CINXE.COM

Search results for: enhancement absorbed heat

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: enhancement absorbed heat</title> <meta name="description" content="Search results for: enhancement absorbed heat"> <meta name="keywords" content="enhancement absorbed heat"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="enhancement absorbed heat" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="enhancement absorbed heat"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4464</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: enhancement absorbed heat</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4464</span> Enhancement of Solar Energy Storage by Nanofluid-Glass Impurities Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Lafta%20Rashid">Farhan Lafta Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Khudhair%20Abass%20Dawood"> Khudhair Abass Dawood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hashim"> Ahmed Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advancements in nanotechnology have originated the new emerging heat transfer fluids called nanofluids. Nanofluids are prepared by dispersing and stably suspending nanometer sized solid particles in conventional heat transfer fluids. Past researches have shown that a very small amount of suspending nano-particles have the potential to enhance the thermo physical, transport, and radiative properties of the base fluid. At this research adding very small quantities of nano particle (TiO2) to pure water with different weights percent ranged 0.1, 0.2, 0.3, and 0.4 wt.%, we found that the best weight percent is 0.2 that gave more heat absorbed. Then adding glass impurities ranged 10, 20, and 30 wt. Percentage to the nano-fluid in order to enhance the absorbed heat so energy storage. The best glass weights percent is 0.3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat" title=" enhancement absorbed heat"> enhancement absorbed heat</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20impurities" title=" glass impurities"> glass impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/2555/enhancement-of-solar-energy-storage-by-nanofluid-glass-impurities-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4463</span> Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Estrada">Nathan Estrada</a>, <a href="https://publications.waset.org/abstracts/search?q=Fangjun%20Shu"> Fangjun Shu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanxing%20Wang"> Yanxing Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title="fluid mechanics">fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20herringbone%20mixer" title=" staggered herringbone mixer"> staggered herringbone mixer</a> </p> <a href="https://publications.waset.org/abstracts/164652/effect-of-tilt-angle-of-herringbone-microstructures-on-enhancement-of-heat-and-mass-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4462</span> Heat Transfer Enhancement Using Aluminium Oxide Nanofluid: Effect of the Base Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Amoura">M. Amoura</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benmoussa"> M. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zeraibi"> N. Zeraibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow and heat transfer is an important phenomenon in engineering systems due to its wide application in electronic cooling, heat exchangers, double pane windows etc.. The enhancement of heat transfer in these systems is an essential topic from an energy saving perspective. Lower heat transfer performance when conventional fluids, such as water, engine oil and ethylene glycol are used hinders improvements in performance and causes a consequent reduction in the size of such systems. The use of solid particles as an additive suspended into the base fluid is a technique for heat transfer enhancement. Therefore, the heat transfer enhancement in a horizontal circular tube that is maintained at a constant temperature under laminar regime has been investigated numerically. A computational code applied to the problem by use of the finite volume method was developed. Nanofluid was made by dispersion of Al2O3 nanoparticles in pure water and ethylene glycol. Results illustrate that the suspended nanoparticles increase the heat transfer with an increase in the nanoparticles volume fraction and for a considered range of Reynolds numbers. On the other hand, the heat transfer is very sensitive to the base fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al2O3%20nanoparticles" title="Al2O3 nanoparticles">Al2O3 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20tube" title=" circular tube"> circular tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfert%20enhancement" title=" heat transfert enhancement"> heat transfert enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/38043/heat-transfer-enhancement-using-aluminium-oxide-nanofluid-effect-of-the-base-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4461</span> Experimental Study of Heat Transfer Enhancement Using Protruded Rectangular Fin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarique%20Jamil%20Khan">Tarique Jamil Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Pande"> Swapnil Pande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation deals with the study of heat transfer enhancement using protruded square fin. This study is enough to determine whether protrusion in forced convection is enough to enhance the rate of heat transfer. It includes the results after performing experiments by using a plane rectangular fin of aluminum material and the same dimension rectangular fin of the same material but having protruded circular shape extended normally. The fins made by a sand casting method. The results clearly mentioned that the protruded surface is effective enough to enhance the rate of heat transfer. This research investigates a modern fin topologies heat transfer characteristics that will clearly outdated the conventional fin to increase the rate of heat