placed between two assertions, it means that the first one implies the second one. For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal."</dd> <dt id="because"><dfn><a href="/wiki/Because_sign" class="mw-redirect" title="Because sign"><span class="texhtml">∵</span></a></dfn></dt> <dd>Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "<span class="texhtml">11</span> is <a href="/wiki/Prime_number" title="Prime number">prime</a> ∵ it has no positive integer factors other than itself and one."</dd> <dt id="∋"><dfn><span class="texhtml">∋</span></dfn></dt> <dd>1.  Abbreviation of "such that". For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\ni x>3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∋<!-- ∋ --></mo> <mi>x</mi> <mo>></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\ni x>3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c42487372db57d603493dcc4f7309824394350f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.761ex; height:2.176ex;" alt="{\displaystyle x\ni x>3}"></span> is normally printed "<span class="texhtml mvar" style="font-style:italic;">x</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x>3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x>3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca13c1461fe5c28b6ba92af1e60b99cde4a53648" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x>3}"></span>".</dd> <dd>2.  Sometimes used for reversing the operands of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \in }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∈<!-- ∈ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \in }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe4d5b0a594c1da89b5e78e7dfbeed90bdcc32f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:1.843ex;" alt="{\displaystyle \in }"></span>; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\ni x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>∋<!-- ∋ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\ni x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/230a647e153a48c2c3490d2fe0c389de01aea3c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.67ex; height:2.176ex;" alt="{\displaystyle S\ni x}"></span> has the same meaning as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51186ba8afb2067573a9082d55dd383df1ea9214" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.67ex; height:2.176ex;" alt="{\displaystyle x\in S}"></span>. See <a href="#∈">∈</a> in <a href="#Set_theory">§ Set theory</a>.</dd> <dt id="∝"><dfn><span class="texhtml">∝</span></dfn></dt> <dd>Abbreviation of "is proportional to".</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Miscellaneous">Miscellaneous</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=18" title="Edit section: Miscellaneous"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="!"><dfn><a href="/wiki/!" class="mw-redirect" title="!"><span class="texhtml">!</span></a></dfn></dt> <dd>1.  <a href="/wiki/Factorial" title="Factorial">Factorial</a>: if <span class="texhtml mvar" style="font-style:italic;">n</span> is a <a href="/wiki/Positive_integer" class="mw-redirect" title="Positive integer">positive integer</a>, <span class="texhtml"><i>n</i>!</span> is the product of the first <span class="texhtml mvar" style="font-style:italic;">n</span> positive integers, and is read as "n factorial".</dd> <dd>2.  <a href="/wiki/Double_factorial" title="Double factorial">Double factorial</a>: if <span class="texhtml mvar" style="font-style:italic;">n</span> is a <a href="/wiki/Positive_integer" class="mw-redirect" title="Positive integer">positive integer</a>, <span class="texhtml"><i>n</i>!!</span> is the product of all positive integers up to <span class="texhtml mvar" style="font-style:italic;">n</span> with the same parity as <span class="texhtml mvar" style="font-style:italic;">n</span>, and is read as "the double factorial of n".</dd> <dd>3.  <a href="/wiki/Subfactorial" class="mw-redirect" title="Subfactorial">Subfactorial</a>: if <span class="texhtml mvar" style="font-style:italic;">n</span> is a positive integer, <span class="texhtml">!<i>n</i></span> is the number of <a href="/wiki/Derangements" class="mw-redirect" title="Derangements">derangements</a> of a set of <span class="texhtml mvar" style="font-style:italic;">n</span> elements, and is read as "the subfactorial of n".</dd> <dt id="*"><dfn><a href="/wiki/*" class="mw-redirect" title="*"><span class="texhtml">*</span></a></dfn></dt> <dd>Many different uses in mathematics; see <a href="/wiki/Asterisk#Mathematics" title="Asterisk">Asterisk § Mathematics</a>.</dd> <dt id="vbar"><dfn><a href="/wiki/Vertical_bar" title="Vertical bar"><span class="texhtml">|</span></a></dfn></dt> <dd>1.  <a href="/wiki/Divisibility" class="mw-redirect" title="Divisibility">Divisibility</a>: if <span class="texhtml mvar" style="font-style:italic;">m</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> are two integers, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\mid n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>∣<!-- ∣ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\mid n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8fbcfe5176123851439b522038d471a49ff06be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.372ex; height:2.843ex;" alt="{\displaystyle m\mid n}"></span> means that <span class="texhtml mvar" style="font-style:italic;">m</span> divides <span class="texhtml mvar" style="font-style:italic;">n</span> evenly.</dd> <dd>2.  In <a href="/wiki/Set-builder_notation" title="Set-builder notation">set-builder notation</a>, it is used as a separator meaning "such that"; see <a href="#b:b"><span class="texhtml">{□ | □}</span></a>.</dd> <dd>3.  <a href="/wiki/Restriction_(mathematics)" title="Restriction (mathematics)">Restriction of a function</a>: if <span class="texhtml mvar" style="font-style:italic;">f</span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>, and <span class="texhtml mvar" style="font-style:italic;">S</span> is a <a href="/wiki/Subset" title="Subset">subset</a> of its <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{S}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{S}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dd8f943a75adb4c382a271541c010eb0d60b3b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.218ex; height:3.009ex;" alt="{\displaystyle f|_{S}}"></span> is the function with <span class="texhtml mvar" style="font-style:italic;">S</span> as a domain that equals <span class="texhtml mvar" style="font-style:italic;">f</span> on <span class="texhtml mvar" style="font-style:italic;">S</span>.</dd> <dd>4.  <a href="/wiki/Conditional_probability" title="Conditional probability">Conditional probability</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X\mid E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X\mid E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/365b05cf3ead2f9a495913beb1a6dc2900b12f47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.248ex; height:2.843ex;" alt="{\displaystyle P(X\mid E)}"></span> denotes the probability of <span class="texhtml mvar" style="font-style:italic;">X</span> given that the event <span class="texhtml mvar" style="font-style:italic;">E</span> occurs. Also denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X/E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X/E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ab015fda39060fc34f931e8a49685bb202b01ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.473ex; height:2.843ex;" alt="{\displaystyle P(X/E)}"></span>; see "<a href="#/">/</a>".</dd> <dd>5.  For several uses as <a href="/wiki/Brackets" class="mw-redirect" title="Brackets">brackets</a> (in pairs or with <span class="texhtml">⟨</span> and <span class="texhtml">⟩</span>) see <a href="#Other_brackets">§ Other brackets</a>.</dd> <dt id="∤"><dfn><span class="texhtml">∤</span></dfn></dt> <dd><a href="/wiki/Divisibility" class="mw-redirect" title="Divisibility">Non-divisibility</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\nmid m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>∤<!-- ∤ --></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\nmid m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d0785ea353a817ae656619ab03595b1215a7c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.372ex; height:2.843ex;" alt="{\displaystyle n\nmid m}"></span> means that <span class="texhtml mvar" style="font-style:italic;">n</span> is not a divisor of <span class="texhtml mvar" style="font-style:italic;">m</span>.</dd> <dt id="∥"><dfn><a href="/wiki/%E2%88%A5" class="mw-redirect" title="∥"><span class="texhtml">∥</span></a></dfn></dt> <dd>1.  Denotes <a href="/wiki/Parallel_(geometry)" title="Parallel (geometry)">parallelism</a> in <a href="/wiki/Elementary_geometry" class="mw-redirect" title="Elementary geometry">elementary geometry</a>: if <span class="texhtml mvar" style="font-style:italic;">PQ</span> and <span class="texhtml mvar" style="font-style:italic;">RS</span> are two <a href="/wiki/Line_(geometry)" title="Line (geometry)">lines</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PQ\parallel RS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>Q</mi> <mo>∥<!-- ∥ --></mo> <mi>R</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PQ\parallel RS}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0894c6ea87a071ed039dd4aa99f125ec2a642a27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.3ex; height:2.843ex;" alt="{\displaystyle PQ\parallel RS}"></span> means that they are parallel.</dd> <dd>2.  <a href="/wiki/Parallel_(operator)" title="Parallel (operator)">Parallel</a>, an <a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">arithmetical operation</a> used in <a href="/wiki/Electrical_engineering" title="Electrical engineering">electrical engineering</a> for modeling <a href="/wiki/Parallel_resistors" class="mw-redirect" title="Parallel resistors">parallel resistors</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\parallel y={\frac {1}{{\frac {1}{x}}+{\frac {1}{y}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∥<!-- ∥ --></mo> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>y</mi> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\parallel y={\frac {1}{{\frac {1}{x}}+{\frac {1}{y}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16c5c4704cbbd80b4a7459db7ade123892d338d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:15.147ex; height:6.843ex;" alt="{\displaystyle x\parallel y={\frac {1}{{\frac {1}{x}}+{\frac {1}{y}}}}}"></span>.</dd> <dd>3.  Used in pairs as brackets, denotes a <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a>; see <a href="#norm"><span class="texhtml">||□||</span></a>.</dd> <dd>4.  <a href="/wiki/Concatenation" title="Concatenation">Concatenation</a>: Typically used in computer science, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mathbin {\vert \vert } y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mrow class="MJX-TeXAtom-BIN"> <mo fence="false" stretchy="false">|</mo> <mo fence="false" stretchy="false">|</mo> </mrow> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mathbin {\vert \vert } y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e991203247ebb9195c292e7ce91410f6beb7740" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.811ex; height:2.843ex;" alt="{\displaystyle x\mathbin {\vert \vert } y}"></span> is said to represent the value resulting from appending the digits of <span class="texhtml mvar" style="font-style:italic;">y</span> to the end of <span class="texhtml mvar" style="font-style:italic;">x</span>.</dd> <dd>5.  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\displaystyle D_{\text{KL}}(P\parallel Q)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>KL</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>P</mi> <mo>∥<!