CINXE.COM

Search results for: Sub-Nyquist sampling jamming method (SNSJ)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sub-Nyquist sampling jamming method (SNSJ)</title> <meta name="description" content="Search results for: Sub-Nyquist sampling jamming method (SNSJ)"> <meta name="keywords" content="Sub-Nyquist sampling jamming method (SNSJ)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sub-Nyquist sampling jamming method (SNSJ)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sub-Nyquist sampling jamming method (SNSJ)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20853</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sub-Nyquist sampling jamming method (SNSJ)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20853</span> An Improved Sub-Nyquist Sampling Jamming Method for Deceiving Inverse Synthetic Aperture Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanli%20Qi">Yanli Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Lv"> Ning Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Li"> Jing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sub-Nyquist sampling jamming method (SNSJ) is a well known deception jamming method for inverse synthetic aperture radar (ISAR). However, the anti-decoy of the SNSJ method performs easier since the amplitude of the false-target images are weaker than the real-target image; the false-target images always lag behind the real-target image, and all targets are located in the same cross-range. In order to overcome the drawbacks mentioned above, a simple modulation based on SNSJ (M-SNSJ) is presented in this paper. The method first uses amplitude modulation factor to make the amplitude of the false-target images consistent with the real-target image, then uses the down-range modulation factor and cross-range modulation factor to make the false-target images move freely in down-range and cross-range, respectively, thus the capacity of deception is improved. Finally, the simulation results on the six available combinations of three modulation factors are given to illustrate our conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20synthetic%20aperture%20radar%20%28ISAR%29" title="inverse synthetic aperture radar (ISAR)">inverse synthetic aperture radar (ISAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=deceptive%20jamming" title=" deceptive jamming"> deceptive jamming</a>, <a href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29" title=" Sub-Nyquist sampling jamming method (SNSJ)"> Sub-Nyquist sampling jamming method (SNSJ)</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation%20based%20on%20Sub-Nyquist%20sampling%20jamming%20method%20%28M-SNSJ%29" title=" modulation based on Sub-Nyquist sampling jamming method (M-SNSJ)"> modulation based on Sub-Nyquist sampling jamming method (M-SNSJ)</a> </p> <a href="https://publications.waset.org/abstracts/62644/an-improved-sub-nyquist-sampling-jamming-method-for-deceiving-inverse-synthetic-aperture-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20852</span> Performance of LTE Multicast Systems in the Presence of the Colored Noise Jamming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Malisuwan">S. Malisuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sivaraks"> J. Sivaraks</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Madan"> N. Madan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Suriyakrai">N. Suriyakrai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever going evolution of advanced wireless technologies makes it financially impossible for military operations to completely manufacture their own equipment. Therefore, Commercial-Off-The-Shelf (COTS) and Modified-Off-The-Shelf (MOTS) are being considered in military mission with low-cost modifications. In this paper, we focus on the LTE multicast systems for military communication systems under tactical environments with jamming condition. We examine the influence of the colored noise jamming on the performance of the LTE multicast systems in terms of the average throughput. The simulation results demonstrate the degradation of the average throughput for different dynamic ranges of the colored noise jamming versus average SNR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance" title="performance">performance</a>, <a href="https://publications.waset.org/abstracts/search?q=LTE" title=" LTE"> LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=multicast" title=" multicast"> multicast</a>, <a href="https://publications.waset.org/abstracts/search?q=jamming" title=" jamming"> jamming</a>, <a href="https://publications.waset.org/abstracts/search?q=throughput" title=" throughput "> throughput </a> </p> <a href="https://publications.waset.org/abstracts/9883/performance-of-lte-multicast-systems-in-the-presence-of-the-colored-noise-jamming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20851</span> Software Verification of Systematic Resampling for Optimization of Particle Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osiris%20Terry">Osiris Terry</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Hopkinson"> Kenneth Hopkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Humphrey"> Laura Humphrey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Systematic resampling is the most popularly used resampling method in particle filters. This paper seeks to further the understanding of systematic resampling by defining a formula made up of variables from the sampling equation and the particle weights. The formula is then verified via SPARK, a software verification language. The verified systematic resampling formula states that the minimum/maximum number of possible samples taken of a particle is equal to the floor/ceiling value of particle weight divided by the sampling interval, respectively. This allows for the creation of a randomness spectrum that each