transfer. Protruded fins improve the rate of heat transfer compared to solid fin by varying shape of the protrusion in diameter and height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title="heat transfer enhancement">heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=protruted%20fin" title=" protruted fin"> protruted fin</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20fin" title=" rectangular fin"> rectangular fin</a> </p> <a href="https://publications.waset.org/abstracts/56370/experimental-study-of-heat-transfer-enhancement-using-protruded-rectangular-fin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4460</span> Numerical and Experimental Study of Heat Transfer Enhancement with Metal Foams and Ultrasounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Slimani">L. Slimani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bousri"> A. Bousri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamadouche"> A. Hamadouche</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ben%20Hamed"> H. Ben Hamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this experimental and numerical study is to analyze the effects of acoustic streaming generated by 40 kHz ultrasonic waves on heat transfer in forced convection, with and without 40 PPI aluminum metal foam. Preliminary dynamic and thermal studies were done with COMSOL Multiphase, to see heat transfer enhancement degree by inserting a 40PPI metal foam (10 &times; 2 &times; 3 cm) on a heat sink, after having determined experimentally its permeability and Forchheimer&#39;s coefficient. The results obtained numerically are in accordance with those obtained experimentally, with an enhancement factor of 205% for a velocity of 0.4 m/s compared to an empty channel. The influence of 40 kHz ultrasound on heat transfer was also tested with and without metallic foam. Results show a remarkable increase in Nusselt number in an empty channel with an enhancement factor of 37,5%, while no influence of ultrasound on heat transfer in metal foam presence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20streaming" title="acoustic streaming">acoustic streaming</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancing%20heat%20transfer" title=" enhancing heat transfer"> enhancing heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20foam" title=" metal foam"> metal foam</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/135365/numerical-and-experimental-study-of-heat-transfer-enhancement-with-metal-foams-and-ultrasounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4459</span> Heat Transfer Studies on CNT Nanofluids in a Turbulent Flow Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Rashmi">W. Rashmi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid"> M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Seiksan"> O. Seiksan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Saidur"> R. Saidur</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Ismail"> A. F. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanofluids have received much more attention since its discovery. They are believed to be promising coolants in heat transfer applications due to their enhanced thermal conductivity and heat transfer characteristics. In this study, the enhancement in heat transfer of CNT-nanofluids under turbulent flow conditions is investigated experimentally. Carbon nanotube (CNTs) concentration was varied between 0.051-0.085 wt%. The nanofluid suspension was stabilized by gum arabic (GA) through a process of homogenisation and sonication. The flow rates of cold fluid (water) is varied from 1.7-3 L/min and flow rates of the hot fluid is varied between 2-3.5 L/min. Thermal conductivity, density and viscosity of the nanofluids were also measured as a function of temperature and CNT concentration. The experimental results are validated with theoretical correlations for turbulent flow available in the literature. Results showed an enhancement in heat transfer range between 9-67% as a function of temperature and CNT concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title="nanofluids">nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes%20%28CNT%29" title=" carbon nanotubes (CNT)"> carbon nanotubes (CNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/13300/heat-transfer-studies-on-cnt-nanofluids-in-a-turbulent-flow-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4458</span> Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feyza%20Eda%20Akyurek">Feyza Eda Akyurek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayram%20Sahin"> Bayram Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Gelis"> Kadir Gelis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyuphan%20Manay"> Eyuphan Manay</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ceylan"> Murat Ceylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbulent forced convection heat transfer and pressure drop characteristics of Al<sub>2</sub>O<sub>3</sub>&ndash;water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulators" title="turbulators">turbulators</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a> </p> <a href="https://publications.waset.org/abstracts/53841/thermal-performance-analysis-of-nanofluids-in-a-concetric-heat-exchanger-equipped-with-turbulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4457</span> The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Akhavan-Behabadi">M. A. Akhavan-Behabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafi"> M. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbasi"> A. Abbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20fluids" title="nano fluids">nano fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=flattend%20tube" title=" flattend tube"> flattend tube</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20phenomena" title=" transport phenomena"> transport phenomena</a> </p> <a href="https://publications.waset.org/abstracts/16639/the-effect-of-adding-cuo-nanoparticles-on-boiling-heat-transfer-enhancement-in-horizontal-flattened-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4456</span> Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Etaig">S. Etaig</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hasan"> R. Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Perera"> N. Perera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid%20and%20thermal%20conductivity" title=" nanofluid and thermal conductivity"> nanofluid and thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/17467/investigation-of-enhancement-of-heat-transfer-in-natural-convection-utilizing-of-nanofluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4455</span> Effect of Flow Holes on Heat Release Performance of Extruded-Type Heat Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hyun%20Kim">Jung Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5°C by the holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title="heat sink">heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20holes" title=" flow holes"> flow holes</a> </p> <a href="https://publications.waset.org/abstracts/8516/effect-of-flow-holes-on-heat-release-performance-of-extruded-type-heat-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4454</span> Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Boulemtafes-Boukadoum">Amel Boulemtafes-Boukadoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Benzaoui"> Ahmed Benzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title="solar air heater">solar air heater</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20roughness" title=" artificial roughness"> artificial roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/29694/heat-and-flow-analysis-of-solar-air-heaters-with-artificial-roughness-on-the-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4453</span> Investigation of Heat Transfer of Nanofluids in Circular Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayram%20Sahin">Bayram Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hourieh%20Bayramian"> Hourieh Bayramian</a>, <a href="https://publications.waset.org/abstracts/search?q=Emre%20Mandev"> Emre Mandev</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ceylan"> Murat Ceylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In industrial applications, the demand for the enhancement of heat transfer is a common engineering problem. The use of additives to heat transfer fluid is a technique applied to enhance the heat transfer performance of base fluids. In this study, the thermal performance of nanofluids consisting of SiO2 particles and deionized water in circular microchannels was investigated experimentally. SiO2 nanoparticles with diameter of 15 nm were added to water to prepare nanofluids with 0.2% and 0.4% volume fractions. Heat transfer characteristics were calculated by using temperature, flow and pressure measurements. The thermal conductivity and viscosity values required for the calculations are measured separately. It is observed that the Nusselt number increases at the all volume fraction of particles, by increasing the Reynolds number and the volumetric ratios of the particles. The highest heat transfer enhancement is obtained at Re = 2160 and 0.4 % vol. by 14% under the condition of a constant pumping power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=SiO2-water%20nanofluid" title=" SiO2-water nanofluid"> SiO2-water nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/91349/investigation-of-heat-transfer-of-nanofluids-in-circular-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4452</span> Human Absorbed Dose Assessment of 68Ga-Dotatoc Based on Biodistribution Data in Syrian Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri">S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naderi"> M. Naderi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramazani"> A. Ramazani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to evaluate the values of absorbed dose of 68Ga-DOTATOC in numerous human organs. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37° C at least 2 h after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreas and adrenal. The absorbed dose received by human organs was evaluated based on biodistribution studies in Syrian rats by the radiation absorbed dose assessment resource (RADAR) method. Maximum absorbed dose was obtained in the pancreas, kidneys, and adrenal with 0.105, 0.074, and 0.010 mGy/MBq, respectively. The effective absorbed dose was 0.026 mSv/MBq for 68Ga-DOTATOC. The results showed that 68Ga-DOTATOC can be considered as a safe and effective agent for clinically PET imaging applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20absorbed%20dose" title="effective absorbed dose">effective absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-68" title=" Ga-68"> Ga-68</a>, <a href="https://publications.waset.org/abstracts/search?q=octreotide" title=" octreotide"> octreotide</a>, <a href="https://publications.waset.org/abstracts/search?q=MIRD" title=" MIRD"> MIRD</a> </p> <a href="https://publications.waset.org/abstracts/32477/human-absorbed-dose-assessment-of-68ga-dotatoc-based-on-biodistribution-data-in-syrian-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4451</span> Determination of Forced Convection Heat Transfer Performance in Lattice Geometric Heat Sinks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayram%20Sahin">Bayram Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Baris%20Gezdirici"> Baris Gezdirici</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ceylan"> Murat Ceylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Ates"> Ibrahim Ates</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experimental study, the effects of heat transfer and flow characteristics on lattice geometric heat sinks, where high rates of heat removal are required, were investigated. The design parameters were Reynolds number, the height of heat sink (H), horizontal (Sy) and vertical (Sx) distances between heat sinks. In the experiments, the Reynolds number ranged from 4000 to 20000; heat sink heights were (H) 20 mm and 40 mm; the distances (Sy) between the heat sinks in the flow direction were45 mm, 32 mm, 23.3 mm; the distances (Sx) between the heat sinks perpendicular to the flow direction were selected to be 23.3 mm, 12.5 mm and 6 mm. A total of 90 experiments were conducted and the maximum Nusselt number and minimum friction coefficient were targeted. Experimental results have shown that heat sinks in lattice geometry have a significant effect on heat transfer enhancement. Under the different experimental conditions, the highest increase in Nusselt number was 283% while the lowest increase was calculated as 66% as compared with the straight channel results. The lowest increase in the friction factor was also obtained as 173% according to the straight channel results. It is seen that the increase in heat sink height and flow velocity increased the level of turbulence in the channel, leading to higher Nusselt number and friction factor values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title="forced convection">forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20geometric%20heat%20sinks" title=" lattice geometric heat sinks"> lattice geometric heat sinks</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/90453/determination-of-forced-convection-heat-transfer-performance-in-lattice-geometric-heat-sinks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4450</span> Heat Transfer Performance for Turbulent Flow through a Tube Using Baffles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Benabderrahmane">Amina Benabderrahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelylah%20Benazza"> Abdelylah Benazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Laouedj"> Samir Laouedj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three dimensional numerical investigation of heat transfer enhancement inside a non-uniformly heated parabolic trough solar collector fitted with baffles under turbulent flow was studied in the current paper. Molten salt is used as heat transfer fluid and simulations are carried out in ANSYS computational fluid dynamics (CFD). The present data was validating by the empirical correlations available in the literatures and good agreement was obtained. The Nusselt number and friction factor values for using baffles are considerably higher than that for smooth pipe. The emplacement and the distance between two consecutive baffles have an effect non-negligible on heat transfer characteristics; the results demonstrate that the temperature gradient reduces with the inclusion of inserts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baffles" title="Baffles">Baffles</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title=" molten salt"> molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20ray%20trace%20technique" title=" Monte Carlo ray trace technique"> Monte Carlo ray trace technique</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20investigation" title=" numerical investigation "> numerical investigation </a> </p> <a href="https://publications.waset.org/abstracts/56049/heat-transfer-performance-for-turbulent-flow-through-a-tube-using-baffles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4449</span> Enhancement of Thermal Performance of Latent Heat Solar Storage System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishindra%20M.%20Sarviya">Rishindra M. Sarviya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Agrawal"> Ashish Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=latent%20heat" title="latent heat">latent heat</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title=" numerical study"> numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/47333/enhancement-of-thermal-performance-of-latent-heat-solar-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4448</span> Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irnie%20Zakaria">Irnie Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20N.%20W.%20Mohamed"> W. A. N. W. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20Azmi"> W. H. Azmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mini%20channel" title=" mini channel"> mini channel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=PEMFC" title=" PEMFC"> PEMFC</a> </p> <a href="https://publications.waset.org/abstracts/31505/thermal-analysis-on-heat-transfer-enhancement-and-fluid-flow-for-al2o3-water-ethylene-glycol-nano-fluid-in-single-pemfc-mini-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4447</span> Experimental Investigation on the Effect of Adding CuO Nanoparticles to R-600a Refrigerant on Heat Transfer Enhancement of a Horizontal Flattened Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Akhavan-Behabadi">M. A. Akhavan-Behabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafi"> M. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbasi"> A. Abbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused significant enhancement in heat transfer performance so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20particles" title="nano particles">nano particles</a>, <a href="https://publications.waset.org/abstracts/search?q=flattend%20tube" title=" flattend tube"> flattend tube</a>, <a href="https://publications.waset.org/abstracts/search?q=R600a" title=" R600a"> R600a</a>, <a href="https://publications.waset.org/abstracts/search?q=CuO" title=" CuO"> CuO</a> </p> <a href="https://publications.waset.org/abstracts/16640/experimental-investigation-on-the-effect-of-adding-cuo-nanoparticles-to-r-600a-refrigerant-on-heat-transfer-enhancement-of-a-horizontal-flattened-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4446</span> Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand">H. Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tajerian"> M. Tajerian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20heat%20pipe" title="micro heat pipe">micro heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic%20force" title=" electrohydrodynamic force"> electrohydrodynamic force</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20temperature" title=" average temperature"> average temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a> </p> <a href="https://publications.waset.org/abstracts/72377/two-dimensional-steady-state-modeling-of-temperature-profile-and-heat-transfer-of-electrohydrodynamically-enhanced-micro-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4445</span> Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Kouidri">A.Kouidri</a>, <a href="https://publications.waset.org/abstracts/search?q=B.Madani"> B.Madani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the study of the heat transfer in a rectangular channel equipped with a metallic foam. The tested metallic foam sample is made from copper with 20 PPI (Pore per Inch Linear) and 93% of porosity and the working fluid used is the n-pentane. In the present work the independent variables are the velocity in the range from 0.02 to 0.06 m/s and a boiling heat flux rate varying between 30 and 70 kW/m2. The heat transfer coefficient is presented versus boiling heat flux, vapor quality and superheat ΔTsat. The thermal results are compared to those found for a plain tube for the same conditions. The comparison with the plain tube shows that the insert of a metallic foam enhances the heat transfer coefficient by a factor between 1.3 and 3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiling" title="boiling">boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20foam" title=" metallic foam"> metallic foam</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20heat%20exchanger" title=" plate heat exchanger"> plate heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/43857/heat-transfer-enhancement-using-copper-metallic-foam-during-convective-boiling-in-a-plate-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4444</span> Comparative Study between the Absorbed Dose of 67ga-Ecc and 68ga-Ecc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shanesazzadeh"> S. Shanesazzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Lahooti"> A.Lahooti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, 68Ga-ECC and 67Ga-ECC were both prepared with the radiochemical purity of higher than 97% in less than 30 min. The biodistribution data for 68Ga-ECC showed the extraction of the most of the activity from the urinary tract. The absorbed dose was estimated based on biodistribution data in mice by the medical internal radiation dose (MIRD) method. Comparison between human absorbed dose estimation for these two agents indicated the values of approximately ten-fold higher after injection of 67Ga-ECC than 68Ga-ECC in the most organs. The results showed that 68Ga-ECC can be considered as a more potential agent for renal imaging compared to 67Ga-ECC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20absorbed%20dose" title="effective absorbed dose">effective absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylenecysteamine%20cysteine" title=" ethylenecysteamine cysteine"> ethylenecysteamine cysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-67" title=" Ga-67"> Ga-67</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-68" title=" Ga-68"> Ga-68</a> </p> <a href="https://publications.waset.org/abstracts/32476/comparative-study-between-the-absorbed-dose-of-67ga-ecc-and-68ga-ecc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4443</span> Experimental Analysis on Heat Transfer Enhancement in Double Pipe Heat Exchanger Using Al2O3/Water Nanofluid and Baffled Twisted Tape Inserts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratheesh%20Radhakrishnan">Ratheesh Radhakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Sreekumar"> P. C. Sreekumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Krishnamoorthy"> K. Krishnamoorthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer augmentation techniques ultimately results in the reduction of thermal resistance in a conventional heat exchanger by generating higher convective heat transfer coefficient. It also results in reduction of size, increase in heat duty, decrease in approach temperature difference and reduction in pumping power requirements for heat exchangers. Present study deals with compound augmentation technique, which is not widely used. The study deals with the use of Alumina (Al2O3)/water nanofluid and baffled twisted tape inserts in double pipe heat exchanger as compound augmentation technique. Experiments were conducted to evaluate the heat transfer coefficient and friction factor for the flow through the inner tube of heat exchanger in turbulent flow range (8000<Re<60000). It is observed that the equation of Dittus-Boelter applicable for turbulent flow regime shows good agreement with the experimental values for smooth tube. The effect of rectangular, circular, triangular baffled twisted tape having twist ratio (y/w) 4.2 and twisted tapes without baffles of twist ratio (y/w) 4.2 and 5.2 were studied. Experiments were conducted for both water and Alumina/water nanofluid. Al2O3 nanoparticle of 22nm size were purchased, characterized and dispersed in de-ionized water to form stable suspension containing 0.1% volume concentration of nanoparticles. The results showed that there is noticeable enhancement in the heat transfer coefficient with the use of baffled twisted tape and nanofluid .It is also observed that the friction factor for nanofluid and water is almost the same. It is found that the enhancement of heat transfer coefficient by using rectangular baffled twisted tape and nanofluid is about 20%. Performance evaluation criteria were found for water and nanofluid ant it was observed that rectangular baffled twisted tape performs better than other twisted tapes. The maximum value of performance evaluation criteria for nanofluid is obtained as 2.62 at Reynolds number 8483 for rectangular baffled twisted tape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhancement" title="enhancement">enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20tape" title=" twisted tape"> twisted tape</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/9936/experimental-analysis-on-heat-transfer-enhancement-in-double-pipe-heat-exchanger-using-al2o3water-nanofluid-and-baffled-twisted-tape-inserts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4442</span> Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Amiri">Ahmad Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20K.