-- ∥ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\displaystyle D_{\text{KL}}(P\parallel Q)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b184fd4d30dfc8c0ec5a3c7e16c06e717f2837d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.308ex; height:2.843ex;" alt="{\displaystyle {\displaystyle D_{\text{KL}}(P\parallel Q)}}"></span>, denotes a <a href="/wiki/Statistical_distance" title="Statistical distance">statistical distance</a> or measure of how one <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> P is different from a second, reference probability distribution Q.</dd> <dt id="∦"><dfn><a href="/wiki/%E2%88%A5" class="mw-redirect" title="∥"><span class="texhtml">∦</span></a></dfn></dt> <dd>Sometimes used for denoting that two <a href="/wiki/Line_(geometry)" title="Line (geometry)">lines</a> are not parallel; for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PQ\not \parallel RS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>Q</mi> <mo>∦</mo> <mi>R</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PQ\not \parallel RS}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1b0f4defb90031982f0e583c036d8f724f1c399" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.3ex; height:2.843ex;" alt="{\displaystyle PQ\not \parallel RS}"></span>.</dd> <dt id="⟂"><dfn><a href="/wiki/%E2%9F%82" class="mw-redirect" title="⟂"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \perp }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊥<!-- ⊥ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \perp }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afb90d6db42aa12f9e2f31176a4ed4e741c69eca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \perp }"></span></a></dfn></dt> <dd>1.  Denotes <a href="/wiki/Perpendicularity" class="mw-redirect" title="Perpendicularity">perpendicularity</a> and <a href="/wiki/Orthogonality" title="Orthogonality">orthogonality</a>. For example, if <span class="texhtml mvar" style="font-style:italic;">A, B, C</span> are three points in a <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB\perp AC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mo>⊥<!-- ⊥ --></mo> <mi>A</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB\perp AC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0aa6b30c66732c5a1344357c8569b798abad5b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.115ex; height:2.176ex;" alt="{\displaystyle AB\perp AC}"></span> means that the <a href="/wiki/Line_segment" title="Line segment">line segments</a> <span class="texhtml mvar" style="font-style:italic;">AB</span> and <span class="texhtml mvar" style="font-style:italic;">AC</span> are <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a>, and form a <a href="/wiki/Right_angle" title="Right angle">right angle</a>.</dd> <dd>2.  For the similar symbol, see <a href="#⊥"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">⊥<!-- ⊥ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f282c7bc331cc3bfcf1c57f1452cc23c022f58de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \bot }"></span></a>.</dd> <dt id="⊙"><dfn><span class="texhtml">⊙</span></dfn></dt> <dd><a href="/wiki/Hadamard_product_(series)" class="mw-redirect" title="Hadamard product (series)">Hadamard product of power series</a>: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle S=\sum _{i=0}^{\infty }s_{i}x^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle S=\sum _{i=0}^{\infty }s_{i}x^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2548e46b947b2f2f4d469a690d9dd99d25f87adc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.358ex; height:3.176ex;" alt="{\displaystyle \textstyle S=\sum _{i=0}^{\infty }s_{i}x^{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle T=\sum _{i=0}^{\infty }t_{i}x^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle T=\sum _{i=0}^{\infty }t_{i}x^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5156e31bb2835c9cfa48acdd9aab87bb4e56c11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.245ex; height:3.176ex;" alt="{\displaystyle \textstyle T=\sum _{i=0}^{\infty }t_{i}x^{i}}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle S\odot T=\sum _{i=0}^{\infty }s_{i}t_{i}x^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>S</mi> <mo>⊙<!-- ⊙ --></mo> <mi>T</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle S\odot T=\sum _{i=0}^{\infty }s_{i}t_{i}x^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebd1144bd156b86fb23ca493d63a16554b2f57af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.474ex; height:3.176ex;" alt="{\displaystyle \textstyle S\odot T=\sum _{i=0}^{\infty }s_{i}t_{i}x^{i}}"></span>. Possibly, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \odot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊙<!-- ⊙ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \odot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e89e009eb8a8839c82aa5c76c15e9f2d67006276" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \odot }"></span> is also used instead of <a href="#∘"><span class="texhtml">○</span></a> for the <a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product of matrices</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2020)">citation needed</span></a></i>]</sup></dd> </dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=19" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Related_articles">Related articles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=20" title="Edit section: Related articles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Language_of_mathematics" title="Language of mathematics">Language of mathematics</a></li> <li><a href="/wiki/Mathematical_notation" title="Mathematical notation">Mathematical notation</a></li> <li><a