resampling method can fall within. Methods on the lower end, e.g., systematic resampling, have less randomness and, thus, are quicker to reach an estimate. Although lower randomness allows for error by having a larger bias towards the size of the weight, having this bias creates vulnerabilities to the noise in the environment, e.g., jamming. Conclusively, this is the first step in characterizing each resampling method. This will allow target-tracking engineers to pick the best resampling method for their environment instead of choosing the most popularly used one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPARK" title="SPARK">SPARK</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20verification" title=" software verification"> software verification</a>, <a href="https://publications.waset.org/abstracts/search?q=resampling" title=" resampling"> resampling</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20resampling" title=" systematic resampling"> systematic resampling</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a> </p> <a href="https://publications.waset.org/abstracts/175173/software-verification-of-systematic-resampling-for-optimization-of-particle-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20850</span> Wireless Transmission of Big Data Using Novel Secure Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Thiagarajan">K. Thiagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saranya"> K. Saranya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Veeraiah"> A. Veeraiah</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sudha"> B. Sudha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=two-hop%20transmission" title=" two-hop transmission"> two-hop transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20layer%20wireless%20security" title=" physical layer wireless security"> physical layer wireless security</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative%20jamming" title=" cooperative jamming"> cooperative jamming</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20balance" title=" energy balance"> energy balance</a> </p> <a href="https://publications.waset.org/abstracts/30860/wireless-transmission-of-big-data-using-novel-secure-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20849</span> Achievable Average Secrecy Rates over Bank of Parallel Independent Fading Channels with Friendly Jamming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munnujahan%20Ara">Munnujahan Ara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the effect of friendly jamming power allocation strategies on the achievable average secrecy rate over a bank of parallel fading wiretap channels. We investigate the achievable average secrecy rate in parallel fading wiretap channels subject to Rayleigh and Rician fading. The achievable average secrecy rate, due to the presence of a line-of-sight component in the jammer channel is also evaluated. Moreover, we study the detrimental effect of correlation across the parallel sub-channels, and evaluate the corresponding decrease in the achievable average secrecy rate for the various fading configurations. We also investigate the tradeoff between the transmission power and the jamming power for a fixed total power budget. Our results, which are applicable to current orthogonal frequency division multiplexing (OFDM) communications systems, shed further light on the achievable average secrecy rates over a bank of parallel fading channels in the presence of friendly jammers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fading%20parallel%20channels" title="fading parallel channels">fading parallel channels</a>, <a href="https://publications.waset.org/abstracts/search?q=wire-tap%20channel" title=" wire-tap channel"> wire-tap channel</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=secrecy%20capacity" title=" secrecy capacity"> secrecy capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20allocation" title=" power allocation"> power allocation</a> </p> <a href="https://publications.waset.org/abstracts/25080/achievable-average-secrecy-rates-over-bank-of-parallel-independent-fading-channels-with-friendly-jamming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20848</span> Estimating The Population Mean by Using Stratified Double Extreme Ranked Set Sample</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20I.%20Syam">Mahmoud I. Syam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamarulzaman%20Ibrahim"> Kamarulzaman Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20I.%20Al-Omari"> Amer I. Al-Omari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20extreme%20ranked%20set%20sampling" title="double extreme ranked set sampling">double extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20ranked%20set%20sampling" title=" extreme ranked set sampling"> extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20double%20extreme%20ranked%20set%20sampling" title=" stratified double extreme ranked set sampling"> stratified double extreme ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/25207/estimating-the-population-mean-by-using-stratified-double-extreme-ranked-set-sample" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20847</span> Single Carrier Frequency Domain Equalization Design to Cope with Narrow Band Jammer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=So-Young%20Ju">So-Young Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Mi%20Jo"> Sung-Mi Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui-Rim%20Jeong"> Eui-Rim Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, based on the conventional single carrier frequency domain equalization (SC-FDE) structure, we propose a new SC-FDE structure to cope with narrowband jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrowband jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain and verified the performance via computer simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20estimation" title="channel estimation">channel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=jammer" title=" jammer"> jammer</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot" title=" pilot"> pilot</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-FDE" title=" SC-FDE"> SC-FDE</a> </p> <a href="https://publications.waset.org/abstracts/80488/single-carrier-frequency-domain-equalization-design-to-cope-with-narrow-band-jammer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20846</span> Investigating the Efficiency of Stratified Double Median Ranked Set Sample for Estimating the Population Mean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20I.