CINXE.COM

Siva Kasinathan | Stanford Medicine

<!DOCTYPE HTML> <html lang="en-US"> <head> <meta http-equiv="content-type" content="text/html; charset=UTF-8" > <meta name="keywords" content="" > <meta name="description" content="" > <meta charset="utf-8" > <meta name="viewport" content="width=device-width, initial-scale=1.0" > <!--[if IE]> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <![endif]--> <link href='//fonts.googleapis.com/css?family=Source+Sans+Pro:400,200,300,600,700,200italic,300italic,400italic,700italic|Fjord+One' rel='stylesheet' type='text/css'> <meta property="og:site_name" content="CAP Profiles"> <meta property="og:description" content=""> <meta property="og:type" content="website"> <meta name="pageTypeDomain" content="SOM"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:creator" content="CAP Profiles"> <meta name="twitter:description" content=""> <meta name="pageName" content=" | cap profiles home | person.siva kasinathan"> <meta name="tags" content=""> <meta name="publishDate" content="2021-08-12T14:11:53.002-06:00"> <meta name="template" content="/apps/sm/templates/cap-profile"> <meta name="sp_som_root_name" content="cap-profiles-home"> <meta name="sp_som_brand_name" content="CAP Profiles"> <script type="text/javascript">var dataLayer = {"specVersion": "1.0.0","site": {"name": "CAP Profiles","url": "http://med.stanford.edu/cap-profiles-home.html","platform": "AEM","locale": "en","google": {"analytics": "G-13N77YQ6H2"}},"page": {"id": "content-sm-cap-profiles-home-person","title": "CAP Profile","navTitle": "CAP Profile","url": "http://med.stanford.edu/cap-profiles-home/person.html","description": "","keywords": [],"template": "CAP Profile Design","publishedDate": "2021-08-12T14:11:53.002-06:00","modifiedDate": "2021-01-19T12:08:33.339-08:00","content": {"title": "","author": {"name": "","email": "","phone": ""}}}}</script> <script type="text/javascript"> window.googleAnalyticsId2 = "G-13N77YQ6H2"; </script> <!-- === shc:includeClientLib: stanford.sm-legacy-react === --> <script type="text/javascript" src="/etc.clientlibs/stanford/clientlibs/clientlib-sm-legacy-react.lc-1730851246960-lc.min.js" onload="javascript: console.log(&#39;js stanford.sm-legacy-react loaded.&#39;);" async></script> <!-- === shc:includeClientLib: stanford.sm-legacy-react === --> <link type="text/css" rel="stylesheet" href="/etc.clientlibs/stanford/clientlibs/clientlib-sm-legacy-react.lc-1730851246960-lc.min.css" crossorigin="anonymous" > <script>(function(w){w.init={a:[],add:function(s,c,r,i,p,t){c=this;r=1;p=c.a;for(i=0,t=p.length;i<t;i++)if(""+p[i]===""+s)r=0;if(r)c.a.push(s)}};w.SM={components:{}};}(window));</script> <script>CQURLInfo={"requestPath":"/content/sm/cap-profiles-home/person","selectorString":"siva-kasinathan","extension":"html","selectors":["siva-kasinathan"],"systemId":"02e435de-69e3-4bfe-9250-da2816f306e4","runModes":"som,s7connect,crx3,production,nosamplecontent,publish,crx3tar"};</script> <link rel="stylesheet" href="/etc/clientlibs/sm/rte/collapse_text.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/base/navigation.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/base/mobile-navigation-panel.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/vendor/bootstrap.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/vendor/fontawesome.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/vendor/jquery.royalslider.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/vendor/magnific-popup.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/vendor/selectize.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/base.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc.clientlibs/sm/components/k2/hero-banner-touchui/hero-slide/clientlibs.editmode.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc.clientlibs/sm/components/commons/hero-banner-touchui/hero-slide/clientlibs.editmode.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/base/components.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/everest.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/mckinley-navigation.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/mckinley.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/cap-profiles.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc/clientlibs/sm/vendor/bootstrap-extras.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc.clientlibs/sm/components/cap-profiles/profile-search-results/clientlibs.lc-1730851246960-lc.min.css" type="text/css"> <link rel="stylesheet" href="/etc.clientlibs/sm/components/cap-profiles/profile-content/clientlibs.lc-1730851246960-lc.min.css" type="text/css"> <script src="/etc/clientlibs/sm/rte/collapse_text.lc-1730851246960-lc.min.js"></script> <script src="/etc.clientlibs/clientlibs/granite/jquery.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/lodash.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/base/utils.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/base/google-search.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/base/resize-end.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/base/accessibility.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/base/navigation.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/base/mobile-navigation-panel.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/bootstrap.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/modernizr.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/shc/granite-no-csrf.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/jquery.royalslider.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/holderjs.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/jquery.touchSwipe.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/jquery.zrssfeed.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/magnific-popup.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/readmore.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/selectize.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/lazysizes.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/base.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/base/components.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/everest.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/mckinley-navigation.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/mckinley.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/cap-profiles.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/bootstrap-extras.lc-1730851246960-lc.min.js"></script> <script src="/etc/clientlibs/sm/vendor/jsrender.lc-1730851246960-lc.min.js"></script> <script src="/etc.clientlibs/sm/components/cap-profiles/profile-search-results/clientlibs.lc-1730851246960-lc.min.js"></script> <script src="/etc.clientlibs/sm/components/cap-profiles/profile-content/clientlibs.lc-1730851246960-lc.min.js"></script> <!-- === shc:includeClientLib: shc.site === --> <script type="text/javascript" src="/etc.clientlibs/shc/components/embedded/fatfooter/clientlibs.lc-1730851246960-lc.min.js" onload="javascript: console.log(&#39;js shc.site loaded.&#39;);" async defer></script> <script type="text/javascript" src="/etc.clientlibs/shc/clientlibs/clientlib-site.lc-1730851246960-lc.min.js" onload="javascript: console.log(&#39;js shc.site loaded.&#39;);" async defer></script> <link rel="apple-touch-icon" sizes="152x152" href="/etc/clientlibs/sm/images/SM-Shield-152x152.png" > <link rel="apple-touch-icon" sizes="120x120" href="/etc/clientlibs/sm/images/SM-Shield-120x120.png" > <link rel="apple-touch-icon" sizes="114x114" href="/etc/clientlibs/sm/images/SM-Shield-114x114.png" > <link rel="apple-touch-icon" sizes="76x76" href="/etc/clientlibs/sm/images/SM-Shield-76x76.png" > <link rel="apple-touch-icon" sizes="72x72" href="/etc/clientlibs/sm/images/SM-Shield-72x72.png" > <link rel="apple-touch-icon" sizes="60x60" href="/etc/clientlibs/sm/images/SM-Shield-60x60.png" > <link rel="apple-touch-icon" href="/etc/clientlibs/sm/images/SM-Shield-57x57.png" > <link rel="icon" type="image/vnd.microsoft.icon" href="/etc/clientlibs/sm/images/favicon.ico" > <link rel="shortcut icon" type="image/vnd.microsoft.icon" href="/etc/clientlibs/sm/images/favicon.ico" > <title>Siva Kasinathan | Stanford Medicine</title> <meta property="og:title" content="Siva Kasinathan | Stanford Medicine"/> <meta property="og:image" content="/services/api/cap/profiles/photocache.215388.jpg"/> <meta name="twitter:title" content="Siva Kasinathan | Stanford Medicine"/> <meta name="twitter:image" content="/services/api/cap/profiles/photocache.215388.jpg"/> <!--[if lte IE 8]> <script src="/etc/clientlibs/sm/vendor/respond.lc-1730851246960-lc.min.js"></script> <![endif]--> <style> @media (min-width: 992px){ .cap-home .header-local, .mkea-min .header-local { display: block; } .cap-home.cap-page #mainContent{ margin-top:0; padding:0; } .cap-home .simple-banner{ margin-bottom:0; } .cap-home.cap-page #mainContent .section { margin-bottom:0; } } @media(max-width:400px){ .cap-page.cap-home .ps-search-container{width:80%;margin:10px auto 10px} .hometab .carousel .navbar { margin-bottom:0 } } .hometab .carousel .navbar{ border-radius:0; margin-left: -1px; margin-right: -1px; } </style> <script src="https://assets.adobedtm.com/eb749d4c0348/aa19ad4db9cb/launch-e22cb62438e1.min.js" async></script> </head> <body class="mkea-page"> <div class="protected-mobile hidden-md hidden-lg"> </div> <div id="outerContainer"> <header role="banner" class="header-local header-global-offset"> <div class="container"> <span class="skip-to-links"> <a href="#mainContent" class="sr-only">Skip to Content</a> </span> <div class="brand"> <a class="brand-logo" href="https://med.stanford.edu/">Stanford Medicine</a> <a class="brand-sitename" href="/profiles"> <span class="wrap"> <span class="brand-sitename-title">CAP Profiles</span> </span> </a> <!-- Brand and toggle get grouped for better mobile display --> <button type="button" class="navbar-toggle"> <span class="sr-only">Site Nav</span> <div class="burger"> <span class="fa fa-bars"></span> <span class="label-menu">Menu</span> </div> </button> </div> <div class="social-links"> <p></p> </div> </div> </header> <header class="header-global"> <nav class="navbar navbar-global navbar-dropdown container" id="navigationGlobal" role="navigation" aria-label="Secondary Navigation"> <div class="hidden-xs hidden-sm"> </div> <a class="som-logo" href="https://med.stanford.edu">Stanford Medicine</a> <h3 class="visible-xs navbar-global-heading">Explore Stanford Medicine</h3> <ul class="nav navbar-nav pull-right" role="menubar"> <li class="nav-item health"> <a role="menuitem" aria-current="page" aria-haspopup="true" href="#" class="nav-item-heading">Health Care <i class="fa fa-plus-circle"></i><i class="fa fa-minus-circle"></i></a> <div class="nav-item-panel"> <section> <ul class="menu" role="menu"> <li><a href="#" tabindex="-1"><h3>Find a doctor</h3></a></li> <li><a role="menuitem" href="https://stanfordhealthcare.org/directory/guided-search.html#x1=sp_spec_care_phy&q1=true&page=1">Adult-care doctor</a></li> <li><a role="menuitem" href="http://www.stanfordchildrens.org/en/search/default?tab=doctors">Pediatrician or pediatric specialist</a></li> <li><a role="menuitem" href="http://www.stanfordchildrens.org/en/search/default?tab=doctors&amp;search-term=Obstetrics">Obstetrician</a></li> <li><a href="#" tabindex="-1"><h3>Clinics &amp; Services</h3></a></li> <li><a role="menuitem" href="https://stanfordhealthcare.org/directory/guided-search.html#x1=sp_spec_care_clinic&q1=true&page=1">Adult care</a></li> <li><a role="menuitem" href="http://www.stanfordchildrens.org/en/service/index?">Pediatric care</a></li> <li><a role="menuitem" href="http://www.stanfordchildrens.org/en/service/index?">Obstetrics</a></li> <li><a role="menuitem" href="//med.stanford.edu/clinicaltrials/">Clinical trials</a></li> </ul> <aside class="menu-box"> <ul class="menu"> <li><a href="#" tabindex="-1"><h3>Locations</h3></a></li> <li><a role="menuitem" href="https://stanfordhealthcare.org/directory/guided-search.html#x1=sp_spec_care_clinic&q1=true&page=1">Stanford Health Care</a></li> <li><a role="menuitem" href="http://www.stanfordchildrens.org/en/locations-directions">Stanford Children's Health</a></li> <li><a role="menuitem" href="http://stanfordhealthcare.org/medical-clinics/emergency-department.html">Emergency Department</a></li> <li class="emergency"><em>Dial 911 in the event of a medical emergency</em></li> </ul> </aside> <aside class="menu-box menu-box-explore "> <a role="menuitem" href="//med.stanford.edu/health-care.html"> <h3>Explore Health Care</h3> <p>Learn how we are healing patients through science &amp; compassion <i class="fa fa-arrow-circle-right"></i></p> </a> </aside> <a href="#" class="back"><i class="fa fa-angle-left"></i> Back</a> </section> </div> </li> <li class="nav-item research position-right"> <a role="menuitem" aria-current="page" aria-haspopup="true" href="#" class="nav-item-heading">Research <i class="fa fa-plus-circle"></i><i class="fa fa-minus-circle"></i></a> <div class="nav-item-panel"> <section> <ul class="menu"> <li><a role="menuitem" href="//med.stanford.edu/school/directory/basic-science-departments.html">Basic science departments</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory/clinical-science-departments.html">Clinical science departments</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory/stanford-medicine-institutes.html">Institutes</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory/research-centers-and-programs.html">Research centers</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory.html">See full directory</a></li> <li><a role="menuitem" href="#" tabindex="-1"><h3>Research Resources</h3></a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory/research-administration.html">Research administration</a></li> <li><a role="menuitem" href="//med.stanford.edu/profiles/">Academic profiles</a></li> <li><a role="menuitem" href="//med.stanford.edu/clinicaltrials/">Clinical trials</a></li> <li><a role="menuitem" href="//med.stanford.edu/rmg/funding/">Funding opportunities</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory/researcher-resources.html">See all</a></li> <li><a href="#" tabindex="-1"><h3>Professional Training</h3></a></li> <li><a role="menuitem" href="//postdocs.stanford.edu">Postdoctoral scholars</a></li> <li><a role="menuitem" href="//gme.stanford.edu">Clinical research fellows</a></li> </ul> <aside class="menu-box menu-box-news"> <a role="menuitem" href="https://med.stanford.edu/news/all-news/2021/09/michelle-monje-macarthur-fellowship.html"> <h3>Research News</h3> <img src="//med.stanford.edu/content/sm/news/all-news/2021/09/michelle-monje-macarthur-fellowship/jcr:content.thumbnail.140.100.jpg" alt="Neuroscientist Michelle Monje awarded MacArthur 'genius grant'"/> <p>Neuroscientist Michelle Monje awarded MacArthur 'genius grant' <i class="fa fa-arrow-circle-right"></i></p> </a> </aside> <aside class="menu-box menu-box-explore bg-icon-book"> <a role="menuitem" href="//med.stanford.edu/research.html"> <h3>Explore Research</h3> <p>Learn how we are fueling innovation <i class="fa fa-arrow-circle-right"></i></p> </a> </aside> <a href="#" class="back"><i class="fa fa-angle-left"></i> Back</a> </section> </div> </li> <li class="nav-item education position-right"> <a role="menuitem" aria-current="page" aria-haspopup="true" href="#" class="nav-item-heading">Education <i class="fa fa-plus-circle"></i><i class="fa fa-minus-circle"></i></a> <div class="nav-item-panel"> <section> <ul class="menu" role="menu"> <li><a role="menuitem" href="//med.stanford.edu/md.html">MD program</a></li> <li><a role="menuitem" href="//med.stanford.edu/pa.html">PA Programs</a></li> <li><a role="menuitem" href="//med.stanford.edu/education/phd-programs.html">PhD programs</a></li> <li><a role="menuitem" href="//med.stanford.edu/education/masters-programs.html">Masters programs</a></li> <li><a role="menuitem" href="//med.stanford.edu/cme/">Continuing Medical Education</a></li> <li><a role="menuitem" href="//postdocs.stanford.edu">Postdoctoral scholars</a></li> <li><a role="menuitem" href="//gme.stanford.edu">Residencies &amp; fellowships</a></li> <li><a role="menuitem" href="//med.stanford.edu/education/summer-outreach.html">High School &amp; Undergraduate Programs</a></li> <li><a role="menuitem" href="//med.stanford.edu/education.html">See all</a></li> <li><a href="#" tabindex="-1"><h3>Education Resources</h3></a></li> <li><a role="menuitem" href="//med.stanford.edu/profiles/">Academic profiles</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/deans-office.html">School Administration</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory/basic-science-departments.html">Basic science departments</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory/clinical-science-departments.html">Clinical science departments</a></li> <li><a role="menuitem" href="//med.stanford.edu/alumni/">Alumni services</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory/academic-resources.html">Faculty resources</a></li> <li><a role="menuitem" href="//med.stanford.edu/about/diversity.html">Diversity programs</a></li> <li><a role="menuitem" href="http://lane.stanford.edu/index.html">Lane Library</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/directory/academic-resources.html">Student resources</a></li> </ul> <aside class="menu-box menu-box-news"> <a role="menuitem" href="https://med.stanford.edu/news/all-news/2019/08/students-from-far-and-near-begin-medical-studies-at-stanford.html"> <h3>Education News</h3> <img src="//med.stanford.edu/content/sm/news/all-news/2019/08/students-from-far-and-near-begin-medical-studies-at-stanford/jcr:content.thumbnail.140.100.jpg" alt="Students from far and near begin medical studies at Stanford"/> <p>Students from far and near begin medical studies at Stanford <i class="fa fa-arrow-circle-right"></i></p> </a> </aside> <aside class="menu-box menu-box-explore bg-icon-money"> <a role="menuitem" href="//med.stanford.edu/education"> <h3>Explore Education <i class="fa fa-plus-circle"></i><i class="fa fa-minus-circle"></i></h3> <p>Learn how we empower tomorrow's leaders <i class="fa fa-arrow-circle-right"></i></p> </a> </aside> <a href="#" class="back"><i class="fa fa-angle-left"></i> Back</a> </section> </div> </li> <li