CINXE.COM
Search results for: Seed germination
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Seed germination</title> <meta name="description" content="Search results for: Seed germination"> <meta name="keywords" content="Seed germination"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Seed germination" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Seed germination"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 775</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Seed germination</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Effect of Melatonin on Seed Germination and Seedling Growth of Catharanthus roseus under Cadmium Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayhaneh%20Amooaghaie">Rayhaneh Amooaghaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoomeh%20Nabaei"> Masoomeh Nabaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, 200 µM Cd reduced relative seed germination, root elongation tolerance and seed germination tolerance index of Catharanthus roseus. The melatonin improved seed germination, germination velocity, seedling length and vigor index under Cd stress in a dose-dependent manner and the maximum biological responses obtained by 100 μM melatonin. However, 200-400 μM melatonin and 400 μM SNP had negative effects that evidenced as lower germination indices and poor establishment of seedlings. The cadmium suppressed amylase activity and contents of soluble and reducing sugars in germinating seeds, thereby reduced seed germination and subsequent seedling growth whereas increased electrolyte leakage. These Cd-induced inhibitory effects were ameliorated by melatonin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=Catharanthus%20roseus" title=" Catharanthus roseus"> Catharanthus roseus</a>, <a href="https://publications.waset.org/abstracts/search?q=melatonin" title=" melatonin"> melatonin</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a> </p> <a href="https://publications.waset.org/abstracts/89087/effect-of-melatonin-on-seed-germination-and-seedling-growth-of-catharanthus-roseus-under-cadmium-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> Seed Priming, Treatments and Germination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atakan%20Efe%20Akp%C4%B1nar">Atakan Efe Akpınar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Demir"> Zeynep Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed priming technologies are frequently used nowadays to increase the germination potential and stress tolerance of seeds. These treatments might be beneficial for native species as well as crops. Different priming treatments can be used depending on the type of plant, the morphology, and the physiology of the seed. Moreover, these may be various physical, chemical, and/or biological treatments. Aiming to improve studies about seed priming, ideas need to be brought into this technological sector related to the agri-seed industry. In this study, seed priming was carried out using some plant extracts. Firstly, some plant extracts prepared from plant leaves, roots, or fruit parts were obtained for use in priming treatments. Then, seeds were kept in solutions containing plant extracts at 20°C for 48 hours. Seeds without any treatment were evaluated as the control group. At the end of priming applications, seeds are dried superficially at 25°C. Seeds were analyzed for vigor (normal germination rate, germination time, germination index etc.). In the future, seed priming applications can expand to multidisciplinary research combining with digital, bioinformatic and molecular tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20priming" title="seed priming">seed priming</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a> </p> <a href="https://publications.waset.org/abstracts/176548/seed-priming-treatments-and-germination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> Effect of Seed Treatment on Seed Quality and Storability in Wheat (Triticum Aestivum L.) in Northwestern Himalayas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anubhav%20Thakur">Anubhav Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Karam%20Chand%20Dhiman"> Karam Chand Dhiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Storage experiment was conducted to study the effect of polymer, fungicides and insecticide on seed quality parameters and storability in wheat. The experimental material consisted of carry over wheat seeds (variety HPW- 155) of rabi 2017 - 18. The observations were recorded bimonthly on parameters viz; germination (%), seedling length (cm), dry weight (g), vigour index - I, vigour - II, speed of germination, field emergence (%), 100 seed weight (g) for 12 months of storage. All parameters declined with the advancement in storage period. The results showed that seeds treated with polymer + vitavax 200 @ 2 g/kg of seed recorded higher germination percentage (95.00 %), seedling length (17.58 cm), seedling dry weight (0.0138 g), vigour index - I (1670) & vigour - II (1.311), speed of germination (19.98), 100 seed weight (5.54 g) and field emergence (87.33 %) which was at par with vitavax 200 @ 2 g/kg of seed, over untreated control (T1). So it can be concluded that for maintain seed quality and enhancing storability, seed of wheat can either be treated with polymer @ 3 ml/kg of seed + vitavax 200 @ 2 g/kg of seed or vitavax 200 @ 2 g/kg of seed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20treatment" title=" seed treatment"> seed treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=storability" title=" storability"> storability</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20quality" title=" seed quality"> seed quality</a> </p> <a href="https://publications.waset.org/abstracts/137370/effect-of-seed-treatment-on-seed-quality-and-storability-in-wheat-triticum-aestivum-l-in-northwestern-himalayas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> Seed Germination and Recovery Responses of Suaeda Heterophylla to Abiotic Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hameed">Abdul Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zaheer%20Ahmed"> Muhammad Zaheer Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Gulzar"> Salman Gulzar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilquees%20Gul"> Bilquees Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Alam"> Jan Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20K.%20Hegazy"> Ahmad K. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Rehman%20A.%20Alatar"> Abdel Rehman A. Alatar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ajmal%20Khan"> M. Ajmal Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed germination and recovery from salt stress of an annual halophyte Suaeda heterophylla (Kar. and Kir.) Bunge to different iso-osmotic concentrations (0, -0.46, -0.92, -1.38, -1.84, and -2.30 MPa) of NaCl and PEG-6000 at 15/25, 20/30 and 25/35°C in both 12-h temperature and light regimes and in complete darkness were studied. Maximum number of seeds germinated in distilled water and increase in concentrations of both NaCl and PEG-6000 decreased germination at all temperature regimes, light and dark conditions, with higher inhibition in NaCl than PEG-6000. Recovery of germination and viability of seeds were lower in NaCl than PEG-6000 both in the light and dark. Moderate alternate temperatures (20/30°C) and 12-h photoperiod were found to be the optimal for seed germination and recovery. Better seed germination of S. heterophylla when osmotic potential caused both by NaCl and PEG 6000 is lower, temperature regime of 20/30°C and light regime is for 12 h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title="seed germination">seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=abiotic%20stresses" title=" abiotic stresses"> abiotic stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=Suaeda%20heterophylla" title=" Suaeda heterophylla"> Suaeda heterophylla</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a> </p> <a href="https://publications.waset.org/abstracts/2254/seed-germination-and-recovery-responses-of-suaeda-heterophylla-to-abiotic-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> Seed