%20Syam">Mahmoud I. Syam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stratified double median ranked set sampling (SDMRSS) method is suggested for estimating the population mean. The SDMRSS is compared with the simple random sampling (SRS), stratified simple random sampling (SSRS), and stratified ranked set sampling (SRSS). It is shown that SDMRSS estimator is an unbiased of the population mean and more efficient than SRS, SSRS, and SRSS. Also, by SDMRSS, we can increase the efficiency of mean estimator for specific value of the sample size. SDMRSS is applied on real life examples, and the results of the example agreed the theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20ranked%20set%20sampling" title=" double ranked set sampling"> double ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20ranked%20set%20sampling" title=" median ranked set sampling"> median ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified" title=" stratified"> stratified</a> </p> <a href="https://publications.waset.org/abstracts/56985/investigating-the-efficiency-of-stratified-double-median-ranked-set-sample-for-estimating-the-population-mean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20845</span> Cooperative Jamming for Implantable Medical Device Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kim%20Lytle">Kim Lytle</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Talty"> Tim Talty</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Michaels"> Alan Michaels</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeff%20Reed"> Jeff Reed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implantable medical devices (IMDs) are medically necessary devices embedded in the human body that monitor chronic disorders or automatically deliver therapies. Most IMDs have wireless capabilities that allow them to share data with an offboard programming device to help medical providers monitor the patient’s health while giving the patient more insight into their condition. However, serious security concerns have arisen as researchers demonstrated these devices could be hacked to obtain sensitive information or harm the patient. Cooperative jamming can be used to prevent privileged information leaks by maintaining an adequate signal-to-noise ratio at the intended receiver while minimizing signal power elsewhere. This paper uses ray tracing to demonstrate how a low number of friendly nodes abiding by Bluetooth Low Energy (BLE) transmission regulations can enhance IMD communication security in an office environment, which in turn may inform how companies and individuals can protect their proprietary and personal information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=implantable%20biomedical%20devices" title="implantable biomedical devices">implantable biomedical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20system%20security" title=" communication system security"> communication system security</a>, <a href="https://publications.waset.org/abstracts/search?q=array%20signal%20processing" title=" array signal processing"> array signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=ray%20tracing" title=" ray tracing"> ray tracing</a> </p> <a href="https://publications.waset.org/abstracts/167002/cooperative-jamming-for-implantable-medical-device-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20844</span> Investigation of the Unbiased Characteristic of Doppler Frequency to Different Antenna Array Geometries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Komeylian">Somayeh Komeylian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Array signal processing techniques have been recently developing in a variety application of the performance enhancement of receivers by refraining the power of jamming and interference signals. In this scenario, biases induced to the antenna array receiver degrade significantly the accurate estimation of the carrier phase. Owing to the integration of frequency becomes the carrier phase, we have obtained the unbiased doppler frequency for the high precision estimation of carrier phase. The unbiased characteristic of Doppler frequency to the power jamming and the other interference signals allows achieving the highly accurate estimation of phase carrier. In this study, we have rigorously investigated the unbiased characteristic of Doppler frequency to the variation of the antenna array geometries. The simulation results have efficiently verified that the Doppler frequency remains also unbiased and accurate to the variation of antenna array geometries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array%20signal%20processing" title="array signal processing">array signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20doppler%20frequency" title=" unbiased doppler frequency"> unbiased doppler frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=GNSS" title=" GNSS"> GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=carrier%20phase" title=" carrier phase"> carrier phase</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20slowly%20fluctuating%20point%20target" title=" and