CINXE.COM

Факториал — Википедия

<!DOCTYPE html> <html class="client-nojs" lang="ru" dir="ltr"> <head> <meta charset="UTF-8"> <title>Факториал — Википедия</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )ruwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","январь","февраль","март","апрель","май","июнь","июль","август","сентябрь","октябрь","ноябрь","декабрь"],"wgRequestId":"f0750cbe-a692-4afb-9ee9-96b4dcb29878","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Факториал","wgTitle":"Факториал","wgCurRevisionId":141138568,"wgRevisionId":141138568,"wgArticleId":13509,"wgIsArticle":true,"wgIsRedirect":false ,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Страницы, использующие расширение JsonConfig","Википедия:Статьи со ссылками на статьи об отдельных числах","Статьи со ссылками на Викисловарь","Википедия:Ссылка на Викиучебник непосредственно в статье","Математические знаки","Целочисленные последовательности","Теория чисел","Комбинаторика"],"wgPageViewLanguage":"ru","wgPageContentLanguage":"ru","wgPageContentModel":"wikitext","wgRelevantPageName":"Факториал","wgRelevantArticleId":13509,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}}, "wgStableRevisionId":139901225,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ru","pageLanguageDir":"ltr","pageVariantFallbacks":"ru"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q120976","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.common-site":"ready","ext.globalCssJs.user.styles": "ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","jquery.makeCollapsible.styles":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.collapserefs","ext.gadget.directLinkToCommons","ext.gadget.referenceTooltips","ext.gadget.logo","ext.gadget.edittop","ext.gadget.navboxDefaultGadgets","ext.gadget.wikibugs","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ru&amp;modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cjquery.makeCollapsible.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&amp;only=styles&amp;skin=vector"> <script async="" src="/w/load.php?lang=ru&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ru&amp;modules=ext.gadget.common-site&amp;only=styles&amp;skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=ru&amp;modules=site.styles&amp;only=styles&amp;skin=vector"> <noscript><link rel="stylesheet" href="/w/load.php?lang=ru&amp;modules=noscript&amp;only=styles&amp;skin=vector"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="noindex,nofollow,max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Факториал — Википедия"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ru.m.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB"> <link rel="alternate" type="application/x-wiki" title="Править" href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Википедия (ru)"> <link rel="EditURI" type="application/rsd+xml" href="//ru.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ru"> <link rel="alternate" type="application/atom+xml" title="Википедия — Atom-лента" href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Факториал rootpage-Факториал skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Факториал</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">Материал из Википедии — свободной энциклопедии</div> <div id="contentSub"><div id="mw-content-subtitle"><div id="mw-fr-revision-messages"><div class="cdx-message mw-fr-message-box cdx-message--block cdx-message--notice mw-fr-basic mw-fr-draft-not-synced plainlinks noprint"><span class="cdx-message__icon"></span><div class="cdx-message__content">Текущая версия страницы пока <a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B0_%D1%81%D1%82%D0%B0%D1%82%D0%B5%D0%B9/%D0%9F%D0%BE%D1%8F%D1%81%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B4%D0%BB%D1%8F_%D1%87%D0%B8%D1%82%D0%B0%D1%82%D0%B5%D0%BB%D0%B5%D0%B9" title="Википедия:Проверка статей/Пояснение для читателей">не проверялась</a> опытными участниками и может значительно отличаться от <a class="external text" href="https://ru.wikipedia.org/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;stable=1">версии, проверенной 31 августа 2024 года</a>; проверки требуют <a class="external text" href="https://ru.wikipedia.org/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;oldid=139901225&amp;diff=cur&amp;diffonly=0">3 правки</a>.</div></div></div></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Перейти к навигации</a> <a class="mw-jump-link" href="#searchInput">Перейти к поиску</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ru" dir="ltr"><p><b>Факториа́л</b>&#160;— <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика)">функция</a>, определённая на множестве неотрицательных <a href="/wiki/%D0%A6%D0%B5%D0%BB%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Целое число">целых чисел</a>. Название происходит от <a href="/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" title="Латинский язык">лат.</a>&#160;<span lang="la" style="font-style:italic;">factorialis</span>&#160;— действующий, производящий, умножающий; обозначается <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span>, произносится <i>эн факториа́л</i>. Факториал <a href="/wiki/%D0%9D%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Натуральное число">натурального числа</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> определяется как произведение всех натуральных чисел от 1 до <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> включительно: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0613b26bbfc65ef7ae0142723f8251988cc70ba0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.286ex; height:6.843ex;" alt="{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}"></span>.</dd></dl> <p>Например, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mo>!</mo> <mo>=</mo> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>=</mo> <mn>120</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1a8407c750e7db04da88d96ba928413b94a812c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:24.022ex; height:2.176ex;" alt="{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}"></span>.</dd></dl> <p>Для <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span> принимается в качестве соглашения, что: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>!</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0!=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22956a0fa255c6c9562eab440f8c23c2954a6cf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.07ex; height:2.176ex;" alt="{\displaystyle 0!=1}"></span>.</dd></dl> <table class="wikitable" style="margin:0 0 0 1em; text-align:right; float:right;"> <caption>Факториалы всех чисел составляют последовательность <a href="//oeis.org/A000142" class="extiw" title="oeis:A000142">A000142</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a> </caption> <tbody><tr> <th><i>n</i> </th> <th><i>n</i>! </th></tr> <tr> <td>0</td> <td>1 </td></tr> <tr> <td>1</td> <td>1 </td></tr> <tr> <td>2</td> <td>2 </td></tr> <tr> <td>3</td> <td>6 </td></tr> <tr> <td>4</td> <td>24 </td></tr> <tr> <td>5</td> <td>120 </td></tr> <tr> <td>6</td> <td>720 </td></tr> <tr> <td>7</td> <td><span style="white-space: nowrap">5<span style="margin-left: 0.25em">040</span></span> </td></tr> <tr> <td>8</td> <td><span style="white-space: nowrap">40<span style="margin-left: 0.25em">320</span></span> </td></tr> <tr> <td>9</td> <td><span style="white-space: nowrap">362<span style="margin-left: 0.25em">880</span></span> </td></tr> <tr> <td>10</td> <td><span style="white-space: nowrap">3<span style="margin-left: 0.25em">628</span><span style="margin-left: 0.25em">800</span></span> </td></tr> <tr> <td>11</td> <td><span style="white-space: nowrap">39<span style="margin-left: 0.25em">916</span><span style="margin-left: 0.25em">800</span></span> </td></tr> <tr> <td>12</td> <td><span style="white-space: nowrap">479<span style="margin-left: 0.25em">001</span><span style="margin-left: 0.25em">600</span></span> </td></tr> <tr> <td>13</td> <td><span style="white-space: nowrap">6<span style="margin-left: 0.25em">227</span><span style="margin-left: 0.25em">020</span><span style="margin-left: 0.25em">800</span></span> </td></tr> <tr> <td>14</td> <td><span style="white-space: nowrap">87<span style="margin-left: 0.25em">178</span><span style="margin-left: 0.25em">291</span><span style="margin-left: 0.25em">200</span></span> </td></tr> <tr> <td>15</td> <td><span style="white-space: nowrap">1<span style="margin-left: 0.25em">307</span><span style="margin-left: 0.25em">674</span><span style="margin-left: 0.25em">368</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>16</td> <td><span style="white-space: nowrap">20<span style="margin-left: 0.25em">922</span><span style="margin-left: 0.25em">789</span><span style="margin-left: 0.25em">888</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>17</td> <td><span style="white-space: nowrap">355<span style="margin-left: 0.25em">687</span><span style="margin-left: 0.25em">428</span><span style="margin-left: 0.25em">096</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>18</td> <td><span style="white-space: nowrap">6<span style="margin-left: 0.25em">402</span><span style="margin-left: 0.25em">373</span><span style="margin-left: 0.25em">705</span><span style="margin-left: 0.25em">728</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>19</td> <td><span style="white-space: nowrap">121<span style="margin-left: 0.25em">645</span><span style="margin-left: 0.25em">100</span><span style="margin-left: 0.25em">408</span><span style="margin-left: 0.25em">832</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>20</td> <td><span style="white-space: nowrap">2<span style="margin-left: 0.25em">432</span><span style="margin-left: 0.25em">902</span><span style="margin-left: 0.25em">008</span><span style="margin-left: 0.25em">176</span><span style="margin-left: 0.25em">640</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>21</td> <td>51&#160;090&#160;942&#160;171&#160;709&#160;440&#160;000 </td></tr> <tr> <td>22</td> <td>1&#160;124&#160;000&#160;727&#160;777&#160;607&#160;700&#160;000 </td></tr></tbody></table> <p>Факториал активно используется в различных разделах математики: <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0" title="Комбинаторика">комбинаторике</a>, <a href="/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7" title="Математический анализ">математическом анализе</a>, <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Теория чисел">теории чисел</a>, <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7" title="Функциональный анализ">функциональном анализе</a> и др. </p><p>Факториал является чрезвычайно быстро растущей функцией. Он растёт быстрее, чем любая <a href="/wiki/%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Показательная функция">показательная функция</a> или любая <a href="/wiki/%D0%A1%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Степенная функция">степенная функция</a>, а также быстрее, чем любая сумма произведений этих функций. Однако степенно-показательная функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88ce30228c74c7fb8b0d262d7d9363f87d30d42f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.613ex; height:2.343ex;" alt="{\displaystyle n^{n}}"></span> растёт быстрее факториала, так же как и большинство двойных степенных, например <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{e^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{e^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00eaa2a1043db1dbf373fd361ab600c7f9ffe30c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.047ex; height:2.676ex;" alt="{\displaystyle e^{e^{n}}}"></span>. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="ru" dir="ltr"><h2 id="mw-toc-heading">Содержание</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Свойства"><span class="tocnumber">1</span> <span class="toctext">Свойства</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Рекуррентная_формула"><span class="tocnumber">1.1</span> <span class="toctext">Рекуррентная формула</span></a></li> <li class="toclevel-2 tocsection-3"><a href="#Комбинаторная_интерпретация"><span class="tocnumber">1.2</span> <span class="toctext">Комбинаторная интерпретация</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Связь_с_гамма-функцией"><span class="tocnumber">1.3</span> <span class="toctext">Связь с гамма-функцией</span></a></li> <li class="toclevel-2 tocsection-5"><a href="#Формула_Стирлинга"><span class="tocnumber">1.4</span> <span class="toctext">Формула Стирлинга</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Разложение_на_простые_множители"><span class="tocnumber">1.5</span> <span class="toctext">Разложение на простые множители</span></a></li> <li class="toclevel-2 tocsection-7"><a href="#Связь_с_производной_от_степенной_функции"><span class="tocnumber">1.6</span> <span class="toctext">Связь с производной от степенной функции</span></a></li> <li class="toclevel-2 tocsection-8"><a href="#Другие_свойства"><span class="tocnumber">1.7</span> <span class="toctext">Другие свойства</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-9"><a href="#История"><span class="tocnumber">2</span> <span class="toctext">История</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#Обобщения"><span class="tocnumber">3</span> <span class="toctext">Обобщения</span></a> <ul> <li class="toclevel-2 tocsection-11"><a href="#Двойной_факториал"><span class="tocnumber">3.1</span> <span class="toctext">Двойной факториал</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#Кратный_факториал"><span class="tocnumber">3.2</span> <span class="toctext">Кратный факториал</span></a></li> <li class="toclevel-2 tocsection-13"><a href="#Неполный_факториал"><span class="tocnumber">3.3</span> <span class="toctext">Неполный факториал</span></a> <ul> <li class="toclevel-3 tocsection-14"><a href="#Убывающий_факториал"><span class="tocnumber">3.3.1</span> <span class="toctext">Убывающий факториал</span></a></li> <li class="toclevel-3 tocsection-15"><a href="#Возрастающий_факториал"><span class="tocnumber">3.3.2</span> <span class="toctext">Возрастающий факториал</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-16"><a href="#Праймориал_или_примориал"><span class="tocnumber">3.4</span> <span class="toctext">Праймориал или примориал</span></a></li> <li class="toclevel-2 tocsection-17"><a href="#Фибонориал_или_фибоначчиал"><span class="tocnumber">3.5</span> <span class="toctext">Фибонориал или фибоначчиал</span></a></li> <li class="toclevel-2 tocsection-18"><a href="#Суперфакториалы"><span class="tocnumber">3.6</span> <span class="toctext">Суперфакториалы</span></a></li> <li class="toclevel-2 tocsection-19"><a href="#Субфакториал"><span class="tocnumber">3.7</span> <span class="toctext">Субфакториал</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-20"><a href="#См._также"><span class="tocnumber">4</span> <span class="toctext">См. также</span></a></li> <li class="toclevel-1 tocsection-21"><a href="#Примечания"><span class="tocnumber">5</span> <span class="toctext">Примечания</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Свойства"><span id=".D0.A1.D0.B2.D0.BE.D0.B9.D1.81.D1.82.D0.B2.D0.B0"></span>Свойства</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=1" title="Редактировать раздел «Свойства»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=1" title="Редактировать код раздела «Свойства»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Рекуррентная_формула"><span id=".D0.A0.D0.B5.D0.BA.D1.83.D1.80.D1.80.D0.B5.D0.BD.D1.82.D0.BD.D0.B0.D1.8F_.D1.84.