Priming Treatments in Common Zinnia (Zinnia elegans) Using Some Plant Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atakan%20Efe%20Akp%C4%B1nar">Atakan Efe Akpınar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Demir"> Zeynep Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed priming technologies are frequently used nowadays to increase the germination potential and stress tolerance of seeds. These treatments might be beneficial for native species as well as crops. Different priming treatments can be used depending on the type of plant, the morphology, and the physiology of the seed. Moreover, these may be various physical, chemical, and/or biological treatments. Aiming to improve studies about seed priming, ideas need to be brought into this technological sector related to the agri-seed industry. This study addresses the question of whether seed priming with plant extracts can improve seed vigour and germination performance. By investigating the effects of plant extract priming on various vigour parameters, the research aims to provide insights into the potential benefits of this treatment method. Thus, seed priming was carried out using some plant extracts. Firstly, some plant extracts prepared from plant leaves, roots, or fruit parts were obtained for use in priming treatments. Then, seeds of Common zinnia (Zinnia elegans) were kept in solutions containing plant extracts at 20°C for 48 hours. Seeds without any treatment were evaluated as the control group. At the end of priming applications, seeds are dried superficially at 25°C. Seeds of Common zinnia (Zinnia elegans) were analyzed for vigour (normal germination rate, germination time, germination index etc.). In the future, seed priming applications can expand to multidisciplinary research combining with digital, bioinformatic and molecular tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20priming" title="seed priming">seed priming</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a> </p> <a href="https://publications.waset.org/abstracts/177849/seed-priming-treatments-in-common-zinnia-zinnia-elegans-using-some-plant-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> Effect of Silver Nanoparticles on Seed Germination of Crop Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20M.%20Almutairi">Zainab M. Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Alharbi"> Amjad Alharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2, and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citrullus%20lanatus" title="citrullus lanatus">citrullus lanatus</a>, <a href="https://publications.waset.org/abstracts/search?q=cucurbita%20pepo" title=" cucurbita pepo"> cucurbita pepo</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling%20growth" title=" seedling growth"> seedling growth</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=zea%20mays" title=" zea mays"> zea mays</a> </p> <a href="https://publications.waset.org/abstracts/26020/effect-of-silver-nanoparticles-on-seed-germination-of-crop-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Singh%20Rawat">Pankaj Singh Rawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeew%20Kumar"> Rajeew Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Ram"> Pradeep Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Pandey"> Priyanka Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO<sub>2</sub>, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO<sub>2</sub>, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO<sub>2</sub>, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20soaking" title=" seed soaking"> seed soaking</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/80641/effect-of-nanoparticles-on-wheat-seed-germination-and-seedling-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> Artificial Seed Production in Stipagrostis pennata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Asadi%20Aghbolaghi">Masoumeh Asadi Aghbolaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Beata%20Dedicova"> Beata Dedicova</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Sharifzadeh"> Farzad Sharifzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoor%20Omidi"> Mansoor Omidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrika%20Egertsdotter"> Ulrika Egertsdotter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stipagrostis pennata is one of the valuable fodder plants and is very resistant to drought, due to the low capacity of seed production, the use of asexual reproduction methods, including somatic embryogenesis and artificial seed, can increase its reproduction on a large scale. This study was conducted in order to obtain optimal treatments for the production of artificial seeds of this plant through the somatic embryo encapsulating. Embryonic calluses were encapsulated using sodium alginate and calcium chloride and then sowed in a germination medium. The experiment was conducted as a factorial based on a completely randomized design with three replications. The treatments include three concentrations of sodium alginate (1.5, 2.5, and 3.5 percent), two ion exchange times (20 and 30 minutes,) and two artificial seed germination media (hormone free MS and MS containing zeatin riboside and L-proline). Germination percentage and number of days until the beginning of germination were investigated. The highest percentage of artificial seed germination was obtained when 2.5% sodium alginate was used for 30 minutes (ion exchange time) and the seeds were placed on the germination medium containing zeatin riboside and L-proline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=somatic%20embryogenesis" title="somatic embryogenesis">somatic embryogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Stipagrostis%20pennata" title=" Stipagrostis pennata"> Stipagrostis pennata</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20seed" title=" synthetic seed"> synthetic seed</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20culture" title=" tissue culture"> tissue culture</a> </p> <a href="https://publications.waset.org/abstracts/154985/artificial-seed-production-in-stipagrostis-pennata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> Determination of the Seed Vigor of Soybean Cultivated as Main and Second Crop in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Demir%20Kaya">Mehmet Demir Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Engin%20G%C3%B6khan%20Kulan"> Engin Gökhan Kulan</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20%C4%B0leri"> Onur İleri</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%BCleyman%20Avc%C4%B1"> Süleyman Avcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted to determine the difference in seed vigor between the seed lots cultivated in main and second crop of soybean in Turkey. Seeds from soybean cv. Cinsoy and Umut-2002 were evaluated in the laboratory for germination, emergence, cool test at 18°C for 10 days, and cold test at 10°C for 4 days and 25°C for 6 days. Result showed that the initial oil contents of Cinsoy and Umut-2002 and seeds were determined to be 19.8 and 20.1% in main crop, and 18.7 and 22.1% in second crop, respectively. It was determined that a clear difference between main and second crop soybean seed lots for seed vigor was found. Germination and emergence percentage were higher in the seed from second crop cultivation of the cultivars. There was no significant difference in germination percentage in cool and cold test while seedling growth was better in the seeds of second crop soybean. The highest seed vigor index (477.6) was found in the seeds of the cultivars grown at second crop. Standard germination percentage did not give a sensitive separation for determining seed vigor of soybean lots. It was concluded that second crop soybean seeds were found the most suitable for seed production while main crop soybean gave higher protein lower oil content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glycine%20max%20L." title="Glycine max L.">Glycine max L.