CINXE.COM
Search results for: Spent bleaching earth
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Spent bleaching earth</title> <meta name="description" content="Search results for: Spent bleaching earth"> <meta name="keywords" content="Spent bleaching earth"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Spent bleaching earth" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Spent bleaching earth"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1592</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Spent bleaching earth</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1592</span> Removal of Basic Dyes from Aqueous Solutions with a Treated Spent Bleaching Earth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mana">M. Mana</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ouali"> M. S. Ouali</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20de%20Menorval"> L. C. de Menorval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100°C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET, and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the comparative sorption of safranine and methylene blue on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second order kinetic model and the Weber & Morris, intra-particle diffusion model. The pH had no effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A linear relationship was found between the calculated maximum removal capacity and the solid/solution ratio. A comparison between the results obtained with this material and those of the literature highlighted the low cost and the good removal capacity of the treated spent bleaching earth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basic%20dyes" title="basic dyes">basic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20bleaching%20earth" title=" spent bleaching earth"> spent bleaching earth</a> </p> <a href="https://publications.waset.org/abstracts/34446/removal-of-basic-dyes-from-aqueous-solutions-with-a-treated-spent-bleaching-earth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1591</span> Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20I.%20Shehab">Ahmed I. Shehab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20M.%20Abdel%20Basir"> Sabah M. Abdel Basir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abdel%20Khalek"> M. A. Abdel Khalek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Soliman"> M. H. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Elgemeie"> G. Elgemeie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth" title="Spent bleaching earth">Spent bleaching earth</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivation" title=" reactivation"> reactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic" title=" thermodynamic"> thermodynamic</a> </p> <a href="https://publications.waset.org/abstracts/108660/dye-removal-from-aqueous-solution-by-regenerated-spent-bleaching-earth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1590</span> Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Arora">Rajiv Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acids" title=" free fatty acids"> free fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20oil" title=" residual oil"> residual oil</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20bleaching%20earth" title=" spent bleaching earth"> spent bleaching earth</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/85852/two-step-biodiesel-production-from-high-free-fatty-acid-spent-bleaching-earth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> Synthesis of Cationic Bleach Activator for Textile Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Altay">Pelin Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Shafei"> Ahmed El-Shafei</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Hauser"> Peter J. Hauser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevin%20Cigdem%20Gursoy"> Nevin Cigdem Gursoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exceedingly high temperatures are used (around 95 °C) to perform hydrogen peroxide bleaching of cotton fabrics in textile industry, which results in high energy consumption and also gives rise to significant fiber damage. Activated bleach systems have the potential to produce more efficient bleaching through increased oxidation rates with reducing energy cost, saving time and causing less fiber damage as compared to conventional hot peroxide bleaching. In this study, a cationic bleach activator was synthesized using caprolactam as a leaving group and triethylamine as a cationic group to establish an activated peroxide system for low temperature bleaching. Cationic bleach activator was characterized by FTIR, 1H NMR and mass spectrometry. The bleaching performance of the prototype cationic bleach activator was evaluated and optimizing the bleach recipe was performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleach%20activator" title="bleach activator">bleach activator</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20bleaching" title=" cotton bleaching"> cotton bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide%20bleaching" title=" hydrogen peroxide bleaching"> hydrogen peroxide bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20bleaching" title=" low temperature bleaching"> low temperature bleaching</a> </p> <a href="https://publications.waset.org/abstracts/56078/synthesis-of-cationic-bleach-activator-for-textile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Rejuvenation of Aged Kraft-Cellulose Insulating Paper Used in Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Jeon">Y. Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bissessur"> A. Bissessur</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Lin"> J. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ndungu"> P. Ndungu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most transformers employ the usage of cellulose paper, which has been chemically modified through the Kraft process that acts as an effective insulator. Cellulose ageing and oil degradation are directly linked to fouling of the transformer and accumulation of large quantities of waste insulating paper. In addition to technical difficulties, this proves costly for power utilities to deal with. Currently there are no cost effective method for the rejuvenation of cellulose paper that has been documented nor proposed, since renewal of used insulating paper is implemented as the best option. This study proposes and contrasts different rejuvenation methods of accelerated aged cellulose insulating paper by chemical and bio-bleaching processes. Of the three bleaching methods investigated, two are, conventional chlorine-based sodium hypochlorite (m/v), and chlorine-free hydrogen peroxide (v/v), whilst the third is a bio-bleaching technique that uses a bacterium isolate, Acinetobacter strain V2. Through chemical bleaching, varying the strengths of the bleaching reagents at 0.3 %, 0.6 %, 0.9 %, 1.2 %, 1.5 % and 1.8 % over 4 hrs. were analyzed. Bio-bleaching implemented a bacterium isolate, Acinetobacter strain V2, to bleach the aged Kraft paper over 4 hrs. The determination of the amount of alpha cellulose, degree of polymerization and viscosity carried out on Kraft-cellulose insulating paper before and after bleaching. Overall the investigated techniques of chemical and bio-bleaching were successful and effective in treating degraded and accelerated aged Kraft-cellulose