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D0.B0"></span>Рекуррентная формула</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=2" title="Редактировать раздел «Рекуррентная формула»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=2" title="Редактировать код раздела «Рекуррентная формула»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Факториал может быть задан следующей <a href="/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%80%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0" title="Рекуррентная формула">рекуррентной формулой</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!={\begin{cases}1&amp;n=0,\\n\cdot (n-1)!&amp;n&gt;0.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mtd> <mtd> <mi>n</mi> <mo>&gt;</mo> <mn>0.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!={\begin{cases}1&amp;n=0,\\n\cdot (n-1)!&amp;n&gt;0.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/061936c90772779b902414ec897902cc4b61ca06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.187ex; height:6.176ex;" alt="{\displaystyle n!={\begin{cases}1&amp;n=0,\\n\cdot (n-1)!&amp;n&gt;0.\end{cases}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Комбинаторная_интерпретация"><span id=".D0.9A.D0.BE.D0.BC.D0.B1.D0.B8.D0.BD.D0.B0.D1.82.D0.BE.D1.80.D0.BD.D0.B0.D1.8F_.D0.B8.D0.BD.D1.82.D0.B5.D1.80.D0.BF.D1.80.D0.B5.D1.82.D0.B0.D1.86.D0.B8.D1.8F"></span>Комбинаторная интерпретация</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=3" title="Редактировать раздел «Комбинаторная интерпретация»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=3" title="Редактировать код раздела «Комбинаторная интерпретация»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>В <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0" title="Комбинаторика">комбинаторике</a> факториал натурального числа <style data-mw-deduplicate="TemplateStyles:r117753614">.mw-parser-output .ts-math{white-space:nowrap;font-family:times,serif,palatino linotype,new athena unicode,athena,gentium,code2000;font-size:120%}</style><span class="ts-math"><i>n</i></span> интерпретируется как количество <a href="/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0" title="Перестановка">перестановок</a> (упорядочиваний) <a href="/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Множество">множества</a> из <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> элементов. </p><p>Например, для множества {<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>} из 4-х элементов существует 4! = 24 перестановки: </p> <pre>ABCD BACD CABD DABC ABDC BADC CADB DACB ACBD BCAD CBAD DBAC ACDB BCDA CBDA DBCA ADBC BDAC CDAB DCAB ADCB BDCA CDBA DCBA </pre> <p>Комбинаторная интерпретация факториала подтверждает целесообразность соглашения <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>!</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0!=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22956a0fa255c6c9562eab440f8c23c2954a6cf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.07ex; height:2.176ex;" alt="{\displaystyle 0!=1}"></span>&#160;— количество перестановок пустого множества равно единице. Кроме того, формула для числа <a href="/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%89%D0%B5%D0%BD%D0%B8%D0%B5" title="Размещение">размещений</a> из <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> элементов по <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/823643d5bf61c64f6aefb70a14653afa3507c023" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.084ex; height:6.176ex;" alt="{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}}"></span></dd></dl> <p>при <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/480d6131c6cb07a90f4ec18a376a59fab884b860" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.534ex; height:1.676ex;" alt="{\displaystyle n=m}"></span> обращается в формулу для числа <a href="/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0" title="Перестановка">перестановок</a> из <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> элементов (порядка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>), которое равно <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Связь_с_гамма-функцией"><span id=".D0.A1.D0.B2.D1.8F.D0.B7.D1.8C_.D1.81_.D0.B3.D0.B0.D0.BC.D0.BC.D0.B0-.D1.84.D1.83.D0.BD.D0.BA.D1.86.D0.B8.D0.B5.D0.B9"></span>Связь с гамма-функцией</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=4" title="Редактировать раздел «Связь с гамма-функцией»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=4" title="Редактировать код раздела «Связь с гамма-функцией»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%93%D0%B0%D0%BC%D0%BC%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Гамма-функция">Гамма-функция</a></b></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Generalized_factorial_function.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Generalized_factorial_function.svg/325px-Generalized_factorial_function.svg.png" decoding="async" width="325" height="205" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Generalized_factorial_function.svg/488px-Generalized_factorial_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Generalized_factorial_function.svg/650px-Generalized_factorial_function.svg.png 2x" data-file-width="500" data-file-height="315" /></a><figcaption>Пи-функция, определённая для всех вещественных чисел, кроме отрицательных целых, и совпадающая при натуральных значениях аргумента с факториалом.</figcaption></figure> <p>Факториал связан с гамма-функцией от целочисленного аргумента соотношением </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!=\Gamma (n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!=\Gamma (n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b392e2ad60237c0560a6d82a6548cdf2b4399cb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.8ex; height:2.843ex;" alt="{\displaystyle n!=\Gamma (n+1)}"></span>.</dd></dl> <p>Это же выражение используют для обобщения понятия факториала на множество <a href="/wiki/%D0%92%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Вещественное число">вещественных чисел</a>. Используя <a href="/wiki/%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D0%B4%D0%BE%D0%BB%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5" title="Аналитическое продолжение">аналитическое продолжение</a> гамма-функции, область определения факториала также расширяют на всю <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BB%D0%BE%D1%81%D0%BA%D0%BE%D1%81%D1%82%D1%8C" title="Комплексная плоскость">комплексную плоскость</a>, исключая <a href="/wiki/%D0%9F%D0%BE%D0%BB%D1%8E%D1%81_(%D0%BA%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7)" title="Полюс (комплексный анализ)">особые точки</a> при <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=-1,-2,-3\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=-1,-2,-3\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0449919aee7384e0bf152a7e5a13b18f257bad1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.583ex; height:2.509ex;" alt="{\displaystyle n=-1,-2,-3\ldots }"></span>. </p><p>Непосредственным обобщением факториала на множества вещественных и комплексных чисел служит пи-функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi (z)=\Gamma (z+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi (z)=\Gamma (z+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afaeab7cd9337dc971ef557c8ab243ea99c4e69a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.092ex; height:2.843ex;" alt="{\displaystyle \Pi (z)=\Gamma (z+1)}"></span>, которая при <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Re} (z)&gt;-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Re} (z)&gt;-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d23b6461080be8fcb580556f9427397096d69bfd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.709ex; height:2.843ex;" alt="{\displaystyle \mathrm {Re} (z)&gt;-1}"></span> может быть определена как </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5af7aa6991d44264ac136c8172abbfe3bdb6053b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.014ex; height:5.843ex;" alt="{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t}"></span> (интегральное определение).</dd></dl> <p>Пи-функция натурального числа или нуля совпадает с его факториалом: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi (n)=n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi (n)=n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9ef0864739a8c42ceb08426f10907a8c013d7f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.087ex; height:2.843ex;" alt="{\displaystyle \Pi (n)=n!}"></span>. Как и факториал, пи-функция удовлетворяет рекуррентному соотношению <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi (z)=z\Pi (z-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi (z)=z\Pi (z-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5186c91dc94977c3e00783197963ab1ae8d19b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.471ex; height:2.843ex;" alt="{\displaystyle \Pi (z)=z\Pi (z-1)}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Формула_Стирлинга"><span id=".D0.A4.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D0.B0_.D0.A1.D1.82.D0.B8.D1.80.D0.BB.D0.B8.D0.BD.D0.B3.D0.B0"></span>Формула Стирлинга</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=5" title="Редактировать раздел «Формула Стирлинга»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=5" title="Редактировать код раздела «Формула Стирлинга»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%A1%D1%82%D0%B8%D1%80%D0%BB%D0%B8%D0%BD%D0%B3%D0%B0" title="Формула Стирлинга">Формула Стирлинга</a></b></div> <p><b>Формула Стирлинга</b>&#160;— <a href="/wiki/%D0%90%D1%81%D0%B8%D0%BC%D0%BF%D1%82%D0%BE%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BE%D1%86%D0%B5%D0%BD%D0%BA%D0%B0" class="mw-redirect" title="Асимптотическая оценка">асимптотическая формула</a> для вычисления факториала: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>12</mn> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>288</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>139</mn> <mrow> <mn>51840</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>571</mn> <mrow> <mn>2488320</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>163879</mn> <mrow> <mn>209018880</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5246819</mn> <mrow> <mn>75246796800</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd340b24e32f9c8dfc52e5ab1bb1a23a26facb88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:112.762ex; height:6.176ex;" alt="{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),}"></span></dd></dl> <p>см. <a href="/wiki/O-%D0%B1%D0%BE%D0%BB%D1%8C%D1%88%D0%BE%D0%B5" class="mw-redirect" title="O-большое">O-большое</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>. </p><p>Во многих случаях для приближённого вычисления факториала достаточно рассматривать только главный член формулы Стирлинга: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3d4be66ea1a9ff3704455099fd4a7b967b75f67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.837ex; height:4.843ex;" alt="{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}"></span></dd></dl> <p>При этом можно утверждать, что </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}&lt;n!&lt;{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>12</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>&lt;</mo> <mi>n</mi> <mo>!</mo> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>12</mn> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}&lt;n!&lt;{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e837a76392a4fb5655e4f0b42ef0a0d36fc90fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:48.824ex; height:4.843ex;" alt="{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}&lt;n!&lt;{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.}"></span></dd></dl> <p>Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Например, с помощью формулы Стирлинга легко подсчитать, что: </p> <ul><li>100! ≈ 9,33×10<sup>157</sup></li> <li>1000! ≈ 4,02×10<sup>2567</sup></li> <li>10&#160;000! ≈ 2,85×10<sup>35&#160;659</sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Разложение_на_простые_множители"><span id=".D0.A0.D0.B0.D0.B7.D0.BB.D0.BE.D0.B6.