CINXE.COM

Search results for: tooth root stress

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tooth root stress</title> <meta name="description" content="Search results for: tooth root stress"> <meta name="keywords" content="tooth root stress"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tooth root stress" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tooth root stress"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5103</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tooth root stress</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5103</span> Optimization of Tooth Root Profile and Drive Side Pressure Angle to Minimize Bending Stress at Root of Asymmetric Spur Gear Tooth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyakant%20Vaghela">Priyakant Vaghela</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Prajapati"> Jagdish Prajapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bending stress at the root of the gear tooth is the very important criteria in gear design and it should be kept the minimum. Minimization of bending stress at the root of the gear tooth is a recent demand from industry. This paper presents an innovative approach to obtain minimum bending stress at the root of a tooth by optimizing tooth root profile and drive side pressure angle. Circular-filleted at the root of the tooth is widely used in the design. Circular fillet creates discontinuity at the root of the tooth. So, at root stress concentration occurs. In order to minimize stress concentration, an important criterion is a G2 continuity at the blending of the gear tooth. A Bezier curve is used with G2 continuity at the root of asymmetric spur gear tooth. The comparison has been done between normal and modified tooth using ANSYS simulation. Tooth root profile and drive side pressure angle are optimized to minimize bending stress at the root of the tooth of the asymmetric involute spur gear. Von Mises stress of optimized profile is analyzed and compared with normal profile symmetric gear. Von Mises stress is reducing by 31.27% by optimization of drive side pressure angle and root profile. Stress concentration of modified gear was significantly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20spur%20gear%20tooth" title="asymmetric spur gear tooth">asymmetric spur gear tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=G2%20continuity" title=" G2 continuity"> G2 continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20at%20the%20root%20of%20tooth" title=" stress concentration at the root of tooth"> stress concentration at the root of tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress" title=" tooth root stress"> tooth root stress</a> </p> <a href="https://publications.waset.org/abstracts/95043/optimization-of-tooth-root-profile-and-drive-side-pressure-angle-to-minimize-bending-stress-at-root-of-asymmetric-spur-gear-tooth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5102</span> Worm Gearing Design Improvement by Considering Varying Mesh Stiffness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Elkholy">A. H. Elkholy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Falah"> A. H. Falah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well established formulae of spur gears. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gear" title="gear">gear</a>, <a href="https://publications.waset.org/abstracts/search?q=load%2Fstress%20distribution" title=" load/stress distribution"> load/stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=worm" title=" worm"> worm</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20stiffness" title=" tooth stiffness"> tooth stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line" title=" contact line"> contact line</a> </p> <a href="https://publications.waset.org/abstracts/31502/worm-gearing-design-improvement-by-considering-varying-mesh-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5101</span> Design Improvement of Worm Gearing for Better Energy Utilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elkholy">Ahmed Elkholy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most power transmission cases use gearing in general, and worm gearing, in particular for energy utilization. Therefore, designing gears for minimum weight and maximum power transmission is the main target of this study. In this regard, a new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using a well-established criteria. By combining the results obtained for all slices, the entire worm gear set loading and stressing was determined. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analytical accuracy and less computing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gear" title="gear">gear</a>, <a href="https://publications.waset.org/abstracts/search?q=load%2Fstress%20distribution" title=" load/stress distribution"> load/stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=worm" title=" worm"> worm</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20stiffness" title=" tooth stiffness"> tooth stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line" title=" contact line"> contact line</a> </p> <a href="https://publications.waset.org/abstracts/63727/design-improvement-of-worm-gearing-for-better-energy-utilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5100</span> Fluoride as Obturating Material in Primary Teeth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ameer%20Haider%20Jafri">Syed Ameer Haider Jafri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary goal of a root canal treatment in deciduous teeth is to eliminate infection and to retain the tooth in a functional state until it gets physiologically exfoliated and replaced by permanent successor. Important requisite of a root canal filling material for primary teeth is that, it should resorb at a similar rate as the roots of primary tooth, be harmless to the periapical tissue and to the permanent tooth germ, resorb readily if pushed beyond the apex, be antiseptic, radio-opaque, should not shrink, adhere to the walls, not discolor the tooth and easy to fill & remove, if required at any stage. Presently available, commonly used obturating materials for primary teeth are zinc oxide eugenol, calcium hydroxide and iodoform based pastes. None of these materials so far meet the ideal requirement of root canal filling material. So in search of ideal obturating material, this study was planed, in which mixture of calcium hydroxide, zinc oxide & sodium fluoride and mixture of calcium hydroxide & sodium fluoride was compared clinically and radiographically with calcium hydroxide for the obturation of root canals of 75 carious exposed primary mandibular second molars of 59 children aged 4-9 years. All the three material shows good results, but after a follow-up of 9 months mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide powder closely follow the resorption of root, mixture of calcium hydroxide, two percent sodium fluoride follow resorption of root in the beginning but later on majority of cases shows faster resorption whereas calcium hydroxide starts depleting from the canal from the beginning even as early as 3 months. Thus mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide found to be best obturaring material for primary tooth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obturating%20material" title="obturating material">obturating material</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20teeth" title=" primary teeth"> primary teeth</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20canal%20treatment" title=" root canal treatment"> root canal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=success%20rate" title=" success rate"> success rate</a> </p> <a href="https://publications.waset.org/abstracts/58937/fluoride-as-obturating-material-in-primary-teeth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5099</span> Radiographic Evaluation of Odontogenic Keratocyst: A 14 Years Retrospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Hidayah%20Reduwan">Nor Hidayah Reduwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jira%20Chindasombatjaroen"> Jira Chindasombatjaroen</a>, <a href="https://publications.waset.org/abstracts/search?q=Suchaya%20Pornprasersuk-Damrongsri"> Suchaya Pornprasersuk-Damrongsri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sopee%20Pomsawat"> Sopee Pomsawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> INTRODUCTION: Odontogenic keratocyst (OKC) remain as a controversial pathologic entity under the scrutiny of many researchers and maxillofacial surgeons