CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;26 of 26 results for author: <span class="mathjax">Schneider, J M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Schneider%2C+J+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Schneider, J M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Schneider%2C+J+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Schneider, J M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02407">arXiv:2412.02407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02407">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dry Transfer Based on PMMA and Thermal Release Tape for Heterogeneous Integration of 2D-TMDC Layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ghiami%2C+A">Amir Ghiami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiadziushkin%2C+H">Hleb Fiadziushkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+T">Tianyishan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S">Songyao Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yibing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayer%2C+E">Eva Mayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piacentini%2C+A">Agata Piacentini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heuken%2C+M">Michael Heuken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalisch%2C+H">Holger Kalisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescan%2C+A">Andrei Vescan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02407v1-abstract-short" style="display: inline;"> A reliable and scalable transfer of 2D-TMDCs (two-dimensional transition metal dichalcogenides) from the growth substrate to a target substrate with high reproducibility and yield is a crucial step for device integration. In this work, we have introduced a scalable dry-transfer approach for 2D-TMDCs grown by MOCVD (metal-organic chemical vapor deposition) on sapphire. Transfer to a silicon/silicon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02407v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02407v1-abstract-full" style="display: none;"> A reliable and scalable transfer of 2D-TMDCs (two-dimensional transition metal dichalcogenides) from the growth substrate to a target substrate with high reproducibility and yield is a crucial step for device integration. In this work, we have introduced a scalable dry-transfer approach for 2D-TMDCs grown by MOCVD (metal-organic chemical vapor deposition) on sapphire. Transfer to a silicon/silicon dioxide (Si/SiO$_2$) substrate is performed using PMMA (poly(methyl methacrylate)) and TRT (thermal release tape) as sacrificial layer and carrier, respectively. Our proposed method ensures a reproducible peel-off from the growth substrate and better preservation of the 2D-TMDC during PMMA removal in solvent, without compromising its adhesion to the target substrate. A comprehensive comparison between the dry method introduced in this work and a standard wet transfer based on potassium hydroxide (KOH) solution shows improvement in terms of cleanliness and structural integrity for dry-transferred layer, as evidenced by X-ray photoemission and Raman spectroscopy, respectively. Moreover, fabricated field-effect transistors (FETs) demonstrate improvements in subthreshold slope, maximum drain current and device-to-device variability. The dry-transfer method developed in this work enables large-area integration of 2D-TMDC layers into (opto)electronic components with high reproducibility, while better preserving the as-grown properties of the layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02407v1-abstract-full').style.display = 'none'; document.getElementById('2412.02407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19190">arXiv:2403.19190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19190">pdf</a>, <a href="https://arxiv.org/format/2403.19190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Prediction and identification of point defect fingerprints in the X-ray photoelectron spectra of TiN$_x$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ondra%C4%8Dka%2C+P">Pavel Ondra膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCmmerl%2C+P">Pauline K眉mmerl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mr%C3%A1z%2C+S">Stanislav Mr谩z</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Primetzhofer%2C+D">Daniel Primetzhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holec%2C+D">David Holec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Va%C5%A1ina%2C+P">Petr Va拧ina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19190v1-abstract-short" style="display: inline;"> We investigate the effect of selected N and Ti point defects in $B$1 TiN on N 1s and Ti 2p$_{3/2}$ binding energies (BE) by experiments and ab initio calculations. X-ray photoelectron spectroscopy (XPS) measurements of Ti-deficient TiN films reveal additional N 1s spectral components at lower binding energies. Ab initio calculations predict that these components are caused by either Ti vacancies,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19190v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19190v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19190v1-abstract-full" style="display: none;"> We investigate the effect of selected N and Ti point defects in $B$1 TiN on N 1s and Ti 2p$_{3/2}$ binding energies (BE) by experiments and ab initio calculations. X-ray photoelectron spectroscopy (XPS) measurements of Ti-deficient TiN films reveal additional N 1s spectral components at lower binding energies. Ab initio calculations predict that these components are caused by either Ti vacancies, which induce a N 1s BE shift of $-0.53$ eV in its first N neighbors, and/or N tetrahedral interstitials, which have their N 1s BE shifted by $-1.18$ eV and also shift BE of their first N neighbors by $-0.53$ eV. However, the {\it ab initio} calculations also reveal that the tetrahedral N interstitial is unstable at room temperature. We, therefore, unambiguously attribute the detected signal to Ti vacancies. Furthermore, the vacancy concentration in Ti-deficient TiN was quantified with XPS supported by ab initio calculations. The largest BE shifts of $-1.53$, $-1.80$ and $-2.28$ eV for Ti 2p$_{3/2}$ electrons are predicted for the Ti tetrahedral, split (10$\overline{1}$)-aligned and split (111)-aligned interstitial atoms, respectively, and we, therefore, propose XPS could detect them. Other defects such as N vacancy or N split (10$\overline{1}$)-aligned interstitial introduce smaller N 1s and Ti 2p$_{3/2}$ BE shifts and are unlikely to be detectable experimentally. Our work highlights the potential of ab initio-guided XPS measurements in detecting and quantifying point defects in $B$1 TiN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19190v1-abstract-full').style.display = 'none'; document.getElementById('2403.19190v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12235">arXiv:2312.12235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12235">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> On the role of Grain Boundary Character in the Stress Corrosion Cracking of Nanoporous Gold Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saksena%2C+A">Aparna Saksena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=El-Zoka%2C+A">Ayman El-Zoka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+A">Alaukik Saxena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatipoglu%2C+E">Ezgi Hatipoglu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gault%2C+B">Baptiste Gault</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12235v1-abstract-short" style="display: inline;"> For its potential as a catalyst, nanoporous gold (NPG) prepared through dealloying of bulk Ag-Au alloys has been extensively investigated. NPG thin films can offer ease of handling, better tunability of the chemistry and microstructure of the nanoporous structure, and represent a more sustainable usage of scarce resources. These films are however prone to intergranular cracking during dealloying,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12235v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12235v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12235v1-abstract-full" style="display: none;"> For its potential as a catalyst, nanoporous gold (NPG) prepared through dealloying of bulk Ag-Au alloys has been extensively investigated. NPG thin films can offer ease of handling, better tunability of the chemistry and microstructure of the nanoporous structure, and represent a more sustainable usage of scarce resources. These films are however prone to intergranular cracking during dealloying, limiting their stability and potential applications. Here, we set out to systematically investigate the grain boundaries in Au28Ag72 thin films. We observe that a sample synthesized at 400 掳C is at least 2.5 times less prone to cracking compared to a sample synthesized at room temperature. This correlates with a higher density of coincident site lattice grain boundaries, especially the density of coherent sigma 3, increased, which appear resistant against cracking. Nanoscale compositional analysis of random high-angle grain boundaries reveals prominent Ag enrichment up to 77 at.