insulating paper, however, to varying extents. Optimum conditions for chemical bleaching were attained at bleaching strengths of 1.2 % (m/v) NaOCl and 1.5 % (v/v) H2O2 yielding alpha cellulose contents of 82.4 % and 80.7 % and degree of polymerizations of 613 and 616 respectively. Bio-bleaching using Acinetobacter strain V2 proved to be the superior technique with alpha cellulose levels of 89.0 % and a degree of polymerization of 620. Chemical bleaching techniques require careful and controlled clean-up treatments as it is chlorine and hydrogen peroxide based while bio-bleaching is an extremely eco-friendly technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha%20cellulose" title="alpha cellulose">alpha cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-bleaching" title=" bio-bleaching"> bio-bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20polymerization" title=" degree of polymerization"> degree of polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper" title=" Kraft-cellulose insulating paper"> Kraft-cellulose insulating paper</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/30881/rejuvenation-of-aged-kraft-cellulose-insulating-paper-used-in-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> Bleaching Liquor Recovery of Batch-Wise and Continuous Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidra%20Saleemi">Sidra Saleemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsalan%20Khan"> Arsalan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Urooj%20Baig"> Urooj Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Jamil"> Tahir Jamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, it was examined that some residual amount of bleaching chemicals left in the liquor, this amount is more in Batch-wise process as compared to continuous process. These chemicals can be recovered and reused for bleaching by adding more quantity of fresh bleaching chemicals and water, this quantity will be required to balance the recipe for fabric. This liquor is recovered and samples were bleached with different modified recipe of liquor for both processes i.e. Batch-wise and continuous process. Every time good results were achieved with negligible variation in the quality parameter between the fabric bleached with fresh liquor and the fabric bleached with Recovered Liquor. Additionally, samples were dyed, and found that dyeing can be done easily on samples bleached with recover liquor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleaching%20process" title="bleaching process">bleaching process</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=liquor%20recovery" title=" liquor recovery"> liquor recovery</a> </p> <a href="https://publications.waset.org/abstracts/50423/bleaching-liquor-recovery-of-batch-wise-and-continuous-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> Effect of Application of Turmeric Extract Powder Solution on the Color Changes of Non-Vital Teeth (An In-vitro study).</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haidy%20N.%20Salem">Haidy N. Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Nada%20O.%20Kamel"> Nada O. Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahinaz%20N.%20Hassan"> Shahinaz N. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20M.%20Elhefnawy"> Sherif M. Elhefnawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: to assess the effect of using turmeric powder extract on changes of tooth color with extra-coronal and intra-coronal bleaching methods. Methods: Turmeric powder extract was weighted and mixed with two different hydrogen peroxide concentrations (3% and 6%) to be used as a bleaching agent. Thirty teeth were allocated into three groups (n=10): Group A: Bleaching agent (6%) was applied on the labial surface, Group B: Bleaching agent (3%) was applied inside the pulp chamber and Group C: Extra and intra-coronal bleaching techniques were used (6% and 3% respectively). A standardized access cavity was opened in the palatal surface of each tooth in both Groups B and C. Color parameters were measured using a spectrophotometer. Results: A statistically significant difference in color difference values (∆E*) and enamel brightness (∆L*) was found between Group C and each of Groups A and B. There was no statistically significant difference in (∆E*) and (∆L*) between Group A and Group B. The highest mean value of (∆E*) and (∆L*) was found in Group C, while the least mean value was found in Group B. Conclusion: Bleaching the external and internal tooth structure with low concentrations of hydrogen peroxide solution mixed with turmeric extract has a promising effect in color enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleaching" title="bleaching">bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometer" title=" spectrophotometer"> spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=turmeric" title=" turmeric"> turmeric</a> </p> <a href="https://publications.waset.org/abstracts/157800/effect-of-application-of-turmeric-extract-powder-solution-on-the-color-changes-of-non-vital-teeth-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Side Effects of Dental Whitening: Published Data from the Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilma%20Robo">Ilma Robo</a>, <a href="https://publications.waset.org/abstracts/search?q=Saimir%20Heta"> Saimir Heta</a>, <a href="https://publications.waset.org/abstracts/search?q=Emela%20Dalloshi"> Emela Dalloshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevila%20Alliu"> Nevila Alliu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Ostreni"> Vera Ostreni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dental whitening process, beyond the fact that it is a mini-invasive dental treatment, has effects on the dental structure, or on the pulp of the tooth, where it is applied. The electronic search was performed using keywords to find articles published within the last 10 years about side effects, assessed as such, of minimally invasive dental bleaching treatment. Methodology: In selected articles, the other aim of the study was to evaluate the side effects of bleaching based on the percentage and type of solution used, where the latter was evaluated on the basic solution used for bleaching. Results: The side effects of bleaching are evaluated in selected articles depending on the method of bleaching application, which means it is carried out with recommended solutions, or with mixtures of alternative solutions or substances based on Internet information. Short conclusion: The dental bleaching process has side effects which have not yet been definitively evaluated, experimentally in large samples of individuals or animals (mice or cattle) to arrive at accurate numerical conclusions. The trend of publications about this topic is increasing in recent years, as long as the trend for aesthetic facial treatments, including dental ones, is increasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teeth%20whitening" title="teeth whitening">teeth whitening</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20effects" title=" side effects"> side effects</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20teeth" title=" permanent teeth"> permanent teeth</a>, <a href="https://publications.waset.org/abstracts/search?q=formed%20dental%20apex" title=" formed dental apex"> formed dental apex</a> </p> <a