</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=emergence" title=" emergence"> emergence</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a>, <a href="https://publications.waset.org/abstracts/search?q=vigor%20test" title=" vigor test "> vigor test </a> </p> <a href="https://publications.waset.org/abstracts/14158/determination-of-the-seed-vigor-of-soybean-cultivated-as-main-and-second-crop-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">766</span> Effects of Drying Method and Seed Priming Duration on Coffee Seed and Seedling Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taju%20Mohammednur">Taju Mohammednur</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Megersa"> Tesfaye Megersa</a>, <a href="https://publications.waset.org/abstracts/search?q=Karta%20Kaske"> Karta Kaske</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coffee is an economically important cash crop in Ethiopia. However, the conditions under which coffee seeds are dried and processed significantly affect the seedling quality and productivity. The objective of this study was to evaluate the effect of pre-sowing treatments and drying methods on the physiological quality of coffee seeds and seedlings. The study included two coffee varieties (74110, 75227), two drying conditions (under-shade drying room, open sun), and five durations of seed hydro priming (6, 8, 18, 24 hours, and an untreated control). Factorial combinations of the three factors were laid out in a Completely Randomized Design of three replications. Results indicated that the highest germination percentage (91%), emergence rate (90%), and seedling vigor index-I (2236 cm %) were recorded for seeds dried under-shade drying room. In contrast, the lowest values of germination percentage, emergence rate, and vigor index were observed for seeds dried under open sun. There was a significant difference in seed germination based on hydro priming time, with the highest germination percentage (83%) recorded for seeds soaked for 6 hours, followed by 24 hours (83%). The lowest germination percentage (77%) was recorded for un-soaked seeds. In conclusion, drying seeds under shade is better for coffee seed quality, and hydro priming has improved seedling vigor. However, further investigation into seed priming methods and preservation techniques for primed seeds is necessary to improve coffee seed quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coffee" title="coffee">coffee</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20drying" title=" seed drying"> seed drying</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20longevity" title=" seed longevity"> seed longevity</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20priming" title=" seed priming"> seed priming</a> </p> <a href="https://publications.waset.org/abstracts/191107/effects-of-drying-method-and-seed-priming-duration-on-coffee-seed-and-seedling-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> Germination and Seed Vigor Response of Five Wheat Cultivars to Stress of Premature Aging Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Soltani%20Howyzeh">Mehdi Soltani Howyzeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Kardoni"> Neda Kardoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mani%20Mojadam"> Mani Mojadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the vigor of wheat seeds and stress of premature aging effects on germination percentage, root length and shoot length of five wheat cultivars that include Vynak, Karkheh, Chamran, Star and Kavir which underwent a period of zero, two, three, four days in terms of premature aging with 41 °C temperature and 100% relative humidity. Seed germination percentage, root length and shoot length in these conditions were measured. This experiment was conducted as a factorial completely randomized design with four replications in laboratory conditions. The results showed that each of aging treatments used in this experiment can be used to detect differences in vigor of wheat varieties. Wheat cultivars illustrated significant differences in germination percentage, root length and shoot length in terms of premature aging. The wheat cultivars; Astar and Vynak had maximum germination percentage and Karkheh, respectively Kavir and Chamran had lowest percentage of seed germination. Reactions of root and shoot length of wheat cultivars was also different. The results showed that the seeds with a stronger vigor affected less in premature aging condition and the difference between the percentage of seed germination under normal conditions and stress was significant and the seeds with the weaker vigor were more sensitive to the premature aging stress and the premature aging had more severe negative impact on seed vigor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20cultivars" title="wheat cultivars">wheat cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20vigor" title=" seed vigor"> seed vigor</a>, <a href="https://publications.waset.org/abstracts/search?q=premature%20aging%20effects" title=" premature aging effects"> premature aging effects</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination "> germination </a> </p> <a href="https://publications.waset.org/abstracts/32327/germination-and-seed-vigor-response-of-five-wheat-cultivars-to-stress-of-premature-aging-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> A Novel Gene Encoding Ankyrin-Repeat Protein, SHG1, Is Indispensable for Seed Germination under Moderate Salt Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Sakamoto">H. Sakamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Tochimoto"> J. Tochimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kurosawa"> S. Kurosawa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Suzuki"> M. Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Oguri"> S. Oguri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salt stress adversely affects plant growth at various stages of development including seed germination, seedling establishment, vegetative growth and finally reproduction. Because of their immobile nature, plants have evolved mechanisms to sense and respond to salt stress. Seed dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. We identified a novel locus of Arabidopsis, designated SHG1 (salt hypersensitive germination 1), whose disruption leads to reduced germination rate under moderate salt stress conditions. SHG1 encodes a transmembrane protein with an ankyrin repeat motif that has been implicated in diverse cellular processes such as signal transduction. The SGH1-disrupted Arabidopsis mutant died at the cotyledon stage when sown on salt-containing medium, although wild type plants could form true leaves under the same conditions. On the other hand, this mutant showed similar phenotypes to wild type plants when sown on medium without salt and transferred to salt-containing medium at the vegetative stage. These results suggested that SHG1 played indispensable role in the seed germination and seedling establishment under moderate salt stress conditions. SHG1 may be involved in the release of seed dormancy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germination" title="germination">germination</a>, <a href="https://publications.waset.org/abstracts/search?q=ankyrin%20repeat" title=" ankyrin repeat"> ankyrin repeat</a>, <a href="https://publications.waset.org/abstracts/search?q=arabidopsis" title=" arabidopsis"> arabidopsis</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20tolerance" title=" salt tolerance"> salt tolerance</a> </p> <a href="https://publications.waset.org/abstracts/7011/a-novel-gene-encoding-ankyrin-repeat-protein-shg1-is-indispensable-for-seed-germination-under-moderate-salt-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> Genotypic Variation in the Germination Performance and Seed Vigor of Safflower (Carthamus tinctorius L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Demir%20Kaya">Mehmet Demir Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Engin%20G%C3%B6khan%20Kulan"> Engin Gökhan Kulan</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20%C4%B0leri"> Onur