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D1.8B.D0.B5_.D0.BC.D0.BD.D0.BE.D0.B6.D0.B8.D1.82.D0.B5.D0.BB.D0.B8"></span>Разложение на простые множители</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=6" title="Редактировать раздел «Разложение на простые множители»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=6" title="Редактировать код раздела «Разложение на простые множители»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Каждое <a href="/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Простое число">простое число</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>p</i></span> входит в <a href="/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F" title="Факторизация">разложение</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i>!</span> на простые множители в степени определяемой следующей формулой: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>p</mi> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> <mo>+</mo> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> <mo>+</mo> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4308b3f91baa14a5d4b4b8f86f1becdccd912f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.76ex; height:6.176ex;" alt="{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .}"></span></dd></dl> <p>Таким образом, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munder> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>p</mi> </mfrac> </mrow> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>+</mo> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/305ffeb0b5ab9444b4953256a6baad04c5cc6d60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.893ex; height:6.676ex;" alt="{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },}"></span></dd></dl> <p>где произведение берётся по всем простым числам. Можно заметить, что для всякого простого <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>p</i></span> большего <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> соответствующий множитель в произведении равен 1; следовательно, произведение можно брать лишь по простым <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>p</i></span>, не превосходящим <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Связь_с_производной_от_степенной_функции"><span id=".D0.A1.D0.B2.D1.8F.D0.B7.D1.8C_.D1.81_.D0.BF.D1.80.D0.BE.D0.B8.D0.B7.D0.B2.D0.BE.D0.B4.D0.BD.D0.BE.D0.B9_.D0.BE.D1.82_.D1.81.D1.82.D0.B5.D0.BF.D0.B5.D0.BD.D0.BD.D0.BE.D0.B9_.D1.84.D1.83.D0.BD.D0.BA.D1.86.D0.B8.D0.B8"></span>Связь с <a href="/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D0%BD%D1%8B%D1%85" class="mw-redirect" title="Список производных">производной от степенной функции</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=7" title="Редактировать раздел «Связь с производной от степенной функции»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=7" title="Редактировать код раздела «Связь с производной от степенной функции»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Для целого неотрицательного числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(x^{n}\right)^{(n)}=n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(x^{n}\right)^{(n)}=n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcf097d45bcabb383c61db68793593a77f02bf44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.995ex; height:3.509ex;" alt="{\displaystyle \left(x^{n}\right)^{(n)}=n!}"></span></dd></dl> <p>Например: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)'''=\left(5\cdot 4\cdot 3\cdot x^{2}\right)''=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)'={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2034;</mo> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2033;</mo> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> </mrow> <mo>=</mo> <mn>5</mn> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)'''=\left(5\cdot 4\cdot 3\cdot x^{2}\right)''=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)'={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/649a5cdff4b23db17a459f485f2c4158c2eb251f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:90.617ex; height:4.009ex;" alt="{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)&#039;&#039;&#039;=\left(5\cdot 4\cdot 3\cdot x^{2}\right)&#039;&#039;=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)&#039;={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Другие_свойства"><span id=".D0.94.D1.80.D1.83.D0.B3.D0.B8.D0.B5_.D1.81.D0.B2.D0.BE.D0.B9.D1.81.D1.82.D0.B2.D0.B0"></span>Другие свойства</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=8" title="Редактировать раздел «Другие свойства»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=8" title="Редактировать код раздела «Другие свойства»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd>Для натурального числа <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <msup> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2A7E;<!-- ⩾ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2A7E;<!-- ⩾ --></mo> <mi>n</mi> <mo>!</mo> <mo>&#x2A7E;<!-- ⩾ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/905fbda2d44ccdc9fc27e8c8b79c4639a25c84cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.441ex; height:2.843ex;" alt="{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n}"></span></dd></dl></dd></dl> <dl><dd>Для любого <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee74e1cc07e7041edf0fcbd4481f5cd32ad17b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;1}"></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span> не является <a href="/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Квадрат (алгебра)">квадратом</a> целого числа;</dd></dl></dd></dl> <dl><dd>Для любого <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6b13dc8b113121cdaf76a723a61aa4f8be1468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;4}"></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span> оканчивается на 0;</dd></dl></dd></dl> <dl><dd>Для любого <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;9}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>9</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;9}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a2966b368b6eeb84ae2104cffbcf74e35a6d17e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;9}"></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span> оканчивается на 00.</dd></dl></dd></dl> <dl><dd>Если <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> простое число: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)!+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)!+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5241d2022a4a3e94d24081a5cfb9b7b5fbf98b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.857ex; height:2.843ex;" alt="{\displaystyle (n-1)!+1}"></span> делится на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> (<a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%92%D0%B8%D0%BB%D1%8C%D1%81%D0%BE%D0%BD%D0%B0" title="Теорема Вильсона">теорема Вильсона</a>)</dd></dl></dd></dl> <div class="mw-heading mw-heading2"><h2 id="История"><span id=".D0.98.D1.81.D1.82.D0.BE.D1.80.D0.B8.D1.8F"></span>История</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=9" title="Редактировать раздел «История»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=9" title="Редактировать код раздела «История»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Факториальные выражения появились ещё в ранних исследованиях по <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0" title="Комбинаторика">комбинаторике</a>, хотя компактное обозначение <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span> предложил французский математик <a href="/wiki/%D0%9A%D1%80%D0%B0%D0%BC%D0%BF,_%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%B0%D0%BD" title="Крамп, Кристиан">Кристиан Крамп</a> только в 1808&#160;году<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>. Важным этапом стало открытие <a href="/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%A1%D1%82%D0%B8%D1%80%D0%BB%D0%B8%D0%BD%D0%B3%D0%B0" title="Формула Стирлинга">формулы Стирлинга</a>, которую <a href="/wiki/%D0%A1%D1%82%D0%B8%D1%80%D0%BB%D0%B8%D0%BD%D0%B3,_%D0%94%D0%B6%D0%B5%D0%B9%D0%BC%D1%81" title="Стирлинг, Джеймс">Джеймс Стирлинг</a> опубликовал в своём трактате «Дифференциальный метод» (<a href="/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" title="Латинский язык">лат.</a>&#160;<span lang="la" style="font-style:italic;">Methodus differentialis</span>, 1730&#160;год). Немного ранее почти такую же формулу опубликовал друг Стирлинга <a href="/wiki/%D0%90%D0%B1%D1%80%D0%B0%D1%85%D0%B0%D0%BC_%D0%B4%D0%B5_%D0%9C%D1%83%D0%B0%D0%B2%D1%80" class="mw-redirect" title="Абрахам де Муавр">Абрахам де Муавр</a>, но в менее завершённом виде (вместо коэффициента <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a9b009153bbbb3273a7e7279cb6b084fd650a80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.43ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2\pi }}}"></span> была неопределённая константа)<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>. </p><p>Стирлинг подробно исследовал свойства факториала, вплоть до выяснения вопроса о том, нельзя ли распространить это понятие на произвольные вещественные числа. Он описал несколько возможных путей к реализации этой идеи и высказал мнение, что: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6060d68d00ad13d2fbc9a13539764e430068e861" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.269ex; height:6.509ex;" alt="{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}}"></span></dd></dl> <p>Стирлинг не знал, что годом ранее решение проблемы уже нашёл <a href="/wiki/%D0%9B%D0%B5%D0%BE%D0%BD%D0%B0%D1%80%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80" class="mw-redirect" title="Леонард Эйлер">Леонард Эйлер</a>. В письме к <a href="/wiki/%D0%93%D0%BE%D0%BB%D1%8C%D0%B4%D0%B1%D0%B0%D1%85,_%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%B0%D0%BD" class="mw-redirect" title="Гольдбах, Кристиан">Кристиану Гольдбаху</a> Эйлер описал требуемое обобщение<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>!</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mi>m</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccf8036f24b95c206c17e22f4ccc0cdc8fd3b3a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.828ex; height:6.176ex;" alt="{\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}}"></span></dd></dl> <p>Развивая эту идею, Эйлер в следующем, 1730&#160;году, ввёл понятие <a href="/wiki/%D0%93%D0%B0%D0%BC%D0%BC%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Гамма-функция">гамма-функции</a> в виде классического интеграла. Эти результаты он опубликовал в журнале <a href="/wiki/%D0%9F%D0%B5%D1%82%D0%B5%D1%80%D0%B1%D1%83%D1%80%D0%B3%D1%81%D0%BA%D0%B0%D1%8F_%D0%B0%D0%BA%D0%B0%D0%B4%D0%B5%D0%BC%D0%B8%D1%8F_%D0%BD%D0%B0%D1%83%D0%BA" title="Петербургская академия наук">Петербургской академии наук</a> в 1729—1730&#160;годах. </p> <div class="mw-heading mw-heading2"><h2 id="Обобщения"><span id=".D0.9E.D0.B1.D0.BE.D0.B1.D1.89.D0.B5.D0.BD.D0.B8.D1.8F"></span>Обобщения</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=10" title="Редактировать раздел «Обобщения»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=10" title="Редактировать код раздела «Обобщения»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Двойной_факториал"><span id=".D0.94.D0.B2.D0.BE.D0.B9.D0.BD.D0.BE.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Двойной факториал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=11" title="Редактировать раздел «Двойной факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=11" title="Редактировать код раздела «Двойной факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable dabhide">Запрос «‼»&#32;перенаправляется сюда; см. также <a href="/wiki/!!_(%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D1%8F)" title="!! (значения)">другие значения</a>.</div> <p><b>Двойной факториал</b> числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> обозначается <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i>‼</span> и определяется как произведение всех натуральных чисел в отрезке [1,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>], имеющих ту же <a href="/wiki/%D0%A7%D1%91%D1%82%D0%BD%D1%8B%D0%B5_%D0%B8_%D0%BD%D0%B5%D1%87%D1%91%D1%82%D0%BD%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0" title="Чётные и нечётные числа">чётность</a>, что и <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>. </p> <ul><li>Для чётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </munderover> <mn>2</mn> <mi>i</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d079273a0fea61df36d587e3ce3fab700097a22a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.429ex; height:8.343ex;" alt="{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}"></span></dd></dl> <ul><li>Для нечётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> </mrow> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </munderover> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd537c895096ec3787831f2abcdb0966e982fe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:51.46ex; height:11.343ex;" alt="{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"></span></dd></dl> <p>Связь между двойными факториалами двух соседних целых неотрицательных чисел и обычным факториалом одного из них. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={\frac {n!}{(n-1)!!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!={\frac {n!}{(n-1)!!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f76cec6d851036a6a453fe5b6b63e95617dbf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.124ex; height:6.176ex;" alt="{\displaystyle n!!={\frac {n!}{(n-1)!!}}}"></span></dd></dl> <style data-mw-deduplicate="TemplateStyles:r137842454">.mw-parser-output .ts-Скрытый_блок{margin:0;overflow:hidden;border-collapse:collapse;box-sizing:border-box;font-size:95%}.mw-parser-output .ts-Скрытый_блок-title{text-align:center;font-weight:bold;line-height:1.6em;min-height:1.2em}.mw-parser-output .ts-Скрытый_блок .mw-collapsible-content{overflow-x:auto;overflow-y:hidden;clear:both}.mw-parser-output .ts-Скрытый_блок::before,.mw-parser-output .ts-Скрытый_блок .mw-collapsible-toggle{padding-top:.1em;width:6em;font-weight:normal;font-size:calc(90%/0.95)}.mw-parser-output .ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{float:right;text-align:right}.mw-parser-output .ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{float:left;text-align:left}.mw-parser-output .ts-Скрытый_блок-gray{padding:2px;border:1px solid var(--border-color-base,#a2a9b1)}.mw-parser-output .ts-Скрытый_блок-transparent{border:none}.mw-parser-output .ts-Скрытый_блок-gray .ts-Скрытый_блок-title{background:var(--background-color-neutral,#eaecf0);padding:.1em 6em;padding-right:0}.mw-parser-output .ts-Скрытый_блок-transparent .ts-Скрытый_блок-title{background:transparent;padding:.1em 5.5em;padding-right:0}.mw-parser-output .ts-Скрытый_блок-gray .mw-collapsible-content{padding:.25em 1em}.mw-parser-output .ts-Скрытый_блок-transparent .mw-collapsible-content{padding:.25em 0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{padding-right:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{padding-right:0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{padding-left:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{padding-left:0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:1em}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:6.5em}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-rightTitle{padding-right:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-rightTitle,.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:0}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-rightTitle,.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-leftTitle{padding-right:0}.mw-parser-output .ts-Скрытый_блок+.ts-Скрытый_блок,.mw-parser-output .ts-Скрытый_блок+link+.ts-Скрытый_блок{border-top-style:hidden}</style><div class="mw-collapsible mw-collapsed ts-Скрытый_блок ts-Скрытый_блок-gray ts-Скрытый_блок-rightHideLink" style=""><div class="ts-Скрытый_блок-title" style="">Вывод формул<div class="mw-collapsible-toggle-placeholder"></div></div><div class="mw-collapsible-content" style=""> <ul><li><b>Формула для чётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>:</b></li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690e4b9a0a60e41a8849b060439bd57e0be81595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.588ex; height:5.676ex;" alt="{\displaystyle n!!=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}"></span></dd></dl> <table class="wikitable"> <tbody><tr> <td> <dl><dd><b>Выведение формулы:</b></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}n!!&amp;={\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot n} _{\color {Black}{\tfrac {n}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot n\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}}=\\&amp;={2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>n</mi> <mo>!</mo> <mo>!</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#221E1F"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mspace width="thickmathspace" /> <mo>&#x22C5;<!-- ⋅ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thickmathspace" /> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> <mspace width="thickmathspace" /> </mrow> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}n!!&amp;={\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot n} _{\color {Black}{\tfrac {n}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot n\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}}=\\&amp;={2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b5774f507bbe520fd11ea8c850c6a638369260" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:59.919ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}n!!&amp;={\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot n} _{\color {Black}{\tfrac {n}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot n\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}}=\\&amp;={2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!\end{aligned}}}"></span></dd></dl> </td></tr></tbody></table> <dl><dd><b>Пример</b>, иллюстрирующий использованное выше выведение формулы:</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}14!!&amp;=2^{\frac {14}{2}}\cdot \left({\frac {14}{2}}\right)!=2^{7}\cdot 7!=\\&amp;=(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)=\\&amp;=(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)=\\&amp;=2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14=645120\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn>14</mn> <mo>!</mo> <mo>!</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>14</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>14</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo>!</mo> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>8</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>10</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>12</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>14</mn> <mo>=</mo> <mn>645120</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}14!!&amp;=2^{\frac {14}{2}}\cdot \left({\frac {14}{2}}\right)!=2^{7}\cdot 7!=\\&amp;=(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)=\\&amp;=(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)=\\&amp;=2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14=645120\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c49198a8425da09e4be000c2ef664a62f6fde25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:51.643ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}14!!&amp;=2^{\frac {14}{2}}\cdot \left({\frac {14}{2}}\right)!=2^{7}\cdot 7!=\\&amp;=(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)=\\&amp;=(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)=\\&amp;=2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14=645120\end{aligned}}}"></span></dd></dl> <p><br /> </p> <ul><li><b>Формула для нечётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>:</b></li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74b819998493be2f4415cf56b06560f74b55cee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:19.822ex; height:9.176ex;" alt="{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"></span></dd></dl> <table class="wikitable"> <tbody><tr> <td> <dl><dd><b>Выведение формулы:</b></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}n!!&amp;={\color {Gray}\underbrace {\color {Black}1\cdot 3\cdot 5\cdot \ldots \cdot n} _{\color {Black}{\frac {n+1}{2}}}}={\frac {{\color {Gray}\overbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} ^{\color {Black}{\frac {n-1}{2}}}}\cdot {\color {Gray}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot \ldots \cdot (n-2)\cdot n} ^{\color {Black}{\frac {n+1}{2}}}}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}=\\&amp;={\frac {\color {Gray}\overbrace {\color {Black}1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot \ldots \cdot (n-2)\cdot {\color {OliveGreen}(n-1)}\cdot n} ^{\color {Black}n}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{(n-1)!!}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>n</mi> <mo>!</mo> <mo>!</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#221E1F"> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>&#x23DE;<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </mover> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> </mstyle> <mo>&#x23DE;<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </mover> </mstyle> </mrow> </mrow> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle mathcolor="#949698"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>2</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>4</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>6</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> </mstyle> <mo>&#x23DE;<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mi>n</mi> </mstyle> </mrow> </mover> </mstyle> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#221E1F"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}n!!&amp;={\color {Gray}\underbrace {\color {Black}1\cdot 3\cdot 5\cdot \ldots \cdot n} _{\color {Black}{\frac {n+1}{2}}}}={\frac {{\color {Gray}\overbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} ^{\color {Black}{\frac {n-1}{2}}}}\cdot {\color {Gray}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot \ldots \cdot (n-2)\cdot n} ^{\color {Black}{\frac {n+1}{2}}}}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}=\\&amp;={\frac {\color {Gray}\overbrace {\color {Black}1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot \ldots \cdot (n-2)\cdot {\color {OliveGreen}(n-1)}\cdot n} ^{\color {Black}n}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{(n-1)!!}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6109b0877e1920efe12e853096b55a14f5371a8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.656ex; margin-bottom: -0.182ex; width:87.338ex; height:30.843ex;" alt="{\displaystyle {\begin{aligned}n!!&amp;={\color {Gray}\underbrace {\color {Black}1\cdot 3\cdot 5\cdot \ldots \cdot n} _{\color {Black}{\frac {n+1}{2}}}}={\frac {{\color {Gray}\overbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} ^{\color {Black}{\frac {n-1}{2}}}}\cdot {\color {Gray}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot \ldots \cdot (n-2)\cdot n} ^{\color {Black}{\frac {n+1}{2}}}}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}=\\&amp;={\frac {\color {Gray}\overbrace {\color {Black}1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot \ldots \cdot (n-2)\cdot {\color {OliveGreen}(n-1)}\cdot n} ^{\color {Black}n}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{(n-1)!!}}\end{aligned}}}"></span></dd> <dd>Таким образом можно показать связь между двойными факториалами двух соседних неотрицательных целых чисел через обычный факториал одного из них. Далее продолжим выведение формулы для двойного факториала нечётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>. Вернёмся на шаг назад (до возникновения в явном виде <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math">(<i>n</i>-1)!!</span>) и осуществим некоторые <a href="/wiki/%D0%A2%D0%BE%D0%B6%D0%B4%D0%B5%D1%81%D1%82%D0%B2%D0%BE_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Тождество (математика)">тождественные алгебраические преобразования</a> над знаменателем:</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}}=\\&amp;={2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n-1}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#221E1F"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mspace width="thickmathspace" /> <mo>&#x22C5;<!-- ⋅ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thickmathspace" /> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> </mrow> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> </mstyle> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}}=\\&amp;={2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n-1}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546b87d98460d66a29becc4eff9ae30bc05284e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.505ex; width:65.756ex; height:18.176ex;" alt="{\displaystyle {\begin{aligned}&amp;{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}}=\\&amp;={2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n-1}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!\end{aligned}}}"></span></dd> <dd>Подставим полученное выражение для знаменателя обратно в формулу для <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511717d541dba5357928e8d8631f1b4d4f8d5b31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.688ex; height:2.176ex;" alt="{\displaystyle n!!}"></span>:</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74b819998493be2f4415cf56b06560f74b55cee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:19.822ex; height:9.176ex;" alt="{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"></span></dd></dl> </td></tr></tbody></table> <p><b>Пример</b>, иллюстрирующий использованное выше выведение формулы: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}15!!&amp;={\frac {15!}{2^{{\color {white}1}^{\!\!\!\!{\frac {15-1}{2}}}}\cdot \left({\frac {15-1}{2}}\right)!}}={\frac {15!}{2^{{\color {white}1}^{\!\!\!7}}\cdot 7!}}=\\&amp;={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)}}} }=\\&amp;={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)}}} }=\\&amp;={\color {white}\overbrace {\color {Black}{\frac {1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot {\color {OliveGreen}8}\cdot 9\cdot {\color {OliveGreen}10}\cdot 11\cdot {\color {OliveGreen}12}\cdot 13\cdot {\color {OliveGreen}14}\cdot 15}{\color {OliveGreen}2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14}}} }=\\&amp;={\color {white}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot 9\cdot 11\cdot 13\cdot 15} }=2027025\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn>15</mn> <mo>!</mo> <mo>!</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>15</mn> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>15</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>15</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>15</mn> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mn>7</mn> </mrow> </msup> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>8</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>9</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>10</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>11</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>12</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>13</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>14</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>15</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> <mo>&#x23DE;<!-- ⏞ --></mo> </mover> </mrow> </mstyle> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>8</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>9</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>10</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>11</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>12</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>13</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>14</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>15</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> <mo>&#x23DE;<!