href="/wiki/Notation_in_probability_and_statistics" title="Notation in probability and statistics">Notation in probability and statistics</a></li> <li><a href="/wiki/Physical_constant" title="Physical constant">Physical constants</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Related_lists">Related lists</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=21" title="Edit section: Related lists"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/List_of_logic_symbols" title="List of logic symbols">List of logic symbols</a></li> <li><a href="/wiki/List_of_mathematical_constants" title="List of mathematical constants">List of mathematical constants</a></li> <li><a href="/wiki/Table_of_mathematical_symbols_by_introduction_date" title="Table of mathematical symbols by introduction date">Table of mathematical symbols by introduction date</a></li> <li><a href="/wiki/Blackboard_bold" title="Blackboard bold">Blackboard bold</a></li> <li><a href="/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering" title="Greek letters used in mathematics, science, and engineering">Greek letters used in mathematics, science, and engineering</a></li> <li><a href="/wiki/Latin_letters_used_in_mathematics,_science,_and_engineering" title="Latin letters used in mathematics, science, and engineering">Latin letters used in mathematics, science, and engineering</a></li> <li><a href="/wiki/List_of_common_physics_notations" title="List of common physics notations">List of common physics notations</a></li> <li><a href="/wiki/List_of_letters_used_in_mathematics,_science,_and_engineering" title="List of letters used in mathematics, science, and engineering">List of letters used in mathematics, science, and engineering</a></li> <li><a href="/wiki/List_of_mathematical_abbreviations" title="List of mathematical abbreviations">List of mathematical abbreviations</a></li> <li><a href="/wiki/List_of_typographical_symbols_and_punctuation_marks" title="List of typographical symbols and punctuation marks">List of typographical symbols and punctuation marks</a></li> <li><a href="/wiki/ISO_31-11" title="ISO 31-11">ISO 31-11</a> (Mathematical signs and symbols for use in physical sciences and technology)</li> <li><a href="/wiki/APL_syntax_and_symbols#Monadic_functions" title="APL syntax and symbols">List of APL functions</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Unicode_symbols"><a href="/wiki/Unicode" title="Unicode">Unicode</a> symbols</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=22" title="Edit section: Unicode symbols"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Unicode_block" title="Unicode block">Unicode block</a></li> <li><a href="/wiki/Mathematical_Alphanumeric_Symbols" title="Mathematical Alphanumeric Symbols">Mathematical Alphanumeric Symbols (Unicode block)</a></li> <li><a href="/wiki/List_of_Unicode_characters" title="List of Unicode characters">List of Unicode characters</a></li> <li><a href="/wiki/Letterlike_Symbols" title="Letterlike Symbols">Letterlike Symbols</a></li> <li><a href="/wiki/Mathematical_operators_and_symbols_in_Unicode" title="Mathematical operators and symbols in Unicode">Mathematical operators and symbols in Unicode</a></li> <li>Miscellaneous Mathematical Symbols: <a href="/wiki/Miscellaneous_Mathematical_Symbols-A" title="Miscellaneous Mathematical Symbols-A">A</a>, <a href="/wiki/Miscellaneous_Mathematical_Symbols-B" title="Miscellaneous Mathematical Symbols-B">B</a>, <a href="/wiki/Miscellaneous_Technical" title="Miscellaneous Technical">Technical</a></li> <li><a href="/wiki/Arrow_(symbol)" title="Arrow (symbol)">Arrow (symbol)</a> and <a href="/wiki/Miscellaneous_Symbols_and_Arrows" title="Miscellaneous Symbols and Arrows">Miscellaneous Symbols and Arrows</a></li> <li><a href="/wiki/Number_Forms" title="Number Forms">Number Forms</a></li> <li><a href="/wiki/Geometric_Shapes_(Unicode_block)" title="Geometric Shapes (Unicode block)">Geometric Shapes</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=23" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-ISO-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-ISO_1-0">^</a></b></span> <span class="reference-text"><a href="/wiki/ISO_80000-2" class="mw-redirect" title="ISO 80000-2">ISO 80000-2</a>, Section 9 "Operations", 2-9.6</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.pearson.com/us/higher-education/program/Tamhane-Statistics-and-Data-Analysis-From-Elementary-to-Intermediate/PGM227786.html">"Statistics and Data Analysis: From Elementary to Intermediate"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Statistics+and+Data+Analysis%3A+From+Elementary+to+Intermediate&rft_id=https%3A%2F%2Fwww.pearson.com%2Fus%2Fhigher-education%2Fprogram%2FTamhane-Statistics-and-Data-Analysis-From-Elementary-to-Intermediate%2FPGM227786.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+mathematical+symbols" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">The <a href="/wiki/LaTeX" title="LaTeX">LaTeX</a> equivalent to both <a href="/wiki/Unicode" title="Unicode">Unicode</a> symbols ∘ and ○ is \circ. The Unicode symbol that has the same size as \circ depends on the browser and its implementation. In some cases ∘ is so small that it can be confused with an <a href="/wiki/Interpoint" class="mw-redirect" title="Interpoint">interpoint</a>, and ○ looks similar as \circ. In other cases, ○ is too large for denoting a binary operation, and it is ∘ that looks like \circ. As LaTeX is commonly considered as the standard for mathematical typography, and it does not distinguish these two Unicode symbols, they are considered here as having the same mathematical meaning.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRutherford1965" class="citation book cs1">Rutherford, D. E. (1965). <i>Vector Methods</i>. University Mathematical Texts. Oliver and Boyd Ltd., Edinburgh.