İleri</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%BCleyman%20Avc%C4%B1"> Süleyman Avcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to variation in seed size, shape and oil content of safflower cultivars, germination and emergence performance have been severely influenced by seed characteristics. This study aimed to determine genotypic variation among safflower genotypes for one thousand seed weight, oil content, germination and seed vigor using electrical conductivity (EC) and cold test. In the study, safflower lines ES37-5, ES38-4, ES43-11, ES55-14 and ES58-11 which were developed by single seed selection method, and Dinçer and Remzibey-05 were used as standard varieties. The genotypes were grown under rainfed conditions in Eskişehir, Turkey with four replications. The seeds of each genotype were subjected to standard germination and emergence test at 25°C for 10 days with four replications and 50 seeds per replicate. Electrical conductivity test was performed at 25°C for 24 h to assess the seed vigor. Also, cold test were applied to each safflower genotype at 10°C for 4 days and 25°C for 6 days. Results showed that oil content of the safflower genotypes were different. The highest oil content was determined in ES43-11 with 36.6% while the lowest was 25.9% in ES38-4. Higher germination and emergence rate were obtained from ES55-14 with 96.5% and 73.0%, respectively. There was no significant difference among the safflower genotypes for EC values. Cold test showed that ES43-11 and ES55-14 gave the maximum germination percentages. It was concluded that genotypic factors except for soil and climatic conditions play an important role for determining seed vigor because safflower genotypes grown at the same condition produced various seed vigor values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carthamus%20tinctorius%20L." title="Carthamus tinctorius L.">Carthamus tinctorius L.</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=emergence" title=" emergence"> emergence</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20test" title=" cold test"> cold test</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/14156/genotypic-variation-in-the-germination-performance-and-seed-vigor-of-safflower-carthamus-tinctorius-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> Seed Germination, Seedling Emergence and Response to Herbicides of Papaver Species (Papaver rhoeas and P. dubium)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Zaefarian1">Faezeh Zaefarian1</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajedeh%20Golmohammadzadeh"> Sajedeh Golmohammadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rezvani"> Mohammad Rezvani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weed management decisions for weed species can be derived from knowledge of seed germination biology. Experiments were conducted in laboratory and greenhouse to determine the effects of light, temperature, salt and water stress, seed burial depth on seed germination and seedling emergence of Papaver rhoeas and P.dubium and to assay the response of these species to commonly available POST herbicides. Germination of the Papaver seeds was influenced by the tested temperatures (day/night temperatures of 20 and 25 °C) and light. The concentrations of sodium chloride, ranging from 0 to 80 mM, influence germination of seeds. The osmotic potential required for 50% inhibition of maximum germination of P. rhoeas was -0.27 MPa and for P. dubium species was 0.25 MPa. Seedling emergence was greatest for the seeds placed at 1 cm and emergence declined with increased burial depth in the soil. No seedlings emerged from a burial depth of 6 cm. The herbicide 2,4-D at 400 g ai ha-1 provided excellent control of both species when applied at the four-leaf and six-leaf stages. However, at the six-leaf stage, percent control was reduced. The information gained from this study could contribute to developing components of integrated weed management strategies for Papaver species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germination" title="germination">germination</a>, <a href="https://publications.waset.org/abstracts/search?q=papaver%20species" title=" papaver species"> papaver species</a>, <a href="https://publications.waset.org/abstracts/search?q=planting%20depth" title=" planting depth"> planting depth</a>, <a href="https://publications.waset.org/abstracts/search?q=POST%20herbicides" title=" POST herbicides"> POST herbicides</a> </p> <a href="https://publications.waset.org/abstracts/74621/seed-germination-seedling-emergence-and-response-to-herbicides-of-papaver-species-papaver-rhoeas-and-p-dubium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> Effects of Plasma Treatment on Seed Germination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Ho%20Jeon">Yong Ho Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn%20Mi%20Lee"> Youn Mi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Yoon%20Lee"> Yong Yoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of cold plasma treatment on various plant seed germination were studied. The seeds of hot pepper, cucumber, tomato and arabidopsis were exposed to plasma and the plasma was generated in various devices. The germination speed was evaluated compared to an unexposed control. A positive effect on germination speed was observed in all tested seeds but the effects strongly depended on the type of the used plasma device (Argon-DBD, surface-DBD or MARX generator), time of exposure (6s~10min or 1~10shots) and kind of seeds. The SEM images showed that arrays of gold particles along the cell wall were observed on the surface of cucumber seeds showed a germination-accelerating effect by plasma treatment, which was the same as untreated. However, when treated with the high dose plasma, gold particles were not arrayed at the seed surface, it seems that due to the surface etching. This may suggest that the germination is not promoted by etching or damage of surface caused by the plasma treatment. Seedling growth improvement was also observed by indirect plasma treatment. These lead to an important conclusion that the effect of charged particles on plasma play the essential role in plant germination and indirect plasma treatment offers new perspectives for large scale application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20plasma" title="cold plasma">cold plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cucumber" title=" cucumber"> cucumber</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM "> SEM </a> </p> <a href="https://publications.waset.org/abstracts/49540/effects-of-plasma-treatment-on-seed-germination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> Assessment of Germination Loss Due to Dusky Cotton Bug (Oxycarenus laetus) in Relation to Cotton Boll Stage and Bug Intensity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hassan">Ali Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mian%20Muhammad%20Awais"> Mian Muhammad Awais</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rafique%20Shahid"> Muhammad Rafique Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Farazia%20Hassan"> Farazia Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumaila%20%20Rasool"> Shumaila Rasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dusky cotton bug (Oxycarenus laetus) has attained the status of major insect pest of cotton. It is also known as seed bug due to its property of feeding on seeds. It causes floral abscission at flowering stage and reduction in seed germination. Present study was carried out to assess germination loss caused by dusky bug with respect to crop stage and insect intensity. Treatments consisted of three stages immature boll, mature boll and opened boll as well three levels of dusky bug i.e., 50 bugs per boll, 40 bugs per boll along with zero level kept as control. Results showed that the germination percentage was highest in control treatment where no insect was released followed by treatment where 40 insects released and minimum germination showed by treatment in which 50 insects were