%, whereas sigma 3 coherent twin boundaries show Au enrichment of up to 30 at.%. The misorientation and the chemistry of grain boundaries hence affect their dealloying behavior, which in turn controls the cracking, and the possible longevity of NPG thin films for application in electrocatalysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12235v1-abstract-full').style.display = 'none'; document.getElementById('2312.12235v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17539">arXiv:2305.17539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17539">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Valence electron concentration- and N vacancy-induced elasticity in cubic early transition metal nitrides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aghda%2C+S+K">Soheil Karimi Aghda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanovski%2C+D">Dimitri Bogdanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loefler%2C+L">Lukas Loefler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sua%2C+H+H">Heng Han Sua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patterer%2C+L">Lena Patterer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzapfel%2C+D+M">Damian M. Holzapfel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Febvrier%2C+A+l">Arnaud le Febvrier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Primetzhofer%2C+D">Daniel Primetzhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17539v1-abstract-short" style="display: inline;"> Motivated by frequently reported deviations from stoichiometry in cubic transition metal nitride (TMNx) thin films, the effect of N-vacancy concentration on the elastic properties of cubic TiNx, ZrNx, VNx, NbNx, and MoNx (0.72&lt;x&lt;1.00) is systematically studied by density functional theory (DFT) calculations. The predictions are validated experimentally for VNx (0.77&lt;x&lt;0.97). The DFT results indica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17539v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17539v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17539v1-abstract-full" style="display: none;"> Motivated by frequently reported deviations from stoichiometry in cubic transition metal nitride (TMNx) thin films, the effect of N-vacancy concentration on the elastic properties of cubic TiNx, ZrNx, VNx, NbNx, and MoNx (0.72&lt;x&lt;1.00) is systematically studied by density functional theory (DFT) calculations. The predictions are validated experimentally for VNx (0.77&lt;x&lt;0.97). The DFT results indicate that the elastic behavior of the TMNx depends on both the N-vacancy concentration and the valence electron concentration (VEC) of the transition metal: While TiNx and ZrNx exhibit vacancy-induced reductions in elastic modulus, VNx and NbNx show an increase. These trends can be rationalized by considering vacancy-induced changes in elastic anisotropy and bonding. While introduction of N-vacancies in TiNx results in a significant reduction of elastic modulus along all directions and a lower average bond strength of Ti-N, the vacancy-induced reduction in [001] direction of VNx is overcompensated by the higher stiffness along [011] and [111] directions, resulting in a higher average bond strength of V-N. To validate the predicted vacancy-induced changes in elasticity experimentally, close-to-single-crystal VNx (0.77&lt;x&lt;0.97) are grown on MgO(001) substrates. As the N-content is reduced, the relaxed lattice parameter a0, as probed by X-ray diffraction, decreases from 4.128 A to 4.096 A. This reduction in lattice parameter is accompanied by an anomalous 11% increase in elastic modulus, as determined by nanoindentation. As the experimental data agree with the predictions, the elasticity enhancement in VNx upon N-vacancy formation can be understood based on the concomitant changes in elastic anisotropy and bonding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17539v1-abstract-full').style.display = 'none'; document.getElementById('2305.17539v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 8 figures in the manuscript, 1 figure in supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17459">arXiv:2305.17459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17459">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Large-area deposition of protective (Ti,Al)N coatings onto polycarbonate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patterer%2C+L">Lena Patterer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kollmann%2C+S">Sabrina Kollmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arcos%2C+T+d+l">Teresa de los Arcos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jende%2C+L">Leonie Jende</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aghda%2C+S+K">Soheil Karimi Aghda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzapfel%2C+D+M">Damian M. Holzapfel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+S+A">Sameer Aman Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mr%C3%A1z%2C+S">Stanislav Mr谩z</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grundmeier%2C+G">Guido Grundmeier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17459v1-abstract-short" style="display: inline;"> Polycarbonate (PC) and protective (Ti,Al)N coatings exhibit extremely different material properties, specifically crystal structure, thermal stability, elastic and plastic behavior as well as thermal expansion coefficients. These differences present formidable challenges for the deposition process development as low-temperature synthesis routes have to be explored to avoid a thermal overload of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17459v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17459v1-abstract-full" style="display: none;"> Polycarbonate (PC) and protective (Ti,Al)N coatings exhibit extremely different material properties, specifically crystal structure, thermal stability, elastic and plastic behavior as well as thermal expansion coefficients. These differences present formidable challenges for the deposition process development as low-temperature synthesis routes have to be explored to avoid a thermal overload of the polymer substrate. Here, a large-area sputtering process is developed to address the challenges by systematically adjusting target peak power density and duty cycle. Adhering (Ti,Al)N coatings with a critical residual tensile stress of 2.2 +/- 0.2 GPa are obtained in the pulsed direct current magnetron sputtering range, whereas depositions at higher target peak power densities, realized by high power pulsed magnetron sputtering, lead to stress-induced adhesive and/or cohesive failure. The stress-optimized (Ti,Al)N coatings deposited onto PC with a target peak power density of 0.036 kW cm-2 and a duty cycle of 5.3% were investigated by cross-cut test confirming adhesion. By investigating the bond formation at the PC | (Ti,Al)N interface, mostly interfacial CNx bonds and a small fraction of (C-O)-(Ti,Al) bonds are identified by X-ray photoelectron spectroscopy, indicating reactions at the hydrocarbon and the carbonate groups during deposition. Nanoindentation reveals an elastic modulus of 296 +/- 18 GPa for the (Ti,Al)N coating, while a Ti-Al-O layer is formed during electrochemical impedance spectroscopy in a borate buffer solution, indicating protective passivation. This work demonstrates that the challenge posed by the extremely different material properties at the interface of soft polymer substrates and hard coatings can be addressed by systematical variation of the pulsing parameters to reduce the residual film stress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17459v1-abstract-full').style.display = 'none'; document.getElementById('2305.17459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17430">arXiv:2305.17430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17430">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Bond formation at polycarbonate | X interfaces (X = Al$_2$O$_3$, TiO$_2$, TiAlO$_2$) studied by theory and experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patterer%2C+L">Lena Patterer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ondra%C4%8Dka%2C+P">Pavel Ondra膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanovski%2C+D">Dimitri Bogdanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mr%C3%A1z%2C+S">Stanislav Mr谩z</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%B6llmann%2C+P+J">Peter J. P枚llmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aghda%2C+S+K">Soheil Karimi Aghda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Va%C5%A1ina%2C+P">Petr Va拧ina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17430v1-abstract-short" style="display: inline;"> Interfacial bond formation during sputter deposition of metal oxide thin films onto polycarbonate (PC) is investigated by ab initio