href="https://publications.waset.org/abstracts/182709/side-effects-of-dental-whitening-published-data-from-the-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> Optimized Microwave Pretreatment of Rice Straw for Conversion into Lignin Free and High Crystalline Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ishfaq%20Bhat">Mohd Ishfaq Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Navin%20Chandra%20Shahi"> Navin Chandra Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Chandra%20Lohani"> Umesh Chandra Lohani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to evaluate the effect of microwave application in synergy with the conventional sodium chlorite delignification of rice straw biomass. For the study, Box-Behnken experimental design involving four independent parameters, each with three levels viz. microwave power (480-800 W), irradiation time (4-12 min), bleaching solution concentration (0.4-3.0%), and bleaching time (1-5h) was used. The response was taken in the form of delignification percentage. The optimization of process parameters was done through response surface methodology. The respective optimum parameters of microwave power, irradiation time, bleaching solution concentration, and bleaching time were obtained as 671 W, 8.66 min, 2.67%, and 1h. The delignification percentage achieved at optimum conditions was 93.51%. The spectral, morphological, and x-ray diffraction characteristics of the rice straw powder after delignification showed a complete absence of lignin peaks, deconstruction of lignocellulose complex, and an increase of crystallinity (from 39.8 to 61.6 %). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title="lignocellulosic biomass">lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=delignification" title=" delignification"> delignification</a>, <a href="https://publications.waset.org/abstracts/search?q=microwaves" title=" microwaves"> microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20straw" title=" rice straw"> rice straw</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/146950/optimized-microwave-pretreatment-of-rice-straw-for-conversion-into-lignin-free-and-high-crystalline-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Comparision of Bioleaching of Metals from Spent Petroleum Catalyst Using Acidithiobacillus Ferrooxidans and Acidthiobacillus Thiooxidans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haragobinda%20Srichandan">Haragobinda Srichandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak"> Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Jin%20Kim"> Dong Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoung-Won%20Lee"> Seoung-Won Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation deals with bioleaching of spent petroleum catalyst using At. ferrooxidans and At. thiooxidans. The spent catalyst used in the present study was pretreated with acetone to remove the oily hydrocarbons. FESEM and XPS analysis indicated the presence of metals in sulfide and oxide forms in spent catalyst. Both At. ferrooxidans and At. thiooxidans were found to be highly effective in producing the acid. Bioleaching with At. ferrooxidans and At. thiooxidans led to higher recovery of metals compare to control. During bioleaching similar recoveries of metals were obtained using At. ferrooxidans and At. thiooxidans. This might be due to the presence of metals as soluble oxides and sulphides in the spent catalyst. At the end of bioleaching, about 87-90% Ni, 34% Al, 65-73% Mo and 92-97% V were leached using above bacteria. It is elucidated that bioleaching with At. thiooxidans is comparatively more advantageous due to lower cost of sulphur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=At.%20ferrooxidans" title="At. ferrooxidans">At. ferrooxidans</a>, <a href="https://publications.waset.org/abstracts/search?q=bioleaching" title=" bioleaching"> bioleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title=" metal recovery"> metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20catalyst" title=" spent catalyst"> spent catalyst</a> </p> <a href="https://publications.waset.org/abstracts/1872/comparision-of-bioleaching-of-metals-from-spent-petroleum-catalyst-using-acidithiobacillus-ferrooxidans-and-acidthiobacillus-thiooxidans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> Effect of Tooth Bleaching Agents on Enamel Demineralisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najlaa%20Yousef%20Qusti">Najlaa Yousef Qusti</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20J.%20Brookes"> Steven J. Brookes</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20A.%20Brunton"> Paul A. Brunton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Tooth discoloration can be an aesthetic problem, and tooth whitening using carbamide peroxide bleaching agents are a popular treatment option. However, there are concerns about possible adverse effects such as demineralisation of the bleached enamel; however, the cause of this demineralisation is unclear. Introduction: Teeth can become stained or discoloured over time. Tooth whitening is an aesthetic solution for tooth discoloration. Bleaching solutions of 10% carbamide peroxide (CP) have become the standard agent used in dentist-prescribed and home-applied ’vital bleaching techniques’. These materials release hydrogen peroxide (H₂O₂), the active whitening agent. However, there is controversy in the literature regarding the effect of bleaching agents on enamel integrity and enamel mineral content. The purpose of this study was to establish if carbamide peroxide bleaching agents affect the acid solubility of enamel (i.e., make teeth more prone to demineralisation). Materials and Methods: Twelve human premolar teeth were sectioned longitudinally along the midline and varnished to leave the natural enamel surface exposed. The baseline behavior of each tooth half in relation to its demineralisation in acid was established by sequential exposure to 4 vials containing 1ml of 10mM acetic acid (1 minute/vial). This was followed by exposure to 10% CP for 8 hours. After washing in distilled water, the tooth half was sequentially exposed to 4 further vials containing acid to test if the acid susceptibility of the enamel had been affected. The corresponding tooth half acted as a control and was exposed to distilled water instead of CP. The mineral loss was determined by measuring [Ca²⁺] and [PO₄³⁻] released in each vial using a calcium ion-selective electrode and the phosphomolybdenum blue method, respectively. The effect of bleaching on the tooth surfaces was also examined using SEM. Results: Exposure to carbamide peroxide did not significantly alter the susceptibility of enamel to acid attack, and SEM of the enamel surface revealed a slight alteration in surface appearance. SEM images of the control enamel surface showed a flat enamel surface with some shallow pits, whereas the bleached enamel appeared with an increase in surface porosity and some areas of mild erosion. Conclusions: Exposure to H₂O₂ equivalent to 10% CP does not significantly increase subsequent acid susceptibility of enamel as determined by Ca²⁺ release from the enamel surface. The effects of bleaching on mineral loss were indistinguishable from distilled water in the experimental system used. However, some surface differences were observed by SEM. The phosphomolybdenum blue method for phosphate is compromised by peroxide bleaching agents due to their oxidising properties. However, the Ca²⁺ electrode is unaffected by