%20Arzani"> Hamed K. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20T.%20Chew"> B. T. Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection%20flow" title=" forced convection flow"> forced convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=annular" title=" annular"> annular</a>, <a href="https://publications.waset.org/abstracts/search?q=annulus" title=" annulus"> annulus</a> </p> <a href="https://publications.waset.org/abstracts/54948/numerical-heat-transfer-performance-of-water-based-graphene-nanoplatelets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4441</span> Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwimon%20Saneewong%20Na%20Ayuttaya">Suwimon Saneewong Na Ayuttaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chainarong%20Chaktranond"> Chainarong Chaktranond</a>, <a href="https://publications.waset.org/abstracts/search?q=Phadungsak%20Rattanadecho"> Phadungsak Rattanadecho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180°. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60°C, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60°, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title="swirling flow">swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic" title=" electrohydrodynamic"> electrohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/9317/comparison-on-electrode-and-ground-arrangements-effect-on-heat-transfer-under-electric-force-in-a-channel-and-a-cavity-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4440</span> Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Togun">Hussein Togun</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuqa%20Abdulrazzaq"> Tuqa Abdulrazzaq</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Badarudin"> A. Badarudin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20A.%20Ariffin"> M. K. A. Ariffin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20M.%20Zubir"> M. N. M. Zubir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=separation%20flow" title="separation flow">separation flow</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20facing%20step" title=" backward facing step"> backward facing step</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a> </p> <a href="https://publications.waset.org/abstracts/5254/numerical-study-of-heat-transfer-and-laminar-flow-over-a-backward-facing-step-with-and-without-obstacle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4439</span> Heat Transfer Enhancement through Hybrid Metallic Nanofluids Flow with Viscous Dissipation and Joule Heating Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khawar%20Ali">Khawar Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the numerical study of unsteady hydromagnetic (MHD) flow and heat transfer characteristics of a viscous incompressible electrically conducting water-based hybrid metallic nanofluid (containing Cu-Au/ H₂O nanoparticles) between two orthogonally moving porous coaxial disks with suction. Different from the classical shooting methodology, we employ a combination of a direct and an iterative method (SOR with optimal relaxation parameter) for solving the sparse systems of linear algebraic equations arising from the FD discretization of the linearized self similar nonlinear ODEs. Effects of the governing parameters on the flow and heat transfer are discussed and presented through tables and graphs. The findings of the present investigation may be beneficial for the electronic industry in maintaining the electronic components under effectiveand safe operational conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title="heat transfer enhancement">heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20metallic%20nanofluid" title=" hybrid metallic nanofluid"> hybrid metallic nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation%20%20and%20joule%20heating%20effect" title=" viscous dissipation and joule heating effect "> viscous dissipation and joule heating effect </a>, <a href="https://publications.waset.org/abstracts/search?q=Two%20dimensional%20flow" title=" Two dimensional flow"> Two dimensional flow</a> </p> <a href="https://publications.waset.org/abstracts/129944/heat-transfer-enhancement-through-hybrid-metallic-nanofluids-flow-with-viscous-dissipation-and-joule-heating-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4438</span> Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahrukh%20Saeed">Muhammad Shahrukh Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ahmad%20Nameer"> Syed Ahmad Nameer</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafiq%20Ur%20Rehman"> Shafiq Ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Jillani"> Aisha Jillani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium" title=" aluminium"> aluminium</a>, <a href="https://publications.waset.org/abstracts/search?q=entry%20length" title=" entry length"> entry length</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a> </p> <a href="https://publications.waset.org/abstracts/41433/design-and-analysis-of-enhanced-heat-transfer-kit-for-plate-type-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4437</span> Enhancement of Pool Boiling Regimes by Sand Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Mazor">G. Mazor</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ladizhensky"> I. Ladizhensky</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shapiro"> A. Shapiro</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nemirovsky"> D. Nemirovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lot of researches was dedicated to the evaluation of the efficiency of the uniform constant and temporary coatings enhancing a heat transfer rate. Our goal is an investigation of the