alike. The high recurrence rate and relatively aggressive nature of this lesion demand a meticulous analysis of the radiographic characteristic of OKC leading to the formulation of an accurate diagnosis. OBJECTIVE: This study aims to determine the radiographic characteristic of odontogenic keratocyst (OKC) using conventional radiographs and cone beam computed tomography (CBCT) images. MATERIALS AND METHODS: Patients histopathologically diagnosed as OKC from 2003 to 2016 by Oral and Maxillofacial Pathology Department were retrospectively reviewed. Radiographs of these cases from the archives of the Department of Oral and Maxillofacial Radiology, Faculty of Dentistry Mahidol University were retrieved. Assessment of the location, shape, border, cortication, locularity, the relationship of lesion to embedded tooth, displacement of adjacent tooth, root resorption and bony expansion of the lesion were conducted. RESULTS: Radiographs of 91 patients (44 males, 47 females) with the mean age of 31 years old (10 to 84 years) were analyzed. Among all patients, 5 cases were syndromic patients. Hence, a total of 103 OKCs were studied. The most common location was at the ramus of mandible (32%) followed by posterior maxilla (29%). Most cases presented as a well-defined unilocular radiolucency with smooth and corticated border. The lesion was in associated with embedded tooth in 48 lesions (47%). Eighty five percent of embedded tooth are impacted 3rd molar. Thirty-seven percentage of embedded tooth were entirely encapsulated in the lesion. The lesion attached to the embedded tooth at the cementoenamel junction (CEJ) in 40% and extended to part of root in 23% of cases. Teeth displacement and root resorption were found in 29% and 6% of cases, respectively. Bony expansion in bucco-lingual dimension was seen in 63% of cases. CONCLUSION: OKCs were predominant in the posterior region of the mandible with radiographic features of a well-defined, unilocular radiolucency with smooth and corticated margin. The lesions might relate to an embedded tooth by surrounding an entire tooth, attached to the CEJ level or extending to part of root. Bony expansion could be found but teeth displacement and root resorption were not common. These features might help in giving the differential diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20beam%20computed%20tomography" title="cone beam computed tomography">cone beam computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging%20dentistry" title=" imaging dentistry"> imaging dentistry</a>, <a href="https://publications.waset.org/abstracts/search?q=odontogenic%20keratocyst" title=" odontogenic keratocyst"> odontogenic keratocyst</a>, <a href="https://publications.waset.org/abstracts/search?q=radiographic%20features" title=" radiographic features"> radiographic features</a> </p> <a href="https://publications.waset.org/abstracts/91634/radiographic-evaluation-of-odontogenic-keratocyst-a-14-years-retrospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5098</span> Comparison of Meshing Stiffness of Altered Tooth Sum Spur Gear Tooth with Different Pressure Angles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Sachidananda">H. K. Sachidananda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Raghunandana"> K. Raghunandana</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shivamurthy"> B. Shivamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimation of gear tooth stiffness is important for finding the load distribution between the gear teeth when two consecutive sets of teeth are in contact. Based on dynamic model a C-program has been developed to compute mesh stiffness. By using this program position dependent mesh stiffness of spur gear tooth for various profile shifts have been computed for a fixed center distance and altering tooth-sum gearing (100 by ± 4%). It is found that the C-program using dynamic model is one of the rapid soft computing technique which helps in design of gears. The mesh tooth stiffness along the path of contact is studied for both 20° and 25° pressure angle gears at various profile shifts. Better tooth stiffness is noticed in case of negative alteration tooth-sum gears compared to standard and positive alteration tooth-sum gears. Also, in case of negative alteration tooth-sum gearing better mesh stiffness is noticed in 20° pressure angle when compared to 25°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altered%20tooth-sum%20gearing" title="altered tooth-sum gearing">altered tooth-sum gearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20fatigue" title=" bending fatigue"> bending fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20stiffness" title=" mesh stiffness"> mesh stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=spur%20gear" title=" spur gear"> spur gear</a> </p> <a href="https://publications.waset.org/abstracts/42914/comparison-of-meshing-stiffness-of-altered-tooth-sum-spur-gear-tooth-with-different-pressure-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5097</span> Tooth Fractures Following the Placement of Adjacent Dental Implants: A Case Series and a Systematic Review of the Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyal%20Rosen">Eyal Rosen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to report a possible effect of the presence of dental implants on the development of crown or root fractures in adjacent natural teeth. A series of 26 cases of teeth diagnosed with crown or root fractures following the placement of adjacent dental implants is presented. In addition, a comprehensive systematic review of the literature was performed to detect other studies that evaluated this possible complication. The case series analysis revealed that all crown-fractured teeth were non-endodontically treated teeth (n=18), and all root fractured teeth were endodontically treated teeth (n=8). The time from implant loading to the diagnosis of a fracture in an adjacent tooth was longer than 1 year in 78% of cases. The majority of crown or root fractures occurred in female patients, over 50 years of age, with an average age of 59 in the crown fractures group, and 54 in the root fractures group. Most of the patients received 2 or more implants. Nine (50%) of the teeth with crown fracture were molars, 7 (39%) were mandibular premolars, and 2 (11%) were incisor teeth. The majority of teeth with root fracture were premolar or mandibular molar teeth (6 (75%)). The systematic review of the literature did not reveal additional studies that reported on this possible complication. To the best of the author’s knowledge this case series, although limited in its extent, is the first clinical report of a possible serious complication of implants, associated fractures in adjacent endodontically and non-endodontically treated natural teeth. The most common patient profile found in this series was a woman over 50 years of age, having a fractured premolar tooth, which was diagnosed more than 1 year after reconstruction that was based on multiple adjacent implants. Additional clinical studies are required in order to shed light on this potential serious complication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complications" title="complications">complications</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implants" title=" dental implants"> dental implants</a>, <a href="https://publications.waset.org/abstracts/search?q=endodontics" title=" endodontics"> endodontics</a>, <a href="https://publications.waset.org/abstracts/search?q=fractured%20teeth" title=" fractured teeth"> fractured teeth</a> </p> <a href="https://publications.waset.org/abstracts/93087/tooth-fractures-following-the-placement-of-adjacent-dental-implants-a-case-series-and-a-systematic-review-of-the-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5096</span> Root System Architecture Analysis of Sorghum Genotypes and Its Effect on Drought Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hailemariam%20Solomon">Hailemariam Solomon</a>, <a href="https://publications.waset.org/abstracts/search?q=Taye%20Tadesse"> Taye Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Nadew"> Daniel Nadew</a>, <a href="https://publications.waset.org/abstracts/search?q=Firezer%20Girma"> Firezer Girma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum is an important crop in semi-arid regions and has shown resilience to drought stress. However, recurrent drought is affecting its productivity. Therefore, it is necessary to explore genes that contribute to drought stress adaptation to increase sorghum productivity. The aim of this study is to