oxidising agents and can be used to determine the mineral loss in the presence of peroxides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleaching" title="bleaching">bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=carbamide%20peroxide" title=" carbamide peroxide"> carbamide peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=demineralisation" title=" demineralisation"> demineralisation</a>, <a href="https://publications.waset.org/abstracts/search?q=teeth%20whitening" title=" teeth whitening"> teeth whitening</a> </p> <a href="https://publications.waset.org/abstracts/132807/effect-of-tooth-bleaching-agents-on-enamel-demineralisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> Ozone Treatment in Textile Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umut%20%C3%87%C4%B1nar">Umut Çınar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fact that ozone gas has color bleaching properties has made the use of ozone gas widespread in the textile sector as well as in many other sectors. Ozone gas, which is a strong oxidative agent on the fabric, causes the paint on the fabric to wear off and lighten its color with an aged appearance. Within the scope of this thesis, parameters affecting the bleaching properties of ozone gas on reactive dyed knitted fabric, which is rare in the literature, were investigated. Ozone concentration, time, and pH values were analyzed with the Box Behnken experimental design method, and optimum conditions were determined. After the experiments, wear and opacity values were measured with the help of a spectrophotometer. With the help of the Design Expert program, the graphics related to the data were prepared and interpreted with Box Behnken and ANOVA. These experiments on reactive dyed knitted fabric were tested on these parameters, and the spectrophotometric values of the fabric and optimum parameters in abrasion and opacity were revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ozone" title="ozone">ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dye" title=" reactive dye"> reactive dye</a>, <a href="https://publications.waset.org/abstracts/search?q=bleaching" title=" bleaching"> bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=garment%20wash" title=" garment wash"> garment wash</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=washing" title=" washing"> washing</a>, <a href="https://publications.waset.org/abstracts/search?q=Box%E2%80%93Behnken" title=" Box–Behnken"> Box–Behnken</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20design" title=" experimental design"> experimental design</a> </p> <a href="https://publications.waset.org/abstracts/168203/ozone-treatment-in-textile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> The Effect of Spent Mushroom Substrate on Blood Metabolites in Kurdish Male Lambs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Vakili">Alireza Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Ehtesham"> Shahab Ehtesham</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Danesh%20Mesgaran"> Mohsen Danesh Mesgaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was use different levels of spent mushroom substrate as a suitable substitute for wheat straw in the ration of male lambs. In this study 20 male lambs with the age of 90 days and initial average weight of 33± 1.7 kg were used. The animals were divided separately into single boxes with four treatments (control treatment, spent mushroom substrate 15%, spent mushroom substrate 25% and spent mushroom substrate 35%) and five replications. The experiment period was 114 days being 14 days adaptation and 90 days for breeding. On the days 36 and 94, blood samples were taken from the jugular vein. In order to carry out the trial, 20 male lambs received the four experimental diets in completely randomized design. The statistical analyses were carried out by using the GLM procedure of SAS 9.1. Means among treatments were compared by Tukey test. The results of the study showed that there was no significant differences between the serum biochemical and hematological contents of the lambs in the four treatments (p>0.05). It was concluded that spent mushroom substrate consumption has no harmful effect on the blood parameters of Kurdish male lambs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20food" title="alternative food">alternative food</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20performance" title=" sheep performance"> sheep performance</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20mushroom%20substrate" title=" spent mushroom substrate "> spent mushroom substrate </a> </p> <a href="https://publications.waset.org/abstracts/32670/the-effect-of-spent-mushroom-substrate-on-blood-metabolites-in-kurdish-male-lambs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1579</span> Reuse of Spent Lithium Battery for the Production of Environmental Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen">Jyh-Cherng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Shiang%20You"> Chih-Shiang You</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie-Shian%20Cheng"> Jie-Shian Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to recycle and reuse of spent lithium-cobalt battery and lithium-iron battery in the production of environmental catalysts. The characteristics and catalytic activities of synthesized catalysts for different air pollutants are analyzed and tested. The results show that the major metals in spent lithium-cobalt batteries are lithium 5%, cobalt 50%, nickel 3%, manganese 3% and the major metals in spent lithium-iron batteries are lithium 4%, iron 27%, and copper 4%. The catalytic activities of metal powders in the anode of spent lithium batteries are bad. With using the precipitation-oxidation method to prepare the lithium-cobalt catalysts from spent lithium-cobalt batteries, their catalytic activities for propane decomposition, CO oxidation, and NO reduction are well improved and excellent. The conversion efficiencies of the regenerated lithium-cobalt catalysts for those three gas pollutants are all above 99% even at low temperatures 200-300 °C. However, the catalytic activities of regenerated lithium-iron catalysts from spent lithium-iron batteries are unsatisfied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-cobalt%20battery" title=" lithium-cobalt battery"> lithium-cobalt battery</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-iron%20battery" title=" lithium-iron battery"> lithium-iron battery</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle%20and%20reuse" title=" recycle and reuse"> recycle and reuse</a> </p> <a href="https://publications.waset.org/abstracts/52788/reuse-of-spent-lithium-battery-for-the-production-of-environmental-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1578</span> On the Main Factor That Causes the Instabilities of the Earth Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim">Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim"> Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim"> Sung Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth rotation is one of astronomical phenomena without which it is impossible to think of human life. That is why the investigation of the Earth's rotation is very important, and it has a long history of study. Invention of quartz clocks in the 1930s and atomic time in the 1950s and introduction of modern technology into astronomic observation