CINXE.COM

Search results for: LD50

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: LD50</title> <meta name="description" content="Search results for: LD50"> <meta name="keywords" content="LD50"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="LD50" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="LD50"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 35</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: LD50</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Protective Effect of Cow Urine against Chlorpyrifos Induced-Genotoxicity and Neurotoxicity in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shelly%20Sharma">Shelly Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Chadha"> Pooja Chadha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Humans are exposed to pesticides and insecticides either directly or indirectly. Exposure to these pesticides may lead to acute toxicity to mammals and non-target organisms. Chlorpyrifos (CPF) is a broad spectrum organophosphate pesticide widely used in various countries of the world. The aim of the present study was to assess the toxicity associated with chlorpyrifos exposure and possible mitigating effect of cow urine against genotoxic and toxic effects in rat brain induced by chlorpyrifos. For this purpose LD50 was determined and rats were orally administered with 1/8th of LD50 (19mg/kg b.wt). Brain samples were taken after 24hrs, 48hrs and 72hrs of treatment. A significant increase in the % tail DNA was observed along with the increase in MDA levels of brain tissues in chlorpyrifos treated groups as compared to control. Cow urine treated groups show decrease in DNA damage and MDA levels as compared to CPF treated group. The study indicates that cow urine has ameliorative potential against neurotoxicity and genotoxicity induced by CPF. Cow urine is considered rich in vitamin A, E and volatile fatty acids which provide antioxidant potential to it. Thus, it can be used as a genoprotective agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comet%20assay" title="comet assay">comet assay</a>, <a href="https://publications.waset.org/abstracts/search?q=brain" title=" brain"> brain</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20urine" title=" cow urine"> cow urine</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity "> toxicity </a> </p> <a href="https://publications.waset.org/abstracts/37381/protective-effect-of-cow-urine-against-chlorpyrifos-induced-genotoxicity-and-neurotoxicity-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Vertebrate Model to Examine the Biological Effectiveness of Different Radiation Qualities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Em%C3%ADlia%20Szab%C3%B3">Rita Emília Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%B3bert%20Polanek"> Róbert Polanek</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%BCnde%20T%C5%91k%C3%A9s"> Tünde Tőkés</a>, <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Szab%C3%B3"> Zoltán Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=Szabolcs%20Czifrus"> Szabolcs Czifrus</a>, <a href="https://publications.waset.org/abstracts/search?q=Katalin%20Hidegh%C3%A9ty"> Katalin Hideghéty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Several feature of zebrafish are making them amenable for investigation on therapeutic approaches such as ionizing radiation. The establishment of zebrafish model for comprehensive radiobiological research stands in the focus of our investigation, comparing the radiation effect curves of neutron and photon irradiation. Our final aim is to develop an appropriate vertebrate model in order to investigate the relative biological effectiveness of laser driven ionizing radiation. Methods and Materials: After careful dosimetry series of viable zebrafish embryos were exposed to a single fraction whole-body neutron-irradiation (1,25; 1,875; 2; 2,5 Gy) at the research reactor of the Technical University of Budapest and to conventional 6 MeV photon beam at 24 hour post-fertilization (hpf). The survival and morphologic abnormalities (pericardial edema, spine curvature) of each embryo were assessed for each experiment at 24-hour intervals from the point of fertilization up to 168 hpf (defining the dose lethal for 50% (LD50)). Results: In the zebrafish embryo model LD50 at 20 Gy dose level was defined and the same lethality were found at 2 Gy dose from the reactor neutron beam resulting RBE of 10. Dose-dependent organ perturbations were detected on macroscopic (shortening of the body length, spine curvature, microcephaly, micro-ophthalmia, micrognathia, pericardial edema, and inhibition of yolk sac resorption) and microscopic (marked cellular changes in skin, cardiac, gastrointestinal system) with the same magnitude of dose difference. Conclusion: In our observations, we found that zebrafish embryo model can be used for investigating the effects of different type of ionizing radiation and this system proved to be highly efficient vertebrate model for preclinical examinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title="ionizing radiation">ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=LD50" title=" LD50"> LD50</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20biological%20effectiveness" title=" relative biological effectiveness"> relative biological effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish%20embryo" title=" zebrafish embryo"> zebrafish embryo</a> </p> <a href="https://publications.waset.org/abstracts/42445/vertebrate-model-to-examine-the-biological-effectiveness-of-different-radiation-qualities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Lethal and Sublethal Effect of Azadirachtin on the Development of an Insect Model: Drosophila melanogaster (Diptera)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bendjazia%20Radia">Bendjazia Radia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Kilani-Morakchi"> Samira Kilani-Morakchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Aribi"> Nadia Aribi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. It is one of the most biologically active natural inhibitors of insect growth and development and it is known to be an antagonist of the juvenile hormone and 20-hydroxyecdysone (20E). However, its mechanism of action remains still unknown. In the present study, the toxicity of a commercial formulation of Azadirachtin (Neem Azal, 1% azadirachtine) was evaluated by topical application at various doses (0.1, 0.25, 0.5, 1 and 2 µg/insect) on the third instars larvae of D. melanogaster. Lethal doses (LD25: 0.28µg and LD50: 0.67µg), were evaluated by cumulated mortality at the immature stages. The effects of azadirachtin (LD25 and LD50) were then evaluated on the development (duration of the larval and pupal instars, the weight of larvae, pupa and adults) of Drosophila melanogaster. Results showed that the insecticide increased significantly the larval and pupal instar duration. A reduction of larval and pupal weight is noted under azadirachtin treatment as compared to controls. In addition, the weight of surviving adults at the two tested dose was also reduced. In conclusion, azadirachtin seemed to interfere with the functions of the endocrine system resulting in development defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azadirachtin" title="azadirachtin">azadirachtin</a>, <a href="https://publications.waset.org/abstracts/search?q=d.melanogaster" title=" d.melanogaster"> d.melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/31101/lethal-and-sublethal-effect-of-azadirachtin-on-the-development-of-an-insect-model-drosophila-melanogaster-diptera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Synthesis and Biological Evaluation of Pyridine Derivatives as Antimicrobial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dagim%20Ali%20Hussen">Dagim Ali Hussen</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20Bekhit"> Adnan A. Bekhit</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariaya%20Hymete"> Ariaya Hymete</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, several pyridine derivatives were synthesized and evaluated for their in vitro antimicrobial activity against gram-positive bacteria (S. aureus and B. Cereus), gram-negative bacteria (P. aeruginosa and