slowly fluctuating point target"> and slowly fluctuating point target</a> </p> <a href="https://publications.waset.org/abstracts/129148/investigation-of-the-unbiased-characteristic-of-doppler-frequency-to-different-antenna-array-geometries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20843</span> Security Over OFDM Fading Channels with Friendly Jammer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munnujahan%20Ara">Munnujahan Ara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the effect of friendly jamming power allocation strategies on the achievable average secrecy rate over a bank of parallel fading wiretap channels. We investigate the achievable average secrecy rate in parallel fading wiretap channels subject to Rayleigh and Rician fading. The achievable average secrecy rate, due to the presence of a line-of-sight component in the jammer channel is also evaluated. Moreover, we study the detrimental effect of correlation across the parallel sub-channels, and evaluate the corresponding decrease in the achievable average secrecy rate for the various fading configurations. We also investigate the tradeoff between the transmission power and the jamming power for a fixed total power budget. Our results, which are applicable to current orthogonal frequency division multiplexing (OFDM) communications systems, shed further light on the achievable average secrecy rates over a bank of parallel fading channels in the presence of friendly jammers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fading%20parallel%20channels" title="fading parallel channels">fading parallel channels</a>, <a href="https://publications.waset.org/abstracts/search?q=wire-tap%20channel" title=" wire-tap channel"> wire-tap channel</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=secrecy%20capacity" title=" secrecy capacity"> secrecy capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20allocation" title=" power allocation"> power allocation</a> </p> <a href="https://publications.waset.org/abstracts/25078/security-over-ofdm-fading-channels-with-friendly-jammer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20842</span> Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjit%20Singh">Manjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG%20%28electrocardiogram%29" title="ECG (electrocardiogram)">ECG (electrocardiogram)</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability%20%28HRV%29" title=" heart rate variability (HRV)"> heart rate variability (HRV)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20entropy" title=" multiscale entropy"> multiscale entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a> </p> <a href="https://publications.waset.org/abstracts/78603/optimal-ecg-sampling-frequency-for-multiscale-entropy-based-hrv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20841</span> A Comparison between Empirical and Theoretical OC Curves Related to Acceptance Sampling for Attributes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Encarnacion%20Alvarez">Encarnacion Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Noem%C4%B1%20Hidalgo-Rebollo"> Noemı Hidalgo-Rebollo</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20F.%20Munoz"> Juan F. Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20J.%20Blanco-Encomienda"> Francisco J. Blanco-Encomienda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many companies use the technique named as acceptance sampling which consists on the inspection and decision making regarding products. According to the results derived from this method, the company takes the decision of acceptance or rejection of a product. The acceptance sampling can be applied to the technology management, since the acceptance sampling can be seen as a tool to improve the design planning, operation and control of technological products. The theoretical operating characteristic (OC) curves are widely used when dealing with acceptance sampling. In this paper, we carry out Monte Carlo simulation studies to compare numerically the empirical OC curves derived from the empirical results to the customary theoretical OC curves. We analyze various possible scenarios in such a way that the differences between the empirical and theoretical curves can be observed under different situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-sampling%20plan" title="single-sampling plan">single-sampling plan</a>, <a href="https://publications.waset.org/abstracts/search?q=lot" title=" lot"> lot</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a> </p> <a href="https://publications.waset.org/abstracts/19429/a-comparison-between-empirical-and-theoretical-oc-curves-related-to-acceptance-sampling-for-attributes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20840</span> Spatially Random Sampling for Retail Food Risk Factors Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guilan%20Huang">Guilan Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors.&nbsp;This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors&rsquo; work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA&rsquo;s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial%20technology" title="geospatial technology">geospatial technology</a>, <a href="https://publications.waset.org/abstracts/search?q=restaurant" title=" restaurant"> restaurant</a>, <a href="https://publications.waset.org/abstracts/search?q=retail%20food%20risk%20factor%20study" title=" retail food risk factor study"> retail food risk factor study</a>, <a href="https://publications.waset.org/abstracts/search?q=spatially%20random%20sampling" title=" spatially random sampling"> spatially random sampling</a> </p> <a href="https://publications.waset.org/abstracts/48950/spatially-random-sampling-for-retail-food-risk-factors-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20839</span> Bayesian Approach for Moving Extremes Ranked Set Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Ali%20Al-Hadhrami">Said Ali Al-Hadhrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Ibrahim%20Al-Omari"> Amer Ibrahim Al-Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title="Bayesian">Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20extreme%20ranked%20set%20sampling" title=" moving extreme ranked set sampling"> moving extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/30733/bayesian-approach-for-moving-extremes-ranked-set-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20838</span> Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.R.