in recent years resulted in rapid development of the study of Earth’s rotation. The theory of the Earth rotation, however, has not been up to the high level of astronomic observation due to limitation of the time such as the impossibility of quantitative calculation of moment of external force for Euler’s dynamical equation based on Newtoniam mechanics. As a typical example, we can take the problems that cover the instabilities of the Earth’s rotation proved completely by the astronomic observations as well as polar motion, the precession and nutation of the Earth rotation axis, which have not been described in a single equation in a quantitative way from the unique law of the Earth rotation. In particular, at present, the problem of what the main factor causing the instabilities of the Earth rotation is has not been solved clearly in quantitative ways yet. Therefore, this paper addresses a quantitative proof that the main factor which causes the instabilities of the Earth rotation is the moment of external force rather than variations in the relative atmospheric angular momentum and in moment of inertia of the Earth’s body due to the time limitation and under some assumptions. Then the future direction of research is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20angular%20momentum" title="atmospheric angular momentum">atmospheric angular momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=instabilities%20of%20the%20Earth%E2%80%99s%20rotation" title=" instabilities of the Earth’s rotation"> instabilities of the Earth’s rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20the%20Earth%E2%80%99s%20rotation%20change" title=" law of the Earth’s rotation change"> law of the Earth’s rotation change</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20inertia%20of%20the%20Earth" title=" moment of inertia of the Earth"> moment of inertia of the Earth</a> </p> <a href="https://publications.waset.org/abstracts/192592/on-the-main-factor-that-causes-the-instabilities-of-the-earth-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1577</span> First Earth Size</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Metwally">Ibrahim M. Metwally</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Have you ever thought that earth was not the same earth we live on? Was it bigger or smaller? Was it a great continent surrounded by huge ocean as Alfred Wegener (1912) claimed? Earth is the most amazing planet in our Milky Way galaxy and may be in the universe. It is the only deformed planet that has a variable orbit around the sun and the only planet that has water on its surface. How did earth deformation take place? What does cause earth to deform? What are the results of earth deformation? How does its orbit around the sun change? First earth size computation can be achieved only considering the quantum of iron and nickel rested into earth core. This paper introduces a new theory “Earth expansion Theory”. The principles of “Earth Expansion Theory” are leading to new approaches and concepts to interpret whole earth dynamics and its geological and environmental changes. This theory is not an attempt to unify the two divergent dominant theories of continental drift, plate tectonic theory and earth expansion theory. The new theory is unique since it has a mathematical derivation, explains all the change to and around earth in terms of geological and environmental changes, and answers all unanswered questions in other theories. This paper presents the basic of the introduced theory and discusses the mechanism of earth expansion and how it took place, the forces that made the expansion. The mechanisms of earth size change from its spherical shape with radius about 3447.6 km to an elliptic shape of major radius about 6378.1 km and minor radius of about 6356.8 km and how it took place, are introduced and discussed. This article also introduces, in a more realistic explanation the formation of oceans and seas, the preparation of river formation. It also addresses the role of iron in earth size enlargement process within the continuum mechanics framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20size" title="earth size">earth size</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20expansion" title=" earth expansion"> earth expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20mechanics" title=" continuum mechanics"> continuum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=continental%20and%20ocean%20formation" title=" continental and ocean formation"> continental and ocean formation</a> </p> <a href="https://publications.waset.org/abstracts/26111/first-earth-size" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1576</span> Periodic Change in the Earth’s Rotation Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim">Sung Duk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim"> Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim"> Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomenon of seasonal variations in the Earth’s rotation velocity was discovered in the 1930s when a crystal clock was developed and analyzed in a quantitative way for the first time between 1955 and 1968 when observation data of the seasonal variations was analyzed by an atomic clock. According to the previous investigation, atmospheric circulation is supposed to be a factor affecting the seasonal variations in the Earth’s rotation velocity in many cases, but the problem has not been solved yet. In order to solve the problem, it is necessary to apply dynamics to consider the Earth’s spatial motion, rotation, and change of shape of the Earth (movement of materials in and out of the Earth and change of the Earth’s figure) at the same time and in interrelation to the accuracy of post-Newtonian approximation regarding the Earth body as a system of mass points because the stability of the Earth’s rotation angular velocity is in the range of 10⁻⁸~10⁻⁹. For it, the equation was derived, which can consider the 3 kinds of motion above mentioned at the same time by taking the effect of the resultant external force on the Earth’s rotation into account in a relativistic way to the accuracy of post-Newtonian approximation. Therefore, the equation has been solved to obtain the theoretical values of periodic change in the Earth’s rotation velocity, and they have been compared with the astronomical observation data so to reveal the cause for the periodic change in the Earth’s rotation velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earth%20rotation" title="Earth rotation">Earth rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20function" title=" moment function"> moment function</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20change" title=" periodic change"> periodic change</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20variation" title=" seasonal variation"> seasonal variation</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20change" title=" relativistic change"> relativistic change</a> </p> <a href="https://publications.waset.org/abstracts/182897/periodic-change-in-the-earths-rotation-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1575</span> High Pressure Delignification Process for Nanocrystalline Cellulose Production from Agro-Waste Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakinul%20Islam">Sakinul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nhol%20Kao"> Nhol