class="nav-item give position-right"> <a role="menuitem" aria-current="page" aria-haspopup="true" href="#" class="nav-item-heading">Give <i class="fa fa-plus-circle"></i><i class="fa fa-minus-circle"></i></a> <div class="nav-item-panel"> <section> <aside class="menu-box-special first-special-box"> <a role="menuitem" href="//medicalgiving.stanford.edu"> <h3>Support Stanford Medicine</h3> </a> </aside> <ul class="menu menu-special" role="menu"> <li><p><a role="menuitem" href="//medicalgiving.stanford.edu">Support teaching, research, and patient care. <i class="fa fa-arrow-circle-right"></i></a> </p></li> <li><a role="menuitem" href="//medicalgiving.stanford.edu/ways-to-give.html">Ways to give</a></li> <li><a role="menuitem" href="//medicalgiving.stanford.edu/why-giving-matters.html">Why giving matters</a></li> <li><a role="menuitem" href="http://pgnet.stanford.edu/goto/medgift">Make a gift online</a></li> </ul> <aside class="menu-box-special second-special-box"> <a role="menuitem" href="https://lpfch.org/"> <h3>Support Children's Health</h3> </a> </aside> <aside class="menu-box third-special-box"> <ul class="menu" role="menu"> <li><p><a role="menuitem" href="https://lpfch.org/">Support Lucile Packard Children's Hospital Stanford and child and maternal health <i class="fa fa-arrow-circle-right"></i></a></p></li> <li><a role="menuitem" href="https://lpfch.org/ways-to-give/">Ways to give</a></li> <li><a role="menuitem" href="https://lpfch.org/impact-stories/">How your gift helps</a></li> <li><a role="menuitem" href="https://my.supportlpch.org/campaign/575738/donate?c_src=fyxx&c_src2=som-site&utm_source=som&utm_medium=web&utm_campaign=fyxx">Make an online gift</a></li> </ul> </aside> <a href="#" class="back"><i class="fa fa-angle-left"></i> Back</a> </section> </div> </li> <li class="nav-item about position-right"> <a role="menuitem" aria-current="page" aria-haspopup="true" href="#" class="nav-item-heading">About <i class="fa fa-plus-circle"></i><i class="fa fa-minus-circle"></i></a> <div class="nav-item-panel"> <section> <ul class="menu" role="menu"> <li><a role="menuitem" href="//med.stanford.edu/about.html">About us</a></li> <li><a role="menuitem" href="//med.stanford.edu/news.html">News</a></li> <li><a role="menuitem" href="//med.stanford.edu/about/contacts.html">Contacts</a></li> <li><a role="menuitem" href="//med.stanford.edu/about/contacts/maps-directions.html">Maps &amp; directions</a></li> <li><a role="menuitem" href="//med.stanford.edu/school/leadership.html">Leadership</a></li> <li><a role="menuitem" href="//med.stanford.edu/about/vision.html">Vision</a></li> <li><a role="menuitem" href="//med.stanford.edu/about/diversity.html">Diversity</a></li> <li><a role="menuitem" href="//globalhealth.stanford.edu">Global health</a></li> <li><a role="menuitem" href="//med.stanford.edu/about/community-engagement.html">Community engagement</a></li> <li><a role="menuitem" href="//med.stanford.edu/about/events.html">Events</a></li> <li><a role="menuitem" href="//med.stanford.edu/about/how-to-help.html">How you can help</a></li> </ul> <aside class="menu-box menu-box-about"> <p><a role="menuitem" class="logo-stanford-school-of-medicine" href="//med.stanford.edu/school.html">Stanford School of Medicine</a></p> <p><a role="menuitem" class="logo-stanford-hospital-clinics" href="http://stanfordhealthcare.org">Stanford Health Care</a></p> <p><a role="menuitem" class="logo-stanford-childrens-health" href="http://www.stanfordchildrens.org">Stanford Children's Health</a></p> </aside> <a href="#" class="back"><i class="fa fa-angle-left"></i> Back</a> </section> </div> </li> <li class="nav-item search position-right react-search"> <a class="search-button" href="#react-search-bar"><span class="sr-only">Site Search</span></a> <div class="nav-item-panel nav-item-search-panel"> <button class="mobile-toggle-menu"><span class="fa fa-caret-left"></span> Close menu</button> <div data-react-component="SearchBar" data-site-root-dropdown-items="[{&#34;siteRoot&#34;:&#34;proxy&#34;,&#34;title&#34;:&#34;This Site&#34;},{&#34;siteRoot&#34;:&#34;all&#34;,&#34;title&#34;:&#34;All Stanford Medicine&#34;},{&#34;hiddenForProxy&#34;:&#34;true&#34;,&#34;siteRoot&#34;:&#34;cap-profiles-home&#34;,&#34;title&#34;:&#34;People&#34;},{&#34;hiddenForProxy&#34;:&#34;true&#34;,&#34;siteRoot&#34;:&#34;news&#34;,&#34;title&#34;:&#34;News&#34;},{&#34;siteRoot&#34;:&#34;clinicaltrials&#34;,&#34;title&#34;:&#34;Clinical Trials&#34;}]" data-microsite="cap-profiles-home" data-site-root="proxy" data-results-page="https://med.stanford.edu/search-results/sm"></div> </div> </li> </ul> </nav> <div id="react-search-bar"> <button class="mobile-toggle-menu"><span class="fa fa-caret-left"></span> Close menu</button> <div data-react-component="SearchBar" data-site-root-dropdown-items="[{&#34;siteRoot&#34;:&#34;proxy&#34;,&#34;title&#34;:&#34;This Site&#34;},{&#34;siteRoot&#34;:&#34;all&#34;,&#34;title&#34;:&#34;All Stanford Medicine&#34;},{&#34;hiddenForProxy&#34;:&#34;true&#34;,&#34;siteRoot&#34;:&#34;cap-profiles-home&#34;,&#34;title&#34;:&#34;People&#34;},{&#34;hiddenForProxy&#34;:&#34;true&#34;,&#34;siteRoot&#34;:&#34;news&#34;,&#34;title&#34;:&#34;News&#34;},{&#34;siteRoot&#34;:&#34;clinicaltrials&#34;,&#34;title&#34;:&#34;Clinical Trials&#34;}]" data-microsite="cap-profiles-home" data-site-root="proxy" data-results-page="https://med.stanford.edu/search-results/sm"></div> </div></header> <main class="container" id="mainContent" role="main" tabindex="0"> <div class="row content-panels"> <div class="col-md-12"> <div class="page-profile profile-content parbase"> <div class="cap-profile-container"> <!-- |profile-header| --> <section class="hero-section"> <div class="row"> <div class="col-md-8 col-xs-12"> <div class="image-holder"> <img src="/services/api/cap/profiles/photocache.215388.jpg" width="150" height="150" alt="Siva Kasinathan" style="background-image: url(/etc/clientlibs/sm/base/images/placeholder-tree.jpg); background-size: 150px 150px;" data-empty-src="/etc/clientlibs/sm/base/images/placeholder-tree.jpg"/> <div class="name-and-title"> <h1>Siva Kasinathan</h1> <h2>Fellow in Pediatrics - Rheumatology </h2> </div> </div> </div> <div class="icons col-md-4 col-xs-12"> <ul class="list-inline"> <li class="list-inline-item"><a href="https://cap.stanford.edu/profiles/frdActionServlet?choiceId=printerprofile&amp;profileversion=full&amp;profileId=215388" target="_blank" rel="nofollow"> <i class="fa fa-print"></i> Print Profile </a> </li> <li class="list-inline-item"><a href="mailto:?subject=Siva%20Kasinathan's Profile&amp;body=I would like to share the profile of Siva%20Kasinathan with you. https://profiles.stanford.edu/215388" rel="nofollow" data-bypass=""> <i class="fa fa-envelope"></i> Email Profile </a> </li> </ul> </div> </div> </section> <section class="navigation-tabs"> <nav id="main_tabs" area-multiselectable="false" class="navbar tab-list"> <!-- |tab-navigation| --> <script> (function(w) { w.init.add(function() { if (w.SM.components.ProfileContent !== undefined) { w.SM.components.ProfileContent.init(); } }); }(window)); </script> <nav class="navbar controls"> <button class="btn btn-navbar collapsed" id="profileTabsBtn" type="button" data-toggle="collapse" data-target="#profileTabs" aria-controls="navbarToggler" aria-expanded="false" aria-label="Toggle navigation"> <span class="nav-label">Bio </span> <i class="fas fa-angle-up"></i> </button> <div class="navbar-collapse collapse" id="profileTabs"> <ul class="nav nav-tabs" data-node-id="main_tabs" aria-hidden="false"> <li class="active"> <a href="#main_tabs_content_bio" aria-controls="main_tabs_content_bio" aria-expanded="true" tabindex="" data-toggle="tab" id="bio"> Bio </a> </li> <li> <a href="#main_tabs_content_pub" aria-controls="main_tabs_content_pub" aria-expanded="false" tabindex="" data-toggle="tab" id="publications"> Publications </a> </li> </ul> </div> </nav> <div class="tab-content"> <!-- |tab-bio| --> <div id="main_tabs_content_bio" role="tabpanel" aria-labeledby="main_tabs_control_bio" aria-hidden="false" class="tab-pane active"> <div class="row"> <div class="col-sm-12 col-md-8 section-wrapper"> <div class="bio content-section"> <h3>Bio</h3> <p>Siva Kasinathan, MD, PhD is a Clinical Fellow in Pediatric Rheumatology at the Stanford University School of Medicine and Lucile Packard Children’s Hospital at Stanford. His graduate research in the MD-PhD program at the University of Washington included the innovation of genome-scale methods for chromatin profiling and generated new insights in centromere biology and gene regulation. During his clinical training in pediatrics at Stanford, Siva continued develop genomic technologies, this time with a focus on single-molecule sequencing. Siva’s research interests span genetics, epigenomics, and immune dysregulation. His ongoing work with Dr. Ansu Satpathy involves developing and applying sensitive new methods for analyzing immunogenetic variation in lupus. As a physician-scientist, Siva is committed combining clinical medicine and basic and translational research to better understand the molecular mechanisms of autoimmunity and autoinflammation to improve outcomes for patients with rheumatic diseases.</p> </div> <div class="clinical-focus content-section"> <h3>Clinical Focus</h3> <ul class="section-listing"> <li>Rheumatology</li> <li>Pediatrics</li> <li>Fellow</li> </ul> </div> <div class="awards content-section"> <h3>Honors &amp; Awards</h3> <ul> <li> Gary S. Gilkeson, MD Career Development Award, Lupus Foundation of America (2023 - 2025) </li> <li> Ernest and Amelia Gallo Endowed Fellow, Stanford Maternal and Child Health Research Institute (2023 - 2025) </li> <li> Hugh O’Brodovich Excellence in Basic Research Award, Stanford Department of Pediatrics (2022) </li> <li> Arnold P. Gold Humanism in Medicine Honor Society, University of Washington (2019) </li> <li> Micki and Robert Flowers Endowed Fellowship, Seattle ARCS Foundation (2012 - 2015) </li> <li> Joshua Green Foundation Endowed Scholarship, University of Washington (2011) </li> <li> Barry M. Goldwater Scholarship, The Barry Goldwater Scholarship Foundation (2009) </li> </ul> </div> <div class="education content-section"> <h3>Professional Education</h3> <ul> <li> Doctor of Philosophy, University of Washington (2017) </li> <li> Doctor of Medicine, University of Washington (2019) </li> <li> Board Certification, American Board of Pediatrics, Pediatrics (2022) </li> <li> Residency, Stanford Health Care at Lucile Packard Children's Hospital, Pediatrics (2022) </li> <li> Internship, Stanford Health Care at Lucile Packard Children's Hospital, Pediatrics (2020) </li> <li> MD, University of Washington School of Medicine, Medicine (2019) </li> <li> PhD, University of Washington, Molecular and Cell Biology (2017) </li> </ul> </div> </div> <div class="col-sm-12 col-md-4 section-wrapper"> <div class="contact sidebar-block"> <i class="icon-background fas fa-user"></i> <h3>Contact</h3> <div class="contact-info primary"> <a href="mailto:skas@stanford.edu">skas@stanford.edu</a> </div> </div> </div> </div> </div> <!-- |tab-research| --> <!-- |tab-teaching| --> <!-- |tab-professional| --> <!-- |tab-publications| --> <div id="main_tabs_content_pub" role="tabpanel" aria-labeledby="main_tabs_control_pub" aria-hidden="false" class="tab-pane fade"> <div class="row" id="pub-data" data-publications="[{&#34;apaCitation&#34;:&#34;Kasinathan, S., &amp;amp; Ramani, V. (2024). Transposition enables low-input single-molecule concurrent genomics and epigenomics. &lt;i>NATURE GENETICS&lt;/i>.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Transposition enables low-input single-molecule concurrent genomics and epigenomics&lt;/span>\n &lt;i>NATURE GENETICS&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Kasinathan, S., Ramani, V.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2024&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Kasinathan, Siva, and Vijay Ramani. 2024. “Transposition Enables Low-Input Single-Molecule Concurrent Genomics and Epigenomics.” &lt;i>NATURE GENETICS&lt;/i>. NATURE PORTFOLIO.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1038/s41588-024-01753-3\&#34;>DOI 10.1038/s41588-024-01753-3&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;wos\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&amp;amp;rft_id=info:ut/001230115600002\&#34;>Web of Science ID 001230115600002&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/38783121\&#34;>PubMedID 38783121&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/7735760\&#34;>PubMedCentralID 7735760&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;DOI: 10.1038/s41588-024-01753-3, https://doi.org/10.1038/s41588-024-01753-3\nWeb of Science ID: 001230115600002, https://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&amp;rft_id=info:ut/001230115600002\nPubMedID: 38783121, https://www.ncbi.nlm.nih.gov/pubmed/38783121\nPubMedCentralID: 7735760, https://www.ncbi.nlm.nih.gov/pmc/articles/7735760&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1038/s41588-024-01753-3&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1038/s41588-024-01753-3&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;May 23, 2024 00:00:00 AM&#34;,&#34;text&#34;:&#34;May 23, 2024 00:00:00 AM&#34;,&#34;value&#34;:&#34;2024-05-23T00:00:00.000-07:00&#34;},&#34;mlaCitation&#34;:&#34;Kasinathan, Siva, and Vijay Ramani. “Transposition Enables Low-Input Single-Molecule Concurrent Genomics and Epigenomics.” &lt;i>NATURE GENETICS&lt;/i> (2024): n. pag. Print.&#34;,&#34;pubMedId&#34;:&#34;38783121&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/38783121&#34;,&#34;publicationId&#34;:&#34;911163&#34;,&#34;title&#34;:&#34;Transposition enables low-input single-molecule concurrent genomics and epigenomics&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:null},{&#34;apaCitation&#34;:&#34;Nanda, A. S., Wu, K., Irkliyenko, I., Woo, B., Ostrowski, M. S., Clugston, A. S., … Ramani, V. (2024). Direct transposition of native DNA for sensitive multimodal single-molecule sequencing. &lt;i>Nature Genetics&lt;/i>.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Direct transposition of native DNA for sensitive multimodal single-molecule sequencing.&lt;/span>\n &lt;i>Nature genetics&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Nanda, A. S., Wu, K., Irkliyenko, I., Woo, B., Ostrowski, M. S., Clugston, A. S., Sayles, L. C., Xu, L., Satpathy, A. T., Nguyen, H. G., Alejandro Sweet-Cordero, E., Goodarzi, H., Kasinathan, S., Ramani, V.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2024&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Nanda, Arjun S., Ke Wu, Iryna Irkliyenko, Brian Woo, Megan S. Ostrowski, et al. 2024. “Direct Transposition of Native DNA for Sensitive Multimodal Single-Molecule Sequencing.” &lt;i>Nature Genetics&lt;/i>.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Concurrent readout of sequence and base modifications from long unamplified DNA templates by Pacific Biosciences of California (PacBio) single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90-99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000-50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1038/s41588-024-01748-0\&#34;>DOI 10.1038/s41588-024-01748-0&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/38724748\&#34;>PubMedID 38724748&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/7877196\&#34;>PubMedCentralID 7877196&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nConcurrent readout of sequence and base modifications from long unamplified DNA templates by Pacific Biosciences of California (PacBio) single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90-99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000-50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.\nDOI: 10.1038/s41588-024-01748-0, https://doi.org/10.1038/s41588-024-01748-0\n\nPubMedID: 38724748, https://www.ncbi.nlm.nih.gov/pubmed/38724748\nPubMedCentralID: 7877196, https://www.ncbi.nlm.nih.gov/pmc/articles/7877196&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1038/s41588-024-01748-0&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1038/s41588-024-01748-0&#34;,&#34;featured&#34;:true,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;May 9, 2024 00:00:00 AM&#34;,&#34;text&#34;:&#34;May 9, 2024 00:00:00 AM&#34;,&#34;value&#34;:&#34;2024-05-09T00:00:00.000-07:00&#34;},&#34;mlaCitation&#34;:&#34;Nanda, Arjun S. et al. “Direct Transposition of Native DNA for Sensitive Multimodal Single-Molecule Sequencing.” &lt;i>Nature genetics&lt;/i> (2024): n. pag. Print.&#34;,&#34;pubMedId&#34;:&#34;38724748&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/38724748&#34;,&#34;publicationId&#34;:&#34;909019&#34;,&#34;title&#34;:&#34;Direct transposition of native DNA for sensitive multimodal single-molecule sequencing.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication featured article&#34;,&#34;abstract&#34;:&#34;Concurrent readout of sequence and base modifications from long unamplified DNA templates by Pacific Biosciences of California (PacBio) single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90-99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000-50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.&#34;},{&#34;apaCitation&#34;:&#34;Abdulhay, N. J., Hsieh, L. J., McNally, C. P., Ostrowski, M. S., Moore, C. M., Ketavarapu, M., … Ramani, V. (2023). Nucleosome density shapes kilobase-scale regulation by a mammalian chromatin remodeler. &lt;i>Nature Structural &amp;amp; Molecular Biology&lt;/i>.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Nucleosome density shapes kilobase-scale regulation by a mammalian chromatin remodeler.&lt;/span>\n &lt;i>Nature structural &amp;amp; molecular biology&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Abdulhay, N. J., Hsieh, L. J., McNally, C. P., Ostrowski, M. S., Moore, C. M., Ketavarapu, M., Kasinathan, S., Nanda, A. S., Wu, K., Chio, U. S., Zhou, Z., Goodarzi, H., Narlikar, G. J., Ramani, V.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2023&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Abdulhay, Nour J., Laura J. Hsieh, Colin P. McNally, Megan S. Ostrowski, Camille M. Moore, et al. 2023. “Nucleosome Density Shapes Kilobase-Scale Regulation by a Mammalian Chromatin Remodeler.” &lt;i>Nature Structural &amp;amp; Molecular Biology&lt;/i>.