%20Eskandari">A.R. Eskandari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.R.%20Eskandari"> M.R. Eskandari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20scattering" title="inverse scattering">inverse scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title=" microwave imaging"> microwave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20objects" title=" two-dimensional objects"> two-dimensional objects</a>, <a href="https://publications.waset.org/abstracts/search?q=Linear%20Sampling%20Method%20%28LSM%29" title=" Linear Sampling Method (LSM)"> Linear Sampling Method (LSM)</a> </p> <a href="https://publications.waset.org/abstracts/14437/inverse-scattering-of-two-dimensional-objects-using-an-enhancement-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20837</span> Probability Sampling in Matched Case-Control Study in Drug Abuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surya%20R.%20Niraula">Surya R. Niraula</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20B%20Chhetry"> Devendra B Chhetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20K.%20Singh"> Girish K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nagesh"> S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederick%20A.%20Connell"> Frederick A. Connell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20abuse" title="drug abuse">drug abuse</a>, <a href="https://publications.waset.org/abstracts/search?q=matched%20case-control%20study" title=" matched case-control study"> matched case-control study</a>, <a href="https://publications.waset.org/abstracts/search?q=non-probability%20sampling" title=" non-probability sampling"> non-probability sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20sampling" title=" probability sampling"> probability sampling</a> </p> <a href="https://publications.waset.org/abstracts/24612/probability-sampling-in-matched-case-control-study-in-drug-abuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20836</span> Metropolis-Hastings Sampling Approach for High Dimensional Testing Methods of Autonomous Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nacer%20Eddine%20Chelbi">Nacer Eddine Chelbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayet%20Bagane"> Ayet Bagane</a>, <a href="https://publications.waset.org/abstracts/search?q=Annie%20Saleh"> Annie Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20Sauvageau"> Claude Sauvageau</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Gingras"> Denis Gingras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As recently stated by National Highway Traffic Safety Administration (NHTSA), to demonstrate the expected performance of a highly automated vehicles system, test approaches should include a combination of simulation, test track, and on-road testing. In this paper, we propose a new validation method for autonomous vehicles involving on-road tests (Field Operational Tests), test track (Test Matrix) and simulation (Worst Case Scenarios). We concentrate our discussion on the simulation aspects, in particular, we extend recent work based on Importance Sampling by using a Metropolis-Hasting algorithm (MHS) to sample collected data from the Safety Pilot Model Deployment (SPMD) in lane-change scenarios. Our proposed MH sampling method will be compared to the Importance Sampling method, which does not perform well in high-dimensional problems. The importance of this study is to obtain a sampler that could be applied to high dimensional simulation problems in order to reduce and optimize the number of test scenarios that are necessary for validation and certification of autonomous vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20driving" title="automated driving">automated driving</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20emergency%20braking%20%28AEB%29" title=" autonomous emergency braking (AEB)"> autonomous emergency braking (AEB)</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title=" autonomous vehicles"> autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=certification" title=" certification"> certification</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=importance%20sampling" title=" importance sampling"> importance sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=metropolis-hastings%20sampling" title=" metropolis-hastings sampling"> metropolis-hastings sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=tests" title=" tests"> tests</a> </p> <a href="https://publications.waset.org/abstracts/60389/metropolis-hastings-sampling-approach-for-high-dimensional-testing-methods-of-autonomous-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20835</span> Efficient Alias-Free Level Crossing Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Riazifar">Negar Riazifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20G.