Kao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sati%20Bhattacharya"> Sati Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Gupta"> Rahul Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocrystalline cellulose (NCC) has been widely used for miscellaneous applications due to its superior properties over other nanomaterials. However, the major problems associated with the production of NCC are long reaction time, low production rate and inefficient process. The mass production of NCC within a short period of time is still a great challenge. The main objective of this study is to produce NCC from rice husk agro waste biomass from a high pressure delignification process (HPDP), followed by bleaching and hydrolysis processes. The HPDP has not been explored for NCC production from rice husk biomass (RHB) until now. In order to produce NCC, powder rice husk (PRH) was placed into a stainless steel reactor at 80 ˚C under 5 bars. Aqueous solution of NaOH (4M) was used for the dissolution of lignin and other amorphous impurities from PRH. After certain experimental times (1h, 3.5h and 6h), bleaching and hydrolysis were carried out on delignified samples. NaOCl (20%) and H2SO4 (4M) solutions were used for bleaching and hydrolysis processes, respectively. The NCC suspension from hydrolysis was sonicated and neutralized by buffer solution for various characterisations. Finally NCC suspension was dried and analyzed by FTIR, XRD, SEM, AFM and TEM. The chemical composition of NCC and PRH was estimated by TAPPI (Technical Association of Pulp and Paper Industry) standard methods to observe the product purity. It was found that, the 6h of the HPDP was more efficient to produce good quality NCC than that at 1h and 3.5h due to low separation of non-cellulosic components from RHB. The analyses indicated the crystallinity of NCC to be 71 %, particle size of 20-50 nm (diameter) and 100-200 nm in length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20cellulose" title="nanocrystalline cellulose">nanocrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=NCC" title=" NCC"> NCC</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20delignification" title=" high pressure delignification"> high pressure delignification</a>, <a href="https://publications.waset.org/abstracts/search?q=bleaching" title=" bleaching"> bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=agro-waste%20biomass" title=" agro-waste biomass"> agro-waste biomass</a> </p> <a href="https://publications.waset.org/abstracts/47263/high-pressure-delignification-process-for-nanocrystalline-cellulose-production-from-agro-waste-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1574</span> Crater Pattern on the Moon and Origin of the Moon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuguang%20Leng">Xuguang Leng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moon" title="moon">moon</a>, <a href="https://publications.waset.org/abstracts/search?q=origin" title=" origin"> origin</a>, <a href="https://publications.waset.org/abstracts/search?q=crater" title=" crater"> crater</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern" title=" pattern"> pattern</a> </p> <a href="https://publications.waset.org/abstracts/149225/crater-pattern-on-the-moon-and-origin-of-the-moon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1573</span> Development of Ready Reckoner Charts for Easy, Convenient, and Widespread Use of Horrock’s Apparatus by Field Level Health Functionaries in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gumashta%20Raghvendra">Gumashta Raghvendra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumashta%20Jyotsna"> Gumashta Jyotsna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim and Objective of Study : The use of Horrock’s Apparatus by health care worker requires onsite mathematical calculations for estimation of ‘volume of water’ and ‘amount of bleaching powder’ necessary as per the serial number of first cup showing blue coloration after adding freshly prepared starch-iodide indicator solution. In view of the difficulties of two simultaneous calculations required to be done, the use of Horrock’s Apparatus is not routinely done by health care workers because it is impractical and inconvenient Material and Methods: Arbitrary use of bleaching powder in wells results in hyper-chlorination or hypo-chlorination of well defying the purpose of adequate chlorination or non-usage of well water due to hyper-chlorination. Keeping this in mind two nomograms have been developed, one to assess the volume of well using depth and diameter of well and the other to know the quantity of bleaching powder to b added using the number of the cup of Horrock’s apparatus which shows the colour indication. Result & Conclusion: Out of thus developed two self-speaking interlinked easy charts, first chart will facilitate bypassing requirement of formulae ‘πr2h’ for water volume (ready reckoner table with depth of water shown on ‘X’ axis and ‘diameter of well’ on ‘Y’ axis) and second chart will facilitate bypassing requirement formulae ‘2ab/455’ (where ‘a’ is for ‘serial number of cup’ and ‘b’ is for ‘water volume’, while ready reckoner table showing ‘water volume’ shown on ‘X’ axis and ‘serial number of cup’ on ‘Y’ axis). The use of these two charts will help health care worker to immediately known, by referring the two charts, about the exact requirement of bleaching powder. Thus, developed ready reckoner charts will be easy and convenient to use for ensuring prevention of water-borne diseases occurring due to hypo-chlorination, especially in rural India and other developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apparatus" title="apparatus">apparatus</a>, <a href="https://publications.waset.org/abstracts/search?q=bleaching" title=" bleaching"> bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorination" title=" chlorination"> chlorination</a>, <a href="https://publications.waset.org/abstracts/search?q=Horrock%E2%80%99s" title=" Horrock’s"> Horrock’s</a>, <a href="https://publications.waset.org/abstracts/search?q=nomogram" title=" nomogram"> nomogram</a> </p> <a href="https://publications.waset.org/abstracts/29810/development-of-ready-reckoner-charts-for-easy-convenient-and-widespread-use-of-horrocks-apparatus-by-field-level-health-functionaries-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1572</span> Characterization of the Microorganisms Associated with Pleurotus ostractus and Pleurotus tuber-Regium Spent Mushroom Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20E.%20Okere">Samuel E. Okere</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20E.