molecular dynamics simulations and X-ray photoelectron spectroscopy (XPS) analysis of PC | X interfaces (X = Al$_2$O$_3$, TiO$_2$, TiAlO$_2$). Generally, the predicted bond formation is consistent with the experimental data. For all three interfaces, the majority of b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17430v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17430v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17430v1-abstract-full" style="display: none;"> Interfacial bond formation during sputter deposition of metal oxide thin films onto polycarbonate (PC) is investigated by ab initio molecular dynamics simulations and X-ray photoelectron spectroscopy (XPS) analysis of PC | X interfaces (X = Al$_2$O$_3$, TiO$_2$, TiAlO$_2$). Generally, the predicted bond formation is consistent with the experimental data. For all three interfaces, the majority of bonds identified by XPS are (C-O)-metal bonds, whereas C-metal bonds are the minority. Compared to the PC | Al$_2$O$_3$ interface, the PC | TiO$_2$ and PC | TiAlO$_2$ interfaces exhibit a reduction in the measured interfacial bond density by ~ 75 and ~ 65%, respectively. Multiplying the predicted bond strength with the corresponding experimentally determined interfacial bond density shows that Al$_2$O$_3$ exhibits the strongest interface with PC, while TiO$_2$ and TiAlO$_2$ exhibit ~ 70 and ~ 60% weaker interfaces, respectively. This can be understood by considering the complex interplay between the metal oxide composition, the bond strength as well as the population of bonds that are formed across the interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17430v1-abstract-full').style.display = 'none'; document.getElementById('2305.17430v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16715">arXiv:2305.16715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16715">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Correlative Theoretical and Experimental Study of the Polycarbonate | X Interfacial Bond Formation (X = AlN, TiN, TiAlN) during Magnetron Sputtering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patterer%2C+L">Lena Patterer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ondra%C4%8Dka%2C+P">Pavel Ondra膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanovski%2C+D">Dimitri Bogdanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mr%C3%A1z%2C+S">Stanislav Mr谩z</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aghda%2C+S+K">Soheil Karimi Aghda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%B6llmann%2C+P+J">Peter J. P枚llmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+Y">Yu-Ping Chien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16715v1-abstract-short" style="display: inline;"> To understand the interfacial bond formation between polycarbonate (PC) and magnetron-sputtered metal nitride thin films, PC | X interfaces (X = AlN, TiN, TiAlN) are comparatively investigated by ab initio simulations as well as X-ray photoelectron spectroscopy. The simulations predict significant differences at the interface, as N and Ti form bonds with all functional groups of the polymer, while&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16715v1-abstract-full').style.display = 'inline'; document.getElementById('2305.16715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16715v1-abstract-full" style="display: none;"> To understand the interfacial bond formation between polycarbonate (PC) and magnetron-sputtered metal nitride thin films, PC | X interfaces (X = AlN, TiN, TiAlN) are comparatively investigated by ab initio simulations as well as X-ray photoelectron spectroscopy. The simulations predict significant differences at the interface, as N and Ti form bonds with all functional groups of the polymer, while Al reacts selectively only with the carbonate group of pristine PC. In good agreement with simulations, experimental data reveal that the PC | AlN and the PC | TiAlN interfaces are mainly defined by interfacial C-N bonds, whereas for PC | TiN, the interface formation is also characterized by numerous C-Ti and (C-O)-Ti bonds. Bond strength calculations combined with the measured interfacial bond density indicate the strongest interface for PC | TiAlN followed by PC | AlN, whereas the weakest is predicted for PC | TiN due to its lower density of strong interfacial C-N bonds. This study shows that the employed computational strategy enables prediction of the interfacial bond formation between PC and metal nitrides and that it is reasonable to assume that the research strategy proposed herein can be readily adapted to other organic | inorganic interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16715v1-abstract-full').style.display = 'none'; document.getElementById('2305.16715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10266">arXiv:2303.10266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10266">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> On the determination of the thermal shock parameter of MAX phases: A combined experimental-computational study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fekete%2C+M">Matej Fekete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Azina%2C+C">Clio Azina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ondra%C4%8Dka%2C+P">Pavel Ondra膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%B6fler%2C+L">Lukas L枚fler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanovski%2C+D">Dimitri Bogdanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Primetzhofer%2C+D">Daniel Primetzhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10266v2-abstract-short" style="display: inline;"> Thermal shock resistance is one of the performance-defining properties for applications where extreme temperature gradients are required. The thermal shock resistance of a material can be described by means of the thermal shock parameter RT. Here, the thermo-mechanical properties required for the calculation of RT are quantum-mechanically predicted, experimentally determined, and compared for Ti3A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10266v2-abstract-full').style.display = 'inline'; document.getElementById('2303.10266v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10266v2-abstract-full" style="display: none;"> Thermal shock resistance is one of the performance-defining properties for applications where extreme temperature gradients are required. The thermal shock resistance of a material can be described by means of the thermal shock parameter RT. Here, the thermo-mechanical properties required for the calculation of RT are quantum-mechanically predicted, experimentally determined, and compared for Ti3AlC2 and Cr2AlC MAX phases. The coatings are synthesized utilizing direct current magnetron sputtering without additional heating, followed by vacuum annealing. It is shown that the RT of both Ti3AlC2 and Cr2AlC obtained via simulations are in good agreement with the experimentally obtained ones. Comparing the MAX phase coatings, both experiments and simulations indicate superior thermal shock behavior of Ti3AlC2 compared to Cr2AlC, attributed primarily to the larger linear coefficient of thermal expansion of Cr2AlC. The results presented herein underline the potential of ab initio calculations for predicting the thermal shock behavior of ionically-covalently bonded materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10266v2-abstract-full').style.display = 'none'; document.getElementById('2303.10266v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Journal of the European Ceramic Society, 6 figures, 4 tables, 37 pages total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09465">arXiv:2303.09465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.09465">pdf</a>, <a href="https://arxiv.org/format/2303.09465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Constructing phase diagrams for defects by correlated atomic-scale characterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathews%2C+P">Prince Mathews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berkels%2C+B">Benjamin Berkels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahmad%2C+S">Saba Ahmad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alhassan%2C+A+S+A">Amel Shamseldeen Ali Alhassan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keuter%2C+P">Philipp Keuter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+D">Dierk Raabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neugebauer%2C+J">J枚rg Neugebauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dehm%2C+G">Gerhard Dehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickel%2C+T">Tilmann Hickel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheu%2C+C">Christina Scheu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Siyuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09465v2-abstract-short" style="display: inline;"> Phase transformations and crystallographic defects are two essential tools to drive innovations in materials. Bulk materials design via