%20Stocks"> Nigel G. Stocks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to an alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alias-free" title="alias-free">alias-free</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20crossing%20sampling" title=" level crossing sampling"> level crossing sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum"> spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20polynomial" title=" trigonometric polynomial"> trigonometric polynomial</a> </p> <a href="https://publications.waset.org/abstracts/136144/efficient-alias-free-level-crossing-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20834</span> Evaluation of a Risk Assessment Method for Fiber Emissions from Sprayed Asbestos-Containing Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yukinori%20Fuse">Yukinori Fuse</a>, <a href="https://publications.waset.org/abstracts/search?q=Masato%20Kawaguchi"> Masato Kawaguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A quantitative risk assessment method was developed for fiber emissions from sprayed asbestos-containing materials (ACMs). In Japan, instead of being quantitative, these risk assessments have relied on the subjective judgment of skilled engineers, which may vary from one person to another. Therefore, this closed sampling method aims at avoiding any potential variability between assessments. This method was used to assess emissions from ACM sprayed in eleven buildings and the obtained results were compared with the subjective judgments of a skilled engineer. An approximate correlation tendency was found between both approaches. In spite of existing uncertainties, the closed sampling method is useful for public health protection. We firmly believe that this method may find application in the management and renovation decisions of buildings using friable and sprayed ACM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asbestos" title="asbestos">asbestos</a>, <a href="https://publications.waset.org/abstracts/search?q=renovation" title=" renovation"> renovation</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a> </p> <a href="https://publications.waset.org/abstracts/6113/evaluation-of-a-risk-assessment-method-for-fiber-emissions-from-sprayed-asbestos-containing-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20833</span> Temporal Variation of PM10-Bound Benzo(a)Pyrene Concentration in an Urban and a Rural Site of Northwestern Hungary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zs.%20Csan%C3%A1di">Zs. Csanádi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Szab%C3%B3%20Nagy"> A. Szabó Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Szab%C3%B3"> J. Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Erd%C5%91s"> J. Erdős</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study was to assess the annual concentration and seasonal variation of benzo(a)pyrene (BaP) associated with PM10 in an urban site of Győr and in a rural site of Sarród in the sampling period of 2008–2012. A total of 280 PM10 aerosol samples were collected in each sampling site and analyzed for BaP by gas chromatography method. The BaP concentrations ranged from undetected to 8 ng/m3 with the mean value of 1.01 ng/m3 in the sampling site of Győr, and from undetected to 4.07 ng/m3 with the mean value of 0.52 ng/m3 in the sampling site of Sarród, respectively. Relatively higher concentrations of BaP were detected in samples collected in both sampling sites in the heating seasons compared with non-heating periods. The annual mean BaP concentrations were comparable with the published data of different other Hungarian sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title="air quality">air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=benzo%28a%29pyrene" title=" benzo(a)pyrene"> benzo(a)pyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbons" title=" polycyclic aromatic hydrocarbons"> polycyclic aromatic hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/26867/temporal-variation-of-pm10-bound-benzoapyrene-concentration-in-an-urban-and-a-rural-site-of-northwestern-hungary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20832</span> Design of Bayesian MDS Sampling Plan Based on the Process Capability Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davood%20Shishebori">Davood Shishebori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saber%20Fallah%20Nezhad"> Mohammad Saber Fallah Nezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Seifi"> Sina Seifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a variable multiple dependent state (MDS) sampling plan is developed based on the process capability index using Bayesian approach. The optimal parameters of the developed sampling plan with respect to constraints related to the risk of consumer and producer are presented. Two comparison studies have been done. First, the methods of double sampling model, sampling plan for resubmitted lots and repetitive group sampling (RGS) plan are elaborated and average sample numbers of the developed MDS plan and other classical methods are compared. A comparison study between the developed MDS plan based on Bayesian approach and the exact probability distribution is carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MDS%20sampling%20plan" title="MDS sampling plan">MDS sampling plan</a>, <a href="https://publications.waset.org/abstracts/search?q=RGS%20plan" title=" RGS plan"> RGS plan</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20plan%20for%20resubmitted%20lots" title=" sampling plan for resubmitted lots"> sampling plan for resubmitted lots</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20capability%20index%20%28PCI%29" title=" process capability index (PCI)"> process capability index (PCI)</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20sample%20number%20%28ASN%29" title=" average sample number (ASN)"> average sample number (ASN)</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title=" Bayesian approach"> Bayesian approach</a> </p> <a href="https://publications.waset.org/abstracts/74571/design-of-bayesian-mds-sampling-plan-based-on-the-process-capability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20831</span> Methods of Variance Estimation in