evaluate and determine the effect of root system traits, specifically root angle, on drought stress adaptation and grain yield performance in sorghum genotypes. A total of 428 sorghum genotypes from the Ethiopian breeding program were evaluated in three drought-stress environments. Field trials were conducted using a row-column design with three replications. Root system traits were phenotyped using a high-throughput phenotyping platform and analyzed using a row-column design with two replications. Data analysis was performed using R software and regression analysis. The study found significant variations in root system architecture among the sorghum genotypes. Non-stay-green genotypes had a grain yield ranging from 1.63 to 3.1 tons/ha, while stay-green genotypes had a grain yield ranging from 2.4 to 2.9 tons/ha. The analysis of root angle showed that non-stay-green genotypes had an angle ranging from 8.0 to 30.5 degrees, while stay-green genotypes had an angle ranging from 12.0 to 29.0 degrees. Improved varieties exhibited angles between 14.04 and 19.50 degrees. Positive and significant correlations were observed between leaf areas and shoot dry weight, as well as between leaf width and shoot dry weight. Negative correlations were observed between root angle and leaf area, as well as between root angle and root length. This research highlights the importance of root system architecture, particularly root angle traits, in enhancing grain yield production in drought-stressed conditions. It also establishes an association between root angle and grain yield traits for maximizing sorghum productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roor%20sysytem%20architecture" title="roor sysytem architecture">roor sysytem architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20angle" title=" root angle"> root angle</a>, <a href="https://publications.waset.org/abstracts/search?q=narrow%20root%20angle" title=" narrow root angle"> narrow root angle</a>, <a href="https://publications.waset.org/abstracts/search?q=wider%20root%20angle" title=" wider root angle"> wider root angle</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a> </p> <a href="https://publications.waset.org/abstracts/170823/root-system-architecture-analysis-of-sorghum-genotypes-and-its-effect-on-drought-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5095</span> A Disappearing Radiolucency of the Mandible Caused by Inadvertent Trauma Following IMF Screw Placement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Ghosh">Anna Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Shields"> Dominic Shields</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceri%20McIntosh"> Ceri McIntosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Crank"> Stephen Crank</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 29-year-old male was a referral to the maxillofacial unit following a referral from his general dental practitioner via a routine pathway regarding a large periapical lesion on the LR4 with root resorption. The patient was asymptomatic, the LR4 vital and unrestored, and this was an incidental finding at a routine check-up. The patient's past medical history was unremarkable. Examination revealed no extra or intra-oral pathology and non-mobile teeth. No focal neurology was detected. An orthopantogram demonstrated a well-defined unilocular corticated radiolucency associated with the LR4. The root appeared shortened with the radiolucency between the root and a radio-opacity, possibly representing the displacement of the apical tip of the tooth. It was recommended that the referring general practitioner should proceed with orthograde root canal therapy, after which time exploration, enucleation, and retrograde root filling of the LR4 would be carried out by a maxillofacial unit. The patient was reviewed six months later where, due to the COVID-19 pandemic, the patient had been unable to access general dental services for the root canal treatment. He was still entirely asymptomatic. A one-year review was planned in the hope this would allow time for the orthograde root canal therapy to be completed. At this review, the orthograde root canal therapy had still not been completed. Interestingly, a repeat orthopantogram revealed a significant reduction in size with good bony infill and a significant reduction in the size of the lesion. Due to the ongoing delays with primary care dental therapy, the patient was subsequently internally referred to the restorative dentistry department for care. The patient was seen again by oral and maxillo-facial surgery in mid-2022 where he still reports this tooth as asymptomatic with no focal neurology. The patient's history was fully reviewed, and noted that 15 years previously, the patient underwent open reduction and internal fixation of a left angle of mandible fracture. Temporary IMF involving IMF screws and fixation wires were employed to maintain occlusion during plating and subsequently removed post-operatively. It is proposed that the radiolucency was, as a result of the IMF screw placement, penetrating the LR4 root resulting in resorption of the tooth root and development of a radiolucency. This case highlights the importance of careful screw size and physical site location, and placement of IMF screws, as there can be permeant damage to a patient’s dentition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facial%20trauma" title="facial trauma">facial trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-maxillary%20fixation" title=" inter-maxillary fixation"> inter-maxillary fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=mandibular%20radiolucency" title=" mandibular radiolucency"> mandibular radiolucency</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20and%20maxillo-facial%20surgery" title=" oral and maxillo-facial surgery"> oral and maxillo-facial surgery</a> </p> <a href="https://publications.waset.org/abstracts/150783/a-disappearing-radiolucency-of-the-mandible-caused-by-inadvertent-trauma-following-imf-screw-placement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5094</span> Endodontic Pretreatments, Clinical Opportunities and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilma%20Robo">Ilma Robo</a>, <a href="https://publications.waset.org/abstracts/search?q=Manola%20Kelmendi"> Manola Kelmendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saimir%20Heta"> Saimir Heta</a>, <a href="https://publications.waset.org/abstracts/search?q=Megi%20Tafa"> Megi Tafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Ostreni"> Vera Ostreni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preservation of a natural tooth, even if endodontically treated, is more indicated than its replacement with an artificial tooth placed in prosthetic ways or with implant treatment. It is known how technology and endodontic treatment procedures have evolved significantly. It is also known that significant developments have been made in both dental prostheses and implant treatments, and again, in both specialties, it is emphasized that both the tooth placed with dental prostheses and the tooth placed with implant treatment cannot replace the natural tooth. The issue is whether long-term periapical tissue healing is achieved after a successful endodontic treatment, and for this, clinical data should be collected. In the cases when the apical closure or "apical filling" with the endodontic filling was carried out correctly clinically, but for various reasons, the healing of the periapical tissues did not occur, but also for those cases when the endodontic treatment did not reach the "apical filling" of the root canal. Teeth Endodontic retreatments have their clinical difficulty, but knowing the reason why endodontic treatment success has not been achieved clinically, the clinical endodontic approach is easier. In this process, it is important for the dentist to recognize the clinical and radiographic signs of persistent apical periodontitis or renewed apical periodontitis. After this initial procedure, dentists must know and evaluate the possibility of clinical endodontic retreatment by reporting, not precisely, but with very approximate values, the percentage of clinical success of endodontic retreatment. Depending on the reason for the performance, endodontic re-treatment may also need more specialized equipment or tools, for which even the professional who undertakes the re-treatment must be equipped with the relevant knowledge of their use and clinical application. Evaluating the clinical success of endodontic re-treatment is actually a more difficult