sand coatings distributed by both uniform and non-uniform forms. The sand of different sizes (0.2-0.4-0.6 mm) was attached to a copper ball (30 mm diameter) surface by means of PVA adhesive as a uniform layer. At the next stage, sand spots were distributed over the ball surface with an areal density that ranges between one spot per 1.18 cm² (for low-density spots) and one spot per 0.51 cm² (for high-density spots). The spot's diameter value varied from 3 to 6.5 mm and height from 0.5 to 1.5 mm. All coatings serve as a heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8-20.2 W/cm², depending on the sand layer structure. Application of the enhancing coating increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by a factor of 4.5 as compared to the bare sample. The non-uniform sand coatings were increasing the heat transfer rate value under all pool boiling conditions: nucleate boiling, transfer boiling and the most severe film boiling. A combination of uniform sand coating together with high-density sand spots increased the average heat transfer rate by a factor of 3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title="heat transfer enhancement">heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleate%20boiling" title=" nucleate boiling"> nucleate boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20boiling" title=" film boiling"> film boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20boiling" title=" transfer boiling"> transfer boiling</a> </p> <a href="https://publications.waset.org/abstracts/118417/enhancement-of-pool-boiling-regimes-by-sand-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4436</span> A Comparison of TLD Measurements to MIRD Estimates of the Dose to the Ovaries and Uterus from Tc-99m in Liver </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Adinehvand">Karim Adinehvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtiar%20Azadbakht"> Bakhtiar Azadbakht</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Sahebnasagh"> Amin Sahebnasagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relation to high absorption fraction of Tc SESTAMIBI by internal organs in heart scan, and these organs are near to generation organs (Ovaries and uterus). In this study, Liver is specified as source organ. Method: we have set amount of absorbed fraction radiopharmaceutical in position of Liver in RANDO-phantom in form of elliptical surfaces, then absorbed dose to ovaries and uterus measured by TLD-100 that had set at position of these organs in RANDO-phantom. Calculation had done by MIRD method. Results from direct measurement and MIRD method are too similar. The absorbed dose to uterus and ovaries for Rest are 26.05µGyMBq-1, 17.23µGyMBq-1 and for Stress are 2.04µGyMBq-1, 1.35µGyMBq-1 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title="absorbed dose">absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD" title=" TLD"> TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=MIRD" title=" MIRD"> MIRD</a>, <a href="https://publications.waset.org/abstracts/search?q=RANDO-phantom" title=" RANDO-phantom"> RANDO-phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=Tc-99m" title=" Tc-99m"> Tc-99m</a> </p> <a href="https://publications.waset.org/abstracts/23101/a-comparison-of-tld-measurements-to-mird-estimates-of-the-dose-to-the-ovaries-and-uterus-from-tc-99m-in-liver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4435</span> Numerical Investigation of Fluid Flow, Characteristics of Thermal Performance and Enhancement of Heat Transfer of Corrugated Pipes with Various Geometrical Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ramadhan%20Al-Obaidi">Ahmed Ramadhan Al-Obaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jassim%20Alhamid"> Jassim Alhamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, the flow pattern, characteristics of thermal-hydraulic, and improvement of heat transfer performance are evaluated using a numerical technique in three dimensions corrugated pipe heat exchanger. The modification was made under different corrugated pipe geometrical parameters, including corrugated ring angle (CRA), distance between corrugated ring (DBCR), and corrugated diameter (CD), the range of Re number from 2000 to 12000. The numerical results are validated with available experimental data. The numerical outcomes reveal that there is an important change in flow field behaviour and a significant increase in friction factor and improvement in heat transfer performance owing to the use of the corrugated shape in the heat exchanger pipe as compared to the conventional smooth pipe. Using corrugated pipe with different configurations makes the flow more turbulence, flow separation, boundary layer distribution, flow mixing, and that leads to augmenting the performance of heat transfer. Moreover, the value of pressure drop, and the Nusselt number increases as the corrugated pipe geometrical parameters increase. Furthermore, the corrugation configuration shapes have an important influence on the thermal evaluation performance factor, and the maximum value was more than 1.3. Numerical simulation can be performed to predict the various geometrical configurations effects on fluid flow, thermal performance, and heat transfer enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20ring%20angle" title="corrugated ring angle">corrugated ring angle</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20diameter" title=" corrugated diameter"> corrugated diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer "> heat transfer </a> </p> <a href="https://publications.waset.org/abstracts/127154/numerical-investigation-of-fluid-flow-characteristics-of-thermal-performance-and-enhancement-of-heat-transfer-of-corrugated-pipes-with-various-geometrical-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=148">148</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=149">149</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enhancement%20absorbed%20heat&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10