E. coli) and fungus (C. albican and A niger). The intermediate chalcone derivative 2a,b was synthesized by condensation of pyrazole aldehydes 1a,b with acetophenone in alcoholic KOH. Cyclization of 2a,b with ethyl cyanoacetate ad ammonium acetate resulted in pyridine carbonitrile derivatives 3a,b. Furthermore, condensation of pyridine-4-carboxaldeyhe with different amino-derivatives gave rise to pyridine derivatives 5a,b, 6a,b. The oxadiazole derivative 7a was prepared by cyclization of 6a with acetic anhydride. Characterization of the synthesized compound was performed using IR, 1H NMR, 13C NMR spectra and elemental microanalyses. The antimicrobial results revealed that compounds 5a, 6b and 7a exhibited half fold antibacterial activity compared to ampicillin, against B. cereus. On the other hand, compound 3b showed an equivalent activity compared to miconazole against candida albican (CANDAL 03) and to clotrimazole against the clinical isolate candida albican 6647. Moreover, this compound 3b was further tested for its acute toxicity profile. The results showed that oral LD50 is more that 300 mg/kg and parentral LD50 is more than 100 mg/kg. Compound 3b is a good candidate for antifungal agent with good toxicity profile, and deserves more chemical derivatization and clinical study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal" title="antifungal">antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=Candida%20albican" title=" Candida albican"> Candida albican</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridine" title=" pyridine"> pyridine</a> </p> <a href="https://publications.waset.org/abstracts/26877/synthesis-and-biological-evaluation-of-pyridine-derivatives-as-antimicrobial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Comparision of Neospora caninum Experimental Infection in Pigeons and Chickens Embryonated Eggs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bahrami">S. Bahrami</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rezaie"> A. Rezaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Boroumand"> Z. Boroumand</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghavami"> S. Ghavami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neospora caninum is protozoan parasite which can cause a serious disease in dogs and cattle. It has been shown that birds may be a permissive intermediate host for N. caninum since parasite DNA has been detected in tissues from birds. It is showed that embryonated chicken egg can be used as an animal model for experimental infection. The aim of present study was to compare experimental infection of Neospora in chicken and pigeons embryonated eggs. An infection with N. caninum Nc1 isolate was conducted in chicken and pigeons embryonated eggs to evaluate LD50. After calculation of LD50, 2LD50 of tachyzoites were injected to eggs. Macroscopic changes of each embryo were noticed and to investigate the parasite distribution in tissues immunohistochemistry (IHC) and molecular methods were used. In the present study, histopathological changes were considered and sections to those used for histopathological examination including heart, liver, brain and chorioallantoic (CA) membrane were subjected to IHC, too. For PCR procedure, primer pair Np21/Np6 was used for amplification of the Nc5 gene. Pigeon's embryo showed more macroscopic changes than chicken embryo. A hemorrhage of the CA was the main grass lesion. All the infected tissues had histopathological changes. Microscopic examination of tissues revealed acute neosporosis due to hemorrhage, necrosis and infiltration of mononuclear inflammatory cells. Based on IHC and molecular results, the parasite aggregation in the heart was more predominant than in the other tissues. These results reinforce that there is genetic susceptibility to N. caninum in pigeons embryonated eggs like chickens embryonated eggs and provide new insights to research an inexpensive and available animal model for N. caninum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immunohistochemistry" title="immunohistochemistry">immunohistochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Neospora%20caninum" title=" Neospora caninum"> Neospora caninum</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=pigeon%20embryonated%20egg" title=" pigeon embryonated egg"> pigeon embryonated egg</a> </p> <a href="https://publications.waset.org/abstracts/41115/comparision-of-neospora-caninum-experimental-infection-in-pigeons-and-chickens-embryonated-eggs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Management of Insect Pests Using Baculovirus Based Biopesticides in India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mudasir%20Gani">Mudasir Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar%20Gupta"> Rakesh Kumar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamlesh%20Bali"> Kamlesh Bali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rouf%20Wani"> Abdul Rouf Wani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gypsy moth (Lymantria obfuscata) and tent caterpillar (Malacosoma indicum) are serious pests that attack a wide range of fruit and forest trees in Jammu & Kashmir range of North-Western Himalayas in India. Investigations were carried out to isolate and bioprospect naturally occurring nucleopolyhedroviruses (NPVs) as potent biopesticides against these pests. The biological and molecular characterization of NPV isolates from different ecosystems was conducted, and the polh, lef-8 and lef-9 genes were sequenced and subjected to phylogenetic analysis. The L. obfuscata NPV was more closely related to the L. dispar NPV, whereas M. indicum NPV was more closely related to the M. californicum NPV in the NCBI taxonomy database. Among different isolates, Bhaderwah isolates exhibited highest virus activity (LD₅₀ = 250 POBs/larvae) and speed of kill (ST₅₀ = 6.80 days) against L. obfuscata whereas Mahor isolates proved most virulent against M. indicum, with lowest LD₅₀ (257 POBs/larva) and ST₅₀ (6.80 days). The in vivo mass production for highest productivity and quality revealed that the optimum yield was obtained when 3rd instar larvae were inoculated with a viral dose of 1.44 × 105 POBs/larva and allowed to incubate for nine days for L. obfuscata. However, for M. indicum larvae, a viral dose of 2.88 × 10⁶ POBs/larva and incubation period of 10 days were found optimum. It was found that harvesting of moribund larvae yields good quality NPV. The field application of L. obfuscata NPV and M. indicum NPV against the respective host populations on apple and willow with the pre-standardized dosage of 1 × 10¹² POBs/acre reduced the larval population density up to 25-63%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baculoviruses" title="baculoviruses">baculoviruses</a>, <a href="https://publications.waset.org/abstracts/search?q=biopesticides" title=" biopesticides"> biopesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=Lymantria%20obfuscata" title=" Lymantria obfuscata"> Lymantria obfuscata</a>, <a href="https://publications.waset.org/abstracts/search?q=Malacosoma%20indicum" title=" Malacosoma indicum"> Malacosoma indicum</a> </p> <a href="https://publications.waset.org/abstracts/118447/management-of-insect-pests-using-baculovirus-based-biopesticides-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Effect of Diazepam on Internal Organs of Chrysomya megacephala Using Micro-Computed Tomograph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangkhao%20M.">Sangkhao M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Butcher%20B.%20A."> Butcher B. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diazepam (known as valium) is a medication for calming effect. Many reports on committed suicide cases shown that diazepam is frequently used for this purpose. This research aims to study effect of diazepam on the development of forensically important blowflies, Chrysomya megacephala (Diptera: Calliphoridae) using micro-computed tomography (micro CT). In this study, four rabbits were treated with three different lethal doses of diazepam and one control (LD₀, LD₅₀, LD₁₀₀ and LC). The rabbit’s livers were removed for rearing the blowflies. Pupae were sampled for two series (ages; S1: 24h and S2: 120h) of development. After preparing the specimens, all samples were performed Micro CT using Skyscan 1172. The results shown the effect of diazepam on internal organs and tissues such as brain, cavity of the body, gas bubble, meconium and especially fat body. In the control group, in series 1 (LCS1), fat body was equally dispersed in the head, thorax, and abdomen, development of internal organs were not completed, however, brain, thoracic muscle, wings, legs and rectum were able to observe at 24h after developing into the pupal stage. Development of each organ in the control group in the series two was completed. In the treatment groups, LD₀, LD₅₀, LD₁₀₀ (Series 1 and Series 2), tissues are different, such as gas bubble in LD₀S1, was observed due to rapidity morphological changes during the metamorphosis of blowfly’s pupa in this treatment. Meconium was observed in LD₅₀S2 group because excretion of metabolic waste was not completed. All of the samples in the treatment groups had differentiation of fat bodies because metabolic activities were not completed and these changes affected on functions of every internal system. Discovering of differentiated fat bodies are important results because fat bodies of insect functions as liver in human, therefore it is shown that toxin eliminates from blowfly’s body and homeostatic maintenance of the hemolymph proteins, lipid and carbohydrates in each treatment group are abnormal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic%20toxicology" title="forensic toxicology">forensic toxicology</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20entomology" title=" forensic entomology"> forensic entomology</a>, <a href="https://publications.waset.org/abstracts/search?q=diptera" title=" diptera"> diptera</a>, <a href="https://publications.waset.org/abstracts/search?q=diazepam" title=" diazepam"> diazepam</a> </p> <a href="https://publications.waset.org/abstracts/95334/effect-of-diazepam-on-internal-organs-of-chrysomya-megacephala-using-micro-computed-tomograph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Chemical Characterization, Crystallography and Acute Toxicity Evaluation of Two Boronic-Carbohydrate Adducts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9ctor%20Gonz%C3%A1lez%20Espinosa">Héctor González Espinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Ivan%20Cordova%20Ch%C3%A1vez"> Ricardo Ivan Cordova Chávez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandra%20Contreras%20Ramos"> Alejandra Contreras Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Itzia%20Irene%20Padilla%20Mart%C3%ADnez"> Itzia Irene Padilla Martínez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Guadalupe%20Trujillo%20Ferrara"> José Guadalupe Trujillo Ferrara</a>, <a href="https://publications.waset.org/abstracts/search?q=Marvin%20Antonio%20Soriano%20Urs%C3%BAa"> Marvin Antonio Soriano Ursúa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boronic acids are able to create diester bonds with carbohydrates because of their hydroxyl groups; in nature, there are some organoborates with these characteristics, such as the calcium fructoborate, formed by the union of two fructose molecules and a boron atom, synthesized by plants. In addition, it has been observed that, in animal cells only the compounds with cis-diol functional groups are capable of linking to boric or boronic acids. The formation of these organoboron compounds could impair the physical and chemical properties of the precursors, even their acute toxicity. In this project, two carbohydrate-derived boron-containing compounds from D-fructose and D-arabinose and phenylboronic acid are analyzed by different spectroscopy techniques such as Raman, Infrared with Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and X-ray diffraction crystallography to describe their chemical characteristics. Also, an acute toxicity test was performed to determine their LD50 using the Lorke’s method. It was confirmed by multiple spectra the formation of the adducts by the generation of the diester bonds with a β-D-pyranose of fructose and arabinose. The most prominent findings were the presence of signals corresponding to the formation of new bonds, like the stretching of B-O bonds, or the absence of signals of functional groups like the hydroxyls presented in the reagents used for the synthesis of the adducts. The NMR spectra yielded information about the stereoselectivity in the synthesis reaction, observed by the interaction of the protons and their vicinal atoms in the anomeric and second position carbons; but also, the absence of a racemic mix by the finding of just one signal in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests by the Lorke’s method showed that the LD50 value for both compounds is 1265 mg/kg. Those results let us to propose these adducts as highly safe agents for further biological evaluation with medical purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title="acute toxicity">acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=adduct" title=" adduct"> adduct</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate" title=" carbohydrate"> carbohydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=diester%20bond" title=" diester bond"> diester bond</a> </p> <a href="https://publications.waset.org/abstracts/179104/chemical-characterization-crystallography-and-acute-toxicity-evaluation-of-two-boronic-carbohydrate-adducts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Assessment of Acute Oral Toxicity Studies and Anti Diabetic Activity of Herbal Mediated Nanomedicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanker%20Kalakotla">Shanker Kalakotla</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Mohan%20Gottumukkala"> Krishna Mohan Gottumukkala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a metabolic disorder characterized by hyperglycemia, carbohydrates, altered lipids and proteins metabolism. In recent research nanotechnology is a blazing field for the researchers; latterly there has been prodigious excitement in the nanomedicine and nano pharmacological area for the study of silver nanoparticles synthesis using natural products. Biological methods have been used to synthesize silver nanoparticles in presence of medicinally active antidiabetic plants, and this intention made us assess the biologically synthesized silver nanoparticles from the seed extract of Psoralea corylfolia using 1 mM silver nitrate solution. The synthesized herbal mediated silver nanoparticles (HMSNP’s) then subjected to various characterization techniques such as XRD, SEM, EDX, TEM, DLS, UV and FT-IR respectively. In current study, the silver nanoparticles tested for in-vitro anti-diabetic activity and possible toxic effects in healthy female albino mice by following OECD guidelines-425. Herbal mediated silver nanoparticles were successfully obtained from bioreduction of silver nitrate using Psoralea corylifolia plant extract. Silver nanoparticles have been appropriately characterized and confirmed using different types of equipment viz., UV-vis spectroscopy, XRD, FTIR, DLS, SEM and EDX analysis. From the behavioral observations of the study, the female albino mice did not show sedation, respiratory arrest, and convulsions. Test compounds did not cause any mortality at the dose level tested (i.e., 2000 mg/kg body weight) doses till the end of 14 days of observation and were considered safe. It may be concluded that LD50 of the HMSNPs was 2000mg/kg body weight. Since LD50 of the HMSNPs was 2000mg/kg body weight, so the preferred dose range for HMSNPs falls between the levels of 200 and 400 mg/kg. Further In-vivo pharmacological models and biochemical investigations will clearly elucidate the mechanism of action and will be helpful in projecting the currently synthesized silver nanoparticles as a therapeutic target in treating chronic ailments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=herbal%20mediated%20silver%20nanoparticles" title="herbal mediated silver nanoparticles">herbal mediated silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=HMSNPs" title=" HMSNPs"> HMSNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity%20of%20silver%20nanoparticles" title=" toxicity of silver nanoparticles"> toxicity of silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=PTP1B%20in-vitro%20anti-diabetic%20assay%20female%20albino%20mice" title=" PTP1B in-vitro anti-diabetic assay female albino mice"> PTP1B in-vitro anti-diabetic assay female albino mice</a>, <a href="https://publications.waset.org/abstracts/search?q=425%20OECD%20guidelines" title=" 425 OECD guidelines"> 425 OECD guidelines</a> </p> <a href="https://publications.waset.org/abstracts/52640/assessment-of-acute-oral-toxicity-studies-and-anti-diabetic-activity-of-herbal-mediated-nanomedicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Phytochemical Screening and Toxicological Studies of Aqueous Stem Bark Extract of Boswellia papyrifera (DEL) in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abdulmumin">Y. Abdulmumin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Matazu"> K. I. Matazu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Wudil"> A. M. Wudil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Alhassan"> A. J. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Imam"> A. A. Imam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical analysis of Boswellia papryfera confirms the presence of various phytochemicals such as alkaloids, flavonoids, tannins, saponins and cardiac glycosides in its aqueous stem bark extract at different concentration, with tannins being the highest (0.611 ± 0.002 g %). Acute toxicity test (LD50, oral, rat) of the extract showed no mortality at up to 5000 mg/kg and the animals were found active and healthy. The extract was declared as practically non-toxic, this suggest the safety of the extract in traditional medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title="acute toxicity">acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract" title=" aqueous extract"> aqueous extract</a>, <a href="https://publications.waset.org/abstracts/search?q=boswellia%20papryfera" title=" boswellia papryfera"> boswellia papryfera</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals%20and%20stem%20bark" title=" phytochemicals and stem bark"> phytochemicals and stem bark</a> </p> <a href="https://publications.waset.org/abstracts/34095/phytochemical-screening-and-toxicological-studies-of-aqueous-stem-bark-extract-of-boswellia-papyrifera-del-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Phytochemical Screening and Toxicological Studies of Aqueous Stem Bark Extract of Boswellia papyrifera (DEL) in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abdulmumin">Y. Abdulmumin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Matazu"> K. I. Matazu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Wudil"> A. M. Wudil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Alhassan"> A. J. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Imam"> A. A. Imam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical analysis of Boswellia papryfera confirms the presence of various phytochemicals such as alkaloids, flavonoids, tannins, saponins and cardiac glycosides in its aqueous stem bark extract at different concentration, with tannins being the highest (0.611 ± 0.002 g %). Acute toxicity test (LD50,oral, rat) of the extract showed no mortality at up to 5000 mg/kg and the animals were found active and healthy. The extract was declared as practically non-toxic, this suggest the safety of the extract in traditional medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title="acute toxicity">acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract" title=" aqueous extract"> aqueous extract</a>, <a href="https://publications.waset.org/abstracts/search?q=boswellia%20papryfera" title=" boswellia papryfera"> boswellia papryfera</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20bark%20extract" title=" stem bark extract"> stem bark extract</a> </p> <a href="https://publications.waset.org/abstracts/34096/phytochemical-screening-and-toxicological-studies-of-aqueous-stem-bark-extract-of-boswellia-papyrifera-del-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Antioxidant and Acute Toxicity of Stem Extracts of the Ficus Iteophylla</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mukhtar">Muhammad Mukhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate the antioxidant activity and acute toxicity of the extracts of Ficus iteophylla by reactions with 1, 1-diphenyl-2-picryhydrazyl radical (DPPH) and method developed by Lork 1983, respectively. Stem bark of Ficus iteophylla was collected, air dried, pulverized to fine powdered and sequentially extracted using acetone, methanol and water in order of increasing polarity. The result shows strong radical scavenging activity against DPPH for all the extracts when compared with ascorbic acid. The LD50 of 316 mg/kg was calculated for all the three extras, and the values were found to be within the practically toxic range, and therefore, care should be taken when using the plants in traditional medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title=" acute toxicity"> acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ficus%20iteophylla" title=" Ficus iteophylla"> Ficus iteophylla</a> </p> <a href="https://publications.waset.org/abstracts/125341/antioxidant-and-acute-toxicity-of-stem-extracts-of-the-ficus-iteophylla" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Bioinsecticidal Activity and Phytochemical Study of the Crude Extract from the Plant Artemisia judaica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Acheuk">Fatma Acheuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Idir%20Bitam"> Idir Bitam</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Bendifallah"> Leila Bendifallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20Ramdani"> Malika Ramdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethia%20Barika"> Fethia Barika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However, alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atamisia%20judaica" title="Atamisia judaica">Atamisia judaica</a>, <a href="https://publications.waset.org/abstracts/search?q=crud%20extract" title=" crud extract"> crud extract</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito" title=" mosquito"> mosquito</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a> </p> <a href="https://publications.waset.org/abstracts/24116/bioinsecticidal-activity-and-phytochemical-study-of-the-crude-extract-from-the-plant-artemisia-judaica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Phytochemical Study and Bioinsecticidal Effect of the Crude Extract from the Plant Artemisia Judaica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Acheuk">Fatma Acheuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Idir%20Bitam"> Idir Bitam</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Bendifallah"> Leila Bendifallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20Ramdani"> Malika Ramdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethia%20Barika"> Fethia Barika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II, and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atamisia%20judaica" title="Atamisia judaica">Atamisia judaica</a>, <a href="https://publications.waset.org/abstracts/search?q=crud%20extract" title=" crud extract"> crud extract</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito" title=" mosquito"> mosquito</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a> </p> <a href="https://publications.waset.org/abstracts/21689/phytochemical-study-and-bioinsecticidal-effect-of-the-crude-extract-from-the-plant-artemisia-judaica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Evaluation of Radioprotective Effect of Solanun melongena L. in the Survival of Lasioderma serricorne (Coleoptera, Anobiidae) Irradiated with Gamma Rays of Cobalt-60</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adilson%20C.%20Barros">Adilson C. Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayo%20Okazaki"> Kayo Okazaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Valter%20Arthur"> Valter Arthur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The radio-protective substances protect the organism from ionizing radiation when previously ingested. Synthetic radio-protectives produce unpleasant side effects and are expensive. This article reports the search for natural radio-protective agents in foods, whose occurrence is widespread, costs are lower and the side effects are non-existent. In this work, we studied the eggplant, a food widely used in Brazil, comparing the radiosensitivity of insects reared on diet eggplant and outside this diet. The eggplant causes change in LD50 parameter of insects population but the response curve needs to be better shaped to conclude something about radioprotection. What we can see is that it seems to contain some radiomodifier substance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radioprotector" title="radioprotector">radioprotector</a>, <a href="https://publications.waset.org/abstracts/search?q=radiobiology" title=" radiobiology"> radiobiology</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanun%20melongena%20L." title=" Solanun melongena L."> Solanun melongena L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lasioderma%20serricorne" title=" Lasioderma serricorne"> Lasioderma serricorne</a> </p> <a href="https://publications.waset.org/abstracts/15973/evaluation-of-radioprotective-effect-of-solanun-melongena-l-in-the-survival-of-lasioderma-serricorne-coleoptera-anobiidae-irradiated-with-gamma-rays-of-cobalt-60" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Hepatoprotective Effect of Mycophenolate Mofetil against Tacrolimus Exposure in Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferjani%20Hanen">Ferjani Hanen</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Arem%20Amira"> El Arem Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Boussema%20Ayed%20Imen"> Boussema Ayed Imen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacha%20Hassen"> Bacha Hassen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tacrolimus (TAC), a calcineurin inhibitor, is clinically used as an immunosuppressive agent in the transplant recipient, but its use associated-hepatotoxicity. Mycophenolate mofetil (MMF), an anti-metabolite, is a potent immunosuppressive drug. MMF is not hepatotoxic and is the most common adjunctive immunosuppressant for TAC. The effects of TAC and MMF combination in the liver is still not well understood. This work aimed to investigate their combined effect against in liver in rats Wistar after 24 h. The oral median lethal doses (LD50) of TAC and MMF alone were evaluated in rats are 240 mg/kg and 500 mg/kg respectively. Oral administration of the MMF at 50 mg/kg to male Wistar intoxicated with TAC at 60 mg/kg, demonstrated a significant protective effect by lowering the levels of hepatic markers enzymes (AST, ALT) in the serum rat. MMF attenuated oxidative stress by restoring the activities of SOD, CAT and by reducing the malondialdehyde (MDA) and protein carbonyl levels liver. This study provided evidence that MMF protects rat liver from TAC-induced injury and suggests a most combination use for organ transplantation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tacrolimus" title="tacrolimus">tacrolimus</a>, <a href="https://publications.waset.org/abstracts/search?q=mycophenolate%20mofetil" title=" mycophenolate mofetil"> mycophenolate mofetil</a>, <a href="https://publications.waset.org/abstracts/search?q=combination" title=" combination"> combination</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/26359/hepatoprotective-effect-of-mycophenolate-mofetil-against-tacrolimus-exposure-in-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Pancreatic Lipase and Cholesterol Esterase Inhibitors from Thai Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwanchai%20Ratanamanee">Kwanchai Ratanamanee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pattra%20Ahmadi%20Pirshahid"> Pattra Ahmadi Pirshahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaowaluk%20Khamphan"> Yaowaluk Khamphan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirinan%20Thubthimthad"> Sirinan Thubthimthad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity is a main global health problem. The obesity rated has continued to be higher and higher. It causes to serious systems, diabetes, coronary artery disease, stroke, and some types of cancer. Oristat is one of the best drugs worldwide used as a pancreatic lipase inhibitor. To develop the new therapeutic drugs from medicinal plant always explored. In this study, 24 medicinal plants were investigated for their pancreatic lipase and cholesterol esterase inhibitory effects with Fluorometer assay and oristat as a positive control. It showed that the ethanolic extract of pods of Acacia concinna (Willd.) D.C., possess pancreatic lipase and cholesterol esterase inhibitory activities of IC50 at 2.73 and 3.77 mg/ml respectively as well as oral acute toxicity of the extract (LD50) was 6,300 mg/kg body weight. The extract of A.concinna should be further investigated in animal testing. The results of pancreatic lipase and cholesterol esterase inhibitor of the extracts will lead us to utilize A.concinna for developing as obesity dietary supplement from a medicinal plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acacia%20concinna%20%28Willd.%29%20D.%20C." title="Acacia concinna (Willd.) D. C.">Acacia concinna (Willd.) D. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol%20esterase" title=" cholesterol esterase"> cholesterol esterase</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreatic%20lipase" title=" pancreatic lipase"> pancreatic lipase</a> </p> <a href="https://publications.waset.org/abstracts/33338/pancreatic-lipase-and-cholesterol-esterase-inhibitors-from-thai-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Genotoxic and Cytotoxic Effects of Methidathion Pesticide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Y.%20Alfaifi">Mohammad Y. Alfaifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methidathion (MTD) (Trade name Supracide®) is a non-systemic organophosphorus insecticide used intensively worldwide including Saudi Arabia. However, there is a lack in published studies about it's genotoxicity. In this study we evaluated MTD toxicity in rat bone marrow cells (in vivo) and in lymphocytes (in vitro) using different doses based on LD50. MNNCE (Micronucleated normocromatic erythrocytes) and MNPCE (Micronucleated polychromatic erythrocytes), NDI (Nuclear division index) and NDCI (nuclear division cytotoxicity index), necrotic and apoptotic cells were recorded in rat's bone marrow samples. CA, MI (number of cells undergoing mitosis) necrotic, and apoptotic cells recorded in lymphocytes. Results showed that there was a slight increase in the frequency of micronucleated bone marrow cells. However, no structural chromosomal aberrations were detected in vivo or in vitro. On the other hand, the results showed significant increase in necrotic and apoptotic cells following MTD administration in a dose-dependent manner comparing to positive and negative control groups. In light of these results, MTD can be considered highly cytotoxic and moderate genotoxic, and precaution should be taken when using MTD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methidathion" title="methidathion">methidathion</a>, <a href="https://publications.waset.org/abstracts/search?q=micronucleus" title=" micronucleus"> micronucleus</a>, <a href="https://publications.waset.org/abstracts/search?q=NDI" title=" NDI"> NDI</a>, <a href="https://publications.waset.org/abstracts/search?q=NDCI" title=" NDCI"> NDCI</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosomal%20aberrations" title=" chromosomal aberrations"> chromosomal aberrations</a> </p> <a href="https://publications.waset.org/abstracts/2877/genotoxic-and-cytotoxic-effects-of-methidathion-pesticide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Evaluation of Essential Oils Toxicity on Resistant and Susceptible House Fly Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xing%20Ping%20Hu">Xing Ping Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuexun%20Tian"> Yuexun Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerome%20Hogsette"> Jerome Hogsette</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Housefly, Musca domestica L., is a serious urban nuisance and public health/food safety concern. This study evaluated the topical toxicity of 17 essential oil components and 3 plant essential oils against permethrin-resistant adult females and insecticide-susceptible house fly strains. Results show that thymol had the lowest LD₅₀ values against permethrin-resistant strain (43.77 and 41.10 ug per fly) and permethrin-susceptible strain (35.19 and 29.16 ug per fly) at both 24- and 48-hours post treatments; (+)-Pulegone had the lowest LD₉₅ values against the permethrin-resistant strain (0.15 and 0.10 mg per fly) at 24- and 48-hours post treatments, whereas plant thyme oil had the lowest LD₉₅ value of 0.17 mg per fly at post-24h and post-48h against the permethrin-susceptible strain. Additionally, the LD₅₀s was slightly but not significantly negatively correlated with the boiling points of the compounds tested; but showed no correlation with the density and LogP. These results indicate that specific essential oils and compounds have topical insecticidal properties against house flies with low dose. They may have the potential for development as botanical insecticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20pest" title="urban pest">urban pest</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a>, <a href="https://publications.waset.org/abstracts/search?q=pest%20management" title=" pest management"> pest management</a>, <a href="https://publications.waset.org/abstracts/search?q=botanical%20chemical" title=" botanical chemical"> botanical chemical</a> </p> <a href="https://publications.waset.org/abstracts/99033/evaluation-of-essential-oils-toxicity-on-resistant-and-susceptible-house-fly-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Scale-Up Process for Phyllanthus niruri Enriched Extract by Supercritical Fluid Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norsyamimi%20Hassim">Norsyamimi Hassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Masturah%20Markom"> Masturah Markom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supercritical fluid extraction (SFE) has been known as a sustainable and safe extraction technique for plant extraction due to the minimal usage of organic solvent. In this study, a scale-up process for the selected herbal plant (Phyllanthus niruri) was investigated by using supercritical carbon dioxide (SC-CO2) with food-grade (ethanol-water) cosolvent. The quantification of excess ethanol content in the final dry extracts was conducted to determine the safety of enriched extracts. The extraction yields obtained by scale-up SFE unit were not much different compared to the predicted extraction yields with an error of 2.92%. For component contents, the scale-up extracts showed comparable quality with laboratory-scale experiments. The final dry extract showed that the excess ethanol content was 1.56% g/g extract. The fish embryo toxicity test (FETT) on the zebrafish embryos showed no toxicity effects by the extract, where the LD50 value was found to be 505.71 µg/mL. Thus, it has been proven that SFE with food-grade cosolvent is a safe extraction technique for the production of bioactive compounds from P. niruri. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scale-up" title="scale-up">scale-up</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid%20extraction" title=" supercritical fluid extraction"> supercritical fluid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=enriched%20extract" title=" enriched extract"> enriched extract</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20content" title=" ethanol content"> ethanol content</a> </p> <a href="https://publications.waset.org/abstracts/119141/scale-up-process-for-phyllanthus-niruri-enriched-extract-by-supercritical-fluid-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Antimycobacterial Activity of Ethanolic Extract of Artemisia absinthium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Hojageldiyev">T. Hojageldiyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Bolmammedov"> Y. Bolmammedov</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gurbanaliyev"> S. Gurbanaliyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that drugs used in the treatment of tuberculosis show toxic effect to organism especially to liver besides its therapeutic effect. Because of ineffectiveness of drugs used in the treatment regimen of tuberculosis against multidrug resistance (MDR) and extensively drug-resistance (XDR) tuberculosis requires the development of new treatment methods and new, novel drugs. Considering the usage of Artemisia absinthium in traditional medicine in treatment of wounds which suggests its antibacterial activity it seems that, also it may have significant antimycobacterial activity. The objective of present study was to evaluate antibacterial activity of ethanolic extract of A. absinthium against M. tuberculosis. In this study, the effect of ethanolic extract of A. absinthium was tested against tuberculosis and pharmaco-toxicological properties evaluated on laboratory animals. The 20%, 40%, 70% and 96% ethanolic extracts of A. absinthium prepared then its bacteriostatic and bactericidal activities were evaluated by validated methods. Data were analyzed by GraphPad Prism 7.0 at the level P < 0.05. Results showed that ethanolic extracts of A. absinthium show no toxicological properties with having high LD50. All concentrations of extract show high bacteriostatic activity on M. tuberculosis. 96% ethanolic extract has highest bactericidal effect among other concentrations. By conducting further studies, as a result of our study, antimycobacterial drug can be prepared from A. absinthium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20absinthium" title="Artemisia absinthium">Artemisia absinthium</a>, <a href="https://publications.waset.org/abstracts/search?q=antimycobacterial" title=" antimycobacterial"> antimycobacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanolic%20extract" title=" ethanolic extract"> ethanolic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycobacteria%20tuberculosis" title=" Mycobacteria tuberculosis"> Mycobacteria tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/99711/antimycobacterial-activity-of-ethanolic-extract-of-artemisia-absinthium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Biodegradable Poly D,L-Lactide-Co-Glycolic Acid Microparticle Vaccine against Aeromonas hydrophila Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saekil%20Yun">Saekil Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sib%20Sankar%20Giri"> Sib Sankar Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Woo%20Jun"> Jin Woo Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoun%20Joong%20Kim"> Hyoun Joong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Guen%20Kim"> Sang Guen Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Wha%20Kim"> Sang Wha Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Woo%20Kang"> Jung Woo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Se%20Jin%20Han"> Se Jin Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Se%20Chang%20Park"> Se Chang Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In aquaculture, vaccination is important to control and prevent diseases. In the study, we utilized poly D,L-lactide-co-glycolic acid (PLGA) microparticles (MPs) for encapsulating formalin-killed Aeromonas hydrophila cells. To assess the innate and adaptive immune responses, carps and loaches were used for the experiments. Fish were divided into three groups (A, B, C). Total antigen of 0.1 ml vaccine was adjusted by 2 x 108 CFU and injected via intraperitoneal route. Group A was vaccinated with 0.1 ml of PLGA vaccine, group B was with 0.1 ml of FKC vaccine and group C was with 0.1 ml of sterile PBS. All three groups were challenged with A. hydrophila and challenge dose was lethal dose (LD50). Loaches and carp were then challenged with A. hydrophila at 12 and 20 weeks post vaccination (wpv), and 10 and 14 wpv, respectively, and relative survival rates were calculated. For both fish species, the curve of antibody titer over time was shallower in the PLGA group than the FKC group and the PLGA groups demonstrated higher survival rates at all time-points. In the groups of PLGA-MP, relative mRNA levels of IL-1β, TNF-α, lysozyme C and IgM were significantly upregulated than FKC treated groups. Biodegradable PLGA microparticle vaccine could induce longer immune responses than original FKC vaccines to protect from A. hydrophila infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLGA" title="PLGA">PLGA</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Aeromonas%20hydrophila" title=" Aeromonas