-- ⏞ --></mo> </mover> </mrow> </mstyle> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>2</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>4</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>6</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>8</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>9</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>10</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>11</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>12</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>13</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>14</mn> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>15</mn> </mrow> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>8</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>10</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>12</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>14</mn> </mstyle> </mfrac> </mrow> </mstyle> <mo>&#x23DE;<!-- ⏞ --></mo> </mover> </mrow> </mstyle> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>7</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>9</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>11</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>13</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>15</mn> </mstyle> <mo>&#x23DE;<!-- ⏞ --></mo> </mover> </mrow> </mstyle> </mrow> <mo>=</mo> <mn>2027025</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}15!!&amp;={\frac {15!}{2^{{\color {white}1}^{\!\!\!\!{\frac {15-1}{2}}}}\cdot \left({\frac {15-1}{2}}\right)!}}={\frac {15!}{2^{{\color {white}1}^{\!\!\!7}}\cdot 7!}}=\\&amp;={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)}}} }=\\&amp;={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)}}} }=\\&amp;={\color {white}\overbrace {\color {Black}{\frac {1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot {\color {OliveGreen}8}\cdot 9\cdot {\color {OliveGreen}10}\cdot 11\cdot {\color {OliveGreen}12}\cdot 13\cdot {\color {OliveGreen}14}\cdot 15}{\color {OliveGreen}2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14}}} }=\\&amp;={\color {white}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot 9\cdot 11\cdot 13\cdot 15} }=2027025\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa1a584546d2eff70aa320ee8a386dd05aec7d33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -17.338ex; width:58.677ex; height:35.843ex;" alt="{\displaystyle {\begin{aligned}15!!&amp;={\frac {15!}{2^{{\color {white}1}^{\!\!\!\!{\frac {15-1}{2}}}}\cdot \left({\frac {15-1}{2}}\right)!}}={\frac {15!}{2^{{\color {white}1}^{\!\!\!7}}\cdot 7!}}=\\&amp;={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)}}} }=\\&amp;={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)}}} }=\\&amp;={\color {white}\overbrace {\color {Black}{\frac {1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot {\color {OliveGreen}8}\cdot 9\cdot {\color {OliveGreen}10}\cdot 11\cdot {\color {OliveGreen}12}\cdot 13\cdot {\color {OliveGreen}14}\cdot 15}{\color {OliveGreen}2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14}}} }=\\&amp;={\color {white}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot 9\cdot 11\cdot 13\cdot 15} }=2027025\end{aligned}}}"></span></dd></dl> </div></div> <p>Осуществив замену <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bd8a6ccffc0438075ec3661f22fd88da9085491" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.867ex; height:2.176ex;" alt="{\displaystyle n=2k}"></span> для чётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2k+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2k+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8d78e073288d28d26412ff8156603893b649e4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.87ex; height:2.343ex;" alt="{\displaystyle n=2k+1}"></span> для нечётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> соответственно, где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>&#160;— целое неотрицательное число, получим: </p> <ul><li>для чётного числа:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mi>k</mi> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mn>2</mn> <mi>i</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>k</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21f8dcc014d46ec022736160ffc0f8b19a45e5b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.183ex; height:7.343ex;" alt="{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!}"></span></dd></dl> <ul><li>для нечётного числа:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cf8ec16672e3b1a615dd7bb8e7abb6e1e1f822e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:60.303ex; height:7.343ex;" alt="{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}}"></span></dd></dl> <p>По договорённости: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!!=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0!!=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d76cc1cbbe956bc23fea02d7e7be73dfcf4a93d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.717ex; height:2.176ex;" alt="{\displaystyle 0!!=1}"></span>. Также это равенство выполняется естественным образом: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>!</mo> <mo>!</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>0</mn> <mo>!</mo> <mo>=</mo> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8f04f7cd2ba6c47b46c496de283d21392550b22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:22.623ex; height:2.676ex;" alt="{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1}"></span></dd></dl> <p>Двойной факториал, так же, как и обычный факториал, определён только для целых неотрицательных чисел. </p><p>Последовательность значений <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i>!!</span> начинается так<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd>1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10&#160;395, 46&#160;080, 135&#160;135, 645&#160;120, 2&#160;027&#160;025, 10&#160;321&#160;920, 34&#160;459&#160;425, 185&#160;794&#160;560, 654&#160;729&#160;075, 3&#160;715&#160;891&#160;200, 13&#160;749&#160;310&#160;575, 81&#160;749&#160;606&#160;400, 316&#160;234&#160;143&#160;225, 1&#160;961&#160;990&#160;553&#160;600, 7&#160;905&#160;853&#160;580&#160;625, 51&#160;011&#160;754&#160;393&#160;600, …</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Кратный_факториал"><span id=".D0.9A.D1.80.D0.B0.D1.82.D0.BD.D1.8B.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Кратный факториал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=12" title="Редактировать раздел «Кратный факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=12" title="Редактировать код раздела «Кратный факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i></span>-кратный факториал</b> числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> обозначается <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>!</mo> <mo>!</mo> <mo>&#x2026;<!-- … --></mo> <mo>!</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munder> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9958f81e973e1bb474cc600a38b82a61a0900ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; margin-right: -0.028ex; width:6.473ex; height:5.509ex;" alt="{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}"></span> и определяется следующим образом. Пусть число <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> представимо в виде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=mk-r,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>m</mi> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=mk-r,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09efc8e99d03d50dccc4bd17ba78b502022604aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.281ex; height:2.509ex;" alt="{\displaystyle n=mk-r,}"></span> где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec3a59bfa1fddae9c292b0a08f06e0d43a9aa257" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.249ex; height:2.509ex;" alt="{\displaystyle k\in \mathbb {Z} ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in \{0,1,\ldots ,m-1\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in \{0,1,\ldots ,m-1\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe630e7273a0d887b6c6d1fff748076d19f2fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.441ex; height:2.843ex;" alt="{\displaystyle r\in \{0,1,\ldots ,m-1\}.}"></span> Тогда<sup id="cite_ref-avantaplus_6-0" class="reference"><a href="#cite_note-avantaplus-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>!</mo> <mo>!</mo> <mo>&#x2026;<!-- … --></mo> <mo>!</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munder> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>m</mi> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7667522721b3d4d995972ce0a36cc3ac5b9fa43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:21.055ex; height:8.009ex;" alt="{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)}"></span></dd></dl> <p>Обычный и двойной факториалы являются частными случаями <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i></span>-кратного факториала для <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i> = 1</span> и <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i> = 2</span> соответственно. </p><p>Кратный факториал связан с гамма-функцией следующим соотношением<sup id="cite_ref-prooflink_7-0" class="reference"><a href="#cite_note-prooflink-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>!</mo> <mo>!</mo> <mo>&#x2026;<!-- … --></mo> <mo>!</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munder> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>m</mi> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mi>m</mi> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mi>m</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9fb2036768642ccdad817054f83caccfe434ea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:44.747ex; height:8.009ex;" alt="{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.}"></span></dd></dl> <p>Также кратный факториал <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>!</mo> <mo>!</mo> <mo>&#x2026;<!-- … --></mo> <mo>!</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munder> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9958f81e973e1bb474cc600a38b82a61a0900ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; margin-right: -0.028ex; width:6.473ex; height:5.509ex;" alt="{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}"></span> возможно записывать в сокращенном виде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!_{(m)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <msub> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!_{(m)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/069e615adcba6252cfd0462e72161ab773bbff01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.996ex; height:3.009ex;" alt="{\displaystyle n!_{(m)}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Неполный_факториал"><span id=".D0.9D.D0.B5.D0.BF.D0.BE.D0.BB.D0.BD.D1.8B.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Неполный факториал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=13" title="Редактировать раздел «Неполный факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=13" title="Редактировать код раздела «Неполный факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Убывающий_факториал"><span id=".D0.A3.D0.B1.D1.8B.D0.B2.D0.B0.D1.8E.D1.89.D0.B8.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Убывающий факториал</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=14" title="Редактировать раздел «Убывающий факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=14" title="Редактировать код раздела «Убывающий факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b><a href="/wiki/%D0%A3%D0%B1%D1%8B%D0%B2%D0%B0%D1%8E%D1%89%D0%B8%D0%B5_%D0%B8_%D0%B2%D0%BE%D0%B7%D1%80%D0%B0%D1%81%D1%82%D0%B0%D1%8E%D1%89%D0%B8%D0%B5_%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB%D1%8B" title="Убывающие и возрастающие факториалы">Убывающим факториалом</a></b> называется выражение </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>k</mi> <mo>&#x005F;<!-- _ --></mo> </munder> </mrow> </msup> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mrow> </msup> <mo>=</mo> <mi>n</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001e78ea0bc33bb150e1628f7af1d7d03d5ad1f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:70.285ex; height:7.009ex;" alt="{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i}"></span>.</dd></dl> <p>Например: </p> <dl><dd><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> = 7; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>k</i></span> = 4,</dd> <dd>(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i> − <i>k</i></span>) + 1 = 4,</dd> <dd>n<sup><u>k</u></sup> = 7 • 6 • 5 • 4 = 840.</dd></dl> <p>Убывающий факториал даёт число <a href="/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%89%D0%B5%D0%BD%D0%B8%D0%B5" title="Размещение">размещений</a> из <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> по <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>k</i></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Возрастающий_факториал"><span id=".D0.92.D0.BE.D0.B7.D1.80.D0.B0.D1.81.D1.82.D0.B0.D1.8E.D1.89.D0.B8.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Возрастающий факториал</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=15" title="Редактировать раздел «Возрастающий факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=15" title="Редактировать код раздела «Возрастающий факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%A1%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB_%D0%9F%D0%BE%D1%85%D0%B3%D0%B0%D0%BC%D0%BC%D0%B5%D1%80%D0%B0" class="mw-redirect" title="Символ Похгаммера">Символ Похгаммера</a></b></div> <p><b>Возрастающим факториалом</b> называется выражение </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </msup> <mo>=</mo> <mi>n</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>i</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc738894089d8dc4372ae44fc4b44ac9fd3ef3a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:67.433ex; height:7.676ex;" alt="{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Праймориал_или_примориал"><span id=".D0.9F.D1.80.D0.B0.D0.B9.D0.BC.D0.BE.D1.80.D0.B8.D0.B0.D0.BB_.D0.B8.D0.BB.D0.B8_.D0.BF.D1.80.D0.B8.D0.BC.