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vector+Methods&rft.series=University+Mathematical+Texts&rft.pub=Oliver+and+Boyd+Ltd.%2C+Edinburgh&rft.date=1965&rft.aulast=Rutherford&rft.aufirst=D.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+mathematical+symbols" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_mathematical_symbols&action=edit&section=24" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://jeff560.tripod.com/mathsym.html">Jeff Miller: <i>Earliest Uses of Various Mathematical Symbols</i></a></li> <li><a rel="nofollow" class="external text" href="http://www.numericana.com/answer/symbol.htm">Numericana: <i>Scientific Symbols and Icons</i></a></li> <li><a rel="nofollow" class="external text" href="http://us.metamath.org/symbols/symbols.html">GIF and PNG Images for Math Symbols</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070117015443/http://tlt.psu.edu/suggestions/international/bylanguage/math.html">Mathematical Symbols in Unicode</a></li> <li><a rel="nofollow" class="external text" href="https://detexify.kirelabs.org/classify.html">Detexify: LaTeX Handwriting Recognition Tool</a></li></ul> <dl><dt>Some Unicode charts of mathematical operators and symbols:</dt></dl> <ul><li><a rel="nofollow" class="external text" href="https://www.unicode.org/charts/#symbols">Index of Unicode symbols</a></li> <li><a rel="nofollow" class="external text" href="https://www.unicode.org/charts/PDF/U2100.pdf">Range 2100–214F: Unicode Letterlike Symbols</a></li> <li><a rel="nofollow" class="external text" href="https://www.unicode.org/charts/PDF/U2190.pdf">Range 2190–21FF: Unicode Arrows</a></li> <li><a rel="nofollow" class="external text" href="https://www.unicode.org/charts/PDF/U2200.pdf">Range 2200–22FF: Unicode Mathematical Operators</a></li> <li><a rel="nofollow" class="external text" href="https://www.unicode.org/charts/PDF/U27C0.pdf">Range 27C0–27EF: Unicode Miscellaneous Mathematical Symbols–A</a></li> <li><a rel="nofollow" class="external text" href="https://www.unicode.org/charts/PDF/U2980.pdf">Range 2980–29FF: Unicode Miscellaneous Mathematical Symbols–B</a></li> <li><a rel="nofollow" class="external text" href="https://www.unicode.org/charts/PDF/U2A00.pdf">Range 2A00–2AFF: Unicode Supplementary Mathematical Operators</a></li></ul> <dl><dt>Some Unicode cross-references:</dt></dl> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20141105143723/http://www.artofproblemsolving.com/Wiki/index.php/LaTeX:Symbols">Short list of commonly used LaTeX symbols</a> and <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090323063515/http://mirrors.med.harvard.edu/ctan/info/symbols/comprehensive/">Comprehensive LaTeX Symbol List</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140222144828/http://www.robinlionheart.com/stds/html4/entities-mathml">MathML Characters</a> - sorts out Unicode, HTML and MathML/TeX names on one page</li> <li><a rel="nofollow" class="external text" href="http://www.w3.org/TR/REC-MathML/chap6/bycodes.html">Unicode values and MathML names</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20141126074509/http://svn.ghostscript.com/ghostscript/branches/gs-db/Resource/Decoding/Unicode">Unicode values and Postscript names</a> from the source code for <a href="/wiki/Ghostscript" title="Ghostscript">Ghostscript</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Major_mathematics_areas" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Areas_of_mathematics" title="Template:Areas of mathematics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Areas_of_mathematics" title="Template talk:Areas of mathematics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Areas_of_mathematics" title="Special:EditPage/Template:Areas of mathematics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Major_mathematics_areas" style="font-size:114%;margin:0 4em">Major <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> areas</div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/History_of_mathematics" title="History of mathematics">History</a> <ul><li><a href="/wiki/Timeline_of_mathematics" title="Timeline of mathematics">Timeline</a></li> <li><a href="/wiki/Future_of_mathematics" title="Future of mathematics">Future</a></li></ul></li> <li><a href="/wiki/Lists_of_mathematics_topics" title="Lists of mathematics topics">Lists</a></li> <li><a class="mw-selflink selflink">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Category_theory" title="Category theory">Category theory</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a></li> <li><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Set_theory" title="Set theory">Set theory</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Algebra" title="Algebra">Algebra</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_algebra" title="Abstract algebra">Abstract</a></li> <li><a href="/wiki/Commutative_algebra" title="Commutative algebra">Commutative</a></li> <li><a href="/wiki/Elementary_algebra" title="Elementary algebra">Elementary</a></li> <li><a href="/wiki/Group_theory" title="Group theory">Group theory</a></li> <li><a href="/wiki/Linear_algebra" title="Linear algebra">Linear</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear</a></li> <li><a href="/wiki/Universal_algebra" title="Universal algebra">Universal</a></li> <li><a href="/wiki/Homological_algebra" title="Homological algebra">Homological</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Analysis</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Calculus" title="Calculus">Calculus</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Complex_analysis" title="Complex analysis">Complex analysis</a></li> <li><a href="/wiki/Hypercomplex_analysis" title="Hypercomplex analysis">Hypercomplex analysis</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a></li> <li><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a></li> <li><a