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Nearly all essential nuclear processes act on DNA packaged into arrays of nucleosomes. However, our understanding of how these processes (for example, DNA replication, RNA transcription, chromatin extrusion and nucleosome remodeling) occur on individual chromatin arrays remains unresolved. Here, to address this deficit, we present SAMOSA-ChAAT: a massively multiplex single-molecule footprinting approach to map the primary structure of individual, reconstituted chromatin templates subject to virtually any chromatin-associated reaction. We apply this method to distinguish between competing models for chromatin remodeling by the essential imitation switch (ISWI) ATPase SNF2h: nucleosome-density-dependent spacing versus fixed-linker-length nucleosome clamping. First, we perform in vivo single-molecule nucleosome footprinting in murine embryonic stem cells, to discover that ISWI-catalyzed nucleosome spacing correlates with the underlying nucleosome density of specific epigenomic domains. To establish causality, we apply SAMOSA-ChAAT to quantify the activities of ISWI ATPase SNF2h and its parent complex ACF on reconstituted nucleosomal arrays of varying nucleosome density, at single-molecule resolution. We demonstrate that ISWI remodelers operate as density-dependent, length-sensing nucleosome sliders, whose ability to program DNA accessibility is dictated by single-molecule nucleosome density. We propose that the long-observed, context-specific regulatory effects of ISWI complexes can be explained in part by the sensing of nucleosome density within epigenomic domains. More generally, our approach promises molecule-precise views of the essential processes that shape nuclear physiology.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1038/s41594-023-01093-6\&#34;>DOI 10.1038/s41594-023-01093-6&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/37696956\&#34;>PubMedID 37696956&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/3647478\&#34;>PubMedCentralID 3647478&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nNearly all essential nuclear processes act on DNA packaged into arrays of nucleosomes. However, our understanding of how these processes (for example, DNA replication, RNA transcription, chromatin extrusion and nucleosome remodeling) occur on individual chromatin arrays remains unresolved. Here, to address this deficit, we present SAMOSA-ChAAT: a massively multiplex single-molecule footprinting approach to map the primary structure of individual, reconstituted chromatin templates subject to virtually any chromatin-associated reaction. We apply this method to distinguish between competing models for chromatin remodeling by the essential imitation switch (ISWI) ATPase SNF2h: nucleosome-density-dependent spacing versus fixed-linker-length nucleosome clamping. First, we perform in vivo single-molecule nucleosome footprinting in murine embryonic stem cells, to discover that ISWI-catalyzed nucleosome spacing correlates with the underlying nucleosome density of specific epigenomic domains. To establish causality, we apply SAMOSA-ChAAT to quantify the activities of ISWI ATPase SNF2h and its parent complex ACF on reconstituted nucleosomal arrays of varying nucleosome density, at single-molecule resolution. We demonstrate that ISWI remodelers operate as density-dependent, length-sensing nucleosome sliders, whose ability to program DNA accessibility is dictated by single-molecule nucleosome density. We propose that the long-observed, context-specific regulatory effects of ISWI complexes can be explained in part by the sensing of nucleosome density within epigenomic domains. More generally, our approach promises molecule-precise views of the essential processes that shape nuclear physiology.\nDOI: 10.1038/s41594-023-01093-6, https://doi.org/10.1038/s41594-023-01093-6\n\nPubMedID: 37696956, https://www.ncbi.nlm.nih.gov/pubmed/37696956\nPubMedCentralID: 3647478, https://www.ncbi.nlm.nih.gov/pmc/articles/3647478&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1038/s41594-023-01093-6&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1038/s41594-023-01093-6&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Sep 11, 2023 00:00:00 AM&#34;,&#34;text&#34;:&#34;Sep 11, 2023 00:00:00 AM&#34;,&#34;value&#34;:&#34;2023-09-11T00:00:00.000-07:00&#34;},&#34;mlaCitation&#34;:&#34;Abdulhay, Nour J. et al. “Nucleosome Density Shapes Kilobase-Scale Regulation by a Mammalian Chromatin Remodeler.” &lt;i>Nature structural &amp;amp; molecular biology&lt;/i> (2023): n. pag. Print.&#34;,&#34;pubMedId&#34;:&#34;37696956&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/37696956&#34;,&#34;publicationId&#34;:&#34;888691&#34;,&#34;title&#34;:&#34;Nucleosome density shapes kilobase-scale regulation by a mammalian chromatin remodeler.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Nearly all essential nuclear processes act on DNA packaged into arrays of nucleosomes. However, our understanding of how these processes (for example, DNA replication, RNA transcription, chromatin extrusion and nucleosome remodeling) occur on individual chromatin arrays remains unresolved. Here, to address this deficit, we present SAMOSA-ChAAT: a massively multiplex single-molecule footprinting approach to map the primary structure of individual, reconstituted chromatin templates subject to virtually any chromatin-associated reaction. We apply this method to distinguish between competing models for chromatin remodeling by the essential imitation switch (ISWI) ATPase SNF2h: nucleosome-density-dependent spacing versus fixed-linker-length nucleosome clamping. First, we perform in vivo single-molecule nucleosome footprinting in murine embryonic stem cells, to discover that ISWI-catalyzed nucleosome spacing correlates with the underlying nucleosome density of specific epigenomic domains. To establish causality, we apply SAMOSA-ChAAT to quantify the activities of ISWI ATPase SNF2h and its parent complex ACF on reconstituted nucleosomal arrays of varying nucleosome density, at single-molecule resolution. We demonstrate that ISWI remodelers operate as density-dependent, length-sensing nucleosome sliders, whose ability to program DNA accessibility is dictated by single-molecule nucleosome density. We propose that the long-observed, context-specific regulatory effects of ISWI complexes can be explained in part by the sensing of nucleosome density within epigenomic domains. More generally, our approach promises molecule-precise views of the essential processes that shape nuclear physiology.&#34;},{&#34;apaCitation&#34;:&#34;Carroll, P. A., Freie, B. W., Cheng, P. F., Kasinathan, S., Gu, H., Hedrich, T., … Eisenman, R. N. (2021). The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. &lt;i>PLoS Biology&lt;/i>, &lt;i>19&lt;/i>(10), e3001085.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis.&lt;/span>\n &lt;i>PLoS biology&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Carroll, P. A., Freie, B. W., Cheng, P. F., Kasinathan, S., Gu, H., Hedrich, T., Dowdle, J. A., Venkataramani, V., Ramani, V., Wu, X., Raftery, D., Shendure, J., Ayer, D. E., Muller, C. H., Eisenman, R. N.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2021&lt;/span>; &lt;span class=\&#34;volume\&#34;>19 (10)&lt;/span>&lt;span class=\&#34;pages\&#34;>: e3001085&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Carroll, Patrick A., Brian W. Freie, Pei Feng Cheng, Sivakanthan Kasinathan, Haiwei Gu, et al. 2021. “The Glucose-Sensing Transcription Factor MLX Balances Metabolism and Stress to Suppress Apoptosis and Maintain Spermatogenesis.” &lt;i>PLoS Biology&lt;/i> 19 (10): e3001085.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Male germ cell (GC) production is a metabolically driven and apoptosis-prone process. Here, we show that the glucose-sensing transcription factor (TF) MAX-Like protein X (MLX) and its binding partner MondoA are both required for male fertility in the mouse, as well as survival of human tumor cells derived from the male germ line. Loss of Mlx results in altered metabolism as well as activation of multiple stress pathways and GC apoptosis in the testes. This is concomitant with dysregulation of the expression of male-specific GC transcripts and proteins. Our genomic and functional analyses identify loci directly bound by MLX involved in these processes, including metabolic targets, obligate components of male-specific GC development, and apoptotic effectors. These in vivo and in vitro studies implicate MLX and other members of the proximal MYC network, such as MNT, in regulation of metabolism and differentiation, as well as in suppression of intrinsic and extrinsic death signaling pathways in both spermatogenesis and male germ cell tumors (MGCTs).&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1371/journal.pbio.3001085\&#34;>DOI 10.1371/journal.pbio.3001085&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/34669700\&#34;>PubMedID 34669700&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nMale germ cell (GC) production is a metabolically driven and apoptosis-prone process. Here, we show that the glucose-sensing transcription factor (TF) MAX-Like protein X (MLX) and its binding partner MondoA are both required for male fertility in the mouse, as well as survival of human tumor cells derived from the male germ line. Loss of Mlx results in altered metabolism as well as activation of multiple stress pathways and GC apoptosis in the testes. This is concomitant with dysregulation of the expression of male-specific GC transcripts and proteins. Our genomic and functional analyses identify loci directly bound by MLX involved in these processes, including metabolic targets, obligate components of male-specific GC development, and apoptotic effectors. These in vivo and in vitro studies implicate MLX and other members of the proximal MYC network, such as MNT, in regulation of metabolism and differentiation, as well as in suppression of intrinsic and extrinsic death signaling pathways in both spermatogenesis and male germ cell tumors (MGCTs).\nDOI: 10.1371/journal.pbio.3001085, https://doi.org/10.1371/journal.pbio.3001085\n\nPubMedID: 34669700, https://www.ncbi.nlm.nih.gov/pubmed/34669700&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1371/journal.pbio.3001085&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1371/journal.pbio.3001085&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2021 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2021 00:00:00 AM&#34;,&#34;value&#34;:&#34;2021-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Carroll, Patrick A. et al. “The Glucose-Sensing Transcription Factor MLX Balances Metabolism and Stress to Suppress Apoptosis and Maintain Spermatogenesis.” &lt;i>PLoS biology&lt;/i> 19.10 (2021): e3001085. Print.&#34;,&#34;pubMedId&#34;:&#34;34669700&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/34669700&#34;,&#34;publicationId&#34;:&#34;830497&#34;,&#34;title&#34;:&#34;The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Male germ cell (GC) production is a metabolically driven and apoptosis-prone process. Here, we show that the glucose-sensing transcription factor (TF) MAX-Like protein X (MLX) and its binding partner MondoA are both required for male fertility in the mouse, as well as survival of human tumor cells derived from the male germ line. Loss of Mlx results in altered metabolism as well as activation of multiple stress pathways and GC apoptosis in the testes. This is concomitant with dysregulation of the expression of male-specific GC transcripts and proteins. Our genomic and functional analyses identify loci directly bound by MLX involved in these processes, including metabolic targets, obligate components of male-specific GC development, and apoptotic effectors. These in vivo and in vitro studies implicate MLX and other members of the proximal MYC network, such as MNT, in regulation of metabolism and differentiation, as well as in suppression of intrinsic and extrinsic death signaling pathways in both spermatogenesis and male germ cell tumors (MGCTs).&#34;},{&#34;apaCitation&#34;:&#34;Abdulhay, N. J., McNally, C. P., Hsieh, L. J., Kasinathan, S., Keith, A., Estes, L. S., … Ramani, V. (2020). Massively multiplex single-molecule oligonucleosome footprinting. &lt;i>ELife&lt;/i>, &lt;i>9&lt;/i>.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Massively multiplex single-molecule oligonucleosome footprinting.&lt;/span>\n &lt;i>eLife&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Abdulhay, N. J., McNally, C. P., Hsieh, L. J., Kasinathan, S., Keith, A., Estes, L. S., Karimzadeh, M., Underwood, J. G., Goodarzi, H., Narlikar, G. J., Ramani, V.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2020&lt;/span>; &lt;span class=\&#34;volume\&#34;>9&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Abdulhay, Nour J., Colin P. McNally, Laura J. Hsieh, Sivakanthan Kasinathan, Aidan Keith, et al. 2020. “Massively Multiplex Single-Molecule Oligonucleosome Footprinting.” &lt;i>ELife&lt;/i> 9.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Our understanding of the beads-on-a-string arrangement of nucleosomes has been built largely on high-resolution sequence-agnostic imaging methods and sequence-resolved bulk biochemical techniques. To bridge the divide between these approaches, we present the single-molecule adenine methylated oligonucleosome sequencing assay (SAMOSA). SAMOSA is a high-throughput single-molecule sequencing method that combines adenine methyltransferase footprinting and single-molecule real-time DNA sequencing to natively and nondestructively measure nucleosome positions on individual chromatin fibres. SAMOSA data allows unbiased classification of single-molecular &#39;states&#39; of nucleosome occupancy on individual chromatin fibres. We leverage this to estimate nucleosome regularity and spacing on single chromatin fibres genome-wide, at predicted transcription factor binding motifs, and across both active and silent human epigenomic domains. Our analyses suggest that chromatin is comprised of a diverse array of both regular and irregular single-molecular oligonucleosome patterns that differ subtly in their relative abundance across epigenomic domains. This irregularity is particularly striking in constitutive heterochromatin, which has typically been viewed as a conformationally static entity. Our proof-of-concept study provides a powerful new methodology for studying nucleosome organization at a previously intractable resolution, and offers up new avenues for modeling and visualizing higher-order chromatin structure.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.7554/eLife.59404\&#34;>DOI 10.7554/eLife.59404&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/33263279\&#34;>PubMedID 33263279&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nOur understanding of the beads-on-a-string arrangement of nucleosomes has been built largely on high-resolution sequence-agnostic imaging methods and sequence-resolved bulk biochemical techniques. To bridge the divide between these approaches, we present the single-molecule adenine methylated oligonucleosome sequencing assay (SAMOSA). SAMOSA is a high-throughput single-molecule sequencing method that combines adenine methyltransferase footprinting and single-molecule real-time DNA sequencing to natively and nondestructively measure nucleosome positions on individual chromatin fibres. SAMOSA data allows unbiased classification of single-molecular &#39;states&#39; of nucleosome occupancy on individual chromatin fibres. We leverage this to estimate nucleosome regularity and spacing on single chromatin fibres genome-wide, at predicted transcription factor binding motifs, and across both active and silent human epigenomic domains. Our analyses suggest that chromatin is comprised of a diverse array of both regular and irregular single-molecular oligonucleosome patterns that differ subtly in their relative abundance across epigenomic domains. This irregularity is particularly striking in constitutive heterochromatin, which has typically been viewed as a conformationally static entity. Our proof-of-concept study provides a powerful new methodology for studying nucleosome organization at a previously intractable resolution, and offers up new avenues for modeling and visualizing higher-order chromatin structure.\nDOI: 10.7554/eLife.59404, https://doi.org/10.7554/eLife.59404\n\nPubMedID: 33263279, https://www.ncbi.nlm.nih.gov/pubmed/33263279&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.7554/eLife.59404&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.7554/eLife.59404&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Dec 2, 2020 00:00:00 AM&#34;,&#34;text&#34;:&#34;Dec 2, 2020 00:00:00 AM&#34;,&#34;value&#34;:&#34;2020-12-02T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Abdulhay, Nour J. et al. “Massively Multiplex Single-Molecule Oligonucleosome Footprinting.” &lt;i>eLife&lt;/i> 9 (2020): n. pag. Print.&#34;,&#34;pubMedId&#34;:&#34;33263279&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/33263279&#34;,&#34;publicationId&#34;:&#34;800305&#34;,&#34;title&#34;:&#34;Massively multiplex single-molecule oligonucleosome footprinting.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Our understanding of the beads-on-a-string arrangement of nucleosomes has been built largely on high-resolution sequence-agnostic imaging methods and sequence-resolved bulk biochemical techniques. To bridge the divide between these approaches, we present the single-molecule adenine methylated oligonucleosome sequencing assay (SAMOSA). SAMOSA is a high-throughput single-molecule sequencing method that combines adenine methyltransferase footprinting and single-molecule real-time DNA sequencing to natively and nondestructively measure nucleosome positions on individual chromatin fibres. SAMOSA data allows unbiased classification of single-molecular &#39;states&#39; of nucleosome occupancy on individual chromatin fibres. We leverage this to estimate nucleosome regularity and spacing on single chromatin fibres genome-wide, at predicted transcription factor binding motifs, and across both active and silent human epigenomic domains. Our analyses suggest that chromatin is comprised of a diverse array of both regular and irregular single-molecular oligonucleosome patterns that differ subtly in their relative abundance across epigenomic domains. This irregularity is particularly striking in constitutive heterochromatin, which has typically been viewed as a conformationally static entity. Our proof-of-concept study provides a powerful new methodology for studying nucleosome organization at a previously intractable resolution, and offers up new avenues for modeling and visualizing higher-order chromatin structure.