released. The germination percentage of seeds surpassed after control treatment in the treatment where dusky bugs exposure was given at boll opening stage than on mature boll stage. Minimum germination was observed in immature boll stage. Interaction between crop stages and dusky bug levels showed that germination percentage of seeds was maximum in control treatment then boll opening stage followed by mature boll stage. Minimum seed germination was recorded in dusky bug treatment at immature boll stage which was 34% where 50 insects were released. From the results it is clear that dusky bug should be managed properly at all reproductive stages but immature stage is most critical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gossypium%20hirsutum" title="Gossypium hirsutum">Gossypium hirsutum</a>, <a href="https://publications.waset.org/abstracts/search?q=Oxycarenus%20laetus" title=" Oxycarenus laetus"> Oxycarenus laetus</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20bug" title=" seed bug"> seed bug</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a> </p> <a href="https://publications.waset.org/abstracts/72297/assessment-of-germination-loss-due-to-dusky-cotton-bug-oxycarenus-laetus-in-relation-to-cotton-boll-stage-and-bug-intensity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> Enhancement of Seed Longevity in Japonica Rice Cultivars Using Weed Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeon%20Cho">Jun-Hyeon Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Yoon%20Lee"> Ji-Yoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Bo%20Sohn"> Young-Bo Sohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Shin"> Dong-Jin Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=You-Chun%20Song"> You-Chun Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Soo%20Park"> Dong-Soo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Hee%20Nam"> Min-Hee Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Up%20Kwon"> Young-Up Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed germination is a main factor in japonica rice cultivation. For japonica strains unlike indica lines, fast loss of germination ability during storage leads to risk of seeding and deterioration in the quality. To resolve these problems, germplasms screening for longevity was conducted using six days of compulsory aging stress of high temperature (50℃) and humidity (~95% RH). ‘Dharial’, a weedy rice collected in Bangladesh, was chosen as a source of seed longevity for long term storage. The strong germination trait originated from ‘Dharial’ was incorporated into Korean elite japonica cultivars, ‘Ilmi’ and ‘Gopum’, through backcross method. The germination ratio was evaluated after two years of room temperature storage conditions. A high germination ratio of 80.5% in donor plant of ‘Dharial’ and 77.3% in an introgression line were observed based on the two years of storage while the recurrent japonica cultivars, ‘Ilmi’ and ‘Gopum’, were failed in germination. As a result, we investigated the changes of quality affected by germination ability during storage. A gentle slope of palatability which is one of the measurement items for indirect selection indicator of high eating quality in japonica varieties was studied in a high germination ratio introgression line during storage. The introgression line could be useful to increase longevity and quality of japonica rice seed if molecular breeding strategy such as QTLs analysis is combined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=longevity" title=" longevity"> longevity</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/26920/enhancement-of-seed-longevity-in-japonica-rice-cultivars-using-weed-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> Standardization of Propagation Techniques for Celastrus paniculata: An Endangered Medicinal Plant of Western Ghats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raviraja%20Shetty%20G.">Raviraja Shetty G.</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Poojitha"> K. G. Poojitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted at College of Horticulture, Mudigere to study the effect of different growth regulators on seed germination and vegetative propagation by cuttings of Celastrus paniculata an endangered medicinal plant. The extracted seeds are subjected to 11 different pre-soaking treatments which include control, GA3 at 300, 350, 400ppm, KNO3 at 1.0%, 1.5%, 2.0%, H2SO4 at 0.5%, 1.0% and HCl 0.5%,1.0% for 100 seeds per treatment. Among the different germination inducing treatments, seeds treated with gibberellins responded well with high seed germination and vigorous seedling growth. The seeds treated with GA3 400 ppm recorded maximum germination and growth parameters like rate of germination, shoot length, root length, plant vigour, fresh and dry weight of which was followed GA3 350 ppm. The commencement of germination and 50 per cent germination was also earlier in the same treatment. The cuttings of C. paniculata took more time for root initiation up to four months and sprouting percent was moderate as compared to other easy to root species. Among different treatments, IBA 2000 ppm was found to be the best, which recorded the maximum shoot and also root parameters. The results of present investigation will be helpful for conservation of this endangered medicinal plant through propagation <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a> </p> <a href="https://publications.waset.org/abstracts/30819/standardization-of-propagation-techniques-for-celastrus-paniculata-an-endangered-medicinal-plant-of-western-ghats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">757</span> Evaluation of the Effects of Some Medicinal Plants Extracts on Seed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areej%20Ali%20Baeshen">Areej Ali Baeshen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20Kamal%20Galal"> Hanaa Kamal Galal</a>, <a href="https://publications.waset.org/abstracts/search?q=Batoul%20Mohamed%20Abdullatif"> Batoul Mohamed Abdullatif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the allelopathic effects of Eruca sativa, Mentha peprinta, and Coriandrum sativum aqueous extracts, prepared by 25 gm and 50 gm of fresh leaves dissolved in 100 ml of double distilled water in addition to the crude extract (100%). The final concentrations were 100 %, 50%, 25% and 0% as control. The extracts were tested for their allelopathic effects on seed germination and other growth parameters of Phaseolous vulgaris. Laboratory experiments were conducted in sterilizes Petri dishes with 5 and 10 day time interval for seed germination and 24 h, 48 h and 72 h for radicle length on an average of 25°C. The effects of different concentrations of aqueous extract were compared to distilled water (0%). 25% and 50% aqueous extracts of Eruca sativa and Coriandrum sativum caused a pronounced inhibitory effect on seed germination and the tested growth parameters of the receptor plant. The inhibitory effect was proportional to the concentration of the extract. Mentha peprinta extracts, on the other hand, caused an increase in germination percentage and other growth parameters in Phaseolous vulgaris. Hence, it could be concluded that the aqueous extracts of Eruca sativa and Coriandrum sativum might contain water-soluble allelochemicals, which could inhibit the seed germination and reduce radicle length of Phaseolous vulgaris. Mentha peprinta has beneficial allelopathic effects on the receptor plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phaseolus%20vulgaris" title="Phaseolus vulgaris">Phaseolus vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Eruca%20sativa" title=" Eruca sativa"> Eruca sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mentha%20peperinta" title=" Mentha peperinta"> Mentha peperinta</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriandrum%20sativum" title=" Coriandrum sativum"> Coriandrum sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a> </p> <a href="https://publications.waset.org/abstracts/2075/evaluation-of-the-effects-of-some-medicinal-plants-extracts-on-seed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">756</span> Comparative