hydrophila"> Aeromonas hydrophila</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine" title=" vaccine"> vaccine</a> </p> <a href="https://publications.waset.org/abstracts/80486/biodegradable-poly-dl-lactide-co-glycolic-acid-microparticle-vaccine-against-aeromonas-hydrophila-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Protective Efficacy of Curcuma Aromatica Leaf Extract on Liver of Arsenic Intoxicated Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Bajaj">Priya Bajaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Baby%20Tabassum"> Baby Tabassum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic is a poisonous metalloid, naturally occurring in soil, air, rocks and ground water. This dreadful metalloid commonly exists as inorganic compound, arsenic trioxide. WHO permitted maximum limit for arsenic in water is 0.01 mg/L, but some affected areas show ground water level of arsenic up to 3 mg/L even. Ground water arsenic pollution has created a number of health problems, viz. keratosis, melanosis, lesions and even skin cancers. The key objective of our nested study was to characterize arsenic induced hepatotoxicity and to find out some herbal protection against it. For the purpose, we selected albino rat (Rattus norvegicus) as model for arsenic induced liver injury and wild turmeric (Curcuma aromatica) leaf extract as remedy for it. The study was performed at acute (1 day) and subacute (7, 14 & 21 days) levels. The LD50 estimated for arsenic trioxide was 14.98 mg/kg body weight. In our investigation, we observed a significant restoration of altered hepatic lipid, cholesterol, protein and glycogen contents as well as liver weight, body-weight and hepato-somatic index by Curcuma aromatica leaf extract before arsenic intoxication. The results reveal excellent protective efficacy of Curcuma aromatica leaf extract that further can be exploited in remediation programme in heavy metal affected areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=Curcuma%20aromatica" title=" Curcuma aromatica"> Curcuma aromatica</a>, <a href="https://publications.waset.org/abstracts/search?q=glycogen" title=" glycogen"> glycogen</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a> </p> <a href="https://publications.waset.org/abstracts/50706/protective-efficacy-of-curcuma-aromatica-leaf-extract-on-liver-of-arsenic-intoxicated-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Effect of Vitamin &quot;E&quot; on the Peripheral Neurotoxicity of Antimony in Adult Male Albino Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pymaneh%20Bairami%20Rad">Pymaneh Bairami Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work was planned with the aim to study the histological changes that might occur in the sciatic nerve of adult male albino rat following antimony trioxide exposure and to throw more light on the protective role of vitamin "E" on the peripheral neurotoxicity induced by this environmental toxin Sixty adult male albino rats, weighing 183 - 235 grams, were utilized in this work. The animals were divided into 3 groups; each of 20 rats: animals of group I served as control, animals of group II received antimony trioxide daily for 12 successive weeks , animals of group III received antimony trioxide and vitamin "E" daily for the same duration. Antimony trioxide was given in a daily dose of 500 mg/ kg body weight which represents 1/40 of the known LD50 and vitamin "E" was administered in a daily dose of 300 mg/kg body weight. Both antimony trioxide and vitamin "E" were given to the animals by gastric intubation. This research revealed many histological changes in the sciatic nerve, following exposure to antimony trioxide, including Wallerian degeneration in most myelinated nerve fibers with pleomorphic destruction, fragmentation, loss of normal lamination and rupture of myelin sheaths. The axoplasms of these nerve fibers were irregular, degenerated and contained myelin fragments with loss of neurofibrils. Obvious increase in endoneurium was also observed. Concomitant administration of vitamin "E" with antimony trioxide resulted in marked improvement in the histological changes observed in the sciatic nerve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title="neurotoxicity">neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimony" title=" antimony"> antimony</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20e" title=" vitamin e"> vitamin e</a>, <a href="https://publications.waset.org/abstracts/search?q=anatomy" title=" anatomy"> anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a> </p> <a href="https://publications.waset.org/abstracts/31796/the-effect-of-vitamin-e-on-the-peripheral-neurotoxicity-of-antimony-in-adult-male-albino-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Adverse Effects of Natural Pesticides on Human and Animals: An Experimental Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel-Tawab%20H.%20Mossa">Abdel-Tawab H. Mossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic pesticides are widely used in large-scale worldwide for control pests in agriculture and public health sectors in both developed and developing countries. Although the positive role of pesticides, they have many adverse toxic effects on humans, animals, and the ecosystem. Therefore, in the last few years, scientists have been searching for new active compounds from natural resources as an alternative to synthetic pesticides. Currently, many commercial natural pesticides are available commercially worldwide. These products are recommended for uses in organic farmers and considered as safe pesticides. This paper focuses on the adverse effects of natural pesticides on mammals. Available commercial pesticides in the market contain essential oils (e.g. pepper, cinnamon, and garlic), plant extracts, microorganism (e.g. bacteria, fungi or their toxin), mineral oils and some active compounds from natural recourses e.g. spinosad, neem, pyrethrum, rotenone, abamectin and other active compounds from essential oils (EOs). Some EOs components, e.g., thujone, pulegone, and thymol have high acute toxicity (LD50) is 87.5, 150 and 980 mg/kg. B.wt on mice, respectively. Natural pesticides such as spinosad, pyrethrum, neem, abamectin, and others have toxicological effects to mammals and ecosystem. These compounds were found to cause hematotoxicity, hepato-renal toxicity, biochemical alteration, reproductive toxicity, genotoxicity, and mutagenicity. It caused adverse effects on the ecosystem. Therefore, natural pesticides in general not safe and have high acute toxicity and can induce adverse effects at long-term exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20pesticides" title="natural pesticides">natural pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical" title=" biochemical"> biochemical</a> </p> <a href="https://publications.waset.org/abstracts/101852/adverse-effects-of-natural-pesticides-on-human-and-animals-an-experimental-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Therapeutical Role of Copper Oxide Nanoparticles (CuO NPs) for Breast Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipranjan%20Laha">Dipranjan Laha</a>, <a href="https://publications.waset.org/abstracts/search?q=Parimal%20Karmakar"> Parimal Karmakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and western blotting of autophagy marker proteins LC3B, beclin1, and ATG5. Further, inhibition of autophagy by 3-Methyladenine (3-MA) decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, dephosphorylation of Bad and increased cleavage product of caspase3. siRNA-mediated inhibition of autophagy-related gene beclin1 also demonstrated similar results. Finally, induction of apoptosis by 3-MA in CuO NPs treated cells were observed by TEM. This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NPs mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. Acknowledgments: The authors would like to acknowledge for financial support for this research work to the Department of Biotechnology (No. BT/PR14661/NNT/28/494/2010), Government of India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=siRNA-mediated%20inhibition" title=" siRNA-mediated inhibition"> siRNA-mediated