&#34;},{&#34;apaCitation&#34;:&#34;Kasinathan, S., &amp;amp; Henikoff, S. (2018). Non-B-Form DNA Is Enriched at Centromeres. &lt;i>Molecular Biology and Evolution&lt;/i>, &lt;i>35&lt;/i>(4), 949–62.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Non-B-Form DNA Is Enriched at Centromeres.&lt;/span>\n &lt;i>Molecular biology and evolution&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Kasinathan, S. n., Henikoff, S. n.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2018&lt;/span>; &lt;span class=\&#34;volume\&#34;>35 (4)&lt;/span>&lt;span class=\&#34;pages\&#34;>: 949–62&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Kasinathan, Sivakanthan, and Steven Henikoff. 2018. “Non-B-Form DNA Is Enriched at Centromeres.” &lt;i>Molecular Biology and Evolution&lt;/i> 35 (4): 949–62.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Animal and plant centromeres are embedded in repetitive \&#34;satellite\&#34; DNA, but are thought to be epigenetically specified. To define genetic characteristics of centromeres, we surveyed satellite DNA from diverse eukaryotes and identified variation in &lt;10-bp dyad symmetries predicted to adopt non-B-form conformations. Organisms lacking centromeric dyad symmetries had binding sites for sequence-specific DNA-binding proteins with DNA-bending activity. For example, human and mouse centromeres are depleted for dyad symmetries, but are enriched for non-B-form DNA and are associated with binding sites for the conserved DNA-binding protein CENP-B, which is required for artificial centromere function but is paradoxically nonessential. We also detected dyad symmetries and predicted non-B-form DNA structures at neocentromeres, which form at ectopic loci. We propose that centromeres form at non-B-form DNA because of dyad symmetries or are strengthened by sequence-specific DNA binding proteins. This may resolve the CENP-B paradox and provide a general basis for centromere specification.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1093/molbev/msy010\&#34;>DOI 10.1093/molbev/msy010&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/29365169\&#34;>PubMedID 29365169&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889037\&#34;>PubMedCentralID PMC5889037&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nAnimal and plant centromeres are embedded in repetitive \&#34;satellite\&#34; DNA, but are thought to be epigenetically specified. To define genetic characteristics of centromeres, we surveyed satellite DNA from diverse eukaryotes and identified variation in &lt;10-bp dyad symmetries predicted to adopt non-B-form conformations. Organisms lacking centromeric dyad symmetries had binding sites for sequence-specific DNA-binding proteins with DNA-bending activity. For example, human and mouse centromeres are depleted for dyad symmetries, but are enriched for non-B-form DNA and are associated with binding sites for the conserved DNA-binding protein CENP-B, which is required for artificial centromere function but is paradoxically nonessential. We also detected dyad symmetries and predicted non-B-form DNA structures at neocentromeres, which form at ectopic loci. We propose that centromeres form at non-B-form DNA because of dyad symmetries or are strengthened by sequence-specific DNA binding proteins. This may resolve the CENP-B paradox and provide a general basis for centromere specification.\nDOI: 10.1093/molbev/msy010, https://doi.org/10.1093/molbev/msy010\n\nPubMedID: 29365169, https://www.ncbi.nlm.nih.gov/pubmed/29365169\nPubMedCentralID: PMC5889037, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889037&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1093/molbev/msy010&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1093/molbev/msy010&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2018 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2018 00:00:00 AM&#34;,&#34;value&#34;:&#34;2018-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Kasinathan, Sivakanthan, and Steven Henikoff. “Non-B-Form DNA Is Enriched at Centromeres.” &lt;i>Molecular biology and evolution&lt;/i> 35.4 (2018): 949–62. Print.&#34;,&#34;pubMedId&#34;:&#34;29365169&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/29365169&#34;,&#34;publicationId&#34;:&#34;801046&#34;,&#34;title&#34;:&#34;Non-B-Form DNA Is Enriched at Centromeres.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Animal and plant centromeres are embedded in repetitive \&#34;satellite\&#34; DNA, but are thought to be epigenetically specified. To define genetic characteristics of centromeres, we surveyed satellite DNA from diverse eukaryotes and identified variation in &lt;10-bp dyad symmetries predicted to adopt non-B-form conformations. Organisms lacking centromeric dyad symmetries had binding sites for sequence-specific DNA-binding proteins with DNA-bending activity. For example, human and mouse centromeres are depleted for dyad symmetries, but are enriched for non-B-form DNA and are associated with binding sites for the conserved DNA-binding protein CENP-B, which is required for artificial centromere function but is paradoxically nonessential. We also detected dyad symmetries and predicted non-B-form DNA structures at neocentromeres, which form at ectopic loci. We propose that centromeres form at non-B-form DNA because of dyad symmetries or are strengthened by sequence-specific DNA binding proteins. This may resolve the CENP-B paradox and provide a general basis for centromere specification.&#34;},{&#34;apaCitation&#34;:&#34;Talbert, P. B., Kasinathan, S., &amp;amp; Henikoff, S. (2018). Simple and Complex Centromeric Satellites in Drosophila Sibling Species. &lt;i>Genetics&lt;/i>, &lt;i>208&lt;/i>(3), 977–90.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Simple and Complex Centromeric Satellites in Drosophila Sibling Species.&lt;/span>\n &lt;i>Genetics&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Talbert, P. B., Kasinathan, S. n., Henikoff, S. n.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2018&lt;/span>; &lt;span class=\&#34;volume\&#34;>208 (3)&lt;/span>&lt;span class=\&#34;pages\&#34;>: 977–90&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Talbert, Paul B., Sivakanthan Kasinathan, and Steven Henikoff. 2018. “Simple and Complex Centromeric Satellites in Drosophila Sibling Species.” &lt;i>Genetics&lt;/i> 208 (3): 977–90.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Centromeres are the chromosomal sites of assembly for kinetochores, the protein complexes that attach to spindle fibers and mediate separation of chromosomes to daughter cells in mitosis and meiosis. In most multicellular organisms, centromeres comprise a single specific family of tandem repeats-often 100-400 bp in length-found on every chromosome, typically in one location within heterochromatin. Drosophila melanogaster is unusual in that the heterochromatin contains many families of mostly short (5-12 bp) tandem repeats, none of which appear to be present at all centromeres, and none of which are found only at centromeres. Although centromere sequences from a minichromosome have been identified and candidate centromere sequences have been proposed, the DNA sequences at native Drosophila centromeres remain unknown. Here we use native chromatin immunoprecipitation to identify the centromeric sequences bound by the foundational kinetochore protein cenH3, known in vertebrates as CENP-A. In D. melanogaster, these sequences include a few families of 5- and 10-bp repeats; but in closely related D. simulans, the centromeres comprise more complex repeats. The results suggest that a recent expansion of short repeats has replaced more complex centromeric repeats in D. melanogaster.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1534/genetics.117.300620\&#34;>DOI 10.1534/genetics.117.300620&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/29305387\&#34;>PubMedID 29305387&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844345\&#34;>PubMedCentralID PMC5844345&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nCentromeres are the chromosomal sites of assembly for kinetochores, the protein complexes that attach to spindle fibers and mediate separation of chromosomes to daughter cells in mitosis and meiosis. In most multicellular organisms, centromeres comprise a single specific family of tandem repeats-often 100-400 bp in length-found on every chromosome, typically in one location within heterochromatin. Drosophila melanogaster is unusual in that the heterochromatin contains many families of mostly short (5-12 bp) tandem repeats, none of which appear to be present at all centromeres, and none of which are found only at centromeres. Although centromere sequences from a minichromosome have been identified and candidate centromere sequences have been proposed, the DNA sequences at native Drosophila centromeres remain unknown. Here we use native chromatin immunoprecipitation to identify the centromeric sequences bound by the foundational kinetochore protein cenH3, known in vertebrates as CENP-A. In D. melanogaster, these sequences include a few families of 5- and 10-bp repeats; but in closely related D. simulans, the centromeres comprise more complex repeats. The results suggest that a recent expansion of short repeats has replaced more complex centromeric repeats in D. melanogaster.\nDOI: 10.1534/genetics.117.300620, https://doi.org/10.1534/genetics.117.300620\n\nPubMedID: 29305387, https://www.ncbi.nlm.nih.gov/pubmed/29305387\nPubMedCentralID: PMC5844345, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844345&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1534/genetics.117.300620&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1534/genetics.117.300620&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2018 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2018 00:00:00 AM&#34;,&#34;value&#34;:&#34;2018-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Talbert, Paul B., Sivakanthan Kasinathan, and Steven Henikoff. “Simple and Complex Centromeric Satellites in Drosophila Sibling Species.” &lt;i>Genetics&lt;/i> 208.3 (2018): 977–90. Print.&#34;,&#34;pubMedId&#34;:&#34;29305387&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/29305387&#34;,&#34;publicationId&#34;:&#34;801047&#34;,&#34;title&#34;:&#34;Simple and Complex Centromeric Satellites in Drosophila Sibling Species.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Centromeres are the chromosomal sites of assembly for kinetochores, the protein complexes that attach to spindle fibers and mediate separation of chromosomes to daughter cells in mitosis and meiosis. In most multicellular organisms, centromeres comprise a single specific family of tandem repeats-often 100-400 bp in length-found on every chromosome, typically in one location within heterochromatin. Drosophila melanogaster is unusual in that the heterochromatin contains many families of mostly short (5-12 bp) tandem repeats, none of which appear to be present at all centromeres, and none of which are found only at centromeres. Although centromere sequences from a minichromosome have been identified and candidate centromere sequences have been proposed, the DNA sequences at native Drosophila centromeres remain unknown. Here we use native chromatin immunoprecipitation to identify the centromeric sequences bound by the foundational kinetochore protein cenH3, known in vertebrates as CENP-A. In D. melanogaster, these sequences include a few families of 5- and 10-bp repeats; but in closely related D. simulans, the centromeres comprise more complex repeats. The results suggest that a recent expansion of short repeats has replaced more complex centromeric repeats in D. melanogaster.&#34;},{&#34;apaCitation&#34;:&#34;Henikoff, S., Thakur, J., Kasinathan, S., &amp;amp; Talbert, P. B. (2017). Remarkable Evolutionary Plasticity of Centromeric Chromatin. &lt;i>Cold Spring Harbor Symposia on Quantitative Biology&lt;/i>, &lt;i>82&lt;/i>, 71–82.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Remarkable Evolutionary Plasticity of Centromeric Chromatin.&lt;/span>\n &lt;i>Cold Spring Harbor symposia on quantitative biology&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Henikoff, S. n., Thakur, J. n., Kasinathan, S. n., Talbert, P. B.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2017&lt;/span>; &lt;span class=\&#34;volume\&#34;>82&lt;/span>&lt;span class=\&#34;pages\&#34;>: 71–82&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Henikoff, Steven, Jitendra Thakur, Sivakanthan Kasinathan, and Paul B. Talbert. 2017. “Remarkable Evolutionary Plasticity of Centromeric Chromatin.” &lt;i>Cold Spring Harbor Symposia on Quantitative Biology&lt;/i> 82: 71–82.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Centromeres were familiar to cell biologists in the late 19th century, but for most eukaryotes the basis for centromere specification has remained enigmatic. Much attention has been focused on the cenH3 (CENP-A) histone variant, which forms the foundation of the centromere. To investigate the DNA sequence requirements for centromere specification, we applied a variety of epigenomic approaches, which have revealed surprising diversity in centromeric chromatin properties. Whereas each point centromere of budding yeast is occupied by a single precisely positioned tetrameric nucleosome with one cenH3 molecule, the \&#34;regional\&#34; centromeres of fission yeast contain unphased presumably octameric nucleosomes with two cenH3s. In Caenorhabditis elegans, kinetochores assemble all along the chromosome at sites of cenH3 nucleosomes that resemble budding yeast point centromeres, whereas holocentric insects lack cenH3 entirely. The \&#34;satellite\&#34; centromeres of most animals and plants consist of cenH3-containing particles that are precisely positioned over homogeneous tandem repeats, but in humans, different α-satellite subfamilies are occupied by CENP-A nucleosomes with very different conformations. We suggest that this extraordinary evolutionary diversity of centromeric chromatin architectures can be understood in terms of the simplicity of the task of equal chromosome segregation that is continually subverted by selfish DNA sequences.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1101/sqb.2017.82.033605\&#34;>DOI 10.1101/sqb.2017.82.033605&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/29196559\&#34;>PubMedID 29196559&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nCentromeres were familiar to cell biologists in the late 19th century, but for most eukaryotes the basis for centromere specification has remained enigmatic. Much attention has been focused on the cenH3 (CENP-A) histone variant, which forms the foundation of the centromere. To investigate the DNA sequence requirements for centromere specification, we applied a variety of epigenomic approaches, which have revealed surprising diversity in centromeric chromatin properties. Whereas each point centromere of budding yeast is occupied by a single precisely positioned tetrameric nucleosome with one cenH3 molecule, the \&#34;regional\&#34; centromeres of fission yeast contain unphased presumably octameric nucleosomes with two cenH3s. In Caenorhabditis elegans, kinetochores assemble all along the chromosome at sites of cenH3 nucleosomes that resemble budding yeast point centromeres, whereas holocentric insects lack cenH3 entirely. The \&#34;satellite\&#34; centromeres of most animals and plants consist of cenH3-containing particles that are precisely positioned over homogeneous tandem repeats, but in humans, different α-satellite subfamilies are occupied by CENP-A nucleosomes with very different conformations. We suggest that this extraordinary evolutionary diversity of centromeric chromatin architectures can be understood in terms of the simplicity of the task of equal chromosome segregation that is continually subverted by selfish DNA sequences.\nDOI: 10.1101/sqb.2017.82.033605, https://doi.org/10.1101/sqb.2017.82.033605\n\nPubMedID: 29196559, https://www.ncbi.nlm.nih.gov/pubmed/29196559&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1101/sqb.2017.82.033605&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1101/sqb.2017.82.033605&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2017 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2017 00:00:00 AM&#34;,&#34;value&#34;:&#34;2017-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Henikoff, Steven et al. “Remarkable Evolutionary Plasticity of Centromeric Chromatin.” &lt;i>Cold Spring Harbor symposia on quantitative biology&lt;/i> 82 (2017): 71–82. Print.&#34;,&#34;pubMedId&#34;:&#34;29196559&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/29196559&#34;,&#34;publicationId&#34;:&#34;801049&#34;,&#34;title&#34;:&#34;Remarkable Evolutionary Plasticity of Centromeric Chromatin.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Centromeres were familiar to cell biologists in the late 19th century, but for most eukaryotes the basis for centromere specification has remained enigmatic. Much attention has been focused on the cenH3 (CENP-A) histone variant, which forms the foundation of the centromere. To investigate the DNA sequence requirements for centromere specification, we applied a variety of epigenomic approaches, which have revealed surprising diversity in centromeric chromatin properties. Whereas each point centromere of budding yeast is occupied by a single precisely positioned tetrameric nucleosome with one cenH3 molecule, the \&#34;regional\&#34; centromeres of fission yeast contain unphased presumably octameric nucleosomes with two cenH3s. In Caenorhabditis elegans, kinetochores assemble all along the chromosome at sites of cenH3 nucleosomes that resemble budding yeast point centromeres, whereas holocentric insects lack cenH3 entirely. The \&#34;satellite\&#34; centromeres of most animals and plants consist of cenH3-containing particles that are precisely positioned over homogeneous tandem repeats, but in humans, different α-satellite subfamilies are occupied by CENP-A nucleosomes with very different conformations. We suggest that this extraordinary evolutionary diversity of centromeric chromatin architectures can be understood in terms of the simplicity of the task of equal chromosome segregation that is continually subverted by selfish DNA sequences.