Germination Studies in Mature Seeds of Haloxylon Salicornicum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Almulla">Laila Almulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As native plants are better adapted to the local environment, can endure long spells of drought, withstand high soil salinity levels and provide a more natural effect to landscape projects, their use in landscape projects are gaining popularity. Standardization of seed germination methods and raising the hardened plants of selected native plants for their use in landscape projects will both conserve natural resources and produce sustainable greenery. In the present study, Haloxylon salicornicum, a perennial herb with a potential use for urban greenery was selected for seed germination tests as there is an urgent need to mass multiply them for their large-scale use. Among the nine treatments tried with different concentrations of gibberelic acid (GA3) and dry heat, the seeds responded with treatments when the wings were removed. The control as well as 250 GA3 treatments produced the maximum germination of 86%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dormancy" title="dormancy">dormancy</a>, <a href="https://publications.waset.org/abstracts/search?q=gibberelic%20acid" title=" gibberelic acid"> gibberelic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=germination%20trays" title=" germination trays "> germination trays </a>, <a href="https://publications.waset.org/abstracts/search?q=vigor%20index" title=" vigor index"> vigor index</a> </p> <a href="https://publications.waset.org/abstracts/1762/comparative-germination-studies-in-mature-seeds-of-haloxylon-salicornicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">755</span> Effect of Extraction Method, Soil Media on Germination and Seedling Establishment of Chrysophyllum Albidum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peace%20Nnadi">Peace Nnadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was aimed at using seed extraction methods, soil media and planting density to enhance seed germination and seedling growth of Chrysophyllum albidum commonly known as star apple. The experiment was conducted in two stages, mature, healthy ripe fruits were used and the seeds were extracted from the fruits. The experiment involves the extraction of uniform number of seeds of pulpled and depulped, planted into the various soil media. Result on planting density also showed that Depulped seeds/ seedlings at (p=0.05), recorded significant increase in germination percentage and seedling growth. The finding shows that when seeds are depulped, they enhance germination percentage and addition of poultry manure to the soil media encourages plant growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germination" title="germination">germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling" title=" seedling"> seedling</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20media" title=" soil media"> soil media</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a> </p> <a href="https://publications.waset.org/abstracts/59745/effect-of-extraction-method-soil-media-on-germination-and-seedling-establishment-of-chrysophyllum-albidum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">754</span> Effect of Pollination on Qualitative Characters of Rapeseed (Brassica campestris l. Var. Toria) Seed in Chitwan, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rameshwor%20Pudasaini">Rameshwor Pudasaini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted to study the effect of pollination quality of rapeseed seed in Chitwan during 2012-2013. The experiment was designed in Randomized Complete Block with four replications and five pollination treatments. The rapeseed plots were caged with mosquito nets at 10% flowering except natural pollination. Two-framed colonies of Apis mellifera L. and Apis cerana F. were introduced separately for pollination, and control plot caged without pollinators. The highest germination percent was observed on Apis cerana F. pollinated plot seeds (90.50% germination) and lowest on control plots (42.00% germination) seeds. Similarly, seed test weight of Apis cerana F. pollinated plots (3.22 gm/ 1000 seed) and Apis mellifera L. pollinated plots (2.93 gm/1000 seed) were and control plots (2.26 gm/ 1000 seed) recorded respectively. However, oil content was recorded highest on pollinated by Apis cerana F. (36.1 %) and lowest on control plots (32.8%). This study clearly indicated pollination increases the seed quality of rapeseed and therefore, management of honeybee is necessary for higher quality of rapeseed under Chitwan condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apis%20cerana" title="apis cerana">apis cerana</a>, <a href="https://publications.waset.org/abstracts/search?q=apis%20mellifera" title=" apis mellifera"> apis mellifera</a>, <a href="https://publications.waset.org/abstracts/search?q=rapeseed%20pollination" title=" rapeseed pollination"> rapeseed pollination</a>, <a href="https://publications.waset.org/abstracts/search?q=rapeseed%20quality" title=" rapeseed quality"> rapeseed quality</a> </p> <a href="https://publications.waset.org/abstracts/11604/effect-of-pollination-on-qualitative-characters-of-rapeseed-brassica-campestris-l-var-toria-seed-in-chitwan-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">753</span> The Effects of Copper and Cadmium on Germination and Seedling Growth of Oriental Beech (Fagus orientalis Lipsky) Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Handan%20Ucun%20%C3%96zel">Handan Ucun Özel</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Bar%C4%B1%C5%9F%20%C3%96zel"> Halil Barış Özel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The toxic effects of copper and cadmium on seed germination, seedling, root, shoot length, and seedling dry biomass of oriental beech (Fagus orientalis Lipsky) was evaluated under laboratory conditions compared to control values. Copper and cadmium treatments at 50, 100, 150, and 200 mg/l affect seed germination and seedling growth of oriental beech as compared to control. Copper treatments at 50, 100, 150, and 200 mg/l concentrations produced significant (p < 0.01) effects on seed germination and seedling length of oriental beech while copper treatment at 150 mg/l significantly affected root growth and seedling dry biomass as compared to control. Similarly, cadmium treatments from 50 to 200 mg/l affected the seed germination, root, shoot length, and seedling dry biomass of oriental beech as compared to control. Cadmium treatments showed an adverse effect on seedlings of oriental beech as compared to copper, copper and cadmium treatments at 200mg/l exhibited the lowest percentage of tolerance in seedlings of oriental beech as compared to control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=oriental%20beech" title=" oriental beech"> oriental beech</a> </p> <a href="https://publications.waset.org/abstracts/13800/the-effects-of-copper-and-cadmium-on-germination-and-seedling-growth-of-oriental-beech-fagus-orientalis-lipsky-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">752</span> Investigation of Xanthomonas euvesicatoria on Seed Germination and Seed to Seedling Transmission in Tomato</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mayton">H. Mayton</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Yan"> X. Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Taylor"> A. G. Taylor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infested tomato seeds were used to investigate the influence of Xanthomonas euvesicatoria on germination and seed to seedling transmission in a controlled environment and greenhouse assays in an effort to develop effective seed treatments and characterize seed borne transmission of bacterial leaf spot of tomato. Bacterial leaf spot of tomato, caused by four distinct Xanthomonas species, X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria, is a serious disease worldwide. In the United States, disease prevention is expensive for commercial growers in warm, humid regions of the country, and crop losses can be devastating. In this study, four different infested tomato seed lots were extracted from tomato fruits infected with bacterial leaf spot from a field in New York State in 2017 that had been inoculated with X. euvesicatoria. In addition, vacuum infiltration at 61 kilopascals for 1, 5, 10, and 15 minutes and seed soaking for 5, 10, 15, and 30 minutes with different bacterial concentrations were used to artificially infest seed in the laboratory. For controlled environment assays, infested tomato seeds from the field and laboratory were placed othe n moistened blue blotter in square plastic boxes (10 cm x 10 cm) and incubated at 20/30 ˚C with an 8/16 hour light cycle, respectively. Infested tomato seeds from the field and laboratory were also planted in small plastic trays in soil (peat-lite medium) and placed in the greenhouse with 24/18 ˚C day and night temperatures, respectively, with a 14-hour photoperiod. Seed germination was assessed after eight days in the laboratory and 14 days in the greenhouse. Polymerase chain reaction (PCR) using the hrpB7 primers (RST65 [5’- GTCGTCGTTACGGCAAGGTGGTG-3’] and RST69 [5’-TCGCCCAGCGTCATCAGGCCATC-3’]) was performed to confirm presence or absence of the bacterial pathogen in seed lots collected from the field and in germinating seedlings in all experiments. For infested seed lots from the field, germination was lowest (84%) in the seed lot with the highest level of bacterial infestation (55%) and ranged from 84-98%. No adverse effect on germination was observed from artificially infested seeds for any bacterial concentration and method of infiltration when compared to a non-infested control. Germination in laboratory assays for artificially infested seeds ranged from 82-100%. In controlled environment assays, 2.5 % were PCR positive for the pathogen, and in the greenhouse assays, no infected seedlings were detected. From these experiments, X. euvesicatoria does not appear to adversely influence germination. The lowest rate of germination from field collected seed may be due to contamination with multiple pathogens and saprophytic organisms as no effect of artificial bacterial seed infestation in the laboratory on germination was observed. No evidence of systemic movement from seed to seedling was observed in the greenhouse assays; however, in the controlled environment assays, some seedlings were PCR positive. Additional experiments are underway with green fluorescent protein-expressing isolates to further characterize seed to seedling transmission of the bacterial leaf spot pathogen in tomato. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20leaf%20spot" title="bacterial leaf spot">bacterial leaf spot</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=Xanthomonas%20euvesicatoria" title=" Xanthomonas euvesicatoria"> Xanthomonas euvesicatoria</a> </p> <a href="https://publications.waset.org/abstracts/99406/investigation-of-xanthomonas-euvesicatoria-on-seed-germination-and-seed-to-seedling-transmission-in-tomato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">751</span> Effect of Different Salt Concentrations and Temperatures on Seed Germination and Seedling Characters in Safflower (Carthamus tinctorius L.) Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahim%20Ada">Rahim Ada</a>, <a href="https://publications.waset.org/abstracts/search?q=Zamari%20Temory"> Zamari Temory</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Dalgic"> Hasan Dalgic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Germination and seedling responses of seven safflower seed genotypes (Dinçer, Remzibey, Black Sun2 cultivars and A19, F4, I1, J19 lines) to different salinity concentrations (0, 5, 10, and 20 g l-1) and temperatures (10 and 20 oC) evaluated in Completely Randomized Factorial Designs in Department of Field Crops of Selcuk University, Konya, Turkey. Seeds in the control (distilled water) had at 10 and 20 oC the highest germination percentage (93.88 and 94.32 %), shoot length (4.60 and 8.72 cm), root length (4.27 and 6.54 cm), shoot dry weight (22.37 mg and 25.99 mg), and root dry weight (2.22 and 2.47 mg). As the salt concentration increased, values of all characters were decreased. In this experiment, in 20 g l-1 salt concentration found germination percentage (21.28 and 26.66 %), shoot (1.32 and 1.35 cm) and root length (1.04 and 1.10 cm), shoot (8.05 mg and 7.49 mg) and root dry weight (0.83 and 0.98 mg) at 10, and 20 oC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safflower" title="safflower">safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=NaCl" title=" NaCl"> NaCl</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=shoot%20and%20root%20length" title=" shoot and root length"> shoot and root length</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20concentration" title=" salt concentration "> salt concentration </a> </p> <a href="https://publications.waset.org/abstracts/1753/effect-of-different-salt-concentrations-and-temperatures-on-seed-germination-and-seedling-characters-in-safflower-carthamus-tinctorius-l-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">750</span> Effect of Hormones Priming on Enzyme Activity and Lipid Peroxidation in Wheat Seed under Accelerated Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Abbasi">Amin Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Shekari"> Fariborz Shekari</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Bahman%20Mousavi"> Seyed Bahman Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed aging during storage is a complex biochemical and physiological processes that can lead to reduce seed germination. This phenomenon associated with increasing of total antioxidant activity during aging. To study the effects of hormones on seed aging, aged wheat seeds (control, 90 and 80% viabilities) were treated with GA3, Salicylic Acid, and paclobutrazol and antioxidant system were investigated as molecular biomarkers for seed vigor. The results showed that, seed priming treatment significantly affected germination percentage, normality seedling percentage, H2O2, MDA, CAT, APX, and GPX activates. Maximum germination percentage achieve in GA3 priming in control treatment. Germination percentage and normal seedling percentage increased in other GA3 priming treatment compared with other hormones. Also aging increased MDA, H2O2 content. MDA is considered sensitive marker commonly used for assessing membrane lipid peroxidation and H2O2result in toxicity to cellular membrane system and damages to plant cells. Amount of H2O2 and MDA declined in GA3 treatment. CAT, GPX and APX activities were reduced by increasing the aging time and at different levels of priming. The highest APX activity was observed in Salicylic Acid control treatment and the highest GPX and CAT activity was obtained in GA3 control treatment. The lowest MDA and H2O2 showed in GA3 control treatment, too. Hormone priming increased Antioxidant enzyme activity and decreased amount of reactive oxygen space and malondialdehyde (MDA) under aging treatment. Also, GA3 priming treatments have a significant effect on germination percentage and number of normal seedling. Generally aging seed, increase ROS and lipid peroxidation. Antioxidant enzymes activity of aged seeds increased after hormone priming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hormones%20priming" title="hormones priming">hormones priming</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=aging%20seed" title=" aging seed"> aging seed</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a> </p> <a href="https://publications.waset.org/abstracts/3560/effect-of-hormones-priming-on-enzyme-activity-and-lipid-peroxidation-in-wheat-seed-under-accelerated-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">749</span> Influence of Agricultural Utilization of Sewage Sludge Vermicompost on Plant Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meiyan%20Xing">Meiyan Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Cenran%20Li"> Cenran Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Xiang"> Liang Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impacts