process and requires more clinical responsibility since it must be considered that the initial treatment was performed by the same specialist as the specialist who undertakes the same endodontic re-treatment. Tooth So, the clinical endodontic re-treatment of a tooth should not be seen as a fund of clinical practice only of a good successful endodontist, but as part of routine endodontic treatments, nor should it be seen as a typical case where the tools and the most advanced technological devices in the endodontic field. So, the clinical picture of endodontic re-treatments offers the possibility of finding endodontic malpractice, the possibility of more accurate assessment of dental morphological anomalies, and above all, the cognitive and professional possibilities of the diagnosis of persistent apical periodontitis. This study offers the possibility of evaluating these three directions by presenting in numbers and in percentage the frequency of the reasons why the endodontic success of the root canal treatment is not always achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apical%20periodontitis" title="apical periodontitis">apical periodontitis</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20susccess" title=" clinical susccess"> clinical susccess</a>, <a href="https://publications.waset.org/abstracts/search?q=endodontics" title=" endodontics"> endodontics</a>, <a href="https://publications.waset.org/abstracts/search?q=E.faecalis" title=" E.faecalis"> E.faecalis</a> </p> <a href="https://publications.waset.org/abstracts/194904/endodontic-pretreatments-clinical-opportunities-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5093</span> Observation of the Orthodontic Tooth&#039;s Long-Term Movement Using Stereovision System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao-Yuan%20Tseng">Hao-Yuan Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan-Yang%20Chang"> Chuan-Yang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Hui%20Chen"> Ying-Hui Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Che%20Chen"> Sheng-Che Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthodontic tooth treatment has demonstrated a high success rate in clinical studies. It has been agreed upon that orthodontic tooth movement is based on the ability of surrounding bone and periodontal ligament (PDL) to react to a mechanical stimulus with remodeling processes. However, the mechanism of the tooth movement is still unclear. Recent studies focus on the simple principle compression-tension theory while rare studies directly measure tooth movement. Therefore, tracking tooth movement information during orthodontic treatment is very important in clinical practice. The aim of this study is to investigate the mechanism responses of the tooth movement during the orthodontic treatments. A stereovision system applied to track the tooth movement of the patient with the stamp brackets. The system was established by two cameras with their relative position calibrate. And the orthodontic force measured by 3D printing model with the six-axis load cell to determine the initial force application. The result shows that the stereovision system accuracy revealed the measurement presents a maximum error less than 2%. For the study on patient tracking, the incisor moved about 0.9 mm during 60 days tracking, and half of movement occurred in the first few hours. After removing the orthodontic force in 100 hours, the distance between before and after position incisor tooth decrease 0.5 mm consisted with the release of the phenomenon. Using the stereovision system can accurately locate the three-dimensional position of the teeth and superposition of 3D coordinate system for all the data to integrate the complex tooth movement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20treatment" title="orthodontic treatment">orthodontic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20movement" title=" tooth movement"> tooth movement</a>, <a href="https://publications.waset.org/abstracts/search?q=stereovision%20system" title=" stereovision system"> stereovision system</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20tracking" title=" long-term tracking"> long-term tracking</a> </p> <a href="https://publications.waset.org/abstracts/45507/observation-of-the-orthodontic-tooths-long-term-movement-using-stereovision-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5092</span> Improvement in Drought Stress Tolerance in Wheat by Arbuscular Mycorrhizal Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seema%20Sangwan">Seema Sangwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekta%20Narwal"> Ekta Narwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannepalli%20Annapurna"> Kannepalli Annapurna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the effect of arbuscular mycorrhizal fungi (AMF) inoculation on drought stress tolerance in 3 genotypes of wheat subjected to moderate water stress, i.e. HD 3043 (drought tolerant), HD 2987 (drought tolerant), and HD 2967 (drought sensitive). Various growth parameters were studied, e.g. total dry weight, total shoot and root length, root volume, root surface area, grain weight and number, leaf area, chlorophyll content in leaves, relative water content, number of spores and percent colonisation of roots by arbuscular mycorrhizal fungi. Total dry weight, root surface area and chlorophyll content were found to be significantly high in AMF inoculated plants as compared to the non-mycorrhizal ones and also higher in drought-tolerant varieties of wheat as compared to the sensitive variety HD 2967, in moderate water stress treatments. Leakage of electrolytes was lower in case of AMF inoculated stressed plants. Under continuous water stress, leaf water content and leaf area were significantly increased in AMF inoculated plants as compared to un-inoculated stressed plants. Overall, the increased colonisation of roots of wheat by AMF in inoculated plants weather drought tolerant or sensitive could have a beneficial effect in alleviating the harmful effects of water stress in wheat and delaying its senescence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arbuscular%20mycorrhizal%20fungi" title="Arbuscular mycorrhizal fungi">Arbuscular mycorrhizal fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/86566/improvement-in-drought-stress-tolerance-in-wheat-by-arbuscular-mycorrhizal-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5091</span> Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Yong%20Park">Jae-Yong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeo-Kyeong%20Lee"> Yeo-Kyeong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Sun%20Kim"> Hee-Sun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cranium" title="cranium">cranium</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mandible" title=" mandible"> mandible</a>, <a href="https://publications.waset.org/abstracts/search?q=masticatory%20action" title=" masticatory action"> masticatory action</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusal%20force" title=" occlusal force"> occlusal force</a> </p> <a href="https://publications.waset.org/abstracts/37030/comparison-with-mechanical-behaviors-of-mastication-in-teeth-movement-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5090</span> Radiographic Predictors of Mandibular Third Molar Extraction Difficulties under General Anaesthetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolyn%20Whyte">Carolyn Whyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Halai"> Tina Halai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonita%20Koshal"> Sonita Koshal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: There are many methods available to assess the potential difficulty of third molar surgery. This study investigated various factors to assess whether they had a bearing on the difficulties encountered. Study design: A retrospective study was completed of 62 single mandibular third molar teeth removed under day case general anaesthesia between May 2016 and August 2016 by 3 consultant oral surgeons. Method: Data collection was by examining the OPG radiographs of each tooth and recording the necessary data. This was depth of impaction, angulation, bony impaction, point of application in relation to second molar, root morphology, Pell and Gregory classification and Winters Lines. This was completed by one assessor and verified by another. Information on medical history, anxiety, ethnicity and age were recorded. Case notes and surgical entries were examined for any difficulties encountered. Results: There were 5 cases which encountered surgical difficulties which included fracture of root apices (3) which were left in situ, prolonged bleeding (1) and post-operative numbness >6 months(1). Four of the 5 cases had Pell and Gregory classification as (B) where the occlusal plane of the impacted tooth is between the occlusal plane and the cervical line of the adjacent tooth. 