&#34;},{&#34;apaCitation&#34;:&#34;Zentner, G. E., Kasinathan, S., Xin, B., Rohs, R., &amp;amp; Henikoff, S. (2015). ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo. &lt;i>Nature Communications&lt;/i>, &lt;i>6&lt;/i>, 8733.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo.&lt;/span>\n &lt;i>Nature communications&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Zentner, G. E., Kasinathan, S. n., Xin, B. n., Rohs, R. n., Henikoff, S. n.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2015&lt;/span>; &lt;span class=\&#34;volume\&#34;>6&lt;/span>&lt;span class=\&#34;pages\&#34;>: 8733&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Zentner, Gabriel E., Sivakanthan Kasinathan, Beibei Xin, Remo Rohs, and Steven Henikoff. 2015. “ChEC-Seq Kinetics Discriminates Transcription Factor Binding Sites by DNA Sequence and Shape in Vivo.” &lt;i>Nature Communications&lt;/i> 6: 8733.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Chromatin endogenous cleavage (ChEC) uses fusion of a protein of interest to micrococcal nuclease (MNase) to target calcium-dependent cleavage to specific genomic loci in vivo. Here we report the combination of ChEC with high-throughput sequencing (ChEC-seq) to map budding yeast transcription factor (TF) binding. Temporal analysis of ChEC-seq data reveals two classes of sites for TFs, one displaying rapid cleavage at sites with robust consensus motifs and the second showing slow cleavage at largely unique sites with low-scoring motifs. Sites with high-scoring motifs also display asymmetric cleavage, indicating that ChEC-seq provides information on the directionality of TF-DNA interactions. Strikingly, similar DNA shape patterns are observed regardless of motif strength, indicating that the kinetics of ChEC-seq discriminates DNA recognition through sequence and/or shape. We propose that time-resolved ChEC-seq detects both high-affinity interactions of TFs with consensus motifs and sites preferentially sampled by TFs during diffusion and sliding. &lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1038/ncomms9733\&#34;>DOI 10.1038/ncomms9733&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/26490019\&#34;>PubMedID 26490019&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618392\&#34;>PubMedCentralID PMC4618392&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nChromatin endogenous cleavage (ChEC) uses fusion of a protein of interest to micrococcal nuclease (MNase) to target calcium-dependent cleavage to specific genomic loci in vivo. Here we report the combination of ChEC with high-throughput sequencing (ChEC-seq) to map budding yeast transcription factor (TF) binding. Temporal analysis of ChEC-seq data reveals two classes of sites for TFs, one displaying rapid cleavage at sites with robust consensus motifs and the second showing slow cleavage at largely unique sites with low-scoring motifs. Sites with high-scoring motifs also display asymmetric cleavage, indicating that ChEC-seq provides information on the directionality of TF-DNA interactions. Strikingly, similar DNA shape patterns are observed regardless of motif strength, indicating that the kinetics of ChEC-seq discriminates DNA recognition through sequence and/or shape. We propose that time-resolved ChEC-seq detects both high-affinity interactions of TFs with consensus motifs and sites preferentially sampled by TFs during diffusion and sliding. \nDOI: 10.1038/ncomms9733, https://doi.org/10.1038/ncomms9733\n\nPubMedID: 26490019, https://www.ncbi.nlm.nih.gov/pubmed/26490019\nPubMedCentralID: PMC4618392, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618392&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1038/ncomms9733&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1038/ncomms9733&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2015 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2015 00:00:00 AM&#34;,&#34;value&#34;:&#34;2015-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Zentner, Gabriel E. et al. “ChEC-Seq Kinetics Discriminates Transcription Factor Binding Sites by DNA Sequence and Shape in Vivo.” &lt;i>Nature communications&lt;/i> 6 (2015): 8733. Print.&#34;,&#34;pubMedId&#34;:&#34;26490019&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/26490019&#34;,&#34;publicationId&#34;:&#34;801050&#34;,&#34;title&#34;:&#34;ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Chromatin endogenous cleavage (ChEC) uses fusion of a protein of interest to micrococcal nuclease (MNase) to target calcium-dependent cleavage to specific genomic loci in vivo. Here we report the combination of ChEC with high-throughput sequencing (ChEC-seq) to map budding yeast transcription factor (TF) binding. Temporal analysis of ChEC-seq data reveals two classes of sites for TFs, one displaying rapid cleavage at sites with robust consensus motifs and the second showing slow cleavage at largely unique sites with low-scoring motifs. Sites with high-scoring motifs also display asymmetric cleavage, indicating that ChEC-seq provides information on the directionality of TF-DNA interactions. Strikingly, similar DNA shape patterns are observed regardless of motif strength, indicating that the kinetics of ChEC-seq discriminates DNA recognition through sequence and/or shape. We propose that time-resolved ChEC-seq detects both high-affinity interactions of TFs with consensus motifs and sites preferentially sampled by TFs during diffusion and sliding. &#34;},{&#34;apaCitation&#34;:&#34;Henikoff, J. G., Thakur, J., Kasinathan, S., &amp;amp; Henikoff, S. (2015). A unique chromatin complex occupies young α-satellite arrays of human centromeres. &lt;i>Science Advances&lt;/i>, &lt;i>1&lt;/i>(1).&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>A unique chromatin complex occupies young α-satellite arrays of human centromeres.&lt;/span>\n &lt;i>Science advances&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Henikoff, J. G., Thakur, J. n., Kasinathan, S. n., Henikoff, S. n.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2015&lt;/span>; &lt;span class=\&#34;volume\&#34;>1 (1)&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Henikoff, Jorja G., Jitendra Thakur, Sivakanthan Kasinathan, and Steven Henikoff. 2015. “A Unique Chromatin Complex Occupies Young α-Satellite Arrays of Human Centromeres.” &lt;i>Science Advances&lt;/i> 1 (1).&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>The intractability of homogeneous α-satellite arrays has impeded understanding of human centromeres. Artificial centromeres are produced from higher-order repeats (HORs) present at centromere edges, although the exact sequences and chromatin conformations of centromere cores remain unknown. We use high-resolution chromatin immunoprecipitation (ChIP) of centromere components followed by clustering of sequence data as an unbiased approach to identify functional centromere sequences. We find that specific dimeric α-satellite units shared by multiple individuals dominate functional human centromeres. We identify two recently homogenized α-satellite dimers that are occupied by precisely positioned CENP-A (cenH3) nucleosomes with two ~100-base pair (bp) DNA wraps in tandem separated by a CENP-B/CENP-C-containing linker, whereas pericentromeric HORs show diffuse positioning. Precise positioning is largely maintained, whereas abundance decreases exponentially with divergence, which suggests that young α-satellite dimers with paired ~100-bp particles mediate evolution of functional human centromeres. Our unbiased strategy for identifying functional centromeric sequences should be generally applicable to tandem repeat arrays that dominate the centromeres of most eukaryotes.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1126/sciadv.1400234\&#34;>DOI 10.1126/sciadv.1400234&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/25927077\&#34;>PubMedID 25927077&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410388\&#34;>PubMedCentralID PMC4410388&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nThe intractability of homogeneous α-satellite arrays has impeded understanding of human centromeres. Artificial centromeres are produced from higher-order repeats (HORs) present at centromere edges, although the exact sequences and chromatin conformations of centromere cores remain unknown. We use high-resolution chromatin immunoprecipitation (ChIP) of centromere components followed by clustering of sequence data as an unbiased approach to identify functional centromere sequences. We find that specific dimeric α-satellite units shared by multiple individuals dominate functional human centromeres. We identify two recently homogenized α-satellite dimers that are occupied by precisely positioned CENP-A (cenH3) nucleosomes with two ~100-base pair (bp) DNA wraps in tandem separated by a CENP-B/CENP-C-containing linker, whereas pericentromeric HORs show diffuse positioning. Precise positioning is largely maintained, whereas abundance decreases exponentially with divergence, which suggests that young α-satellite dimers with paired ~100-bp particles mediate evolution of functional human centromeres. Our unbiased strategy for identifying functional centromeric sequences should be generally applicable to tandem repeat arrays that dominate the centromeres of most eukaryotes.\nDOI: 10.1126/sciadv.1400234, https://doi.org/10.1126/sciadv.1400234\n\nPubMedID: 25927077, https://www.ncbi.nlm.nih.gov/pubmed/25927077\nPubMedCentralID: PMC4410388, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410388&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1126/sciadv.1400234&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1126/sciadv.1400234&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2015 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2015 00:00:00 AM&#34;,&#34;value&#34;:&#34;2015-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Henikoff, Jorja G. et al. “A Unique Chromatin Complex Occupies Young α-Satellite Arrays of Human Centromeres.” &lt;i>Science advances&lt;/i> 1.1 (2015): n. pag. Print.&#34;,&#34;pubMedId&#34;:&#34;25927077&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/25927077&#34;,&#34;publicationId&#34;:&#34;801053&#34;,&#34;title&#34;:&#34;A unique chromatin complex occupies young α-satellite arrays of human centromeres.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;The intractability of homogeneous α-satellite arrays has impeded understanding of human centromeres. Artificial centromeres are produced from higher-order repeats (HORs) present at centromere edges, although the exact sequences and chromatin conformations of centromere cores remain unknown. We use high-resolution chromatin immunoprecipitation (ChIP) of centromere components followed by clustering of sequence data as an unbiased approach to identify functional centromere sequences. We find that specific dimeric α-satellite units shared by multiple individuals dominate functional human centromeres. We identify two recently homogenized α-satellite dimers that are occupied by precisely positioned CENP-A (cenH3) nucleosomes with two ~100-base pair (bp) DNA wraps in tandem separated by a CENP-B/CENP-C-containing linker, whereas pericentromeric HORs show diffuse positioning. Precise positioning is largely maintained, whereas abundance decreases exponentially with divergence, which suggests that young α-satellite dimers with paired ~100-bp particles mediate evolution of functional human centromeres. Our unbiased strategy for identifying functional centromeric sequences should be generally applicable to tandem repeat arrays that dominate the centromeres of most eukaryotes.&#34;},{&#34;apaCitation&#34;:&#34;Kasinathan, P., Wei, H., Xiang, T., Molina, J. A., Metzger, J., Broek, D., … Allan, M. F. (2015). Acceleration of genetic gain in cattle by reduction of generation interval. &lt;i>Scientific Reports&lt;/i>, &lt;i>5&lt;/i>, 8674.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Acceleration of genetic gain in cattle by reduction of generation interval.&lt;/span>\n &lt;i>Scientific reports&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Kasinathan, P. n., Wei, H. n., Xiang, T. n., Molina, J. A., Metzger, J. n., Broek, D. n., Kasinathan, S. n., Faber, D. C., Allan, M. F.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2015&lt;/span>; &lt;span class=\&#34;volume\&#34;>5&lt;/span>&lt;span class=\&#34;pages\&#34;>: 8674&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Kasinathan, Poothappillai, Hong Wei, Tianhao Xiang, Jose A. Molina, John Metzger, et al. 2015. “Acceleration of Genetic Gain in Cattle by Reduction of Generation Interval.” &lt;i>Scientific Reports&lt;/i> 5: 8674.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Genomic selection (GS) approaches, in combination with reproductive technologies, are revolutionizing the design and implementation of breeding programs in livestock species, particularly in cattle. GS leverages genomic readouts to provide estimates of breeding value early in the life of animals. However, the capacity of these approaches for improving genetic gain in breeding programs is limited by generation interval, the average age of an animal when replacement progeny are born. Here, we present a cost-effective approach that combines GS with reproductive technologies to reduce generation interval by rapidly producing high genetic merit calves. &lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1038/srep08674\&#34;>DOI 10.1038/srep08674&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/25728468\&#34;>PubMedID 25728468&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345332\&#34;>PubMedCentralID PMC4345332&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nGenomic selection (GS) approaches, in combination with reproductive technologies, are revolutionizing the design and implementation of breeding programs in livestock species, particularly in cattle. GS leverages genomic readouts to provide estimates of breeding value early in the life of animals. However, the capacity of these approaches for improving genetic gain in breeding programs is limited by generation interval, the average age of an animal when replacement progeny are born. Here, we present a cost-effective approach that combines GS with reproductive technologies to reduce generation interval by rapidly producing high genetic merit calves. \nDOI: 10.1038/srep08674, https://doi.org/10.1038/srep08674\n\nPubMedID: 25728468, https://www.ncbi.nlm.nih.gov/pubmed/25728468\nPubMedCentralID: PMC4345332, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345332&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1038/srep08674&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1038/srep08674&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2015 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2015 00:00:00 AM&#34;,&#34;value&#34;:&#34;2015-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Kasinathan, Poothappillai et al. “Acceleration of Genetic Gain in Cattle by Reduction of Generation Interval.” &lt;i>Scientific reports&lt;/i> 5 (2015): 8674. Print.&#34;,&#34;pubMedId&#34;:&#34;25728468&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/25728468&#34;,&#34;publicationId&#34;:&#34;801052&#34;,&#34;title&#34;:&#34;Acceleration of genetic gain in cattle by reduction of generation interval.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Genomic selection (GS) approaches, in combination with reproductive technologies, are revolutionizing the design and implementation of breeding programs in livestock species, particularly in cattle. GS leverages genomic readouts to provide estimates of breeding value early in the life of animals. However, the capacity of these approaches for improving genetic gain in breeding programs is limited by generation interval, the average age of an animal when replacement progeny are born. Here, we present a cost-effective approach that combines GS with reproductive technologies to reduce generation interval by rapidly producing high genetic merit calves. &#34;},{&#34;apaCitation&#34;:&#34;Orsi, G. A., Kasinathan, S., Zentner, G. E., Henikoff, S., &amp;amp; Ahmad, K. (2015). Mapping regulatory factors by immunoprecipitation from native chromatin. &lt;i>Current Protocols in Molecular Biology&lt;/i>, &lt;i>110&lt;/i>, 21.31.1–21.31.25.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Mapping regulatory factors by immunoprecipitation from native chromatin.&lt;/span>\n &lt;i>Current protocols in molecular biology&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Orsi, G. A., Kasinathan, S. n., Zentner, G. E., Henikoff, S. n., Ahmad, K. n.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2015&lt;/span>; &lt;span class=\&#34;volume\&#34;>110&lt;/span>&lt;span class=\&#34;pages\&#34;>: 21.31.1–21.31.25&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Orsi, Guillermo A., Sivakanthan Kasinathan, Gabriel E. Zentner, Steven Henikoff, and Kami Ahmad. 2015. “Mapping Regulatory Factors by Immunoprecipitation from Native Chromatin.” &lt;i>Current Protocols in Molecular Biology&lt;/i> 110: 21.31.1–21.31.25.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin (ORGANIC) is a high-resolution method that can be used to quantitatively map protein-DNA interactions with high specificity and sensitivity. This method uses micrococcal nuclease (MNase) digestion of chromatin and low-salt solubilization to preserve protein-DNA complexes, followed by immunoprecipitation and paired-end sequencing for genome-wide mapping of binding sites. In this unit, we describe methods for isolation of nuclei and MNase digestion of unfixed chromatin, immunoprecipitation of protein-DNA complexes, and high-throughput sequencing to map sites of bound factors.