href="/wiki/Harmonic_analysis" title="Harmonic analysis">Harmonic analysis</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Discrete_mathematics" title="Discrete mathematics">Discrete</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Combinatorics" title="Combinatorics">Combinatorics</a></li> <li><a href="/wiki/Graph_theory" title="Graph theory">Graph theory</a></li> <li><a href="/wiki/Order_theory" title="Order theory">Order theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Geometry" title="Geometry">Geometry</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_geometry" title="Algebraic geometry">Algebraic</a></li> <li><a href="/wiki/Analytic_geometry" title="Analytic geometry">Analytic</a></li> <li><a href="/wiki/Arithmetic_geometry" title="Arithmetic geometry">Arithmetic</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential</a></li> <li><a href="/wiki/Discrete_geometry" title="Discrete geometry">Discrete</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean</a></li> <li><a href="/wiki/Finite_geometry" title="Finite geometry">Finite</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Number_theory" title="Number theory">Number theory</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetic" title="Arithmetic">Arithmetic</a></li> <li><a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">Algebraic number theory</a></li> <li><a href="/wiki/Analytic_number_theory" title="Analytic number theory">Analytic number theory</a></li> <li><a href="/wiki/Diophantine_geometry" title="Diophantine geometry">Diophantine geometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Topology" title="Topology">Topology</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_topology" title="General topology">General</a></li> <li><a href="/wiki/Algebraic_topology" title="Algebraic topology">Algebraic</a></li> <li><a href="/wiki/Differential_topology" title="Differential topology">Differential</a></li> <li><a href="/wiki/Geometric_topology" title="Geometric topology">Geometric</a></li> <li><a href="/wiki/Homotopy_theory" title="Homotopy theory">Homotopy theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Applied_mathematics" title="Applied mathematics">Applied</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Engineering_mathematics" title="Engineering mathematics">Engineering mathematics</a></li> <li><a href="/wiki/Mathematical_and_theoretical_biology" title="Mathematical and theoretical biology">Mathematical biology</a></li> <li><a href="/wiki/Mathematical_chemistry" title="Mathematical chemistry">Mathematical chemistry</a></li> <li><a href="/wiki/Mathematical_economics" title="Mathematical economics">Mathematical economics</a></li> <li><a href="/wiki/Mathematical_finance" title="Mathematical finance">Mathematical finance</a></li> <li><a href="/wiki/Mathematical_physics" title="Mathematical physics">Mathematical physics</a></li> <li><a href="/wiki/Mathematical_psychology" title="Mathematical psychology">Mathematical psychology</a></li> <li><a href="/wiki/Mathematical_sociology" title="Mathematical sociology">Mathematical sociology</a></li> <li><a href="/wiki/Mathematical_statistics" title="Mathematical statistics">Mathematical statistics</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability</a></li> <li><a href="/wiki/Statistics" title="Statistics">Statistics</a></li> <li><a href="/wiki/Systems_science" title="Systems science">Systems science</a> <ul><li><a href="/wiki/Control_theory" title="Control theory">Control theory</a></li> <li><a href="/wiki/Game_theory" title="Game theory">Game theory</a></li> <li><a href="/wiki/Operations_research" title="Operations research">Operations research</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computational_mathematics" title="Computational mathematics">Computational</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_science" title="Computer science">Computer science</a></li> <li><a href="/wiki/Theory_of_computation" title="Theory of computation">Theory of computation</a></li> <li><a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">Computational complexity theory</a></li> <li><a href="/wiki/Numerical_analysis" title="Numerical analysis">Numerical analysis</a></li> <li><a href="/wiki/Mathematical_optimization" title="Mathematical optimization">Optimization</a></li> <li><a href="/wiki/Computer_algebra" title="Computer algebra">Computer algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Lists_of_mathematics_topics" title="Lists of mathematics topics">Related topics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematicians" class="mw-redirect" title="Mathematicians">Mathematicians</a> <ul><li><a href="/wiki/List_of_mathematicians" class="mw-redirect" title="List of mathematicians">lists</a></li></ul></li> <li><a href="/wiki/Informal_mathematics" title="Informal mathematics">Informal mathematics</a></li> <li><a href="/wiki/List_of_films_about_mathematicians" title="List of films about mathematicians">Films about mathematicians</a></li> <li><a href="/wiki/Recreational_mathematics" title="Recreational mathematics">Recreational mathematics</a></li> <li><a href="/wiki/Mathematics_and_art" title="Mathematics and art">Mathematics and art</a></li> <li><a href="/wiki/Mathematics_education" title="Mathematics education">Mathematics education</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Fields_of_mathematics" title="Category:Fields of mathematics">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Mathematics" class="extiw" title="commons:Category:Mathematics">Commons</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="WikiProject"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/16px-People_icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/24px-People_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/32px-People_icon.svg.png 