%20Ataga"> Anthony E. Ataga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The microbial ecology of Pleurotus osteratus and Pleurotus tuber–regium spent mushroom substrate (SMS) were characterized to determine other ways of its utilization. Materials and Methods: The microbiological properties of the spent mushroom substrate were determined using standard methods. This study was carried out at the Microbiology Laboratory University of Port Harcourt, Rivers State, Nigeria. Results: Quantitative microbiological analysis revealed that Pleurotus osteratus spent mushroom substrate (POSMS) contained 7.9x10⁵ and 1.2 x10³ cfu/g of total heterotrophic bacteria and total fungi count respectively while Pleurotus tuber-regium spent mushroom substrate (PTSMS) contained 1.38x10⁶ and 9.0 x10² cfu/g of total heterotrophic bacteria count and total fungi count respectively. The fungi species encountered from Pleurotus tuber-regium spent mushroom substrate (PTSMS) include Aspergillus and Cladosporum species, while Aspergillus and Penicillium species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). However, the bacteria species encountered from Pleurotus tuber-regium spent mushroom substrate include Bacillus, Acinetobacter, Alcaligenes, Actinobacter, and Pseudomonas species while Bacillus, Actinobacteria, Aeromonas, Lactobacillus and Aerococcus species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). Conclusion: Therefore based on the findings from this study, it can be concluded that spent mushroom substrate contain microorganisms that can be utilized both in bioremediation of oil-polluted soils as they contain important hydrocarbon utilizing microorganisms such as Penicillium, Aspergillus and Bacillus species and also as sources of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas and Bacillus species which can induce resistance on plants. However, further studies are recommended, especially to molecularly characterize these microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom" title=" mushroom"> mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20substrate" title=" spent substrate"> spent substrate</a> </p> <a href="https://publications.waset.org/abstracts/113310/characterization-of-the-microorganisms-associated-with-pleurotus-ostractus-and-pleurotus-tuber-regium-spent-mushroom-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1571</span> Hygrothermal Properties of Raw Earth Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ichrak%20Hamrouni">Ichrak Hamrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ouahbi"> Tariq Ouahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalija%20Lhuissier"> Natalija Lhuissier</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%AFd%20Taibi"> Saïd Taibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrez%20Jemai"> Mehrez Jemai</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Crumeyrolle"> Olivier Crumeyrolle</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Zenzri"> Hatem Zenzri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20earth%20material" title="raw earth material">raw earth material</a>, <a href="https://publications.waset.org/abstracts/search?q=hygro-thermal" title=" hygro-thermal"> hygro-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapour%20permeability" title=" water vapour permeability"> water vapour permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/143371/hygrothermal-properties-of-raw-earth-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1570</span> Molecular Characterization and Determination of Bioremediation Potentials of Some Bacteria Isolated from Spent Oil Contaminated Soil Mechanic Workshops in Kaduna Metropolis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20D.%20Adams">David D. Adams</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20B.%20Bello"> Ibrahim B. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spent oil contaminated Soil from ten selected mechanic workshops were investigated for their bacteria and bioremediation potentials. The bacterial isolates were morphologically and molecularly identified as Enterobacter hormaechei, Escherichia coli, Klebsiella pneumoniae, Shigella flexneri , Wesiella cibaria, Lactobacillus planetarium. The singles and a consortium of these bacteria incubated in the minimal salt medium incorporated with 1% engine oil exhibited various biodegradation rates, with the mixed consortium exhibiting the highest for this oil. The gene for the hydrocarbon enzyme Catechol 2, 3 dioxygenase (C2,30) was detected and amplified in Enterobacter hormaechei, Escherichia coli and Shigella flexneri using PCR and Agarose gel electrophoresis. The detection of the (C2,30) enzyme gene in, and the spent oil biodegradation activity exhibited by these bacteria suggest their possible possession of bioremediating potentials for the spent engine oil. It is therefore suggested that a pilot study on the field application of these bacteria for bioremediation and restoration of spent oil polluted environment should be done in mechanic workshops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20engine%20oil" title="spent engine oil">spent engine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic%20workshop" title=" mechanic workshop"> mechanic workshop</a> </p> <a href="https://publications.waset.org/abstracts/78069/molecular-characterization-and-determination-of-bioremediation-potentials-of-some-bacteria-isolated-from-spent-oil-contaminated-soil-mechanic-workshops-in-kaduna-metropolis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1569</span> Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imane%20Khalil">Imane Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Quinn%20Pratt"> Quinn Pratt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20nuclear%20fuel" title="spent nuclear fuel">spent nuclear fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a> </p> <a href="https://publications.waset.org/abstracts/86958/two-dimensional-modeling-of-spent-nuclear-fuel-using-fluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1568</span> Cotton Treated with Spent Coffee Extract for Realizing Functional Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Hwa%20Hong">Kyung Hwa Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to evaluate the ability of spent coffee extract to enhance the antioxidant and antimicrobial properties of cotton fabrics. The emergence and spread of infectious diseases has raised a global interest in the antimicrobial substances. The safety of chemical agents, such as antimicrobials and dyes, which may irritate the skin, cause cellular and organ damage, and have adverse environmental impacts during their manufacturing, in relation to the human body has not been established. Nevertheless, there is a growing interest in natural antimicrobials that kill microorganisms or stop their growth without dangerous effects on human health. Spent coffee is the by-product of coffee brewing and amounted to 96,000 tons worldwide in 2015. Coffee components such as caffeine, melanoidins, and chlorogenic acid have been reported to possess multifunctional properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Therefore, the current study examined the possibility of applying spent coffee in functional textile finishing. Spent coffee was extracted with 60% methanol solution, and the major components of the extract were quantified. In addition, cotton fabrics treated with spent coffee extract through a pad-dry-cure process were investigated for antioxidant and antimicrobial activities. The cotton fabrics finished with the spent coffee extract showed an increase in yellowness, which is an unfavorable outcome from the fabric finishing process. However, the cotton fabrics finished with the spent coffee extract exhibited considerable antioxidant activity. In particular, the antioxidant ability significantly increased with increasing concentrations of the spent coffee extract. The finished cotton fabrics showed antimicrobial ability against S. aureus but relatively low antimicrobial ability against K. pneumoniae. Therefore, further investigations are needed to determine the appropriate concentration of spent coffee extract to inhibit the growth of various pathogenic bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20coffee%20grounds" title="spent coffee grounds">spent coffee grounds</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20finishing%20agent" title=" natural finishing agent"> natural finishing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/82466/cotton-treated-with-spent-coffee-extract-for-realizing-functional-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1567</span> Tectonic Movements and Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar%20Trivedi">Arvind Kumar Trivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our Earth is dynamic in nature and its structure behaves like a puzzle because the interior of the Earth is in both gaseous as well as molten (liquid) form and the crust i.e. the outermost surface is in solid form. This Earth was one landmass known as ‘Pangaea’ in the beginning. With time due to complex phenomena of tectonic movements, it was broken into various landmasses along with water bodies. This Pangaea was in direct contact with the atmosphere playing dominant role in creating various ecosystems on the Earth. Ecosystems mean: Eco (environment body) and systems (interdependent complex of all the organisms interacting with each other). This paper provides an in-depth discussion on tectonic movements as well as ecosystems & how these two affect each other and in the end, we will enlist various methods on how to preserve our ‘Mother Earth’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tectonic%20movements" title="tectonic movements">tectonic movements</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems" title=" ecosystems"> ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20tectonics" title=" plate tectonics"> plate tectonics</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a> </p> <a href="https://publications.waset.org/abstracts/186089/tectonic-movements-and-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1566</span> Overtopping Protection Systems for Overflow Earth Dams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Pourabdollah">Omid Pourabdollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Misaghian"> Mohsen Misaghian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Overtopping is known as one the most important reasons for the failure of earth dams. In some cases, it has resulted in heavy damages and losses. Therefore, enhancing the safety of earth dams against overtopping has received much attention in the past four decades. In this paper, at first, the overtopping phenomena and its destructive consequences will be introduced. Then, overtopping failure mechanism of embankments will be described. Finally, different types of protection systems for stabilization of earth dams against overtopping will be presented. These include timber cribs, riprap and gabions, reinforced earth, roller compacted concrete, and the precast concrete blocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embankment%20dam" title="embankment dam">embankment dam</a>, <a href="https://publications.waset.org/abstracts/search?q=overtopping" title=" overtopping"> overtopping</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete" title=" roller compacted concrete"> roller compacted concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20concrete%20block" title=" wedge concrete block"> wedge concrete block</a> </p> <a href="https://publications.waset.org/abstracts/109537/overtopping-protection-systems-for-overflow-earth-dams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1565</span> Dilation Effect on 3D Passive Earth Pressure Coefficients for Retaining Wall </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelifa%20Tarek">Khelifa Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Benmebarek%20Sadok"> Benmebarek Sadok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2D passive earth pressures acting on rigid retaining walls problem has been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line and numerical computation), however, the 3D passive earth pressures problem has received less attention. This paper is concerned with the numerical study of 3D passive earth pressures induced by the translation of a rigid rough retaining wall for associated and non-associated soils. Using the explicit finite difference code FLAC3D, the increase of the passive earth pressures due to the decrease of the wall breadth is investigated. The results given by the present numerical analysis are compared with other investigation. The influence of the angle of dilation on the coefficients is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D" title=" FLAC3D"> FLAC3D</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title=" retaining wall"> retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20earth%20pressures" title=" passive earth pressures"> passive earth pressures</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20dilation" title=" angle of dilation"> angle of dilation</a> </p> <a href="https://publications.waset.org/abstracts/33167/dilation-effect-on-3d-passive-earth-pressure-coefficients-for-retaining-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1564</span> A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hafez">H. Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekkawy"> A. Mekkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rostom"> R. Rostom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rammed%20earth" title="rammed earth">rammed earth</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20builder" title=" design builder"> design builder</a> </p> <a href="https://publications.waset.org/abstracts/99687/a-comparison-between-modelled-and-actual-thermal-performance-of-load-bearing-rammed-earth-walls-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1563</span> Polyphenols Content and Antioxidant Activity of Extracts from Peganum harmala Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Kacem">Rachid Kacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Talbi"> Sara Talbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Hemissi"> Yasmina Hemissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20%20Bouguattoucha"> Sofia Bouguattoucha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work is the evaluation of the antioxidant activity of the Peganum harmala (P. harmala) seeds extracts. The antioxidant activity was evaluated by applying two methods, the method of ß-carotene bleaching and DPPH (2, 2-Diphenyl-1-Picryl-Hydrazyl). Using Folin-Ciocalteu assay, these results revealed that the concentration of polyphenols in EthOH E. (122.28 ± 2.24 µg GAE/mg extract) is the highest. The antiradical activity of the P. harmala seeds extracts on DPPH was found to be dose dependent with polyphenols concentration. The E. EthOH extract showed the highest antioxidant activity (IC = 252.10 ± 11.18 μg /ml). The test of β-carotene bleaching indicates that the E. EthOH of P. harmala showed the highest percentage of the antioxidant activity (49.88 %). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala" title=" Peganum harmala"> Peganum harmala</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids "> flavonoids </a> </p> <a href="https://publications.waset.org/abstracts/32852/polyphenols-content-and-antioxidant-activity-of-extracts-from-peganum-harmala-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Spent%20bleaching%20earth&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>