inhibition</a> </p> <a href="https://publications.waset.org/abstracts/18208/therapeutical-role-of-copper-oxide-nanoparticles-cuo-nps-for-breast-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> In Vivo Assessment of Biogenically Synthesized Silver Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahzad%20Tufail">Muhammad Shahzad Tufail</a>, <a href="https://publications.waset.org/abstracts/search?q=Iram%20Liaqat"> Iram Liaqat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanoparticles (AgNPs) have wider biomedical applications due to their intensive antimicrobial activities. However, toxicity and side effects of nanomaterials like AgNPs is a subject of great controversy towards the further studies in this direction. In this study, biogenically synthesized AgNPs, previously characterized via ultraviolet (UV) visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR), were subjected to toxicity evaluation using mice model. Albino male mice (BALB/c) were administered with 50 mgkg-1, 100 mgkg-1 and 150 mgkg-1 of AgNPs, respectively, except for control for 30 days. Log-probit regression analysis was used to measure the dosage response to determine the median lethal dose (LD50). Exposure to AgNPs caused significant changes in the levels of serum AST (P ˂ 0.05) at the 100mgkg-1 and 150mgkg-1 of AgNPs exposure, while ALT and serum creatinine (P ˃ 0.05) levels remained normal. Histopathology of male albino mice liver and kidney was studied after 30 days experimental period. Results revealed that mice exposed to heavy dose (150 mgkg-1) of AgNPs showed cell distortion, necrosis and detachment of hepatocytes in the liver. Regarding kidney, at lower concentration, normal renal structure with normal glomeruli was observed. However, at higher concentration (150 mgkg-1), kidneys showed smooth surface and dark red colour with proliferation of podocytes. It can be concluded from present study that biologically synthesized AgNPs are small to be eliminated easily by kidney and therefore the liver and kidney did not show toxicity at low concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title="silver nanoparticles">silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20aeruginosa" title=" pseudomonas aeruginosa"> pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=male%20albino%20mice" title=" male albino mice"> male albino mice</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity%20assessment" title=" toxicity assessment"> toxicity assessment</a> </p> <a href="https://publications.waset.org/abstracts/170449/in-vivo-assessment-of-biogenically-synthesized-silver-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Analgesic, Toxicity and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus Leaves in Albinos Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Massinissa">Yahia Massinissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Henhouda%20Affaf"> Henhouda Affaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Mouloud"> Yahia Mouloud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by brewer’s yeast induced fever in rats. For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of Hyoscyamus albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of Hyoscyamus albus was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyoscyamus%20albus" title="Hyoscyamus albus">Hyoscyamus albus</a>, <a href="https://publications.waset.org/abstracts/search?q=methanolic%20extract" title=" methanolic extract"> methanolic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=analgesic%20activity" title=" analgesic activity"> analgesic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antipyretic%20activity" title=" antipyretic activity"> antipyretic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=formalin%20test" title=" formalin test"> formalin test</a> </p> <a href="https://publications.waset.org/abstracts/10566/analgesic-toxicity-and-anti-pyretic-activities-of-methanolic-extract-from-hyoscyamus-albus-leaves-in-albinos-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Toxicity, Analgesic, and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus’ Leaves in Albinos Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Massinissa">Yahia Massinissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Afaf%20Benhouda"> Afaf Benhouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouloud%20Yahia"> Mouloud Yahia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. Methods: The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by Brewer’s yeast induced fever in rats. Results: For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of H.albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of 'H. albus' was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast-induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. Conclusion: The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyoscyamus%20albus" title="Hyoscyamus albus">Hyoscyamus albus</a>, <a href="https://publications.waset.org/abstracts/search?q=Umbilicus%20rupestris" title=" Umbilicus rupestris"> Umbilicus rupestris</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20with%20protons" title=" NMR with protons"> NMR with protons</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacobiologic%20activities" title=" pharmacobiologic activities"> pharmacobiologic activities</a>, <a href="https://publications.waset.org/abstracts/search?q=methanolic%20extract" title=" methanolic extract"> methanolic extract</a> </p> <a href="https://publications.waset.org/abstracts/45535/toxicity-analgesic-and-anti-pyretic-activities-of-methanolic-extract-from-hyoscyamus-albus-leaves-in-albinos-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Safety Assessment of Tuberous Roots of Boerhaavia diffusa Root Extract: Acute and Sub-Acute Toxicity Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surender%20Singh">Surender Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogendra%20Kumar%20Gupta"> Yogendra Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boerhaavia diffusa (BD) Linn. belonging to family Nyctaginaceae is a herbaceous plant and known as ‘punarnava’ in Hindi, used as herbal medicine for pain relief and various ailments. It is widely used as a green leafy vegetable in many Asian and African countries. The objective of present study was to investigate potential adverse effects, if any, of standardized root extract of Boerhaavia diffusa in rats following subchronic administration. In acute toxicity study, no mortality was found at a dose of 2000mg/kg which indicates that oral LD50 of Boerhaavia diffusa root extract is more than 2000mg/kg. The chronic administration of Boerhaavia diffusa for 28 days at a dose of 1000mg/kg body weight did not produce any significant changes in hematological (RBC, WBC, platelets, hemoglobin, bleeding time, clotting time) and biochemical (triglycerides, blood glucose, high density lipoprotein, serum creatinine, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase) parameters of male and female rats as compared to normal control group. All the animals survived until the scheduled necropsy, and their physical and behavioral examinations did not reveal any treatment-related adverse effects. No pathological changes were observed in histological section of heart, kidney, liver, testis, ovaries and brain of Boerhaavia diffusa treated male and female rats as compared to normal control animals.These observations from oral acute toxicitystudy suggest that the extract is practically non-toxic. Thus, it can be inferred that the Boerhaavia diffusa root extract at levels up to 1000 mg/kg/day was found to be safe and does not cause adverse effects in rats. So, the no-observed effect level (NOAEL) of the extract was found to be 1000mg/kg/day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boerhaavia%20diffusa" title="Boerhaavia diffusa">Boerhaavia diffusa</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-acute" title=" sub-acute"> sub-acute</a> </p> <a href="https://publications.waset.org/abstracts/53480/safety-assessment-of-tuberous-roots-of-boerhaavia-diffusa-root-extract-acute-and-sub-acute-toxicity-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LD50&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LD50&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10