tuning chemical compositions has been systematized using phase diagrams. We show here that the same thermodynamic concept can be applied to understand the chemistry at defects. We present a combined experimental and modelling approach to scope and build phase diag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09465v2-abstract-full').style.display = 'inline'; document.getElementById('2303.09465v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09465v2-abstract-full" style="display: none;"> Phase transformations and crystallographic defects are two essential tools to drive innovations in materials. Bulk materials design via tuning chemical compositions has been systematized using phase diagrams. We show here that the same thermodynamic concept can be applied to understand the chemistry at defects. We present a combined experimental and modelling approach to scope and build phase diagrams for defects. The discovery was enabled by triggering phase transformations of individual defects through local alloying, and sequentially imaging the structural and chemical changes using atomic-resolution scanning transmission electron microscopy. By observing atomic-scale phase transformations of a Mg grain boundary through Ga alloying, we exemplified the method to construct a grain boundary phase diagram using ab initio simulations and thermodynamic principles. The methodology enables a systematic development of defect phase diagrams to propel a new paradigm for materials design utilizing chemical complexity and phase transformations at defects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09465v2-abstract-full').style.display = 'none'; document.getElementById('2303.09465v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07763">arXiv:2303.07763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.07763">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Chemical and structural characterization of the native oxide scale on a Mg-based alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Neu%C3%9F%2C+D">Deborah Neu脽</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCarroll%2C+I+E">Ingrid E. McCarroll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Siyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+E">Eric Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delis%2C+W+J">Wassilios J. Delis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanure%2C+L">Leandro Tanure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springer%2C+H">Hauke Springer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sandl%C3%B6bes%2C+S">Stefanie Sandl枚bes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jing Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Todorova%2C+M">Mira Todorova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zander%2C+D">Daniela Zander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheu%2C+C">Christina Scheu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07763v3-abstract-short" style="display: inline;"> In this study, the structure and composition of the native oxide forming on the basal plane (0001) of Mg-2Al-0.1Ca is investigated by a correlative approach, combining scanning transmission electron microscopy (STEM) and atom probe tomography (APT). Atom probe specimens were prepared conventionally in a Ga focused ion beam (FIB) as well as a Xe plasma FIB in a cryogenic setup and subsequently clea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07763v3-abstract-full').style.display = 'inline'; document.getElementById('2303.07763v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07763v3-abstract-full" style="display: none;"> In this study, the structure and composition of the native oxide forming on the basal plane (0001) of Mg-2Al-0.1Ca is investigated by a correlative approach, combining scanning transmission electron microscopy (STEM) and atom probe tomography (APT). Atom probe specimens were prepared conventionally in a Ga focused ion beam (FIB) as well as a Xe plasma FIB in a cryogenic setup and subsequently cleaned in the atom probe to remove surface contamination before oxidation. While thermal energy input from the laser and longer atmospheric exposure time increased the measured hydrogen content in the specimen&#39;s apex region, cryo preparation revealed, that the hydrogen uptake in magnesium is independent of the employment of conventional or cryogenic FIB preparation. TEM measurements demonstrated the growth of a (111) MgO oxide layer with 3-4 nm thickness on the basal (0001) plane of the Mg atom probe specimen. APT data further revealed the formation of an aluminum-rich region between bulk Mg and the native oxide. The aluminum enrichment of up to ~20 at.% at the interface is consistent with an inward growth of the oxide scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07763v3-abstract-full').style.display = 'none'; document.getElementById('2303.07763v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04480">arXiv:2303.04480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04480">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/ma16062417">10.3390/ma16062417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CALPHAD-based modelling of the temperature-composition-structure relationship during physical vapor deposition of Mg-Ca thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Keuter%2C+P">Philipp Keuter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baben%2C+M+t">Moritz to Baben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aliramaji%2C+S">Shamsa Aliramaji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04480v1-abstract-short" style="display: inline;"> The temperature-dependent composition and phase formation during physical vapor deposition (PVD) of Mg-Ca thin films is modelled using a CALPHAD-based approach. Considering the Mg and Ca sublimation fluxes calculated based on the vapor pressure obtained by employing equilibrium thermochemical calculations, experimentally observed synthesis temperature trends in thin film composition and phase form&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04480v1-abstract-full').style.display = 'inline'; document.getElementById('2303.04480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04480v1-abstract-full" style="display: none;"> The temperature-dependent composition and phase formation during physical vapor deposition (PVD) of Mg-Ca thin films is modelled using a CALPHAD-based approach. Considering the Mg and Ca sublimation fluxes calculated based on the vapor pressure obtained by employing equilibrium thermochemical calculations, experimentally observed synthesis temperature trends in thin film composition and phase formation are reproduced. The model is a significant step towards understanding how synthesis parameters control composition and thereby phase formation in PVD of metals with high vapor pressures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04480v1-abstract-full').style.display = 'none'; document.getElementById('2303.04480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07119">arXiv:2209.07119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.07119">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1111/jace.18931">10.1111/jace.18931 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Yttrium incorporation in Cr2AlC: On the metastable phase formation and decomposition of (Cr,Y)2AlC MAX phase thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Azina%2C+C">Clio Azina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartsch%2C+T">Tim Bartsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzapfel%2C+D+M">Damian M. Holzapfel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dahlqvist%2C+M">Martin Dahlqvist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosen%2C+J">Johanna Rosen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%B6fler%2C+L">Lukas L枚fler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mendez%2C+A+S+J">Alba San Jose Mendez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Primetzhofer%2C+D">Daniel Primetzhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07119v1-abstract-short" style="display: inline;"> Herein we report on the synthesis of a metastable (Cr,Y)2AlC MAX phase solid solution by co-sputtering from a composite Cr-Al-C and elemental Y target, at room temperature, followed by annealing. While direct high-temperature synthesis resulted in multiphase films, as evidenced by X-ray diffraction analyses, room temperature depositions, followed by annealing to 760 掳C led to the formation of phas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07119v1-abstract-full').style.display = 'inline'; document.getElementById('2209.07119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07119v1-abstract-full" style="display: none;"> Herein we report on the synthesis of a metastable (Cr,Y)2AlC MAX phase solid solution by co-sputtering from a composite Cr-Al-C and elemental Y target, at room temperature, followed by annealing. While direct high-temperature synthesis resulted in multiphase films, as evidenced by X-ray diffraction analyses, room temperature depositions, followed by annealing to 760 掳C led to the formation of phase pure (Cr,Y)2AlC by diffusion. Higher annealing temperatures caused decomposition of the metastable phase into Cr2AlC, Y5Al3 , and Cr-carbides. In contrast to pure Cr2AlC, the Y-containing phase crystallizes directly in the MAX phase structure instead of first forming a disordered solid solution. Furthermore, the crystallization temperature was shown to be Y-content dependent and was increased by ~200 掳C for 5 at.