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Праймориал или примориал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=16" title="Редактировать раздел «Праймориал или примориал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=16" title="Редактировать код раздела «Праймориал или примориал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%9F%D1%80%D0%B0%D0%B9%D0%BC%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Праймориал">Праймориал</a></b></div> <p><b>Праймориал</b> или <b>примориал</b> (<a href="/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" title="Английский язык">англ.</a>&#160;<span lang="en" style="font-style:italic;">primorial</span>) числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> обозначается <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>p<sub>n</sub></i>#</span> и определяется как произведение <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> первых простых чисел. Например, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mi mathvariant="normal">&#x0023;<!-- # --></mi> <mo>=</mo> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <mn>3</mn> <mo>&#x00D7;<!-- × --></mo> <mn>5</mn> <mo>&#x00D7;<!-- × --></mo> <mn>7</mn> <mo>&#x00D7;<!-- × --></mo> <mn>11</mn> <mo>=</mo> <mn>2310</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cf2d1e6a00a380d59cb8326eee731e0bf5cf7f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:33.432ex; height:2.509ex;" alt="{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310}"></span>.</dd></dl> <p>Иногда праймориалом называют число <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\#}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi mathvariant="normal">&#x0023;<!-- # --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\#}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/167c3481839df4ace6689a25e170c5e0c0d5551e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.331ex; height:2.509ex;" alt="{\displaystyle n\#}"></span>, определяемое как произведение всех <a href="/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Простое число">простых чисел</a>, не превышающих заданное <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math" style="font-style:italic;">n</span>. </p><p>Последовательность праймориалов (включая <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textstyle {1\#\equiv 1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi mathvariant="normal">&#x0023;<!-- # --></mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> </mrow> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textstyle {1\#\equiv 1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72bed1fe8c4d43f71652d4b801857732f615bfe3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.359ex; height:2.509ex;" alt="{\displaystyle {\textstyle {1\#\equiv 1}}}"></span>) начинается так<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><a href="/wiki/1_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="1 (число)">1</a>, <a href="/wiki/2_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="2 (число)">2</a>, <a href="/wiki/6_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="6 (число)">6</a>, <a href="/wiki/30_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="30 (число)">30</a>, <a href="/wiki/210_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="210 (число)">210</a>, <a href="/w/index.php?title=2310_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)&amp;action=edit&amp;redlink=1" class="new" title="2310 (число) (страница отсутствует)">2310</a>, 30&#160;030, 510&#160;510, 9&#160;699&#160;690, 223&#160;092&#160;870, 6&#160;469&#160;693&#160;230, 200&#160;560&#160;490&#160;130, 7&#160;420&#160;738&#160;134&#160;810, 304&#160;250&#160;263&#160;527&#160;210, 13&#160;082&#160;761&#160;331&#160;670&#160;030, 614&#160;889&#160;782&#160;588&#160;491&#160;400, 32&#160;589&#160;158&#160;477&#160;190&#160;046&#160;000, 1&#160;922&#160;760&#160;350&#160;154&#160;212&#160;800&#160;000, …</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Фибонориал_или_фибоначчиал"><span id=".D0.A4.D0.B8.D0.B1.D0.BE.D0.BD.D0.BE.D1.80.D0.B8.D0.B0.D0.BB_.D0.B8.D0.BB.D0.B8_.D1.84.D0.B8.D0.B1.D0.BE.D0.BD.D0.B0.D1.87.D1.87.D0.B8.D0.B0.D0.BB"></span>Фибонориал или фибоначчиал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=17" title="Редактировать раздел «Фибонориал или фибоначчиал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=17" title="Редактировать код раздела «Фибонориал или фибоначчиал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Произведение нескольких первых чисел Фибоначчи. Записывается <i>n</i>!<sub><i>F</i></sub>. </p><p>Например,&#160;: 6!<sub><i>F</i></sub> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\times 1\times 2\times 3\times 5\times 8=240}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x00D7;<!-- × --></mo> <mn>1</mn> <mo>&#x00D7;<!-- × --></mo> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <mn>3</mn> <mo>&#x00D7;<!-- × --></mo> <mn>5</mn> <mo>&#x00D7;<!-- × --></mo> <mn>8</mn> <mo>=</mo> <mn>240</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\times 1\times 2\times 3\times 5\times 8=240}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45ded18a22ea8de155295870c3d3168d19f704ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:27.763ex; height:2.176ex;" alt="{\displaystyle 1\times 1\times 2\times 3\times 5\times 8=240}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Суперфакториалы"><span id=".D0.A1.D1.83.D0.BF.D0.B5.D1.80.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB.D1.8B"></span>Суперфакториалы</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=18" title="Редактировать раздел «Суперфакториалы»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=18" title="Редактировать код раздела «Суперфакториалы»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%D0%9D%D0%B5%D0%B9%D0%BB_%D0%A1%D0%BB%D0%BE%D0%B0%D0%BD" class="mw-redirect" title="Нейл Слоан">Нейл Слоан</a> и <span data-interwiki-lang="en" data-interwiki-article="Simon Plouffe"><a href="/w/index.php?title=%D0%A1%D0%B8%D0%BC%D0%BE%D0%BD_%D0%9F%D0%BB%D1%83%D1%84%D1%84%D1%8D&amp;action=edit&amp;redlink=1" class="new" title="Симон Плуффэ (страница отсутствует)">Симон Плуффэ</a></span><sup class="noprint" style="font-style:normal; font-weight:normal;"><a href="https://en.wikipedia.org/wiki/Simon_Plouffe" class="extiw" title="en:Simon Plouffe"><span title="Simon Plouffe — версия статьи «Симон Плуффэ» на английском языке">[англ.]</span></a></sup> в <a href="/wiki/1995_%D0%B3%D0%BE%D0%B4" title="1995 год">1995&#160;году</a> определили <b>суперфакториал</b> как произведение первых <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> факториалов. Согласно этому определению, суперфакториал четырёх равен </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>!</mo> <mo>&#x00D7;<!-- × --></mo> <mn>2</mn> <mo>!</mo> <mo>&#x00D7;<!-- × --></mo> <mn>3</mn> <mo>!</mo> <mo>&#x00D7;<!-- × --></mo> <mn>4</mn> <mo>!</mo> <mo>=</mo> <mn>288</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9f7980110eb3dbc3c437c62965df2b8b3bac937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.043ex; height:2.843ex;" alt="{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288}"></span></dd></dl> <p>(поскольку устоявшегося обозначения нет, используется функциональное). </p><p>В общем </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>k</mi> <mo>!</mo> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57a16bdd836d57633ce95b089c88dfdd80f1003c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:60.599ex; height:6.843ex;" alt="{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.}"></span></dd></dl> <p>Последовательность суперфакториалов чисел <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geqslant 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2A7E;<!-- ⩾ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geqslant 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0197a6a3f5aa0b8b9e4cc05f849b97c85c8f781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geqslant 0}"></span> начинается так<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd>1, 1, 2, 12, 288, 34&#160;560, 24&#160;883&#160;200, 125&#160;411&#160;328&#160;000, 5&#160;056&#160;584&#160;744&#160;960&#160;000, 1&#160;834&#160;933&#160;472&#160;251&#160;084&#160;800&#160;000, 6&#160;658&#160;606&#160;584&#160;104&#160;737&#160;000&#160;000&#160;000&#160;000, 265&#160;790&#160;267&#160;296&#160;391&#160;960&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000, 127&#160;313&#160;963&#160;299&#160;399&#160;430&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000, …</dd></dl> <p>Идея была обобщена в <a href="/wiki/2000_%D0%B3%D0%BE%D0%B4" title="2000 год">2000&#160;году</a> <span data-interwiki-lang="en" data-interwiki-article="Henry Bottomley"><a href="/w/index.php?title=%D0%93%D0%B5%D0%BD%D1%80%D0%B8_%D0%91%D0%BE%D1%82%D1%82%D0%BE%D0%BC%D0%BB%D0%B8&amp;action=edit&amp;redlink=1" class="new" title="Генри Боттомли (страница отсутствует)">Генри Боттомли</a></span><sup class="noprint" style="font-style:normal; font-weight:normal;"><a href="https://en.wikipedia.org/wiki/Henry_Bottomley" class="extiw" title="en:Henry Bottomley"><span title="Henry Bottomley — версия статьи «Генри Боттомли» на английском языке">[англ.]</span></a></sup>, что привело к <b>гиперфакториалам</b> (<a href="/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" title="Английский язык">англ.</a>&#160;<span lang="en" style="font-style:italic;">Hyperfactorial</span>), которые являются произведением первых <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> суперфакториалов. Последовательность гиперфакториалов чисел <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geqslant 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2A7E;<!-- ⩾ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geqslant 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0197a6a3f5aa0b8b9e4cc05f849b97c85c8f781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geqslant 0}"></span> начинается так<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd>1, 1, 2, 24, 6912, 238&#160;878&#160;720, 5&#160;944&#160;066&#160;965&#160;504&#160;000, 745&#160;453&#160;331&#160;864&#160;786&#160;800&#160;000&#160;000&#160;000, 3&#160;769&#160;447&#160;945&#160;987&#160;085&#160;600&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000, 6&#160;916&#160;686&#160;207&#160;999&#160;801&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000&#160;000, …</dd></dl> <p>Продолжая <a href="/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%80%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0" title="Рекуррентная формула">рекуррентно</a>, можно определить <b>факториал кратного уровня</b>, или <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i></span>-уровневый факториал числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>, как произведение (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i></span> − 1)-уровневых факториалов чисел от 1 до <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>, то есть </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {mf} (n,m)=\operatorname {mf} (n-1,m)\operatorname {mf} (n,m-1)=\prod _{k=1}^{n}k^{n-k+m-1 \choose n-k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>mf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>mf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mi>mf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {mf} (n,m)=\operatorname {mf} (n-1,m)\operatorname {mf} (n,m-1)=\prod _{k=1}^{n}k^{n-k+m-1 \choose n-k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c0b23ee5f2e92bc16e360ff4d4bbc315292a2af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:55.226ex; height:6.843ex;" alt="{\displaystyle \operatorname {mf} (n,m)=\operatorname {mf} (n-1,m)\operatorname {mf} (n,m-1)=\prod _{k=1}^{n}k^{n-k+m-1 \choose n-k},}"></span></dd></dl> <p>где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {mf} (n,0)=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>mf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {mf} (n,0)=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e79f349af84af8525f0a6c06b7b466d9b52240be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.541ex; height:2.843ex;" alt="{\displaystyle \operatorname {mf} (n,0)=n}"></span> для <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a6a5d982d54202a14f111cb8a49210501b2c96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;0}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {mf} (0,m)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>mf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {mf} (0,m)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58c9ab8a327093b531a8c91ad59bca187bfcb389" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.602ex; height:2.843ex;" alt="{\displaystyle \operatorname {mf} (0,m)=1.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Субфакториал"><span id=".D0.A1.D1.83.D0.B1.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Субфакториал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=19" title="Редактировать раздел «Субфакториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=19" title="Редактировать код раздела «Субфакториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%A1%D1%83%D0%B1%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Субфакториал">Субфакториал</a></b></div> <p><b>Субфакториал</b>&#160;!