80% of cases had the point of application as either coronal or apical one third (1/3) in relation to the second molar. However, there was variability in all other aspects of assessment in predicting difficulty of removal. Conclusions: Of the cases which encountered difficulties they all had at least one predictor of potential complexity but these varied case by case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impaction" title="impaction">impaction</a>, <a href="https://publications.waset.org/abstracts/search?q=mandibular%20third%20molar" title=" mandibular third molar"> mandibular third molar</a>, <a href="https://publications.waset.org/abstracts/search?q=radiographic%20assessment" title=" radiographic assessment"> radiographic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20removal" title=" surgical removal"> surgical removal</a> </p> <a href="https://publications.waset.org/abstracts/58983/radiographic-predictors-of-mandibular-third-molar-extraction-difficulties-under-general-anaesthetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5089</span> Improving the Biomechanical Resistance of a Treated Tooth via Composite Restorations Using Optimised Cavity Geometries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Babaei">Behzad Babaei</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Gangadhara%20Prusty"> B. Gangadhara Prusty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to assess the hypotheses that a restored tooth with a class II occlusal-distal (OD) cavity can be strengthened by designing an optimized cavity geometry, as well as selecting the composite restoration with optimized elastic moduli when there is a sharp de-bonded edge at the interface of the tooth and restoration. Methods: A scanned human maxillary molar tooth was segmented into dentine and enamel parts. The dentine and enamel profiles were extracted and imported into a finite element (FE) software. The enamel rod orientations were estimated virtually. Fifteen models for the restored tooth with different cavity occlusal depths (1.5, 2, and 2.5 mm) and internal cavity angles were generated. By using a semi-circular stone part, a 400 N load was applied to two contact points of the restored tooth model. The junctions between the enamel, dentine, and restoration were considered perfectly bonded. All parts in the model were considered homogeneous, isotropic, and elastic. The quadrilateral and triangular elements were employed in the models. A mesh convergence analysis was conducted to verify that the element numbers did not influence the simulation results. According to the criteria of a 5% error in the stress, we found that a total element number of over 14,000 elements resulted in the convergence of the stress. A Python script was employed to automatically assign 2-22 GPa moduli (with increments of 4 GPa) for the composite restorations, 18.6 GPa to the dentine, and two different elastic moduli to the enamel (72 GPa in the enamel rods’ direction and 63 GPa in perpendicular one). The linear, homogeneous, and elastic material models were considered for the dentine, enamel, and composite restorations. 108 FEA simulations were successively conducted. Results: The internal cavity angles (α) significantly altered the peak maximum principal stress at the interface of the enamel and restoration. The strongest structures against the contact loads were observed in the models with α = 100° and 105. Even when the enamel rods’ directional mechanical properties were disregarded, interestingly, the models with α = 100° and 105° exhibited the highest resistance against the mechanical loads. Regarding the effect of occlusal cavity depth, the models with 1.5 mm depth showed higher resistance to contact loads than the model with thicker cavities (2.0 and 2.5 mm). Moreover, the composite moduli in the range of 10-18 GPa alleviated the stress levels in the enamel. Significance: For the class II OD cavity models in this study, the optimal geometries, composite properties, and occlusal cavity depths were determined. Designing the cavities with α ≥100 ̊ was significantly effective in minimizing peak stress levels. The composite restoration with optimized properties reduced the stress concentrations on critical points of the models. Additionally, when more enamel was preserved, the sturdier enamel-restoration interface against the mechanical loads was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20composite%20restoration" title="dental composite restoration">dental composite restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20geometry" title=" cavity geometry"> cavity geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20approach" title=" finite element approach"> finite element approach</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20principal%20stress" title=" maximum principal stress"> maximum principal stress</a> </p> <a href="https://publications.waset.org/abstracts/152081/improving-the-biomechanical-resistance-of-a-treated-tooth-via-composite-restorations-using-optimised-cavity-geometries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5088</span> Silver-Curcumin Nanoparticle Eradicate Enterococcus faecalis in Human ex vivo Dentine Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Gowri">M. Gowri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20K.%20Girija"> E. K. Girija</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ganesh"> V. Ganesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate E. faecalis. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against E. faecalis. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on E. faecalis was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against E. faecalis. silver-curcumin nanoparticle exerted time kill effect. Further, SEM images of E. faecalis showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of E. faecalis and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Further, silver-curcumin nanoparticle was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non-mutagenic. Conclusion: The results of this study can pave the way for developing new antibacterial agents with well deciphered mechanisms of action and can be a promising antibacterial agent or medicament against root canal infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ex%20vivo%20dentine%20model" title="ex vivo dentine model">ex vivo dentine model</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20biofilm%20formation" title=" inhibition of biofilm formation"> inhibition of biofilm formation</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20canal%20infection" title=" root canal infection"> root canal infection</a>, <a href="https://publications.waset.org/abstracts/search?q=silver-curcumin%20nanoparticle" title=" silver-curcumin nanoparticle"> silver-curcumin nanoparticle</a> </p> <a href="https://publications.waset.org/abstracts/73621/silver-curcumin-nanoparticle-eradicate-enterococcus-faecalis-in-human-ex-vivo-dentine-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5087</span> The Effect of the Combination of Mouthwash and Saliva Substitutes on Tooth Erosion: An in Vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Eun%20Jang">Young-Eun Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Hye%20Ma"> Mi-Hye Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yemi%20Kim"> Yemi Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the elderly population increases, the number of patients complaining of dry mouth is also increasing. Elderly people often use mouthwash to prevent periodontal disease. Mouthwash and saliva substitutes with low pH were reported to be able to cause enamel erosion. To the best of our knowledge, there have been no studies showing the effect of mouthwash on patients using saliva substitutes. Therefore, the purpose of this study was to evaluate the effect of the use of mouthwash in combination with saliva substitutes on tooth erosion using a quantitative light-induced fluorescence-digital (QLF-D) system. A total of 96 bovine specimens were embedded in putty blocks and randomly allocated to the following groups with n = 12 each: Group 1, application of mouthwash; Group 2, application of saliva substitutes; Group 3, application of saliva substitutes