Two-Phase Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghunath%20Arnab">Raghunath Arnab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two-phase sampling which is also known as double sampling was introduced in 1938. In two-phase sampling, samples are selected in phases. In the first phase, a relatively large sample of size is selected by some suitable sampling design and only information on the auxiliary variable is collected. During the second phase, a sample of size is selected either from, the sample selected in the first phase or from the entire population by using a suitable sampling design and information regarding the study and auxiliary variable is collected. Evidently, two phase sampling is useful if the auxiliary information is relatively easy and cheaper to collect than the study variable as well as if the strength of the relationship between the variables and is high. If the sample is selected in more than two phases, the resulting sampling design is called a multi-phase sampling. In this article we will consider how one can use data collected at the first phase sampling at the stages of estimation of the parameter, stratification, selection of sample and their combinations in the second phase in a unified setup applicable to any sampling design and wider classes of estimators. The problem of the estimation of variance will also be considered. The variance of estimator is essential for estimating precision of the survey estimates, calculation of confidence intervals, determination of the optimal sample sizes and for testing of hypotheses amongst others. Although, the variance is a non-negative quantity but its estimators may not be non-negative. If the estimator of variance is negative, then it cannot be used for estimation of confidence intervals, testing of hypothesis or measure of sampling error. The non-negativity properties of the variance estimators will also be studied in details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20information" title="auxiliary information">auxiliary information</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20sampling" title=" two-phase sampling"> two-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20probability%20sampling" title=" varying probability sampling"> varying probability sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20estimators" title=" unbiased estimators"> unbiased estimators</a> </p> <a href="https://publications.waset.org/abstracts/36087/methods-of-variance-estimation-in-two-phase-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20830</span> A New Method to Estimate the Low Income Proportion: Monte Carlo Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Encarnaci%C3%B3n%20%C3%81lvarez">Encarnación Álvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20M.%20Garc%C3%ADa-Fern%C3%A1ndez"> Rosa M. García-Fernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20F.%20Mu%C3%B1oz"> Juan F. Muñoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of a proportion has many applications in economics and social studies. A common application is the estimation of the low income proportion, which gives the proportion of people classified as poor into a population. In this paper, we present this poverty indicator and propose to use the logistic regression estimator for the problem of estimating the low income proportion. Various sampling designs are presented. Assuming a real data set obtained from the European Survey on Income and Living Conditions, Monte Carlo simulation studies are carried out to analyze the empirical performance of the logistic regression estimator under the various sampling designs considered in this paper. Results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the customary estimator under the various sampling designs considered in this paper. The stratified sampling design can also provide more accurate results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poverty%20line" title="poverty line">poverty line</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20of%20poverty" title=" risk of poverty"> risk of poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20method" title=" ratio method"> ratio method</a> </p> <a href="https://publications.waset.org/abstracts/8876/a-new-method-to-estimate-the-low-income-proportion-monte-carlo-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20829</span> Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Riazifar">Negar Riazifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20G.%20Stocks"> Nigel G. Stocks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20crossing%20sampling" title="level crossing sampling">level crossing sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20stability" title=" numerical stability"> numerical stability</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20processing" title=" speech processing"> speech processing</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20polynomial" title=" trigonometric polynomial"> trigonometric polynomial</a> </p> <a href="https://publications.waset.org/abstracts/134973/efficient-high-fidelity-signal-reconstruction-based-on-level-crossing-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20828</span> A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bowei%20Yuan">Bowei Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Li"> Shi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liuyang%20Song"> Liuyang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaqing%20Wang"> Huaqing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingli%20Cui"> Lingli Cui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title="fault diagnosis">fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20signal%20down-sampling" title=" vibration signal down-sampling"> vibration signal down-sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=1D-CNN" title=" 