% Y compared to Cr2AlC. Calculations predicting the metastable phase formation of (Cr,Y)2AlC and its decomposition are in excellent agreement with the experimental findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07119v1-abstract-full').style.display = 'none'; document.getElementById('2209.07119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Journal of the American Ceramic Society, 9 Figures, 30 pages total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.04606">arXiv:2111.04606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.04606">pdf</a>, <a href="https://arxiv.org/format/2111.04606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Microstructure, grain boundary evolution and anisotropic Fe segregation in (0001) textured Ti thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Devulapalli%2C+V">Vivek Devulapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sukumar%2C+P+T">Prithiv T. Sukumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dehm%2C+G">Gerhard Dehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liebscher%2C+C+H">Christian H. Liebscher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.04606v1-abstract-short" style="display: inline;"> The structure and chemistry of grain boundaries (GBs) are crucial in determining polycrystalline materials&#39; properties. Faceting and solute segregation to minimize the GB energy is a commonly observed phenomenon. In this paper, a deposition process to obtain pure tilt GBs in titanium (Ti) thin films is presented. By increasing the power density, a transition from polycrystalline film growth to a m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04606v1-abstract-full').style.display = 'inline'; document.getElementById('2111.04606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.04606v1-abstract-full" style="display: none;"> The structure and chemistry of grain boundaries (GBs) are crucial in determining polycrystalline materials&#39; properties. Faceting and solute segregation to minimize the GB energy is a commonly observed phenomenon. In this paper, a deposition process to obtain pure tilt GBs in titanium (Ti) thin films is presented. By increasing the power density, a transition from polycrystalline film growth to a maze bicrystalline Ti film on SrTiO$_3$ (001) substrate is triggered. All the GBs in the bicrystalline thin film are characterized to be $危$13 [0001] coincident site lattice (CSL) boundaries. The GB planes are seen to distinctly facet into symmetric {$\bar{7}520$} and asymmetric {$10\bar{1}0$} // {$11\bar{2}0$} segments of 20-50~nm length. Additionally, EDS reveals preferential segregation of iron (Fe) in every alternate symmetric {$\bar{7}520$} segment. Both the faceting and the segregation are explained by a difference in the CSL density between the facet planes. Furthermore, in the GB plane containing Fe segregation, atom probe tomography is used to experimentally determine the GB excess solute to be 1.25~atoms/nm$^{2}$. In summary, the study reveals for the first time a methodology to obtain bicrystalline Ti thin films with strong faceting and anisotropy in iron (Fe) segregation behaviour within the same family of planes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04606v1-abstract-full').style.display = 'none'; document.getElementById('2111.04606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03981">arXiv:2110.03981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.03981">pdf</a>, <a href="https://arxiv.org/format/2110.03981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> $\textit{Ab initio}$-guided X-ray photoelectron spectroscopy quantification of Ti vacancies in Ti$_{1-未}$O$_x$N$_{1-x}$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ondra%C4%8Dka%2C+P">Pavel Ondra膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzapfel%2C+D+M">Damian M. Holzapfel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Primetzhofer%2C+D">Daniel Primetzhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holec%2C+D">David Holec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03981v2-abstract-short" style="display: inline;"> $\textit{Ab initio}$ calculations were employed to investigate the effect of oxygen concentration dependent Ti vacancies formation on the core electron binding energy shifts in cubic titanium oxynitride (Ti$_{1-未}$O$_x$N$_{1-x}$). It was shown, that the presence of a Ti vacancy reduces the 1s core electron binding energy of the first N neighbors by $\sim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03981v2-abstract-full').style.display = 'inline'; document.getElementById('2110.03981v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03981v2-abstract-full" style="display: none;"> $\textit{Ab initio}$ calculations were employed to investigate the effect of oxygen concentration dependent Ti vacancies formation on the core electron binding energy shifts in cubic titanium oxynitride (Ti$_{1-未}$O$_x$N$_{1-x}$). It was shown, that the presence of a Ti vacancy reduces the 1s core electron binding energy of the first N neighbors by $\sim$0.6 eV and that this effect is additive with respect to the number of vacancies. Hence it is predicted that the Ti vacancy concentration can be revealed from the intensity of the shifted components in the N 1s core spectra region. This notion was critically appraised by fitting the N 1s region obtained via X-ray photoelectron spectroscopy (XPS) measurements of Ti$_{1-未}$O$_x$N$_{1-x}$ thin films deposited by high power pulsed magnetron sputtering. A model to quantify the Ti vacancy concentration based on the intensity ratio between the N 1s signal components, corresponding to N atoms with locally different Ti vacancy concentration, was developed. Herein a random vacancy distribution was assumed and the influence of surface oxidation from atmospheric exposure after deposition was considered. The so estimated vacancy concentrations are consistent with a model calculating the vacancy concentration based on the O concentrations determined by elastic recoil detection analysis and text book oxidation states and hence electroneutrality. Thus, we have unequivocally established that the formation and population of Ti vacancies in cubic Ti$_{1-未}$O$_x$N$_{1-x}$ thin films can be quantified by XPS measurements from N 1s core electron binding energy shifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03981v2-abstract-full').style.display = 'none'; document.getElementById('2110.03981v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10053">arXiv:2108.10053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.10053">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.matchar.2021.111234">10.1016/j.matchar.2021.111234 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500$^\circ$C </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Charalampopoulou%2C+E">Evangelia Charalampopoulou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lambrinou%2C+K">Konstantina Lambrinou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+der+Donck%2C+T">Tom Van der Donck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paladino%2C+B">Boris Paladino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Fonzo%2C+F">Fabio Di Fonzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Azina%2C+C">Clio Azina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eklund%2C+P">Per Eklund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mr%C3%A1z%2C+S">Stanislav Mr谩z</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schryvers%2C+D">Dominique Schryvers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delville%2C+R">R茅mi Delville</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10053v1-abstract-short" style="display: inline;"> This work addresses the early stages ($\le$1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C$_O$ &lt; 10$^-$$^8$ mass%), static liquid lead-bismuth eutectic (LBE) at 500掳C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10053v1-abstract-full').style.display = 'inline'; document.getElementById('2108.10053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10053v1-abstract-full" style="display: none;"> This work addresses the early stages ($\le$1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C$_O$ &lt; 10$^-$$^8$ mass%), static liquid lead-bismuth eutectic (LBE) at 500掳C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr$_2$AlC, Al$_2$O$_3$, V$_2$Al$_x$C$_y$). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10053v1-abstract-full').style.display = 'none'; document.getElementById('2108.10053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 22 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Characterization, Volume 178, 2021, 111234 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.01647">arXiv:2005.01647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.01647">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.corsci.2020.108704">10.1016/j.corsci.2020.108704 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compatibility of $Zr_{2}AlC$ MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tunca%2C+B">Bensu Tunca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lapauw%2C+T">Thomas Lapauw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Callaert%2C+C">Carolien Callaert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hadermann%2C+J">Joke Hadermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delville%2C+R">Remi Delville</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caspi%2C+E+N">El&#39;ad N. Caspi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dahlqvist%2C+M">Martin Dahlqvist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ros%C3%A9n%2C+J">Johanna Ros茅n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marshal%2C+A">Amalraj Marshal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pradeep%2C+K+G">Konda G. Pradeep</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vleugels%2C+J">Jozef Vleugels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lambrinou%2C+K">Konstantina Lambrinou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.01647v1-abstract-short" style="display: inline;"> This work investigates the compatibility of $Zr_{2}AlC$ MAX phase-based ceramics with liquid LBE, and proposes a mechanism to explain the observed local $Zr_{2}AlC$/LBE interaction. The ceramics were exposed to oxygen-poor ($C_{O}\le2.2 \cdot10^{-10}$ mass%), static liquid LBE at 500掳C for 1000 h. A new $Zr_{2}(Al,Bi,Pb)C$ MAX phase solid solution formed in-situ in the LBE-affected $Zr_{2}AlC$ gra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01647v1-abstract-full').style.display = 'inline'; document.getElementById('2005.01647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.01647v1-abstract-full" style="display: none;"> This work investigates the compatibility of $Zr_{2}AlC$ MAX phase-based ceramics with liquid LBE, and proposes a mechanism to explain the observed local $Zr_{2}AlC$/LBE interaction. The ceramics were exposed to oxygen-poor ($C_{O}\le2.2 \cdot10^{-10}$ mass%), static liquid LBE at 500掳C for 1000 h. A new $Zr_{2}(Al,Bi,Pb)C$ MAX phase solid solution formed in-situ in the LBE-affected $Zr_{2}AlC$ grains. Out-of-plane ordering was favorable in the new solid solution, whereby $\textit{A}$-layers with high and low-Bi/Pb contents alternated in the crystal structure, in agreement with first-principles calculations. Bulk $Zr_{2}(Al,Bi,Pb)C$ was synthesized by reactive hot pressing to study the crystal structure of the solid solution by neutron diffraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01647v1-abstract-full').style.display = 'none'; document.getElementById('2005.01647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.4805">arXiv:1305.4805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.4805">pdf</a>, <a href="https://arxiv.org/format/1305.4805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4819227">10.1063/1.4819227 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bimodal substrate biasing to control 纬-Al2O3 deposition during reactive magnetron sputtering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Prenzel%2C+M">Marina Prenzel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kortmann%2C+A">Annika Kortmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stein%2C+A">Adrian Stein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Keudell%2C+A">Achim von Keudell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nahif%2C+F">Farwah Nahif</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.4805v1-abstract-short" style="display: inline;"> Al2O3 thin films have been deposited at substrate temperatures between 500掳C to 600掳C by reactive magnetron sputtering using an additional arbitrary substrate bias to tailor the energy distribution of the incident ions. The films were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The film structure being amorphous, nanocrystalline, or crystalline was&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.4805v1-abstract-full').style.display = 'inline'; document.getElementById('1305.4805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.4805v1-abstract-full" style="display: none;"> Al2O3 thin films have been deposited at substrate temperatures between 500掳C to 600掳C by reactive magnetron sputtering using an additional arbitrary substrate bias to tailor the energy distribution of the incident ions. The films were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The film structure being amorphous, nanocrystalline, or crystalline was correlated with characteristic ion energy distributions. The evolving crystalline structure is connected with different levels of displacements per atom (dpa) in the growing film as being derived from TRIM simulations. The boundary between the formation of crystalline films and amorphous or nanocrystalline films was at 0.9 dpa for a substrate temperature of 500掳C. This threshold shifts to 0.6 dpa for films grown at 550掳C. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.4805v1-abstract-full').style.display = 'none'; document.getElementById('1305.4805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.2676">arXiv:1111.2676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.2676">pdf</a>, <a href="https://arxiv.org/format/1111.2676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> The origin of electron-hole asymmetry in graphite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Plochocka%2C+P">P. Plochocka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solane%2C+P+Y">P. Y. Solane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicholas%2C+R+J">R. J. Nicholas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">J. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piot%2C+B+A">B. A. Piot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maude%2C+D+K">D. K. Maude</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Portugall%2C+O">O. Portugall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rikken%2C+G+L+J+A">G. L. J. A. Rikken</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.2676v1-abstract-short" style="display: inline;"> The electron hole asymmetry has been measured in natural graphite using magneto-optical absorption measurements. A splitting is observed for the transitions at both the $K$-point and the $H$-point of the Brillouin zone of graphite where the effect of trigonal warping vanishes. This result is fully consistent with the SWM Hamiltonian providing the free electron kinetic energy terms are taken into a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.2676v1-abstract-full').style.display = 'inline'; document.getElementById('1111.2676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.2676v1-abstract-full" style="display: none;"> The electron hole asymmetry has been measured in natural graphite using magneto-optical absorption measurements. A splitting is observed for the transitions at both the $K$-point and the $H$-point of the Brillouin zone of graphite where the effect of trigonal warping vanishes. This result is fully consistent with the SWM Hamiltonian providing the free electron kinetic energy terms are taken into account. An identical electron-hole asymmetry should be present in graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.2676v1-abstract-full').style.display = 'none'; document.getElementById('1111.2676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.2674">arXiv:1111.2674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.2674">pdf</a>, <a href="https://arxiv.org/format/1111.2674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.117401">10.1103/PhysRevLett.108.117401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using the de Haas-van Alphen effect to map out the closed three-dimensional Fermi surface of natural graphite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">J. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piot%2C+B+A">B. A. Piot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheikin%2C+I">I. Sheikin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maude%2C+D+K">D. K. Maude</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.2674v1-abstract-short" style="display: inline;"> The Fermi surface of graphite has been mapped out using de Haas van Alphen (dHvA) measurements at low temperature with in-situ rotation. For tilt angles $胃&gt;60^{\circ}$ between the magnetic field and the c-axis, the majority electron and hole dHvA periods no longer follow the $\cos(胃)$ behavior demonstrating that graphite has a 3 dimensional closed Fermi surface. The Fermi surface of graphite is ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.2674v1-abstract-full').style.display = 'inline'; document.getElementById('1111.2674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.2674v1-abstract-full" style="display: none;"> The Fermi surface of graphite has been mapped out using de Haas van Alphen (dHvA) measurements at low temperature with in-situ rotation. For tilt angles $胃&gt;60^{\circ}$ between the magnetic field and the c-axis, the majority electron and hole dHvA periods no longer follow the $\cos(胃)$ behavior demonstrating that graphite has a 3 dimensional closed Fermi surface. The Fermi surface of graphite is accurately described by highly elongated ellipsoids. A comparison with the calculated Fermi surface suggests that the SWM trigonal warping parameter $纬_3$ is significantly larger than previously thought. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.2674v1-abstract-full').style.display = 'none'; document.getElementById('1111.2674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.4262">arXiv:1110.4262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.4262">pdf</a>, <a href="https://arxiv.org/ps/1110.4262">ps</a>, <a href="https://arxiv.org/format/1110.4262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.235138">10.1103/PhysRevB.84.235138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic excitations and electron-phonon coupling in bulk graphite through Raman scattering in high magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kossacki%2C+P">P. Kossacki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faugeras%2C+C">C. Faugeras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BChne%2C+M">M. K眉hne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">M. Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicolet%2C+A+A+L">A. A. L. Nicolet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">J. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basko%2C+D+M">D. M. Basko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Latyshev%2C+Y+I">Y. I. Latyshev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potemski%2C+M">M. Potemski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.4262v1-abstract-short" style="display: inline;"> We use polarized magneto-Raman scattering to study purely electronic excitations and the electron-phonon coupling in bulk graphite. At a temperature of 4.2 K and in magnetic fields up to 28 T we observe $K$-point electronic excitations involving Landau bands with $螖|n|=0$ and with $螖|n|=\pm2$ that can be selected by controlling the angular momentum of the excitation laser and of the scattered ligh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4262v1-abstract-full').style.display = 'inline'; document.getElementById('1110.4262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.4262v1-abstract-full" style="display: none;"> We use polarized magneto-Raman scattering to study purely electronic excitations and the electron-phonon coupling in bulk graphite. At a temperature of 4.2 K and in magnetic fields up to 28 T we observe $K$-point electronic excitations involving Landau bands with $螖|n|=0$ and with $螖|n|=\pm2$ that can be selected by controlling the angular momentum of the excitation laser and of the scattered light. The magneto-phonon effect involving the $E_{2g}$ optical phonon and $K$-point inter Landau bands electronic excitations with $螖|n|=\pm1$ is revealed and analyzed within a model taking into account the full $k_z$ dispersion. These polarization resolved results are explained in the frame of the Slonczewski-Weiss-McClure (SWM) model which directly allows to quantify the electron-hole asymmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4262v1-abstract-full').style.display = 'none'; document.getElementById('1110.4262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 84, 235138, (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.5199">arXiv:1001.5199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1001.5199">pdf</a>, <a href="https://arxiv.org/ps/1001.5199">ps</a>, <a href="https://arxiv.org/format/1001.5199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Reply to comment (arXiv:0907.2026v2) on &#34;Consistent Interpretation of the Low-Temperature Magnetotransport in Graphite Using the Slonczewski-Weiss-McClure 3D Band-Structure Calculations&#34; (arXiv:0902.1925) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">J. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">M. Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potemski%2C+M">M. Potemski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maude%2C+D+K">D. K. Maude</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.5199v1-abstract-short" style="display: inline;"> Reply to comment (arXiv:0907.2026v2) on &#34;Consistent Interpretation of the Low-Temperature Magnetotransport in Graphite Using the Slonczewski-Weiss-McClure 3D Band-Structure Calculations&#34; (arXiv:0902.1925) </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.5199v1-abstract-full" style="display: none;"> Reply to comment (arXiv:0907.2026v2) on &#34;Consistent Interpretation of the Low-Temperature Magnetotransport in Graphite Using the Slonczewski-Weiss-McClure 3D Band-Structure Calculations&#34; (arXiv:0902.1925) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.5199v1-abstract-full').style.display = 'none'; document.getElementById('1001.5199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0902.1925">arXiv:0902.1925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0902.1925">pdf</a>, <a href="https://arxiv.org/format/0902.1925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.102.166403">10.1103/PhysRevLett.102.166403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A consistent interpretation of the low temperature magneto-transport in graphite using the Slonczewski--Weiss--McClure 3D band structure calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">J. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">M. Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potemski%2C+M">M. Potemski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maude%2C+D+K">D. K. Maude</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0902.1925v1-abstract-short" style="display: inline;"> Magnetotransport of natural graphite and highly oriented pyrolytic graphite (HOPG) has been measured at mK temperatures. Quantum oscillations for both electron and hole carriers are observed with orbital angular momentum quantum number up to $N\approx90$. A remarkable agreement is obtained when comparing the data and the predictions of the Slonczewski--Weiss--McClure tight binding model for mass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.1925v1-abstract-full').style.display = 'inline'; document.getElementById('0902.1925v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0902.1925v1-abstract-full" style="display: none;"> Magnetotransport of natural graphite and highly oriented pyrolytic graphite (HOPG) has been measured at mK temperatures. Quantum oscillations for both electron and hole carriers are observed with orbital angular momentum quantum number up to $N\approx90$. A remarkable agreement is obtained when comparing the data and the predictions of the Slonczewski--Weiss--McClure tight binding model for massive fermions. No evidence for Dirac fermions is observed in the transport data which is dominated by the crossing of the Landau bands at the Fermi level, corresponding to $dE/dk_z=0$, which occurs away from the $H$ point where Dirac fermions are expected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.1925v1-abstract-full').style.display = 'none'; document.getElementById('0902.1925v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 102, 166403 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0901.4215">arXiv:0901.4215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0901.4215">pdf</a>, <a href="https://arxiv.org/ps/0901.4215">ps</a>, <a href="https://arxiv.org/format/0901.4215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.102.166401">10.1103/PhysRevLett.102.166401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Graphite from the viewpoint of Landau level spectroscopy: An effective graphene bilayer and monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">M. Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faugeras%2C+C">C. Faugeras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">J. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+G">G. Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maude%2C+D+K">D. K. Maude</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potemski%2C+M">M. Potemski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0901.4215v1-abstract-short" style="display: inline;"> We describe an infrared transmission study of a thin layer of bulk graphite in magnetic fields up to B = 34 T. Two series of absorption lines whose energy scales as sqrtB and B are present in the spectra and identified as contributions of massless holes at the H point and massive electrons in the vicinity of the K point, respectively. We find that the optical response of the K point electrons co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.4215v1-abstract-full').style.display = 'inline'; document.getElementById('0901.4215v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0901.4215v1-abstract-full" style="display: none;"> We describe an infrared transmission study of a thin layer of bulk graphite in magnetic fields up to B = 34 T. Two series of absorption lines whose energy scales as sqrtB and B are present in the spectra and identified as contributions of massless holes at the H point and massive electrons in the vicinity of the K point, respectively. We find that the optical response of the K point electrons corresponds, over a wide range of energy and magnetic field, to a graphene bilayer with an effective inter-layer coupling 2纬_1, twice the value for a real graphene bilayer, which reflects the crystal ordering of bulk graphite along the c-axis. The K point electrons thus behave as massive Dirac fermions with a mass enhanced twice in comparison to a true graphene bilayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.4215v1-abstract-full').style.display = 'none'; document.getElementById('0901.4215v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 102, 166401 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0901.3959">arXiv:0901.3959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0901.3959">pdf</a>, <a href="https://arxiv.org/ps/0901.3959">ps</a>, <a href="https://arxiv.org/format/0901.3959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.102.126806">10.1103/PhysRevLett.102.126806 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical absorption to probe the quantum Hall ferromagnet at filling factor $谓=1$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Plochocka%2C+P">P. Plochocka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">J. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maude%2C+D+K">D. K. Maude</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potemski%2C+M">M. Potemski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rappaport%2C+M">M. Rappaport</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Umansky%2C+V">V. Umansky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bar-Joseph%2C+I">I. Bar-Joseph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Groshaus%2C+J+G">J. G. Groshaus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallais%2C+Y">Y. Gallais</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pinczuk%2C+A">A. Pinczuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0901.3959v2-abstract-short" style="display: inline;"> Optical absorption measurements are used to probe the spin polarization in the integer and fractional quantum Hall effect regimes. The system is fully spin polarized only at filling factor $谓=1$ and at very low temperatures($\sim40$ mK). A small change in filling factor ($未谓\approx\pm0.01$) leads to a significant depolarization. This suggests that the itinerant quantum Hall ferromagnet at $谓=1$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.3959v2-abstract-full').style.display = 'inline'; document.getElementById('0901.3959v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0901.3959v2-abstract-full" style="display: none;"> Optical absorption measurements are used to probe the spin polarization in the integer and fractional quantum Hall effect regimes. The system is fully spin polarized only at filling factor $谓=1$ and at very low temperatures($\sim40$ mK). A small change in filling factor ($未谓\approx\pm0.01$) leads to a significant depolarization. This suggests that the itinerant quantum Hall ferromagnet at $谓=1$ is surprisingly fragile against increasing temperature, or against small changes in filling factor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.3959v2-abstract-full').style.display = 'none'; document.getElementById('0901.3959v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 102, 126806 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0810.4410">arXiv:0810.4410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0810.4410">pdf</a>, <a href="https://arxiv.org/ps/0810.4410">ps</a>, <a href="https://arxiv.org/format/0810.4410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ssc.2009.02.051">10.1016/j.ssc.2009.02.051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magneto-transmission of multi-layer epitaxial graphene and bulk graphite: A comparison </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">M. Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faugeras%2C+C">C. Faugeras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+G">G. Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maude%2C+D+K">D. K. Maude</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">J. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sprinkle%2C+M">M. Sprinkle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+C">C. Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Heer%2C+W+A">W. A. de Heer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potemski%2C+M">M. Potemski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0810.4410v1-abstract-short" style="display: inline;"> Magneto-transmission of a thin layer of bulk graphite is compared with spectra taken on multilayer epitaxial graphene prepared by thermal decomposition of a SiC crystal. We focus on the spectral features evolving as \sqrt{B}, which are evidence for the presence of Dirac fermions in both materials. Whereas the results on multi-layer epitaxial graphene can be interpreted within the model of 2D Dir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.4410v1-abstract-full').style.display = 'inline'; document.getElementById('0810.4410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0810.4410v1-abstract-full" style="display: none;"> Magneto-transmission of a thin layer of bulk graphite is compared with spectra taken on multilayer epitaxial graphene prepared by thermal decomposition of a SiC crystal. We focus on the spectral features evolving as \sqrt{B}, which are evidence for the presence of Dirac fermions in both materials. Whereas the results on multi-layer epitaxial graphene can be interpreted within the model of 2D Dirac fermions, the data obtained on bulk graphite can only be explained taking into account the 3D nature of graphite, e.g. by using the standard Slonczewski-Weiss-McClure model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.4410v1-abstract-full').style.display = 'none'; document.getElementById('0810.4410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Solid State Commun. 149, 1128 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0805.0553">arXiv:0805.0553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0805.0553">pdf</a>, <a href="https://arxiv.org/ps/0805.0553">ps</a>, <a href="https://arxiv.org/format/0805.0553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/20/45/454223">10.1088/0953-8984/20/45/454223 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magneto-transmission as a probe of Dirac fermions in bulk graphite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">M. Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faugeras%2C+C">C. Faugeras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+G">G. Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maude%2C+D+K">D. K. Maude</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sadowski%2C+M+L">M. L. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">J. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potemski%2C+M">M. Potemski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0805.0553v1-abstract-short" style="display: inline;"> Far infrared magneto-transmission spectroscopy has been used to probe &#34;relativistic&#34; fermions in highly oriented pyrolytic and natural graphite. Nearly identical transmission spectra of those two materials are obtained, giving the signature of Dirac fermions via absorption lines with an energy that scales as \sqrt{B}. The Fermi velocity is evaluated to be c*=1.02x10^6 m/s and the pseudogap at th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0805.0553v1-abstract-full').style.display = 'inline'; document.getElementById('0805.0553v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0805.0553v1-abstract-full" style="display: none;"> Far infrared magneto-transmission spectroscopy has been used to probe &#34;relativistic&#34; fermions in highly oriented pyrolytic and natural graphite. Nearly identical transmission spectra of those two materials are obtained, giving the signature of Dirac fermions via absorption lines with an energy that scales as \sqrt{B}. The Fermi velocity is evaluated to be c*=1.02x10^6 m/s and the pseudogap at the H point is estimated to be below 10 meV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0805.0553v1-abstract-full').style.display = 'none'; document.getElementById('0805.0553v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 20, 454223 (2008) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10