in combination with mouthwash; and control group, application of saline. The bovine samples were eroded using a demineralization solution and then saliva substitutes and mouthwash were applied according to the groups for 2 weeks. For saliva substitutes, three different products were used; Oasis (Oasis Consumer Health, Cleveland, OH, USA), Xeromia solution (Osstem Pharma Co., Seoul, Korea), and Drymund gel (Dong-A Pharma Co., Seoul, Korea). The pH values of the saliva substitutes were determined using a pH meter. Loss of enamel and root dentin was measured using the QLF-D system immediately after demineralization on the 3rd, 7th, and 14th days. The data were analyzed using repeated measures ANOVA followed by Tukey’s post hoc tests (p < 0.05). Mineral loss in enamel and root dentin was detected when mouthwash and saliva substitutes were used alone, respectively (p < 0.05). Also, when mouthwash was used with saliva substitutes, the mineral loss was observed in enamel and root dentin (p < 0.05). The use of Xeromia and Drymund gel increased mineral loss of enamel significantly compared to the use of Oasis (p < 0.05). However, when Drymund gel and Xeromia were used in combination with mouthwash, mineral loss of enamel was significantly reduced compared to when they were used alone (p < 0.05). The pH values of Drymund gel, Xeromia, Oasis, and mouthwash were 5.5, 5.52, 6.2, and 6.37, respectively. Based on these results, it can be concluded that the use of mouthwash with a higher pH value than that of saliva substitutes could help patients suffering from xerostomia avoid the risk of dental erosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saliva%20substitute" title="saliva substitute">saliva substitute</a>, <a href="https://publications.waset.org/abstracts/search?q=mouthwash" title=" mouthwash"> mouthwash</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20erosion" title=" tooth erosion"> tooth erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20mouth" title=" dry mouth"> dry mouth</a> </p> <a href="https://publications.waset.org/abstracts/156425/the-effect-of-the-combination-of-mouthwash-and-saliva-substitutes-on-tooth-erosion-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5086</span> Design and Tooth Contact Analysis of Face Gear Drive with Modified Tooth Surface in Helicopter Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kawasaki">Kazumasa Kawasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Isamu%20Tsuji"> Isamu Tsuji</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Gunbara"> Hiroshi Gunbara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A face gear drive is actually composed of a spur or helical pinion that is in mesh with a face gear and transfers power and motion between intersecting or skew axes. Due to the peculiarity of the face gear drive in shunt and confluence drive, it shows potential advantages in the application in the helicopter transmission. The advantages of such applications are the possibility of the split of the torque that appears to be significant where a pinion drives two face gears to provide an accurate division of power and motion. This mechanism greatly reduces the weight and cost compared to conventional design. Therefore, this has been led to revived interest and the face gear drive has been utilized in substitution for bevel and hypoid gears in limited cases. The face gear drive with a spur or a helical pinion is newly designed in order to determine an effective meshing area under the design parameters and specific design dimensions. The face gear has two unique dimensions which control the face width of the tooth, and the outside and inside diameters of the face gear. On the other hand, it is necessary to modify the tooth surfaces of face gear drive in order to avoid the influences of alignment errors on the tooth contact patterns in practical use. In this case, the pinion tooth surfaces are usually modified in the conventional method. However, it is hard to control the tooth contact pattern intentionally and adjust the position of the pinion axis in meshing of the gear pair. Therefore, a method of the modification of the tooth surfaces of the face gear is proposed. Moreover, based on tooth contact analysis, the tooth contact pattern and transmission errors of the designed face gear drive are analyzed, and the influences of alignment errors on the tooth contact patterns and transmission errors are investigated. These results showed that the tooth contact patterns and transmission errors were controllable and the face gear drive which is insensitive to alignment errors can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alignment%20error" title="alignment error">alignment error</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20gear" title=" face gear"> face gear</a>, <a href="https://publications.waset.org/abstracts/search?q=gear%20design" title=" gear design"> gear design</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20transmission" title=" helicopter transmission"> helicopter transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20contact%20analysis" title=" tooth contact analysis"> tooth contact analysis</a> </p> <a href="https://publications.waset.org/abstracts/52629/design-and-tooth-contact-analysis-of-face-gear-drive-with-modified-tooth-surface-in-helicopter-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5085</span> Anatomical Adaptations of Three Astragalus Species under Salt Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faycal%20Boughalleb">Faycal Boughalleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoudha%20Abdellaoui"> Raoudha Abdellaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of NaCl stress on root and leaf anatomy was investigated in three Astragalus species grown in 0-300 mM NaCl for 30 days under greenhouse conditions. Root cross section and cortex thickness was reduced under salt stress in both species while A. tenuifolius showed thinner cortex and the root cross section was unchanged. The epidermis stele thickness was unaffected by salinity in A. armatus and A. tenuifolius and was reduced in A. mareoticus with smaller xylem vessel size. In addition, vessel density and wall thickness of xylem was increased under salt conditions in the studies species. The entire lamina and mesophyll of the three species were thinner in salt-stressed plants. A. armatus and A. tenuifolius showed the higher thickness with increased size of the lower epidermis. NaCl (300 mM) reduced leaf water content by 41.5 % in A. mareoticus while it was unchanged in the other species. The size of the vascular bundle increased under salinity in A. tenuifolius leaves and it was unchanged in the other ones. A longer distance between leaf vascular bundle was occurred in A. mareoticus. The effects of NaCl on root and leaf ultrastructure are discussed in relation to the degree of salt resistance of these species. The unchanged biomass production under salt stress confirmed the higher tolerance oft A. tenuifolius to salinity. A. armatus was moderately salt tolerant with decrease of biomass production by 14.2 % while A. mareoticus was considered as salt sensitive plant when the decrease in biomass production reached 56.8%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Astragalus%20species" title="Astragalus species">Astragalus species</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20ultrastructure" title=" leaf ultrastructure"> leaf ultrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20anatomy" title=" root anatomy"> root anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20stress" title=" salt stress "> salt stress </a> </p> <a href="https://publications.waset.org/abstracts/39708/anatomical-adaptations-of-three-astragalus-species-under-salt-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5084</span> Study of Salinity Stress and Calcium Interaction on Morphological and Physiological Traits of Vicia villosa under Hydroponic Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raheleh%20Khademian">Raheleh Khademian</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghayeh%20Aminian"> Roghayeh Aminian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the study of salinity stress on <em>Vicia villosa</em> and calcium effect for modulation of that, an experiment was conducted under hydroponic condition, and some important morphological and physiological characteristics were evaluated. This experiment was conducted as a factorial based on randomized complete design with three replications. The treatments include salinity stress in three levels (0, 50, and 100 mM NaCl) and