1D-CNN"> 1D-CNN</a> </p> <a href="https://publications.waset.org/abstracts/135216/a-mechanical-diagnosis-method-based-on-vibration-fault-signal-down-sampling-and-the-improved-one-dimensional-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20827</span> Participation, Network, Women’s Competency, and Government Policy Affecting on Community Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nopsarun%20Vannasirikul">Nopsarun Vannasirikul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of this research paper were to study the current situations of community development, women’s potentials, women’s participation, network, and government policy as well as to study the factors influencing women’s potentials, women’s participation, network, and government policy that have on the community development. The population included the women age of 18 years old who were living in the communities of Bangkok areas. This study was a mix research method of quantitative and qualitative method. A simple random sampling method was utilized to obtain 400 sample groups from 50 districts of Bangkok and to perform data collection by using questionnaire. Also, a purposive sampling method was utilized to obtain 12 informants for an in-depth interview to gain an in-sight information for quantitative method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20development" title="community development">community development</a>, <a href="https://publications.waset.org/abstracts/search?q=participation" title=" participation"> participation</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=women%E2%80%99s%20right" title=" women’s right"> women’s right</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/90186/participation-network-womens-competency-and-government-policy-affecting-on-community-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20826</span> End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omer%20Cahana">Omer Cahana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ofer%20Levi"> Ofer Levi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Herman"> Maya Herman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title="magnetic resonance imaging">magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=pyramid%20network" title=" pyramid network"> pyramid network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/150838/end-to-end-pyramid-based-method-for-magnetic-resonance-imaging-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20825</span> Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khattab%20Al%20Qaisi">Khattab Al Qaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Bowring"> Nicholas Bowring</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSI" title="DSI">DSI</a>, <a href="https://publications.waset.org/abstracts/search?q=SVPWM" title=" SVPWM"> SVPWM</a>, <a href="https://publications.waset.org/abstracts/search?q=THD" title=" THD"> THD</a>, <a href="https://publications.waset.org/abstracts/search?q=DC-AC%20converter" title=" DC-AC converter"> DC-AC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/17856/investigation-of-the-effects-of-sampling-frequency-on-the-thd-of-3-phase-inverters-using-space-vector-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20824</span> Sampling Two-Channel Nonseparable Wavelets and Its Applications in Multispectral Image Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu">Bin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Weijie%20Liu"> Weijie Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Sun"> Bin Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yihui%20Luo"> Yihui Luo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to solve the problem of lower spatial resolution and block effect in the fusion method based on separable wavelet transform in the resulting fusion image, a new sampling mode based on multi-resolution analysis of two-channel non separable wavelet transform, whose dilation matrix is [1,1;1,-1], is presented and a multispectral image fusion method based on this kind of sampling mode is proposed. Filter banks related to this kind of wavelet are constructed, and multiresolution decomposition of the intensity of the MS and panchromatic image are performed in the sampled mode using the constructed filter bank. The low- and high-frequency coefficients are fused by different fusion rules. The experiment results show that this method has good visual effect. The fusion performance has been noted to outperform the IHS fusion method, as well as, the fusion methods based on DWT, IHS-DWT, IHS-Contourlet transform, and IHS-Curvelet transform in preserving both spectral quality and high spatial resolution information. Furthermore, when compared with the fusion method based on nonsubsampled two-channel non separable wavelet, the proposed method has been observed to have higher spatial resolution and good global spectral information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20fusion" title="image fusion">image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=two-channel%20sampled%20nonseparable%20wavelets" title=" two-channel sampled nonseparable wavelets"> two-channel sampled nonseparable wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral%20image" title=" multispectral image"> multispectral image</a>, <a href="https://publications.waset.org/abstracts/search?q=panchromatic%20image" title=" panchromatic image"> panchromatic image</a> </p> <a href="https://publications.waset.org/abstracts/15357/sampling-two-channel-nonseparable-wavelets-and-its-applications-in-multispectral-image-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=695">695</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=696">696</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sub-Nyquist%20sampling%20jamming%20method%20%28SNSJ%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10