of excess sludge vermicompost on the germination and early growth of plant were tested. The better effect of cow dung vermicompost (CV) on seed germination and seedling growth proved that cow dung was indeed the preferred additive in sludge vermicomposting as reported by plentiful researchers worldwide. The effects and the best amount of application of CV were further discussed. Results demonstrated that seed germination and seedling growth (seedlings number, plant height, stem diameter) were the best and heavy metal (Zn, Pb, Cr and As) contents of plant were the lowest when soil amended with CV by 15%. Additionally, CV fostered higher contents of chlorophyll a and chlorophyll b compared to the control when concentration ranged from 5 to 15%, thereafter a slight increase in chlorophyll content was observed form 15% to 25%. Thus, CV at the optimum proportion of 15% could serve as a feasible and satisfactory way of sludge agricultural utilization of sewage sludge. In summary, sewage sludge can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby not only providing a means of sewage sludge treatment and disposal, but also stimulating the growth of plant and the ability to resist disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung%20vermicompost" title="cow dung vermicompost">cow dung vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling%20growth" title=" seedling growth"> seedling growth</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20utilization" title=" sludge utilization"> sludge utilization</a> </p> <a href="https://publications.waset.org/abstracts/59981/influence-of-agricultural-utilization-of-sewage-sludge-vermicompost-on-plant-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">748</span> Plasma Treatment of Poppy and Flax Seeds in Fluidized Bed Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Perner">Jakub Perner</a>, <a href="https://publications.waset.org/abstracts/search?q=Jindrich%20Matousek"> Jindrich Matousek</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Malinska"> Hana Malinska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adverse environmental conditions at planting (especially water shortage) can lead into reduced germination rate of seeds. The plasma treatment is one of the possibilities that can solve this problem. Such treatment can increase the germination rate of seeds and make germs grow faster due to increased wettability of seeds surface or disrupted seed coat. This could lead to enhanced oxygen and water transport into the seed and improve germination. Poppy and flax seeds were treated in fluidized bed reactor, and discharge power ranging from 10 to 40 W was used. The working gas was air at pressure 100 Pa. Poppy seeds were then planted into Petri dishes on 7 layers of filter paper saturated with water, and the number of germinated seeds was observed from 3 to 6 days after planting. Every plasma treated sample showed improved germination rate compared to untreated seeds (75.5%) six days after planting. Samples treated in 40W discharge had the highest germination rate (81.2%). The decreased contact angle of water on treated poppy seeds was observed from 85° (untreated) to 30–35° (treated). Untreated flax seeds have a germination rate over 98%; therefore, the weight of seeds was taken to be a measure of the successful germination. Treated flax seeds had a slightly higher weight than untreated. Also, the contact angle of water decreased from 99° (untreated) to 65-73° (treated); therefore the treatment of both species is considered to be successful. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flax" title="flax">flax</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20treatment" title=" plasma treatment"> plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=poppy" title=" poppy"> poppy</a> </p> <a href="https://publications.waset.org/abstracts/109231/plasma-treatment-of-poppy-and-flax-seeds-in-fluidized-bed-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">747</span> Response of Lepidium Sativum to Ionic Toxicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20El-Barghathi">M. F. El-Barghathi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20El-Tajouri"> R. El-Tajouri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of different concentrations of cadmium sulfate "CdSO4" (0.0, 10, 50, 100, 500 ppm) was tested on seed germination, seedling elongation and growth of Lepidium sativum (garden cress) plants. Results indicated that seed germination and seedling elongation were not inhibited by different concentrations of CdSO4. This could suggest that, Lepidium sativum may be used as a phyto remediation tool of soils contaminated with cadmium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lepidium%20sativum" title="Lepidium sativum">Lepidium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20toxicity" title=" ionic toxicity"> ionic toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/21205/response-of-lepidium-sativum-to-ionic-toxicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">746</span> The Study of Seed Coating Effects on Germination Speed of Astragalus Adscendens under Different Moisture Conditions and Planting Depth in the Boroujerd Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Mehrabi">Hamidreza Mehrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Rezayee"> Mandana Rezayee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coated seed process is from amplifier ways that stick various materials on the outer surface of the seeds that minimize the negative environmental effects and increase the ability of Plant establishment. This study was done to assess the effects of coated seed on the germination speed of Astragalus adscendens in different conditions of drought stress and planting depth as it was conducted with a completely randomized factorial design with four replications. treatments of covering material was used in Four non coating levels (NC), mineral-based coating (CC), organic - based coating (OC) hydro gel-based coating (HC) ; treatment of moisture percent used in three levels of dried soil content, treatments of planting depth in two surfaces of planting and three times of the seed diameter was 9%, 14% and 21 % respectively. During the test, it was evaluated the germination speed attribute. The main results showed that moisture treatments and planting depth at a surface of 1% (P <0/01) was significant and has no significant effect of treatment materials. Also, In examining of the interaction between type of covering material and soil moisture were not observed significant differences for germination speed between covering treatments and controls covering, but there was a significant difference between treatments in 9% and 21%. Although in examining the triple interaction, increasing moisture and planting depth enhanced the speed of germination process, but it was not significant statistically, while it has made important differences in terms of description; because it had not growth in the moisture level of 9% and shallow cultivation (high stress). However, treatment of covered materials growth has developed significantly, so it can be useful in enhancing plant performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20coating" title="seed coating">seed coating</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture" title=" soil moisture"> soil moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=sowing%20depth" title=" sowing depth"> sowing depth</a>, <a href="https://publications.waset.org/abstracts/search?q=germination%20percentage" title=" germination percentage"> germination percentage</a> </p> <a href="https://publications.waset.org/abstracts/48322/the-study-of-seed-coating-effects-on-germination-speed-of-astragalus-adscendens-under-different-moisture-conditions-and-planting-depth-in-the-boroujerd-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Seed%20germination&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>