calcium in two levels (content in Hoagland solution and double content). The results showed that all morphological and physiological traits include root and shoot length, root and shoot wet and dry weight, leaf area, leaf chlorophyll content, RWC, CMS, and biological yield was significantly different from the control and is affected by the salinity stress severely. But, calcium effect on them was not significant despite of decreasing salinity effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vicia%20villossa" title="Vicia villossa">Vicia villossa</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20stress" title=" salinity stress"> salinity stress</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title=" hydroponic"> hydroponic</a> </p> <a href="https://publications.waset.org/abstracts/55356/study-of-salinity-stress-and-calcium-interaction-on-morphological-and-physiological-traits-of-vicia-villosa-under-hydroponic-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5083</span> Genetic Divergence Study of Rice on the Basis of Various Morphological Traits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashfaq">Muhammad Ashfaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saleem%20Haider"> Muhammad Saleem Haider</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ali"> Muhammad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sajjad"> Muhammad Sajjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amna%20Ali"> Amna Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Urooj%20Mubashar"> Urooj Mubashar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenotypic diversity was confirmed by measuring different morphological traits i.e. seed traits (seed length, seed width, seed thickness, seed length-width ratio, 1000 grain weight) and root-shoot traits (shoot length, root length, shoot fresh weight, root fresh weight, root-shoot ratio, root numbers and root thickness). Variance and association study of desirable traits determine the genotypic differences among the rice germplasm. All the traits showed significant differences among the genotypes. The traits were studied in Randomized complete block design (RCBD) at different water levels. Some traits showed positive correlation with each other and beneficial for increasing the yield and production of the crop. Seed thickness has positive correlation with seed length and seed width (r= 0.104**, r=0.246**). On the other hand, various root shoot traits showed positive highly significant association at different water levels i.e. root length, fresh root weight, root thickness, shoot thickness and root numbers. Our main focus to study the performance/correlation of root shoots traits under stress condition. Fresh root weight, shoot thickness and root numbers showed positive significant association with shoot length, root length, fresh root and shoot weight (r=0.2530**, r=0.2891**, r=0.4626**, r=0.4515**, r=0.5781**, r=0.7164**, r=0.0603**, r= 0.5570**, r=0.5824**). Long root length genotypes favors and suitable for drought stress conditions and screening of diverse genotypes for the further development of new plant material that performing well under different environmental conditions. After screening genetic diversity of potential rice, lines were studied to check the polymorphism by using some SSR markers. DNA was extracted, and PCR analyses were done to study PIC values and allelic diversity of the genotypes. The main objective of this study is to screen out the genotypes on the basis of various genotypic and phenotypic traits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20traits" title=" morphological traits"> morphological traits</a>, <a href="https://publications.waset.org/abstracts/search?q=association" title=" association"> association</a>, <a href="https://publications.waset.org/abstracts/search?q=germplasm" title=" germplasm"> germplasm</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20levels" title=" water levels"> water levels</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a> </p> <a href="https://publications.waset.org/abstracts/53359/genetic-divergence-study-of-rice-on-the-basis-of-various-morphological-traits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5082</span> Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Vahedi%20Torshizi">Mohammad Vahedi Torshizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20stress" title="bending stress">bending stress</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plantary" title=" plantary"> plantary</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20equations" title=" mathematical equations"> mathematical equations</a> </p> <a href="https://publications.waset.org/abstracts/58238/checking-planetary-clutch-on-the-romania-tractor-using-mathematical-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5081</span> Combination of Silver-Curcumin Nanoparticle for the Treatment of Root Canal Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Gowri">M. Gowri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20K.%20Girija"> E. K. Girija</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ganesh"> V. Ganesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate C. albicans. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against Candida albicans. Detailed molecular studies were carried out with silver-curcumin nanoparticle on C. albicans pathogenicity. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on C. albicans was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against C. albicans. Silver-curcumin nanoparticle exerted time kill effect and post antifungal effect. When used in combination with fluconazole or nystatin, silver-curcumin nanoparticle revealed a minimum inhibitory concentration (MIC) decrease for both drugs used. In-depth molecular studies with silver-curcumin nanoparticle on C. albicans showed that silver-curcumin nanoparticle inhibited yeast to hyphae (Y-H) conversion. Further, SEM images of C. albicans showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of C. albicans and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Conclusion: The results of this study can pave the way for developing new antifungal agents with well deciphered mechanisms of action and can be a promising antifungal agent or medicament against root canal infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20albicans" title="C. albicans">C. albicans</a>, <a href="https://publications.waset.org/abstracts/search?q=ex%20vivo%20dentine%20model" title=" ex vivo dentine model"> ex vivo dentine model</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20biofilm%20formation" title=" inhibition of biofilm formation"> inhibition of biofilm formation</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20canal%20infection" title=" root canal infection"> root canal infection</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast%20to%20hyphae%20conversion%20inhibition" title=" yeast to hyphae conversion inhibition"> yeast to hyphae conversion inhibition</a> </p> <a href="https://publications.waset.org/abstracts/73620/combination-of-silver-curcumin-nanoparticle-for-the-treatment-of-root-canal-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5080</span> Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raad%20Hassan">Ali Raad Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=involute" title="involute">involute</a>, <a href="https://publications.waset.org/abstracts/search?q=trochoid" title=" trochoid"> trochoid</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20shift%20factor" title=" profile shift factor"> profile shift factor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/88687/pressure-angle-and-profile-shift-factor-effects-on-the-natural-frequency-of-spur-tooth-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5079</span> 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azin%20Zargham">Azin Zargham</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Rouhi"> Gholamreza Rouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Allahyar%20Geramy"> Allahyar Geramy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20remodeling" title="bone remodeling">bone remodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20bone%20loss" title=" horizontal bone loss"> horizontal bone loss</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20tooth%20movement." title=" orthodontic tooth movement."> orthodontic tooth movement.