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1002/0471142727.mb2131s110\&#34;>DOI 10.1002/0471142727.mb2131s110&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/25827087\&#34;>PubMedID 25827087&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410783\&#34;>PubMedCentralID PMC4410783&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nOccupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin (ORGANIC) is a high-resolution method that can be used to quantitatively map protein-DNA interactions with high specificity and sensitivity. This method uses micrococcal nuclease (MNase) digestion of chromatin and low-salt solubilization to preserve protein-DNA complexes, followed by immunoprecipitation and paired-end sequencing for genome-wide mapping of binding sites. In this unit, we describe methods for isolation of nuclei and MNase digestion of unfixed chromatin, immunoprecipitation of protein-DNA complexes, and high-throughput sequencing to map sites of bound factors.\nDOI: 10.1002/0471142727.mb2131s110, https://doi.org/10.1002/0471142727.mb2131s110\n\nPubMedID: 25827087, https://www.ncbi.nlm.nih.gov/pubmed/25827087\nPubMedCentralID: PMC4410783, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410783&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1002/0471142727.mb2131s110&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1002/0471142727.mb2131s110&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2015 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2015 00:00:00 AM&#34;,&#34;value&#34;:&#34;2015-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Orsi, Guillermo A. et al. “Mapping Regulatory Factors by Immunoprecipitation from Native Chromatin.” &lt;i>Current protocols in molecular biology&lt;/i> 110 (2015): 21.31.1–21.31.25. Print.&#34;,&#34;pubMedId&#34;:&#34;25827087&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/25827087&#34;,&#34;publicationId&#34;:&#34;801051&#34;,&#34;title&#34;:&#34;Mapping regulatory factors by immunoprecipitation from native chromatin.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin (ORGANIC) is a high-resolution method that can be used to quantitatively map protein-DNA interactions with high specificity and sensitivity. This method uses micrococcal nuclease (MNase) digestion of chromatin and low-salt solubilization to preserve protein-DNA complexes, followed by immunoprecipitation and paired-end sequencing for genome-wide mapping of binding sites. In this unit, we describe methods for isolation of nuclei and MNase digestion of unfixed chromatin, immunoprecipitation of protein-DNA complexes, and high-throughput sequencing to map sites of bound factors.&#34;},{&#34;apaCitation&#34;:&#34;Kasinathan, S., &amp;amp; Henikoff, S. (2014). 5-Aza-CdR delivers a gene body blow. &lt;i>Cancer Cell&lt;/i>, &lt;i>26&lt;/i>(4), 449–51.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>5-Aza-CdR delivers a gene body blow.&lt;/span>\n &lt;i>Cancer cell&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Kasinathan, S. n., Henikoff, S. n.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2014&lt;/span>; &lt;span class=\&#34;volume\&#34;>26 (4)&lt;/span>&lt;span class=\&#34;pages\&#34;>: 449–51&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Kasinathan, Sivakanthan, and Steven Henikoff. 2014. “5-Aza-CdR Delivers a Gene Body Blow.” &lt;i>Cancer Cell&lt;/i> 26 (4): 449–51.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>In this issue of Cancer Cell, Yang et al. describe a causal relationship between gene body methylation and gene expression and a role for genic methylation in response to clinical DNA methylation inhibitors, which suggests that the mechanism of action of these inhibitors includes gene body hypomethylation-induced downregulation of cancer-associated genes. &lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1016/j.ccell.2014.09.004\&#34;>DOI 10.1016/j.ccell.2014.09.004&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/25314073\&#34;>PubMedID 25314073&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322907\&#34;>PubMedCentralID PMC4322907&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nIn this issue of Cancer Cell, Yang et al. describe a causal relationship between gene body methylation and gene expression and a role for genic methylation in response to clinical DNA methylation inhibitors, which suggests that the mechanism of action of these inhibitors includes gene body hypomethylation-induced downregulation of cancer-associated genes. \nDOI: 10.1016/j.ccell.2014.09.004, https://doi.org/10.1016/j.ccell.2014.09.004\n\nPubMedID: 25314073, https://www.ncbi.nlm.nih.gov/pubmed/25314073\nPubMedCentralID: PMC4322907, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322907&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1016/j.ccell.2014.09.004&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1016/j.ccell.2014.09.004&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2014 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2014 00:00:00 AM&#34;,&#34;value&#34;:&#34;2014-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Kasinathan, Sivakanthan, and Steven Henikoff. “5-Aza-CdR Delivers a Gene Body Blow.” &lt;i>Cancer cell&lt;/i> 26.4 (2014): 449–51. Print.&#34;,&#34;pubMedId&#34;:&#34;25314073&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/25314073&#34;,&#34;publicationId&#34;:&#34;801054&#34;,&#34;title&#34;:&#34;5-Aza-CdR delivers a gene body blow.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;In this issue of Cancer Cell, Yang et al. describe a causal relationship between gene body methylation and gene expression and a role for genic methylation in response to clinical DNA methylation inhibitors, which suggests that the mechanism of action of these inhibitors includes gene body hypomethylation-induced downregulation of cancer-associated genes. &#34;},{&#34;apaCitation&#34;:&#34;Kasinathan, S., Orsi, G. A., Zentner, G. E., Ahmad, K., &amp;amp; Henikoff, S. (2014). High-resolution mapping of transcription factor binding sites on native chromatin. &lt;i>Nature Methods&lt;/i>, &lt;i>11&lt;/i>(2), 203–9.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>High-resolution mapping of transcription factor binding sites on native chromatin.&lt;/span>\n &lt;i>Nature methods&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Kasinathan, S. n., Orsi, G. A., Zentner, G. E., Ahmad, K. n., Henikoff, S. n.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2014&lt;/span>; &lt;span class=\&#34;volume\&#34;>11 (2)&lt;/span>&lt;span class=\&#34;pages\&#34;>: 203–9&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Kasinathan, Sivakanthan, Guillermo A. Orsi, Gabriel E. Zentner, Kami Ahmad, and Steven Henikoff. 2014. “High-Resolution Mapping of Transcription Factor Binding Sites on Native Chromatin.” &lt;i>Nature Methods&lt;/i> 11 (2): 203–9.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. TF profiling is commonly carried out by formaldehyde cross-linking and sonication followed by chromatin immunoprecipitation (X-ChIP). We describe a method to profile TF binding at high resolution without cross-linking. We begin with micrococcal nuclease-digested non-cross-linked chromatin and then perform affinity purification of TFs and paired-end sequencing. The resulting occupied regions of genomes from affinity-purified naturally isolated chromatin (ORGANIC) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide high-resolution maps that are accurate, as defined by the presence of known TF consensus motifs in identified binding sites, that are not biased toward accessible chromatin and that do not require input normalization. We profiled Drosophila melanogaster GAGA factor and Pipsqueak to test ORGANIC performance on larger genomes. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. &lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1038/nmeth.2766\&#34;>DOI 10.1038/nmeth.2766&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/24336359\&#34;>PubMedID 24336359&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929178\&#34;>PubMedCentralID PMC3929178&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nSequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. TF profiling is commonly carried out by formaldehyde cross-linking and sonication followed by chromatin immunoprecipitation (X-ChIP). We describe a method to profile TF binding at high resolution without cross-linking. We begin with micrococcal nuclease-digested non-cross-linked chromatin and then perform affinity purification of TFs and paired-end sequencing. The resulting occupied regions of genomes from affinity-purified naturally isolated chromatin (ORGANIC) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide high-resolution maps that are accurate, as defined by the presence of known TF consensus motifs in identified binding sites, that are not biased toward accessible chromatin and that do not require input normalization. We profiled Drosophila melanogaster GAGA factor and Pipsqueak to test ORGANIC performance on larger genomes. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. \nDOI: 10.1038/nmeth.2766, https://doi.org/10.1038/nmeth.2766\n\nPubMedID: 24336359, https://www.ncbi.nlm.nih.gov/pubmed/24336359\nPubMedCentralID: PMC3929178, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929178&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1038/nmeth.2766&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1038/nmeth.2766&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2014 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2014 00:00:00 AM&#34;,&#34;value&#34;:&#34;2014-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Kasinathan, Sivakanthan et al. “High-Resolution Mapping of Transcription Factor Binding Sites on Native Chromatin.” &lt;i>Nature methods&lt;/i> 11.2 (2014): 203–9. Print.&#34;,&#34;pubMedId&#34;:&#34;24336359&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/24336359&#34;,&#34;publicationId&#34;:&#34;801056&#34;,&#34;title&#34;:&#34;High-resolution mapping of transcription factor binding sites on native chromatin.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. TF profiling is commonly carried out by formaldehyde cross-linking and sonication followed by chromatin immunoprecipitation (X-ChIP). We describe a method to profile TF binding at high resolution without cross-linking. We begin with micrococcal nuclease-digested non-cross-linked chromatin and then perform affinity purification of TFs and paired-end sequencing. The resulting occupied regions of genomes from affinity-purified naturally isolated chromatin (ORGANIC) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide high-resolution maps that are accurate, as defined by the presence of known TF consensus motifs in identified binding sites, that are not biased toward accessible chromatin and that do not require input normalization. We profiled Drosophila melanogaster GAGA factor and Pipsqueak to test ORGANIC performance on larger genomes. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. &#34;},{&#34;apaCitation&#34;:&#34;Orsi, G. A., Kasinathan, S., Hughes, K. T., Saminadin-Peter, S., Henikoff, S., &amp;amp; Ahmad, K. (2014). High-resolution mapping defines the cooperative architecture of Polycomb response elements. &lt;i>Genome Research&lt;/i>, &lt;i>24&lt;/i>(5), 809–20.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>High-resolution mapping defines the cooperative architecture of Polycomb response elements.&lt;/span>\n &lt;i>Genome research&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Orsi, G. A., Kasinathan, S. n., Hughes, K. T., Saminadin-Peter, S. n., Henikoff, S. n., Ahmad, K. n.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2014&lt;/span>; &lt;span class=\&#34;volume\&#34;>24 (5)&lt;/span>&lt;span class=\&#34;pages\&#34;>: 809–20&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Orsi, Guillermo A., Sivakanthan Kasinathan, Kelly T. Hughes, Sarah Saminadin-Peter, Steven Henikoff, et al. 2014. “High-Resolution Mapping Defines the Cooperative Architecture of Polycomb Response Elements.” &lt;i>Genome Research&lt;/i> 24 (5): 809–20.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>Polycomb-mediated chromatin repression modulates gene expression during development in metazoans. Binding of multiple sequence-specific factors at discrete Polycomb response elements (PREs) is thought to recruit repressive complexes that spread across an extended chromatin domain. To dissect the structure of PREs, we applied high-resolution mapping of nonhistone chromatin proteins in native chromatin of Drosophila cells. Analysis of occupied sites reveal interactions between transcription factors that stabilize Polycomb anchoring to DNA, and implicate the general transcription factor ADF1 as a novel PRE component. By comparing two Drosophila cell lines with differential chromatin states, we provide evidence that repression is accomplished by enhanced Polycomb recruitment both to PREs and to target promoters of repressed genes. These results suggest that the stability of multifactor complexes at promoters and regulatory elements is a crucial aspect of developmentally regulated gene expression. &lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1101/gr.163642.113\&#34;>DOI 10.1101/gr.163642.113&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/24668908\&#34;>PubMedID 24668908&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009610\&#34;>PubMedCentralID PMC4009610&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nPolycomb-mediated chromatin repression modulates gene expression during development in metazoans. Binding of multiple sequence-specific factors at discrete Polycomb response elements (PREs) is thought to recruit repressive complexes that spread across an extended chromatin domain. To dissect the structure of PREs, we applied high-resolution mapping of nonhistone chromatin proteins in native chromatin of Drosophila cells. Analysis of occupied sites reveal interactions between transcription factors that stabilize Polycomb anchoring to DNA, and implicate the general transcription factor ADF1 as a novel PRE component. By comparing two Drosophila cell lines with differential chromatin states, we provide evidence that repression is accomplished by enhanced Polycomb recruitment both to PREs and to target promoters of repressed genes. These results suggest that the stability of multifactor complexes at promoters and regulatory elements is a crucial aspect of developmentally regulated gene expression. \nDOI: 10.1101/gr.163642.113, https://doi.org/10.1101/gr.163642.113\n\nPubMedID: 24668908, https://www.ncbi.nlm.nih.gov/pubmed/24668908\nPubMedCentralID: PMC4009610, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009610&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1101/gr.163642.113&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1101/gr.163642.113&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2014 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2014 00:00:00 AM&#34;,&#34;value&#34;:&#34;2014-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Orsi, Guillermo A. et al. “High-Resolution Mapping Defines the Cooperative Architecture of Polycomb Response Elements.” &lt;i>Genome research&lt;/i> 24.5 (2014): 809–20. Print.&#34;,&#34;pubMedId&#34;:&#34;24668908&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/24668908&#34;,&#34;publicationId&#34;:&#34;801055&#34;,&#34;title&#34;:&#34;High-resolution mapping defines the cooperative architecture of Polycomb response elements.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;Polycomb-mediated chromatin repression modulates gene expression during development in metazoans. Binding of multiple sequence-specific factors at discrete Polycomb response elements (PREs) is thought to recruit repressive complexes that spread across an extended chromatin domain. To dissect the structure of PREs, we applied high-resolution mapping of nonhistone chromatin proteins in native chromatin of Drosophila cells. Analysis of occupied sites reveal interactions between transcription factors that stabilize Polycomb anchoring to DNA, and implicate the general transcription factor ADF1 as a novel PRE component. By comparing two Drosophila cell lines with differential chromatin states, we provide evidence that repression is accomplished by enhanced Polycomb recruitment both to PREs and to target promoters of repressed genes. These results suggest that the stability of multifactor complexes at promoters and regulatory elements is a crucial aspect of developmentally regulated gene expression. &#34;},{&#34;apaCitation&#34;:&#34;Steiner, F. A., Talbert, P. B., Kasinathan, S., Deal, R. B., &amp;amp; Henikoff, S. (2012). Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. &lt;i>Genome Research&lt;/i>, &lt;i>22&lt;/i>(4), 766–77.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling.&lt;/span>\n &lt;i>Genome research&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Steiner, F. A., Talbert, P. B., Kasinathan, S. n., Deal, R. B., Henikoff, S. n.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2012&lt;/span>; &lt;span class=\&#34;volume\&#34;>22 (4)&lt;/span>&lt;span class=\&#34;pages\&#34;>: 766–77&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Steiner, Florian A., Paul B. Talbert, Sivakanthan Kasinathan, Roger B. Deal, and Steven Henikoff. 2012. “Cell-Type-Specific Nuclei Purification from Whole Animals for Genome-Wide Expression and Chromatin Profiling.” &lt;i>Genome Research&lt;/i> 22 (4): 766–77.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>An understanding of developmental processes requires knowledge of transcriptional and epigenetic landscapes at the level of tissues and ultimately individual cells. However, obtaining tissue- or cell-type-specific expression and chromatin profiles for animals has been challenging. Here we describe a method for purifying nuclei from specific cell types of animal models that allows simultaneous determination of both expression and chromatin profiles. The method is based on in vivo biotin-labeling of the nuclear envelope and subsequent affinity purification of nuclei. We describe the use of the method to isolate nuclei from muscle of adult Caenorhabditis elegans and from mesoderm of Drosophila melanogaster embryos. As a case study, we determined expression and nucleosome occupancy profiles for affinity-purified nuclei from C. elegans muscle. We identified hundreds of genes that are specifically expressed in muscle tissues and found that these genes are depleted of nucleosomes at promoters and gene bodies in muscle relative to other tissues. This method should be universally applicable to all model systems that allow transgenesis and will make it possible to determine epigenetic and expression profiles of different tissues and cell types.