2x" data-file-width="100" data-file-height="100" /></span></span> <b><a href="/wiki/Wikipedia:WikiProject_Mathematics" title="Wikipedia:WikiProject Mathematics">WikiProject</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Common_mathematical_notation,_symbols,_and_formulas" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Mathematical_symbols_notation_language" title="Template:Mathematical symbols notation language"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Mathematical_symbols_notation_language" title="Template talk:Mathematical symbols notation language"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Mathematical_symbols_notation_language" title="Special:EditPage/Template:Mathematical symbols notation language"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Common_mathematical_notation,_symbols,_and_formulas" style="font-size:114%;margin:0 4em">Common <a href="/wiki/Mathematics" title="Mathematics">mathematical</a> <a href="/wiki/Mathematical_notation" title="Mathematical notation">notation</a>, <a href="/wiki/List_of_mathematical_symbols_by_subject" class="mw-redirect" title="List of mathematical symbols by subject">symbols</a>, and <a href="/wiki/Help:Displaying_a_formula" title="Help:Displaying a formula">formulas</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible expanded navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Lists_of_Unicode_and_LaTeX_mathematical_symbols" style="font-size:114%;margin:0 4em">Lists of <a href="/wiki/Unicode" title="Unicode">Unicode</a> and <a href="/wiki/LaTeX" title="LaTeX">LaTeX</a> mathematical symbols</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_mathematical_symbols_by_subject" class="mw-redirect" title="List of mathematical symbols by subject">List of mathematical symbols by subject</a></li> <li><a class="mw-selflink selflink">Glossary of mathematical symbols</a></li> <li><a href="/wiki/List_of_logic_symbols" title="List of logic symbols">List of logic symbols</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible expanded navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Lists_of_Unicode_symbols" style="font-size:114%;margin:0 4em">Lists of <a href="/wiki/Unicode" title="Unicode">Unicode</a> symbols</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_Unicode_characters" title="List of Unicode characters">List of Unicode characters</a></li> <li><a href="/wiki/Unicode_block" title="Unicode block">Unicode block</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Alphanumeric</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_Alphanumeric_Symbols" title="Mathematical Alphanumeric Symbols">Mathematical Alphanumeric Symbols</a></li> <li><a href="/wiki/Blackboard_bold#Usage" title="Blackboard bold">Blackboard bold</a></li> <li><a href="/wiki/Letterlike_Symbols" title="Letterlike Symbols">Letterlike Symbols</a></li> <li><a href="/wiki/Symbols_for_zero" title="Symbols for zero">Symbols for zero</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Arrow_(symbol)" title="Arrow (symbol)">Arrows</a> and <a href="/wiki/Geometric_Shapes_(Unicode_block)" title="Geometric Shapes (Unicode block)">Geometric Shapes</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arrow_(symbol)" title="Arrow (symbol)">Arrows</a></li> <li><a href="/wiki/Miscellaneous_Symbols_and_Arrows" title="Miscellaneous Symbols and Arrows">Miscellaneous Symbols and Arrows</a></li> <li><a href="/wiki/Geometric_Shapes_(Unicode_block)" title="Geometric Shapes (Unicode block)">Geometric Shapes (Unicode block)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Operators</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_operators_and_symbols_in_Unicode" title="Mathematical operators and symbols in Unicode">Mathematical operators and symbols</a></li> <li><a href="/wiki/Mathematical_Operators_(Unicode_block)" title="Mathematical Operators (Unicode block)">Mathematical Operators (Unicode block)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Supplemental_Mathematical_Operators" title="Supplemental Mathematical Operators">Supplemental Math Operators</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Supplemental_Mathematical_Operators" title="Supplemental Mathematical Operators">Supplemental Mathematical Operators</a></li> <li><a href="/wiki/Number_Forms" title="Number Forms">Number Forms</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Miscellaneous_Mathematical_Symbols-A" title="Miscellaneous Mathematical Symbols-A">A</a></li> <li><a href="/wiki/Miscellaneous_Mathematical_Symbols-B" title="Miscellaneous Mathematical Symbols-B">B</a></li> <li><a href="/wiki/Miscellaneous_Technical" title="Miscellaneous Technical">Technical</a></li> <li><a href="/wiki/ISO_31-11" title="ISO 31-11">ISO 31-11</a> (Mathematical signs and symbols for use in physical sciences and technology)</li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible expanded navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Typographical_conventions_and_notations" style="font-size:114%;margin:0 4em">Typographical conventions and notations</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Language_of_mathematics" title="Language of mathematics">Language</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/APL_syntax_and_symbols#Monadic_functions" title="APL syntax and symbols">APL syntax and symbols</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Letters</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Diacritic" title="Diacritic">Diacritic</a></li> <li><a href="/wiki/List_of_letters_used_in_mathematics,_science,_and_engineering" title="List of letters used in mathematics, science, and engineering">Letters in STEM</a> <ul><li><a href="/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering" title="Greek letters used in mathematics, science, and engineering">Greek letters in STEM</a></li> <li><a