</a> </p> <a href="https://publications.waset.org/abstracts/38672/3d-simulation-of-orthodontic-tooth-movement-in-the-presence-of-horizontal-bone-loss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5078</span> Germination and Seed Vigor Response of Five Wheat Cultivars to Stress of Premature Aging Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Soltani%20Howyzeh">Mehdi Soltani Howyzeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Kardoni"> Neda Kardoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mani%20Mojadam"> Mani Mojadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the vigor of wheat seeds and stress of premature aging effects on germination percentage, root length and shoot length of five wheat cultivars that include Vynak, Karkheh, Chamran, Star and Kavir which underwent a period of zero, two, three, four days in terms of premature aging with 41 °C temperature and 100% relative humidity. Seed germination percentage, root length and shoot length in these conditions were measured. This experiment was conducted as a factorial completely randomized design with four replications in laboratory conditions. The results showed that each of aging treatments used in this experiment can be used to detect differences in vigor of wheat varieties. Wheat cultivars illustrated significant differences in germination percentage, root length and shoot length in terms of premature aging. The wheat cultivars; Astar and Vynak had maximum germination percentage and Karkheh, respectively Kavir and Chamran had lowest percentage of seed germination. Reactions of root and shoot length of wheat cultivars was also different. The results showed that the seeds with a stronger vigor affected less in premature aging condition and the difference between the percentage of seed germination under normal conditions and stress was significant and the seeds with the weaker vigor were more sensitive to the premature aging stress and the premature aging had more severe negative impact on seed vigor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20cultivars" title="wheat cultivars">wheat cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20vigor" title=" seed vigor"> seed vigor</a>, <a href="https://publications.waset.org/abstracts/search?q=premature%20aging%20effects" title=" premature aging effects"> premature aging effects</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination "> germination </a> </p> <a href="https://publications.waset.org/abstracts/32327/germination-and-seed-vigor-response-of-five-wheat-cultivars-to-stress-of-premature-aging-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5077</span> The Orthodontic Management of Multiple Tooth Agenesis with Macroglossia in Adult Patient: Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanuarti%20Retnaningrum">Yanuarti Retnaningrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Cendrawasih%20A.%20Farmasyanti"> Cendrawasih A. Farmasyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuswahyuning"> Kuswahyuning</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthodontists find challenges in treating patients who have cases of macroglossia and multiple tooth agenesis because difficulties in determining the causes, formulating a diagnosis and the potential for relapse after treatment. Definition of macroglossia is a tongue enlargement due to muscle hypertrophy, tumor or an endocrine disturbance. Macroglossia may cause many problems such as anterior proclination of upper and lower incisors, development of general diastema and anterior and/ or posterior open bite. Treatment for such patients with multiple tooth agenesis and macroglossia can be complex and must consider orthodontic and/or surgical interventions. This article discusses an orthodontic non surgical approach to a patient with a general diastema in both maxilla and mandible associated with multiple tooth agenesis and macroglossia. Fixed orthodontic therapy with straightwire appliance was used for space closure in anterior region of maxilla and mandible, also to create a space suitable for future prosthetic restoration. After 12 months treatment, stable and functional occlusal relationships was achieved, although still have edentulous area in both maxilla and mandible. At the end of the orthodontic treatment was obtained with correct overbite and overjet values. After removal of the brackets, a maxillary and mandibular removable retainer combine with artificial tooth were placed for retention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20diastema" title="general diastema">general diastema</a>, <a href="https://publications.waset.org/abstracts/search?q=macroglossia" title=" macroglossia"> macroglossia</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20closure" title=" space closure"> space closure</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20agenesis" title=" tooth agenesis"> tooth agenesis</a> </p> <a href="https://publications.waset.org/abstracts/75723/the-orthodontic-management-of-multiple-tooth-agenesis-with-macroglossia-in-adult-patient-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5076</span> Role of Salicylic Acid in Alleviating Chromium Toxicity in Chickpea (Cicer Arietinum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Hassan%20Abbasi">Ghulam Hassan Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moazzam%20Jamil"> Moazzam Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghazala%20Akhtar"> Ghazala Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Anwar-ul-Haq"> M.Anwar-ul-Haq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while salicylic acid (SA) is signaling and ubiquitous bioactive molecule that regulates cellular mechanism in plants under stress condition. Therefore, exogenous application of salicylic acid (SA) under chromium stress in two chickpea varieties were investigated in hydroponic experiment with five treatments comprising of control, 5 µM Cr + 5 mM SA, 5µM Cr + 10 mM SA, 10µM Cr + 5 mM SA, and 10µM Cr + 10 mM SA. Results revealed that treatments of plants with 10 mM SA application under both 5 µM Cr and 10 µM Cr stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, membrane stability index and relative water contents) relative to 5 mM SA application in both chickpea varieties. Results regarding Cr concentration showed that Cr was more retained in roots followed by shoots and maximum reduction in Cr uptake was observed at 10 mM SA application. Chickpea variety BRC-61 showed maximum growth and least concentration of Cr in root and shoot relative to BRC-390 variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=Chickpea" title=" Chickpea"> Chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a> </p> <a href="https://publications.waset.org/abstracts/21486/role-of-salicylic-acid-in-alleviating-chromium-toxicity-in-chickpea-cicer-arietinum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5075</span> Improvement of the Geometric of Dental Bridge Framework through Automatic Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rong-Yang%20Lai">Rong-Yang Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Yu%20Wu"> Jia-Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chung%20Chen"> Yung-Chung Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20bridge" title="dental bridge">dental bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20program" title=" automatic program"> automatic program</a> </p> <a href="https://publications.waset.org/abstracts/66121/improvement-of-the-geometric-of-dental-bridge-framework-through-automatic-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5074</span> Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li">Hong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tingxian%20Li"> Tingxian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Wang"> Xudong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qinghuo%20Lin"> Qinghuo Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20N%20fixation" title="atmospheric N fixation">atmospheric N fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20nodulation" title=" root nodulation"> root nodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20Fe%20co-variance" title=" soil Fe co-variance"> soil Fe co-variance</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20ureide" title=" stem ureide"> stem ureide</a>, <a href="https://publications.waset.org/abstracts/search?q=yardlong-bean%20plants" title=" yardlong-bean plants"> yardlong-bean plants</a> </p> <a href="https://publications.waset.org/abstracts/10233/effects-of-excess-iron-stress-on-symbiotic-nitrogen-fixation-efficiency-of-yardlong-bean-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=170">170</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=171">171</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10