<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> определяется как количество <a href="/wiki/%D0%91%D0%B5%D1%81%D0%BF%D0%BE%D1%80%D1%8F%D0%B4%D0%BE%D0%BA_(%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0)" title="Беспорядок (перестановка)">беспорядков</a> порядка <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>, то есть перестановок <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>-элементного <a href="/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Множество">множества</a> без <a href="/wiki/%D0%9D%D0%B5%D0%BF%D0%BE%D0%B4%D0%B2%D0%B8%D0%B6%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D1%87%D0%BA%D0%B0" title="Неподвижная точка">неподвижных точек</a>. </p> <div class="mw-heading mw-heading2"><h2 id="См._также"><span id=".D0.A1.D0.BC._.D1.82.D0.B0.D0.BA.D0.B6.D0.B5"></span>См. также</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=20" title="Редактировать раздел «См. также»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=20" title="Редактировать код раздела «См. также»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r141520016">.mw-parser-output .ts-Родственный_проект{background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);font-size:90%;margin:0 0 1em;padding:.4em;max-width:19em;width:19em;line-height:1.5}.mw-parser-output .ts-Родственный_проект th,.mw-parser-output .ts-Родственный_проект td{padding:.2em 0;vertical-align:middle}.mw-parser-output .ts-Родственный_проект th+td{padding-left:.4em}@media(min-width:720px){.mw-parser-output .ts-Родственный_проект{clear:right;float:right;width:19em;margin-left:1em}}</style> <table role="presentation" class="metadata plainlinks ts-Родственный_проект noprint ruwikiWikimediaNavigation"> <tbody><tr> <th style="width:10%;"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Notification-icon-Wiktionary-logo.svg/24px-Notification-icon-Wiktionary-logo.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Notification-icon-Wiktionary-logo.svg/36px-Notification-icon-Wiktionary-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Notification-icon-Wiktionary-logo.svg/48px-Notification-icon-Wiktionary-logo.svg.png 2x" data-file-width="30" data-file-height="30" /></span></span> </th> <td>В <a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D0%B0%D1%80%D1%8C" title="Викисловарь">Викисловаре</a> есть статья «<span class="wikidict-ref"><b><a href="https://ru.wiktionary.org/wiki/%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" class="extiw" title="wikt:факториал">факториал</a></b></span>» </td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r141520016"> <table role="presentation" class="metadata plainlinks ts-Родственный_проект noprint ruwikiWikimediaNavigation"> <tbody><tr> <th style="width:10%;"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Notification-icon-Wikibooks-logo.svg/24px-Notification-icon-Wikibooks-logo.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Notification-icon-Wikibooks-logo.svg/36px-Notification-icon-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Notification-icon-Wikibooks-logo.svg/48px-Notification-icon-Wikibooks-logo.svg.png 2x" data-file-width="30" data-file-height="30" /></span></span> </th> <td>Имеется <a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D1%83%D1%87%D0%B5%D0%B1%D0%BD%D0%B8%D0%BA" title="Викиучебник">викиучебник</a> по теме <span class="wikibooks-ref"><b>«<a href="https://ru.wikibooks.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%BE%D0%B2/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" class="extiw" title="b:Реализации алгоритмов/Факториал">Реализации алгоритмов/Факториал</a>»</b></span> </td></tr></tbody></table> <ul><li><a href="/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%BE%D0%BD" title="Факторион">Факторион</a></li> <li><a href="/wiki/%D0%94%D0%B2%D0%BE%D0%B9%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BA%D1%81%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Двойная экспоненциальная функция">Двойная экспоненциальная функция</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Примечания"><span id=".D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.87.D0.B0.D0.BD.D0.B8.D1.8F"></span>Примечания</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit&amp;section=21" title="Редактировать раздел «Примечания»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit&amp;section=21" title="Редактировать код раздела «Примечания»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns" style="list-style-type: decimal;"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">Коэффициенты этого разложения дают последовательности <a href="//oeis.org/A001163" class="extiw" title="oeis:A001163">A001163</a> (числители) и <a href="//oeis.org/A001164" class="extiw" title="oeis:A001164">A001164</a> (знаменатели)</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><span class="citation"><span lang="und"><a rel="nofollow" class="external text" href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Kramp.html">Крамп, Кристиан</a></span><span class="hidden-ref" style="display:none;">&#160;&#160;<small class="ref-info" style="cursor:help;" title="на неопределённом языке">(неопр.)</small></span>.&#32;Дата обращения: 19 сентября 2016.&#32;<a rel="nofollow" class="external text" href="https://web.archive.org/web/20160919225318/http://www-history.mcs.st-andrews.ac.uk/Biographies/Kramp.html">Архивировано</a> 19 сентября 2016 года.</span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r141305934">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a::after,.mw-parser-output .id-lock-limited a::after,.mw-parser-output .id-lock-registration a::after,.mw-parser-output .id-lock-subscription a::after,.mw-parser-output .cs1-ws-icon a::after{content:"";width:1.1em;height:1.1em;display:inline-block;vertical-align:middle;background-position:center;background-repeat:no-repeat;background-size:contain}.mw-parser-output .id-lock-free.id-lock-free a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")}.mw-parser-output .id-lock-limited.id-lock-limited a::after,.mw-parser-output .id-lock-registration.id-lock-registration a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")}.mw-parser-output .id-lock-subscription.id-lock-subscription a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")}.mw-parser-output .cs1-ws-icon a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}html.skin-theme-clientpref-night .mw-parser-output .id-lock-free a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-limited a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-registration a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-subscription a::after{filter:invert(1)hue-rotate(180deg)}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}html.skin-theme-clientpref-os .mw-parser-output .id-lock-free a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-limited a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-registration a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-subscription a::after{filter:invert(1)hue-rotate(180deg)}}</style><cite id="CITEREFPearson1924" class="citation cs2">Pearson, Karl (1924), "Historical note on the origin of the normal curve of errors", <i>Biometrika</i>, <b>16</b>: 402–404 [p. 403], <a href="/wiki/%D0%A6%D0%B8%D1%84%D1%80%D0%BE%D0%B2%D0%BE%D0%B9_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80_%D0%BE%D0%B1%D1%8A%D0%B5%D0%BA%D1%82%D0%B0" title="Цифровой идентификатор объекта">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2331714">10.2307/2331714</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=Historical+note+on+the+origin+of+the+normal+curve+of+errors&amp;rft.volume=16&amp;rft.pages=402-404+p.+403&amp;rft.date=1924&amp;rft_id=info%3Adoi%2F10.2307%2F2331714&amp;rft.aulast=Pearson&amp;rft.aufirst=Karl&amp;rfr_id=info%3Asid%2Fru.wikipedia.org%3A%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" class="Z3988"></span>: «Стирлинг лишь показал, что арифметическая константа в формуле Муавра равна <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a9b009153bbbb3273a7e7279cb6b084fd650a80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.43ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2\pi }}}"></span>. Я считаю, что это не делает его автором теоремы»</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r141305934"><span class="citation no-wikidata" data-wikidata-property-id="P1343"><i><a href="/wiki/%D0%94%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%B4_%D0%9A%D0%BD%D1%83%D1%82" class="mw-redirect" title="Дональд Кнут">Дональд Кнут</a>.</i>&#32;Искусство программирования, том I. Основные алгоритмы.&#160;— <abbr title="Москва">М.</abbr>: <a href="/wiki/%D0%9C%D0%B8%D1%80_(%D0%B8%D0%B7%D0%B4%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%BE)" title="Мир (издательство)">Мир</a>, 1976.&#160;— С.&#160;79—81.&#160;— 736&#160;с.</span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">Последовательность <a href="//oeis.org/A006882" class="extiw" title="oeis:A006882">A006882</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a></span> </li> <li id="cite_note-avantaplus-6"><span class="mw-cite-backlink"><a href="#cite_ref-avantaplus_6-0">↑</a></span> <span class="reference-text">«Энциклопедия для детей» Аванта+. Математика.</span> </li> <li id="cite_note-prooflink-7"><span class="mw-cite-backlink"><a href="#cite_ref-prooflink_7-0">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=product+%28m*i-r%29%2C+i%3D1..k">wolframalpha.com</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131101145848/http://www.wolframalpha.com/input/?i=product+%28m*i-r%29%2C+i%3D1..k">Архивная копия</a> от 1 ноября 2013 на <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text">Последовательность <a href="//oeis.org/A002110" class="extiw" title="oeis:A002110">A002110</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text">Последовательность <a href="//oeis.org/A000178" class="extiw" title="oeis:A000178">A000178</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text">Последовательность <a href="//oeis.org/A055462" class="extiw" title="oeis:A055462">A055462</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a></span> </li> </ol></div></div> <div role="navigation" class="navbox" aria-labelledby="Математические_знаки" data-name="Математические знаки"><table class="nowraplinks hlist hlist-items-nowrap collapsible collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="colgroup" class="navbox-title" colspan="2"><span class="navbox-gear" style="float:left;text-align:left;width:5em;margin-right:0.5em"><span class="noprint skin-invert-image" typeof="mw:File"><a href="/wiki/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%B7%D0%BD%D0%B0%D0%BA%D0%B8" title="Перейти к шаблону «Математические знаки»"><img alt="Перейти к шаблону «Математические знаки»" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/14px-Wikipedia_interwiki_section_gear_icon.svg.png" decoding="async" width="14" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/21px-Wikipedia_interwiki_section_gear_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/28px-Wikipedia_interwiki_section_gear_icon.svg.png 2x" data-file-width="14" data-file-height="14" /></a></span></span><div id="Математические_знаки" style="font-size:114%;margin:0 5em"><a href="/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%BE%D0%B1%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D1%8F" title="Математические обозначения">Математические знаки</a></div></th></tr><tr><td class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%9F%D0%BB%D1%8E%D1%81" title="Плюс">Плюс</a> (<span style="padding:0 2px;"><b>+</b></span>)</li> <li><a href="/wiki/%D0%9C%D0%B8%D0%BD%D1%83%D1%81" title="Минус">Минус</a> (<span style="padding:0 2px;"><b>−</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D1%83%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F" title="Знак умножения">Знак умножения</a> (<span style="padding:0 2px;"><b>·</b> или <b>×</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F" title="Знак деления">Знак деления</a> (<span style="padding:0 2px;"><b>:</b> или <b>/</b></span>)</li> <li><a href="/wiki/%D0%9E%D0%B1%D0%B5%D0%BB%D1%8E%D1%81" title="Обелюс">Обелюс</a> (<span style="padding:0 2px;"><b>÷</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%BA%D0%BE%D1%80%D0%BD%D1%8F" title="Знак корня">Знак корня</a> (<span style="padding:0 2px;"><b>√</b></span>)</li> <li><a class="mw-selflink selflink">Факториал</a> (<span style="padding:0 2px;"><b>!</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%B0" title="Знак интеграла">Знак интеграла</a> (<span style="padding:0 2px;"><b>∫</b></span>)</li> <li><a href="/wiki/%D0%9D%D0%B0%D0%B1%D0%BB%D0%B0" title="Набла">Набла</a> (<span style="padding:0 2px;"><b>∇</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%B0" title="Знак равенства">Знак равенства</a> (<span style="padding:0 2px;"><b>=</b>, <b>≈</b>, <b>≡</b> и др.</span>)</li> <li><a href="/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Неравенство">Знаки неравенства</a> (<span style="padding:0 2px;"><b>≠</b>, <b>&gt;</b>, <b>&lt;</b> и др.