href="/wiki/Latin_letters_used_in_mathematics,_science,_and_engineering" title="Latin letters used in mathematics, science, and engineering">Latin letters in STEM</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_notation" title="Mathematical notation">Mathematical notation</a></li> <li><a href="/wiki/List_of_mathematical_abbreviations" title="List of mathematical abbreviations">Abbreviations</a></li> <li><a href="/wiki/Notation_in_probability_and_statistics" title="Notation in probability and statistics">Notation in probability and statistics</a></li> <li><a href="/wiki/List_of_common_physics_notations" title="List of common physics notations">List of common physics notations</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible expanded navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Meanings_of_symbols" style="font-size:114%;margin:0 4em">Meanings of symbols</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Glossary of mathematical symbols</a></li> <li><a href="/wiki/List_of_mathematical_constants" title="List of mathematical constants">List of mathematical constants</a></li> <li><a href="/wiki/Physical_constant" title="Physical constant">Physical constants</a></li> <li><a href="/wiki/Table_of_mathematical_symbols_by_introduction_date" title="Table of mathematical symbols by introduction date">Table of mathematical symbols by introduction date</a></li> <li><a href="/wiki/List_of_typographical_symbols_and_punctuation_marks" title="List of typographical symbols and punctuation marks">List of typographical symbols and punctuation marks</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c59558b9d‐5fqwl Cached time: 20241130105956 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.347 seconds Real time usage: 1.737 seconds Preprocessor visited node count: 26021/1000000 Post‐expand include size: 205840/2097152 bytes Template argument size: 96829/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 44623/5000000 bytes Lua time usage: 0.521/10.000 seconds Lua memory usage: 18945333/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1103.450 1 -total 32.11% 354.369 142 Template:Term 30.65% 338.182 264 Template:Defn 17.91% 197.595 193 Template:Math 14.05% 155.007 1 Template:Areas_of_mathematics 13.91% 153.541 1 Template:Navbox 9.04% 99.753 1 Template:Short_description 8.80% 97.066 1 Template:Langx 8.40% 92.711 1 Template:Reflist 6.92% 76.359 1 Template:Cite_web --> <!-- Saved in parser cache with key enwiki:pcache:idhash:73634-0!canonical and timestamp 20241130105956 and revision id 1259267463. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Glossary_of_mathematical_symbols&oldid=1259267463">https://en.wikipedia.org/w/index.php?title=Glossary_of_mathematical_symbols&oldid=1259267463</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Mathematical_symbols" title="Category:Mathematical symbols">Mathematical symbols</a></li><li><a href="/wiki/Category:Mathematical_notation" title="Category:Mathematical notation">Mathematical notation</a></li><li><a href="/wiki/Category:Lists_of_symbols" title="Category:Lists of symbols">Lists of symbols</a></li><li><a href="/wiki/Category:Mathematical_logic" title="Category:Mathematical logic">Mathematical logic</a></li><li><a href="/wiki/Category:Mathematical_tables" title="Category:Mathematical tables">Mathematical tables</a></li><li><a href="/wiki/Category:Glossaries_of_mathematics" title="Category:Glossaries of mathematics">Glossaries of mathematics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2020" title="Category:Articles with unsourced statements from November 2020">Articles with unsourced statements from November 2020</a></li><li><a href="/wiki/Category:Articles_containing_Latin-language_text" title="Category:Articles containing Latin-language text">Articles containing Latin-language text</a></li><li><a href="/wiki/Category:Wikipedia_glossaries_using_description_lists" title="Category:Wikipedia glossaries using description lists">Wikipedia glossaries using description lists</a></li><li><a href="/wiki/Category:Pages_that_use_a_deprecated_format_of_the_math_tags" title="Category:Pages that use a deprecated format of the math tags">Pages that use a deprecated format of the math tags</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 November 2024, at 07:22<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Glossary_of_mathematical_symbols&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-wt7qm","wgBackendResponseTime":180,"wgPageParseReport":{"limitreport":{"cputime":"1.347","walltime":"1.737","ppvisitednodes":{"value":26021,"limit":1000000},"postexpandincludesize":{"value":205840,"limit":2097152},"templateargumentsize":{"value":96829,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":44623,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1103.450 1 -total"," 32.11% 354.369 142 Template:Term"," 30.65% 338.182 264 Template:Defn"," 17.91% 197.595 193 Template:Math"," 14.05% 155.007 1 Template:Areas_of_mathematics"," 13.91% 153.541 1 Template:Navbox"," 9.04% 99.753 1 Template:Short_description"," 8.80% 97.066 1 Template:Langx"," 8.40% 92.711 1 Template:Reflist"," 6.92% 76.359 1 Template:Cite_web"]},"scribunto":{"limitreport-timeusage":{"value":"0.521","limit":"10.000"},"limitreport-memusage":{"value":18945333,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-5c59558b9d-5fqwl","timestamp":"20241130105956","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Glossary of mathematical symbols","url":"https:\/\/en.wikipedia.org\/wiki\/Glossary_of_mathematical_symbols","sameAs":"http:\/\/www.wikidata.org\/entity\/Q180159","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q180159","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-08-20T07:47:24Z","dateModified":"2024-11-24T07:22:40Z","headline":"meanings of symbols used in mathematics"}</script> </body> </html>