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1101/gr.131748.111\&#34;>DOI 10.1101/gr.131748.111&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/22219512\&#34;>PubMedID 22219512&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317158\&#34;>PubMedCentralID PMC3317158&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nAn understanding of developmental processes requires knowledge of transcriptional and epigenetic landscapes at the level of tissues and ultimately individual cells. However, obtaining tissue- or cell-type-specific expression and chromatin profiles for animals has been challenging. Here we describe a method for purifying nuclei from specific cell types of animal models that allows simultaneous determination of both expression and chromatin profiles. The method is based on in vivo biotin-labeling of the nuclear envelope and subsequent affinity purification of nuclei. We describe the use of the method to isolate nuclei from muscle of adult Caenorhabditis elegans and from mesoderm of Drosophila melanogaster embryos. As a case study, we determined expression and nucleosome occupancy profiles for affinity-purified nuclei from C. elegans muscle. We identified hundreds of genes that are specifically expressed in muscle tissues and found that these genes are depleted of nucleosomes at promoters and gene bodies in muscle relative to other tissues. This method should be universally applicable to all model systems that allow transgenesis and will make it possible to determine epigenetic and expression profiles of different tissues and cell types.\nDOI: 10.1101/gr.131748.111, https://doi.org/10.1101/gr.131748.111\n\nPubMedID: 22219512, https://www.ncbi.nlm.nih.gov/pubmed/22219512\nPubMedCentralID: PMC3317158, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317158&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1101/gr.131748.111&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1101/gr.131748.111&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Jan 1, 2012 00:00:00 AM&#34;,&#34;text&#34;:&#34;Jan 1, 2012 00:00:00 AM&#34;,&#34;value&#34;:&#34;2012-01-01T00:00:00.000-08:00&#34;},&#34;mlaCitation&#34;:&#34;Steiner, Florian A. et al. “Cell-Type-Specific Nuclei Purification from Whole Animals for Genome-Wide Expression and Chromatin Profiling.” &lt;i>Genome research&lt;/i> 22.4 (2012): 766–77. Print.&#34;,&#34;pubMedId&#34;:&#34;22219512&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/22219512&#34;,&#34;publicationId&#34;:&#34;801057&#34;,&#34;title&#34;:&#34;Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;An understanding of developmental processes requires knowledge of transcriptional and epigenetic landscapes at the level of tissues and ultimately individual cells. However, obtaining tissue- or cell-type-specific expression and chromatin profiles for animals has been challenging. Here we describe a method for purifying nuclei from specific cell types of animal models that allows simultaneous determination of both expression and chromatin profiles. The method is based on in vivo biotin-labeling of the nuclear envelope and subsequent affinity purification of nuclei. We describe the use of the method to isolate nuclei from muscle of adult Caenorhabditis elegans and from mesoderm of Drosophila melanogaster embryos. As a case study, we determined expression and nucleosome occupancy profiles for affinity-purified nuclei from C. elegans muscle. We identified hundreds of genes that are specifically expressed in muscle tissues and found that these genes are depleted of nucleosomes at promoters and gene bodies in muscle relative to other tissues. This method should be universally applicable to all model systems that allow transgenesis and will make it possible to determine epigenetic and expression profiles of different tissues and cell types.&#34;},{&#34;apaCitation&#34;:&#34;Wright, C. D., Chen, Q., Baye, N. L., Huang, Y., Healy, C. L., Kasinathan, S., &amp;amp; O&#39;Connell, T. D. (2008). Nuclear alpha1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes. &lt;i>Circulation Research&lt;/i>, &lt;i>103&lt;/i>(9), 992–1000.&#34;,&#34;capCitation&#34;:&#34;&lt;span class=\&#34;title\&#34;>\n &lt;span>Nuclear alpha1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes.&lt;/span>\n &lt;i>Circulation research&lt;/i>\n&lt;/span>\n&lt;span class=\&#34;authors\&#34;>Wright, C. D., Chen, Q., Baye, N. L., Huang, Y., Healy, C. L., Kasinathan, S., O&amp;#39;Connell, T. D.&lt;/span>\n\n&lt;span class=\&#34;details\&#34;>\n &lt;span class=\&#34;year\&#34;>2008&lt;/span>; &lt;span class=\&#34;volume\&#34;>103 (9)&lt;/span>&lt;span class=\&#34;pages\&#34;>: 992-1000&lt;/span>\n&lt;/span>&#34;,&#34;chicagoCitation&#34;:&#34;Wright, Casey D., Quanhai Chen, Nichole L. Baye, Yuan Huang, Chastity L. Healy, et al. 2008. “Nuclear alpha1-Adrenergic Receptors Signal Activated ERK Localization to Caveolae in Adult Cardiac Myocytes.” &lt;i>Circulation Research&lt;/i> 103 (9): 992–1000.&#34;,&#34;detail&#34;:{&#34;html&#34;:&#34;&lt;h4>Abstract&lt;/h4>\n &lt;p class=\&#34;abstract\&#34;>We previously identified an alpha1-AR-ERK (alpha1A-adrenergic receptor-extracellular signal-regulated kinase) survival signaling pathway in adult cardiac myocytes. Here, we investigated localization of alpha1-AR subtypes (alpha1A and alpha1B) and how their localization influences alpha1-AR signaling in cardiac myocytes. Using binding assays on myocyte subcellular fractions or a fluorescent alpha1-AR antagonist, we localized endogenous alpha1-ARs to the nucleus in wild-type adult cardiac myocytes. To clarify alpha1 subtype localization, we reconstituted alpha1 signaling in cultured alpha1A- and alpha1B-AR double knockout cardiac myocytes using alpha1-AR-green fluorescent protein (GFP) fusion proteins. Similar to endogenous alpha1-ARs and alpha1A- and alpha1B-GFP colocalized with LAP2 at the nuclear membrane. alpha1-AR nuclear localization was confirmed in vivo using alpha1-AR-GFP transgenic mice. The alpha1-signaling partners Galphaq and phospholipase Cbeta1 also colocalized with alpha1-ARs only at the nuclear membrane. Furthermore, we observed rapid catecholamine uptake mediated by norepinephrine-uptake-2 and found that alpha1-mediated activation of ERK was not inhibited by a membrane impermeant alpha1-blocker, suggesting alpha1 signaling is initiated at the nucleus. Contrary to prior studies, we did not observe alpha1-AR localization to caveolae, but we found that alpha1-AR signaling initiated at the nucleus led to activated ERK localized to caveolae. In summary, our results show that nuclear alpha1-ARs transduce signals to caveolae at the plasma membrane in cardiac myocytes.&lt;/p>\n &lt;p class=\&#34;doi\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://doi.org/10.1161/CIRCRESAHA.108.176024\&#34;>DOI 10.1161/CIRCRESAHA.108.176024&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pubmed/18802028\&#34;>PubMedID 18802028&lt;/a>&lt;/span>\n &lt;/p>\n &lt;p class=\&#34;pub-med-central\&#34;>\n &lt;span>View details for &lt;a href=\&#34;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792747\&#34;>PubMedCentralID PMC2792747&lt;/a>&lt;/span>\n &lt;/p>&#34;,&#34;text&#34;:&#34;Abstract:\nWe previously identified an alpha1-AR-ERK (alpha1A-adrenergic receptor-extracellular signal-regulated kinase) survival signaling pathway in adult cardiac myocytes. Here, we investigated localization of alpha1-AR subtypes (alpha1A and alpha1B) and how their localization influences alpha1-AR signaling in cardiac myocytes. Using binding assays on myocyte subcellular fractions or a fluorescent alpha1-AR antagonist, we localized endogenous alpha1-ARs to the nucleus in wild-type adult cardiac myocytes. To clarify alpha1 subtype localization, we reconstituted alpha1 signaling in cultured alpha1A- and alpha1B-AR double knockout cardiac myocytes using alpha1-AR-green fluorescent protein (GFP) fusion proteins. Similar to endogenous alpha1-ARs and alpha1A- and alpha1B-GFP colocalized with LAP2 at the nuclear membrane. alpha1-AR nuclear localization was confirmed in vivo using alpha1-AR-GFP transgenic mice. The alpha1-signaling partners Galphaq and phospholipase Cbeta1 also colocalized with alpha1-ARs only at the nuclear membrane. Furthermore, we observed rapid catecholamine uptake mediated by norepinephrine-uptake-2 and found that alpha1-mediated activation of ERK was not inhibited by a membrane impermeant alpha1-blocker, suggesting alpha1 signaling is initiated at the nucleus. Contrary to prior studies, we did not observe alpha1-AR localization to caveolae, but we found that alpha1-AR signaling initiated at the nucleus led to activated ERK localized to caveolae. In summary, our results show that nuclear alpha1-ARs transduce signals to caveolae at the plasma membrane in cardiac myocytes.\nDOI: 10.1161/CIRCRESAHA.108.176024, https://doi.org/10.1161/CIRCRESAHA.108.176024\n\nPubMedID: 18802028, https://www.ncbi.nlm.nih.gov/pubmed/18802028\nPubMedCentralID: PMC2792747, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792747&#34;,&#34;value&#34;:null},&#34;doiId&#34;:&#34;10.1161/CIRCRESAHA.108.176024&#34;,&#34;doiUrl&#34;:&#34;https://doi.org/10.1161/CIRCRESAHA.108.176024&#34;,&#34;featured&#34;:false,&#34;firstPublished&#34;:{&#34;html&#34;:&#34;Oct 24, 2008 00:00:00 AM&#34;,&#34;text&#34;:&#34;Oct 24, 2008 00:00:00 AM&#34;,&#34;value&#34;:&#34;2008-10-24T00:00:00.000-07:00&#34;},&#34;mlaCitation&#34;:&#34;Wright, Casey D. et al. “Nuclear alpha1-Adrenergic Receptors Signal Activated ERK Localization to Caveolae in Adult Cardiac Myocytes.” &lt;i>Circulation research&lt;/i> 103.9 (2008): 992–1000. Print.&#34;,&#34;pubMedId&#34;:&#34;18802028&#34;,&#34;pubMedUrl&#34;:&#34;https://www.ncbi.nlm.nih.gov/pubmed/18802028&#34;,&#34;publicationId&#34;:&#34;801058&#34;,&#34;title&#34;:&#34;Nuclear alpha1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes.&#34;,&#34;type&#34;:&#34;article&#34;,&#34;contentClass&#34;:&#34;publication article&#34;,&#34;abstract&#34;:&#34;We previously identified an alpha1-AR-ERK (alpha1A-adrenergic receptor-extracellular signal-regulated kinase) survival signaling pathway in adult cardiac myocytes. Here, we investigated localization of alpha1-AR subtypes (alpha1A and alpha1B) and how their localization influences alpha1-AR signaling in cardiac myocytes. Using binding assays on myocyte subcellular fractions or a fluorescent alpha1-AR antagonist, we localized endogenous alpha1-ARs to the nucleus in wild-type adult cardiac myocytes. To clarify alpha1 subtype localization, we reconstituted alpha1 signaling in cultured alpha1A- and alpha1B-AR double knockout cardiac myocytes using alpha1-AR-green fluorescent protein (GFP) fusion proteins. Similar to endogenous alpha1-ARs and alpha1A- and alpha1B-GFP colocalized with LAP2 at the nuclear membrane. alpha1-AR nuclear localization was confirmed in vivo using alpha1-AR-GFP transgenic mice. The alpha1-signaling partners Galphaq and phospholipase Cbeta1 also colocalized with alpha1-ARs only at the nuclear membrane. Furthermore, we observed rapid catecholamine uptake mediated by norepinephrine-uptake-2 and found that alpha1-mediated activation of ERK was not inhibited by a membrane impermeant alpha1-blocker, suggesting alpha1 signaling is initiated at the nucleus. Contrary to prior studies, we did not observe alpha1-AR localization to caveolae, but we found that alpha1-AR signaling initiated at the nucleus led to activated ERK localized to caveolae. In summary, our results show that nuclear alpha1-ARs transduce signals to caveolae at the plasma membrane in cardiac myocytes.&#34;}]" data-presentations="[]"> <div class="section-wrapper col-sm-12 col-md-8"> <div class="content-section"> <h3 id="criteria-title">All Publications</h3> <!--|jsrender template|--> <script id="pubTemplate" type="text/x-jQuery-tmpl"> <li class="{{:item.contentClass}}"> <cite>{{:item.capCitation}}</cite> <a class="view-more collapsible collapsed" data-toggle="collapse" data-target="[data-collapsible='{{:item.publicationId}}']"> <i class="fa fa-caret-down"></i> More </a> <div data-collapsible="{{:item.publicationId}}" class="collapse"> <div class="abstract-block"> <h4>ABSTRACT</h4> <p>{{:item.abstract}}</p> <div class="external-links"> <span> <i class="fa fa-external-link"></i> View details for <a href="{{:item.doiUrl}}">DOI {{:item.doiId}}</a> </span> <span> <i class="fa fa-external-link"></i> View details for <a href="{{:item.pubMedUrl}}">PubMedID {{:item.pubMedId}}</a> </span> </div> </div> </div> </li> </script> <!--|live area|--> <ul id="pubsContainer" class="section-listing publications"></ul> <!--|jsrender template|--> <script id="presTemplate" type="text/x-jQuery-tmpl"> <li class="{{:item.contentClass}} presentation"> <cite><span class="title">{{:item.title}}</span></cite> <a class="view-more collapsible collapsed" data-toggle="collapse" data-target="[data-collapsible='{{:item.id}}']"> <i class="fa fa-caret-down"></i> More </a> <div data-collapsible="{{:item.id}}" class="collapse"> <div class="abstract-block"> {{:item.detail.html}} </div> </div> </li> </script> <!--|live area|--> <ul id="presContainer" class="section-listing presentations" aria-hidden="true"></ul> </div> <div id="paginationContent"> <div class="btn-toolbar" role="toolbar"> <div class="btn-group" role="group"> <button class="btn btn-small btn-first-page" title="first"> <i class="fas fa-fast-backward"></i> <span class="sr-only">First</span> </button> </div> <div class="btn-group" role="group"> <button class="btn btn-small btn-previous-page" aria-label="previous" title="previous"> <i class="fas fa-angle-left"></i> <span class="sr-only">Back</span> </button> <button class="btn btn-small btn-page-jumper" rel="popover">0/0</button> <button class="btn btn-small btn-next-page" aria-label="next" title="next"> <span class="sr-only">Next</span> <i class="fas fa-angle-right"></i> </button> </div> <div class="btn-group" role="group"> <button class="btn btn-small btn-last-page" title="last"> <span class="sr-only">Last</span> <i class="fas fa-fast-forward"></i> </button> </div> <div class="btn-group dropup pull-right" role="group"> <button class="btn btn-small result-per-page dropdown-toggle" data-toggle="dropdown"> <span class="page-size">10 Results / Page</span> <span class="caret"></span> </button> <ul class="dropdown-menu" role="menu"> <li><a class="view-10">10</a></li> <li><a class="view-20">20</a></li> <li><a class="view-50">50</a></li> <li><a class="view-100">100</a></li> </ul> </div> </div> </div> </div> <div class="col-sm-12 col-md-4 pub-sidebar"> <div class="publication-summary"> <i class="icon-background fas fa-book"></i> <h3>Publications (17)</h3> <ul> <li> <a data-cmd="set:criteria:">All Publications</a> (17) </li> <li> <a data-cmd="set:criteria:featured">Featured Publications</a> (1) </li> <li> <a data-cmd="set:criteria:article">Journal Articles</a> (17) </li> </ul> </div> <div class="content-wrapper related-profiles"> <h3>Profiles With Related Publications</h3> <div class="content-section similar-profiles"> <div class="profile-detail"></div> <ul id="similar-profiles"> <li> <a class="similar-profile-trigger" data-target="#p4410"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=4410&type=small" width="40" height="40" alt="Jeffrey Axelrod" title="Jeffrey Axelrod"/> </a> <div class=" similar-detail" id="p4410" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/jeffrey-axelrod" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=4410&type=small" width="40" height="40" title="Jeffrey Axelrod" alt="Jeffrey Axelrod"/> <h2>Jeffrey Axelrod</h2> </a> <h3>Professor of Pathology </h3> <a data-target="#ri4410" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri4410"> Genetic and cell biological analyses of signals controlling cell polarity and morphogenesis. Frizzled signaling and cytoskeletal organization. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/jeffrey-axelrod#publications"><span>96</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p84141"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=84141&type=small" width="40" height="40" alt="Alistair Boettiger" title="Alistair Boettiger"/> </a> <div class=" similar-detail" id="p84141" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/alistair-boettiger" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=84141&type=small" width="40" height="40" title="Alistair Boettiger" alt="Alistair Boettiger"/> <h2>Alistair Boettiger</h2> </a> <h3>Associate Professor of Developmental Biology </h3> <a data-target="#ri84141" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri84141"> My lab focuses on investigating the role of three-dimensional genome organization in regulating gene expression and in shaping cell fate specification during development. We pursue this with advanced single-molecule imaging and transgenics. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/alistair-boettiger#publications"><span>50</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p4284"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=4284&type=small" width="40" height="40" alt="Patrick O. Brown" title="Patrick O. Brown"/> </a> <div class=" similar-detail" id="p4284" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/patrick-brown" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=4284&type=small" width="40" height="40" title="Patrick O. Brown" alt="Patrick O. Brown"/> <h2>Patrick O. Brown</h2> </a> <h3>Professor of Biochemistry, Emeritus </h3> <a data-target="#ri4284" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri4284"> Dr. Brown's research focuses on replacing humanity's most destructive invention - the use of animals as a food technology - by developing a new and better way to produce the world's most delicious, nutritious and affordable meats, fish and dairy foods directly from plants. He is also working on developing and scaling optimal methods for restoring healthy ecosystems and sequestering carbon on the 45% of Earth's surface that have been devastated by animal agriculture. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/patrick-brown#publications"><span>319</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p4624"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=4624&type=small" width="40" height="40" alt="Douglas L. Brutlag" title="Douglas L. Brutlag"/> </a> <div class=" similar-detail" id="p4624" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/douglas-brutlag" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=4624&type=small" width="40" height="40" title="Douglas L. Brutlag" alt="Douglas L. Brutlag"/> <h2>Douglas L. Brutlag</h2> </a> <h3>Professor of Biochemistry, Emeritus </h3> <a data-target="#ri4624" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri4624"> My primary interest is to understand the flow of information from the genome to the phenotype of an organism. This interest includes predicting the structure and function of genes and proteins from their primary sequence, predicting function from structure simulating protein folding and ligand docking, and predicitng disease from genome variations. These goals are the same as the goals of molecular biology, however, we use primarily computational approaches. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/douglas-brutlag#publications"><span>105</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p4249"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=4249&type=small" width="40" height="40" alt="Mike Cherry" title="Mike Cherry"/> </a> <div class=" similar-detail" id="p4249" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/j-michael-cherry" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=4249&type=small" width="40" height="40" title="Mike Cherry" alt="Mike Cherry"/> <h2>Mike Cherry</h2> </a> <h3>Professor (Research) of Genetics, Emeritus </h3> <a data-target="#ri4249" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri4249"> My research involves identifying, validating and integrating scientific facts into encyclopedic databases essential for research and scientific education. Published results of scientific experimentation are a foundation of our understanding of the natural world and provide motivation for new experiments. The combination of in-depth understanding reported in the literature with computational analyses is an essential ingredient of modern biological research. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/j-michael-cherry#publications"><span>148</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p4283"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=4283&type=small" width="40" height="40" alt="Gerald Crabtree" title="Gerald Crabtree"/> </a> <div class=" similar-detail" id="p4283" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/gerald-crabtree" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=4283&type=small" width="40" height="40" title="Gerald Crabtree" alt="Gerald Crabtree"/> <h2>Gerald Crabtree</h2> </a> <h3>David Korn, MD, Professor of Pathology and Professor of Developmental Biology </h3> <a data-target="#ri4283" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri4283"> Chromatin regulation and its roles in human cancer and the development of the nervous system. Engineering new methods for studying and controlling chromatin and epigenetic regulation in living cells. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/gerald-crabtree#publications"><span>265</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p3989"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=3989&type=small" width="40" height="40" alt="Andrew Fire" title="Andrew Fire"/> </a> <div class=" similar-detail" id="p3989" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/andrew-fire" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=3989&type=small" width="40" height="40" title="Andrew Fire" alt="Andrew Fire"/> <h2>Andrew Fire</h2> </a> <h3>George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics </h3> <a data-target="#ri3989" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri3989"> While chromosomal inheritance provides cells with one means for keeping and transmitting genetic information, numerous other mechanisms have (and remain to be) discovered. We study novel cellular mechanisms that enforce genetic constancy and permit genetic change. Underlying our studies are questions of the diversity of inheritance mechanisms, how cells distinguish such mechanisms as &quot;wanted&quot; versus &quot;unwanted&quot;, and of the consequences and applications of such mechanisms in health and disease. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/andrew-fire#publications"><span>190</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p15112"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=15112&type=small" width="40" height="40" alt="Hunter Fraser" title="Hunter Fraser"/> </a> <div class=" similar-detail" id="p15112" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/hunter-fraser" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=15112&type=small" width="40" height="40" title="Hunter Fraser" alt="Hunter Fraser"/> <h2>Hunter Fraser</h2> </a> <h3>Professor of Biology </h3> <a data-target="#ri15112" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri15112"> We study the evolution of complex traits by developing new experimental and computational methods.<br /><br />Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/hunter-fraser#publications"><span>94</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p4159"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=4159&type=small" width="40" height="40" alt="Margaret T. Fuller" title="Margaret T. Fuller"/> </a> <div class=" similar-detail" id="p4159" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/margaret-fuller" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=4159&type=small" width="40" height="40" title="Margaret T. Fuller" alt="Margaret T. Fuller"/> <h2>Margaret T. Fuller</h2> </a> <h3>Reed-Hodgson Professor of Human Biology, Katharine Dexter McCormick and Stanley McCormick Memorial Professor and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology) </h3> <a data-target="#ri4159" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri4159"> Regulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/margaret-fuller#publications"><span>131</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p24764"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=24764&type=small" width="40" height="40" alt="Paul Giresi" title="Paul Giresi"/> </a> <div class=" similar-detail" id="p24764" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/paul-giresi" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=24764&type=small" width="40" height="40" title="Paul Giresi" alt="Paul Giresi"/> <h2>Paul Giresi</h2> </a> <h3>Basic Life Res Scientist </h3> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/paul-giresi#publications"><span>15</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p139669"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=139669&type=small" width="40" height="40" alt="Maya M. Kasowski" title="Maya M. Kasowski"/> </a> <div class=" similar-detail" id="p139669" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/maya-kasowski" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=139669&type=small" width="40" height="40" title="Maya M. Kasowski" alt="Maya M. Kasowski"/> <h2>Maya M. Kasowski</h2> </a> <h3>Assistant Professor of Pathology, of Medicine (Pulmonary, Allergy and Critical Care Medicine) and, by courtesy, of Genetics </h3> <a data-target="#cf139669" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i> Clinical Focus</a> <div class="profile-more clinical-focus collapse" id="cf139669"> Anatomic and Clinical Pathology </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/maya-kasowski#publications"><span>22</span> Total Publications</a></div> </div> </li> <li> <a class="similar-profile-trigger" data-target="#p4167"> <img src="https://cap.stanford.edu/profiles/viewImage?profileId=4167&type=small" width="40" height="40" alt="Stuart Kim" title="Stuart Kim"/> </a> <div class=" similar-detail" id="p4167" style="display:none"> <a class="close-related-profile"><i class="fal fa-times-circle"></i><span class="sr-only">close</span></a> <a href="https://med.stanford.edu/profiles/stuart-kim" class="similar-profile-link"><img src="https://cap.stanford.edu/profiles/viewImage?profileId=4167&type=small" width="40" height="40" title="Stuart Kim" alt="Stuart Kim"/> <h2>Stuart Kim</h2> </a> <h3>Professor of Developmental Biology, Emeritus </h3> <a data-target="#ri4167" data-toggle="collapse" class="reveal-link collapsed"><i class="fa fa-chevron-down"></i>Research Interests </a> <div class="profile-more research-interests collapse" id="ri4167"> Mechanisms of Aging in C. elegans and humans. </div> <div class="total-pubs"> <a href="https://med.stanford.edu/profiles/stuart-kim#publications"><span>57</span> Total Publications</a></div> </div> </li> </ul> </div> </div> <div class="content-wrapper publication-topics"> <h3>Publication Topics For This Person</h3> <div class="content-section related-topics color-scheme-tag-cloud bg-icon-tag-cloud"> <ul class="list-inline"> <li class="tag list-inline-item"> <a href="/profiles/search?q=Adrenergic%20alpha-1%20Receptor%20Antagonists" class="weight9"> Adrenergic alpha-1 Receptor Antagonists</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Adrenergic%20alpha-Antagonists" class="weight9"> Adrenergic alpha-Antagonists</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Animals,%20Genetically%20Modified" class="weight9"> Animals, Genetically Modified</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Azacitidine" class="weight9"> Azacitidine</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Base%20Sequence" class="weight12"> Base Sequence</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Binding%20Sites" class="weight15"> Binding Sites</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Breeding" class="weight9"> Breeding</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Caenorhabditis%20elegans" class="weight9"> Caenorhabditis elegans</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Catecholamines" class="weight9"> Catecholamines</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Cattle" class="weight9"> Cattle</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Caveolae" class="weight9"> Caveolae</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Cell%20Fractionation" class="weight9"> Cell Fractionation</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Cell%20Line" class="weight12"> Cell Line</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Cell%20Nucleus" class="weight12"> Cell Nucleus</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Cells,%20Cultured" class="weight12"> Cells, Cultured</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Centromere" class="weight12"> Centromere</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Centromere%20Protein%20B" class="weight9"> Centromere Protein B</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Chromatin" class="weight18"> Chromatin</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Chromatin%20Assembly%20and%20Disassembly" class="weight9"> Chromatin Assembly and Disassembly</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Chromatin%20Immunoprecipitation" class="weight12"> Chromatin Immunoprecipitation</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=DNA" class="weight12"> DNA</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=DNA-Binding%20Proteins" class="weight15"> DNA-Binding Proteins</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Drosophila" class="weight12"> Drosophila</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Drosophila%20Proteins" class="weight15"> Drosophila Proteins</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Drosophila%20melanogaster" class="weight12"> Drosophila melanogaster</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=High-Throughput%20Nucleotide%20Sequencing" class="weight12"> High-Throughput Nucleotide Sequencing</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Protein%20Binding" class="weight15"> Protein Binding</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Saccharomyces%20cerevisiae" class="weight15"> Saccharomyces cerevisiae</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Saccharomyces%20cerevisiae%20Proteins" class="weight12"> Saccharomyces cerevisiae Proteins</a> </li> <li class="tag list-inline-item"> <a href="/profiles/search?q=Transcription%20Factors" class="weight18"> Transcription Factors</a> </li> </ul> </div> </div> </div> </div> </div> </nav> </section> </div> <script> (function(w) { w.init.add(function() { if (w.SM.components.Tabset !== undefined) { w.SM.components.Tabset.init(); } }); }(window)); </script></div> </div> </div> </main> <div class="footer" id="footer" role="contentinfo"> <footer class="footer-local container"> <div class="super-footer"> <div class="content"> <div class="left col-sm-6"> <div class="col-sm-6"> <h3 class="footer-heading"><a href="https://med.stanford.edu/">Stanford Medicine</a></h3> <p class="footer-heading"><a href="https://med.stanford.edu/news.html">News</a></p> <p class="footer-heading"><a href="https://med.stanford.edu/about/events.html">Events</a></p> <p class="footer-heading"><a href="https://stanfordcareers.stanford.edu/">Careers</a></p> <p class="footer-heading"><a href="https://med.stanford.edu/about/contacts.html">Contact</a></p> </div> <div class="col-sm-6"> <h3 class="footer-heading"><a href="https://med.stanford.edu/health-care.html">Health Care</a></h3> <p class="footer-heading"><a href="https://stanfordhealthcare.org/">Stanford Health Care</a></p> <p class="footer-heading"><a href="https://www.stanfordchildrens.org/">Stanford Children's Health</a></p> </div> </div> <div class="right col-sm-6"> <div class="col-sm-6"> <h3 class="footer-heading"><a href="https://med.stanford.edu/research.html">Research</a></h3> <p class="footer-heading"><a href="http://med.stanford.edu/school/directory.html#basic-science-departments">Basic Science Departments</a></p> <p class="footer-heading"><a href="http://med.stanford.edu/school/directory.html#clinical-science-departments">Clinical Science Departments</a></p> <p class="footer-heading"><a href="http://med.stanford.edu/school/directory.html#research-centers-&-programs">Centers & Programs</a></p> <p class="footer-heading"><a href="http://med.stanford.edu/school/directory.html#stanford-medicine-institutes">Institutes</a></p> </div> <div class="col-sm-6"> <h3 class="footer-heading"><a href="https://med.stanford.edu/education.html">Education</a></h3> <p class="footer-heading"><a href="https://www.stanford.edu/atoz/">A-Z Directory</a></p> <p class="footer-heading"><a href="http://med.stanford.edu/md.html">Academic Programs</a></p> <p class="footer-heading"><a href="http://med.stanford.edu/facultydiversity.html">Faculty Development & Diversity</a></p> <p class="footer-heading"><a href="https://med.stanford.edu/school/contacts.html">School Contacts</a></p> </div> </div> </div> </div> <div class="footer__link-bar"> <div class="container"> <div class="col-xs-12 col-sm-3"> <a href="https://profiles.stanford.edu/"><i class="fa fa-users"></i> Find People</a> </div> <div class="col-xs-12 col-sm-3"> <a href="https://med.stanford.edu/school/contacts/maps.html"><i class="fa fa-map-marker"></i> Visit Stanford</a> </div> <div class="col-xs-12 col-sm-3"> <a href="https://clinicaltrials.stanford.edu/"><i class="fa fa-check"></i> Search Clinical Trials</a> </div> <div class="col-xs-12 col-sm-3"> <a href="https://medicalgiving.stanford.edu/"><i class="fa fa-gift"></i> Give a Gift</a> </div> </div> </div> <div class="simple-footer--dark-bg"> <div class="content"> <div class="simple-footer"> <div class="legal-text col-sm-6">&copy;<span id="footerCurrentYear">2024</span> Stanford University</div> <div class="links col-sm-6"> <ul class="unstyled clearfix"> <li class="link"> <a href="https://www.stanford.edu/site/privacy">Privacy Policy</a> </li> <li class="link"> <a href="https://www.stanford.edu/site/terms">Terms of Use</a> </li> <li class="link link--no-after"> <a href="https://www.stanford.edu/site/accessibility">Accessibility</a> </li> <li class="link link-social social-links"> <a href="https://www.facebook.com/stanfordmedicine"> <span class="sr-only">See us on Facebook</span><i class="fa fa-facebook"></i> </a> </li> <li class="link link-social social-links"> <a href="https://twitter.com/stanfordmed"> <span class="sr-only">See us on X (Twitter)</span><i class="fab fa-x-twitter"></i> </a> </li> </ul> </div> </div> </div> </div> </footer> <footer class="footer-global"> <ul class="container"> <li class="footer-item"> <a class="logo logo-stanford" href="//www.stanford.edu" title="Stanford University">Stanford University</a> </li> <li class="footer-item"> <a class="logo logo-stanford-som" href="//med.stanford.edu" title="Stanford School of Medicine">Stanford School of Medicine</a> </li> <li class="footer-item"> <a class="logo logo-stanford-hospital" href="http://stanfordhealthcare.org" title="Stanford Health Care">Stanford Health Care</a> </li> <li class="footer-item"> <a class="logo logo-stanford-childrens" href="http://www.stanfordchildrens.org" title="Stanford Children's Health">Stanford Children's Health</a> </li> <li class="footer-item"> <a class="logo logo-valley" href="http://ValleyCare.com" title="Stanford Health Care Tri-Valley">Stanford Health Care Tri-Valley</a> </li> <li class="footer-item"> <a class="logo logo-stanford-healthcare" href="http://universityhealthcarealliance.org" title="Stanford Medicine Partners">Stanford Medicine Partners</a> </li> </ul></footer> <a href="#" id="backToTop" title="scroll back to top"><i class="fa fa-chevron-up"></i></a> </div> </div> <div class="cloudservices servicecomponents"> </div> <script async src="https://siteimproveanalytics.com/js/siteanalyze_80352.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10