</span>)</li> <li><a href="/wiki/%D0%9F%D1%80%D0%BE%D0%BF%D0%BE%D1%80%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Пропорциональность">Пропорциональность</a> (<span style="padding:0 2px;"><b>∝</b></span>)</li> <li><a href="/wiki/%D0%A1%D0%BA%D0%BE%D0%B1%D0%BA%D0%B8" title="Скобки">Скобки</a> (<span style="padding:0 2px;"><b>( )</b>, <b>[ ]</b>, <b>⌈ ⌉</b>, <b>⌊ ⌋</b>, <b>{ }</b>, <b>⟨ ⟩</b></span>)</li> <li><a href="/wiki/%D0%92%D0%B5%D1%80%D1%82%D0%B8%D0%BA%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%87%D0%B5%D1%80%D1%82%D0%B0" title="Вертикальная черта">Вертикальная черта</a> (<span style="padding:0 2px;"><b>|</b></span>)</li> <li><a href="/wiki/%D0%9A%D0%BE%D1%81%D0%B0%D1%8F_%D1%87%D0%B5%D1%80%D1%82%D0%B0" title="Косая черта">Косая черта, слеш</a> (<span style="padding:0 2px;"><b>/</b></span>)</li> <li><a href="/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D0%BA%D0%BE%D1%81%D0%B0%D1%8F_%D1%87%D0%B5%D1%80%D1%82%D0%B0" title="Обратная косая черта">Обратная косая черта, бэкслеш</a> (<span style="padding:0 2px;"><b>\</b></span>)</li> <li><a href="/wiki/%D0%A1%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB_%D0%B1%D0%B5%D1%81%D0%BA%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Символ бесконечности">Знак бесконечности</a> (<span style="padding:0 2px;"><b>∞</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%B3%D1%80%D0%B0%D0%B4%D1%83%D1%81%D0%B0" title="Знак градуса">Знак градуса</a> (<span style="padding:0 2px;"><b>°</b></span>)</li> <li><a href="/wiki/%D0%A8%D1%82%D1%80%D0%B8%D1%85_(%D0%BF%D0%B8%D1%81%D1%8C%D0%BC%D0%BE)" title="Штрих (письмо)">Штрих</a> (<span style="padding:0 2px;"><b>′</b>, <b>″</b>, <b>‴</b>, <b>⁗</b></span>)</li> <li><a href="/wiki/%D0%97%D0%B2%D1%91%D0%B7%D0%B4%D0%BE%D1%87%D0%BA%D0%B0_(%D1%82%D0%B8%D0%BF%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D0%BA%D0%B0)" title="Звёздочка (типографика)">Звёздочка</a> (<span style="padding:0 2px;"><b>*</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D0%BD%D1%82%D0%B0" title="Знак процента">Процент</a> (<span style="padding:0 2px;"><b>%</b></span>)</li> <li><a href="/wiki/%D0%9F%D1%80%D0%BE%D0%BC%D0%B8%D0%BB%D0%BB%D0%B5" title="Промилле">Промилле</a> (<span style="padding:0 2px;"><b>‰</b></span>)</li> <li><a href="/wiki/%D0%A2%D0%B8%D0%BB%D1%8C%D0%B4%D0%B0" title="Тильда">Тильда</a> (<span style="padding:0 2px;"><b>~</b></span>)</li> <li><a href="/wiki/%D0%9A%D0%B0%D1%80%D0%B5%D1%82" title="Карет">Карет</a> (<span style="padding:0 2px;"><b>^</b></span>)</li> <li><a href="/wiki/%D0%A6%D0%B8%D1%80%D0%BA%D1%83%D0%BC%D1%84%D0%BB%D0%B5%D0%BA%D1%81" title="Циркумфлекс">Циркумфлекс</a> (<span style="padding:0 2px;"><b>ˆ</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%BF%D0%BB%D1%8E%D1%81-%D0%BC%D0%B8%D0%BD%D1%83%D1%81" title="Знак плюс-минус">Плюс-минус</a> (<span style="padding:0 2px;"><b>±</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%BF%D0%BB%D1%8E%D1%81-%D0%BC%D0%B8%D0%BD%D1%83%D1%81#Знак_минус-плюс" title="Знак плюс-минус">Знак минус-плюс</a> (<span style="padding:0 2px;"><b>∓</b></span>)</li> <li><a href="/wiki/%D0%94%D0%B5%D1%81%D1%8F%D1%82%D0%B8%D1%87%D0%BD%D1%8B%D0%B9_%D1%80%D0%B0%D0%B7%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C" title="Десятичный разделитель">Десятичный разделитель</a> (<span style="padding:0 2px;"><b>,</b> или <b>.</b></span>)</li> <li><a href="/wiki/%D0%A1%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB_%D0%BA%D0%BE%D0%BD%D1%86%D0%B0_%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%B0" title="Символ конца доказательства">Символ конца доказательства</a> (<span style="padding:0 2px;"><b>∎</b></span>)</li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D1%81%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB%D0%BE%D0%B2" title="Таблица математических символов">Таблица математических символов</a></li> <li><a href="/wiki/%D0%98%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D0%BE%D0%B1%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D0%B9" title="История математических обозначений">История математических обозначений</a></li></ul> </div></td></tr></tbody></table></div> <div role="navigation" class="navbox" aria-labelledby="Последовательности_и_ряды" data-name="Последовательности и ряды"><table class="nowraplinks collapsible collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="colgroup" class="navbox-title" colspan="2"><span class="navbox-gear" style="float:left;text-align:left;width:5em;margin-right:0.5em"><span class="noprint skin-invert-image" typeof="mw:File"><a href="/wiki/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8_%D0%B8_%D1%80%D1%8F%D0%B4%D1%8B" title="Перейти к шаблону «Последовательности и ряды»"><img alt="Перейти к шаблону «Последовательности и ряды»" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/14px-Wikipedia_interwiki_section_gear_icon.svg.png" decoding="async" width="14" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/21px-Wikipedia_interwiki_section_gear_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/28px-Wikipedia_interwiki_section_gear_icon.svg.png 2x" data-file-width="14" data-file-height="14" /></a></span></span><div id="Последовательности_и_ряды" style="font-size:114%;margin:0 5em">Последовательности и ряды</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1px"><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Последовательность">Последовательности</a></th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Числовая последовательность">Числовая последовательность</a></li> <li><a href="/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Фундаментальная последовательность">Фундаментальная последовательность</a></li> <li><a href="/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%BA%D1%83%D1%80%D1%80%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Линейная рекуррентная последовательность">Линейная рекуррентная последовательность</a></li> <li><a href="/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D1%87%D0%B8" title="Числа Фибоначчи">Числа Фибоначчи</a></li> <li><a href="/wiki/%D0%A4%D0%B8%D0%B3%D1%83%D1%80%D0%BD%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0" title="Фигурные числа">Фигурные числа</a></li> <li><a class="mw-selflink selflink">Факториал</a> (<a href="/wiki/%D0%9F%D1%80%D0%B0%D0%B9%D0%BC%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Праймориал">Праймориал</a> * <a href="/wiki/%D0%A3%D0%B1%D1%8B%D0%B2%D0%B0%D1%8E%D1%89%D0%B8%D0%B5_%D0%B8_%D0%B2%D0%BE%D0%B7%D1%80%D0%B0%D1%81%D1%82%D0%B0%D1%8E%D1%89%D0%B8%D0%B5_%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB%D1%8B" title="Убывающие и возрастающие факториалы">Символ Похгаммера</a> * <a href="/wiki/%D0%A1%D1%83%D0%B1%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Субфакториал">Субфакториал</a>)</li> <li><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%91%D0%B0%D1%80%D0%BA%D0%B5%D1%80%D0%B0" title="Последовательность Баркера">Последовательность Баркера</a></li> <li><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%B4%D0%B5_%D0%91%D1%80%D1%91%D0%B9%D0%BD%D0%B0" title="Последовательность де Брёйна">Последовательность де Брёйна</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1px">Ряды, основное</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0_%D1%80%D1%8F%D0%B4%D0%B0" class="mw-redirect" title="Сумма ряда">Сумма ряда</a></li> <li><a href="/wiki/%D0%9E%D1%81%D1%82%D0%B0%D1%82%D0%BE%D0%BA_%D1%80%D1%8F%D0%B4%D0%B0" title="Остаток ряда">Остаток ряда</a></li> <li><a href="/wiki/%D0%A3%D1%81%D0%BB%D0%BE%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%85%D0%BE%D0%B4%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C" title="Условная сходимость">Условная сходимость</a></li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA%D0%BE%D1%87%D0%B5%D1%80%D0%B5%D0%B4%D1%83%D1%8E%D1%89%D0%B8%D0%B9%D1%81%D1%8F_%D1%80%D1%8F%D0%B4" title="Знакочередующийся ряд">Знакочередующийся ряд</a></li> <li><a href="/wiki/%D0%9C%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D1%81%D0%B5%D0%BA%D1%86%D0%B8%D1%8F_%D1%80%D1%8F%D0%B4%D0%B0" title="Мультисекция ряда">Мультисекция ряда</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1px"><a href="/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D0%BE%D0%B9_%D1%80%D1%8F%D0%B4" class="mw-redirect" title="Числовой ряд">Числовые ряды</a><br />(<a href="/wiki/%D0%94%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F_%D1%81_%D1%87%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D1%8B%D0%BC%D0%B8_%D1%80%D1%8F%D0%B4%D0%B0%D0%BC%D0%B8" title="Действия с числовыми рядами">действия с числовыми рядами</a>)</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%93%D0%B0%D1%80%D0%BC%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D1%8F%D0%B4" title="Гармонический ряд">Гармонический ряд</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9B%D0%B5%D0%B9%D0%B1%D0%BD%D0%B8%D1%86%D0%B0" title="Ряд Лейбница">Ряд Лейбница</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D1%85_%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BE%D0%B2" title="Ряд обратных квадратов">Ряд обратных квадратов</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D1%85_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Ряд обратных простых чисел">Ряд обратных простых чисел</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%94%D0%B8%D1%80%D0%B8%D1%85%D0%BB%D0%B5" title="Ряд Дирихле">Ряд Дирихле</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9C%D0%B5%D1%80%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%B0" title="Ряд Меркатора">Ряд Меркатора</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%93%D1%80%D0%B0%D0%BD%D0%B4%D0%B8" title="Ряд Гранди">Ряд Гранди</a></li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA%D0%BE%D1%87%D0%B5%D1%80%D0%B5%D0%B4%D1%83%D1%8E%D1%89%D0%B8%D0%B9%D1%81%D1%8F_%D1%80%D1%8F%D0%B4_%D0%BD%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Знакочередующийся ряд натуральных чисел">1 − 2 + 3 − 4 + …</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%B8%D0%B7_%D0%BD%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Ряд из натуральных чисел">1 + 2 + 3 + 4 + …</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1px"><a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D1%80%D1%8F%D0%B4" title="Функциональный ряд">Функциональные ряды</a></th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%A2%D0%B5%D0%B9%D0%BB%D0%BE%D1%80%D0%B0" title="Ряд Тейлора">Ряд Тейлора</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9B%D0%BE%D1%80%D0%B0%D0%BD%D0%B0" title="Ряд Лорана">Ряд Лорана</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%A4%D1%83%D1%80%D1%8C%D0%B5" title="Ряд Фурье">Ряд Фурье</a></li> <li><a href="/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D1%8F%D0%B4_%D0%A4%D1%83%D1%80%D1%8C%D0%B5" title="Тригонометрический ряд Фурье">Тригонометрический ряд Фурье</a></li> <li><a href="/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D1%8F%D0%B4" title="Тригонометрический ряд">Тригонометрический ряд</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%92%D0%B8%D0%BD%D0%B5%D1%80%D0%B0" title="Ряд Винера">Ряд Винера</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1px">Другие виды рядов</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9D%D0%B5%D0%B9%D0%BC%D0%B0%D0%BD%D0%B0" title="Ряд Неймана">Ряд Неймана</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9F%D1%8E%D0%B8%D0%B7%D1%91" title="Ряд Пюизё">Ряд Пюизё</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐55747fd74f‐6n6tt Cached time: 20241125210721 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.428 seconds Real time usage: 0.693 seconds Preprocessor visited node count: 5016/1000000 Post‐expand include size: 52268/2097152 bytes Template argument size: 4206/2097152 bytes Highest expansion depth: 30/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 31143/5000000 bytes Lua time usage: 0.136/10.000 seconds Lua memory usage: 6136815/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 432.115 1 -total 48.94% 211.498 1 Шаблон:Примечания 21.09% 91.125 1 Шаблон:Citation 18.82% 81.336 24 Шаблон:Без_начала 17.46% 75.463 6 Шаблон:OEIS_short 16.71% 72.220 6 Шаблон:OEIS2C 16.23% 70.135 54 Шаблон:Str_len 16.00% 69.157 6 Шаблон:OEIS-id-norm 14.28% 61.718 2 Шаблон:Родственный_проект 12.51% 54.060 1 Шаблон:Викиучебник --> <!-- Saved in parser cache with key ruwiki:pcache:idhash:13509-0!canonical and timestamp 20241125210721 and revision id 141138568. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Источник — <a dir="ltr" href="https://ru.wikipedia.org/w/index.php?title=Факториал&amp;oldid=141138568">https://ru.wikipedia.org/w/index.php?title=Факториал&amp;oldid=141138568</a></div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D0%B8" title="Служебная:Категории">Категории</a>: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%B7%D0%BD%D0%B0%D0%BA%D0%B8" title="Категория:Математические знаки">Математические знаки</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A6%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Категория:Целочисленные последовательности">Целочисленные последовательности</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Категория:Теория чисел">Теория чисел</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0" title="Категория:Комбинаторика">Комбинаторика</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Скрытые категории: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A1%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B,_%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D1%83%D1%8E%D1%89%D0%B8%D0%B5_%D1%80%D0%B0%D1%81%D1%88%D0%B8%D1%80%D0%B5%D0%BD%D0%B8%D0%B5_JsonConfig" title="Категория:Страницы, использующие расширение JsonConfig">Страницы, использующие расширение JsonConfig</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D0%B8_%D1%81%D0%BE_%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B0%D0%BC%D0%B8_%D0%BD%D0%B0_%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8_%D0%BE%D0%B1_%D0%BE%D1%82%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%BB%D0%B0%D1%85" title="Категория:Википедия:Статьи со ссылками на статьи об отдельных числах">Википедия:Статьи со ссылками на статьи об отдельных числах</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D0%B8_%D1%81%D0%BE_%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B0%D0%BC%D0%B8_%D0%BD%D0%B0_%D0%92%D0%B8%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D0%B0%D1%80%D1%8C" title="Категория:Статьи со ссылками на Викисловарь">Статьи со ссылками на Викисловарь</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D1%81%D1%8B%D0%BB%D0%BA%D0%B0_%D0%BD%D0%B0_%D0%92%D0%B8%D0%BA%D0%B8%D1%83%D1%87%D0%B5%D0%B1%D0%BD%D0%B8%D0%BA_%D0%BD%D0%B5%D0%BF%D0%BE%D1%81%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE_%D0%B2_%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B5" title="Категория:Википедия:Ссылка на Викиучебник непосредственно в статье">Википедия:Ссылка на Викиучебник непосредственно в статье</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Навигация</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Персональные инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Страница участника для моего IP">Вы не представились системе</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D1%91_%D0%BE%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" title="Страница обсуждений для моего IP [n]" accesskey="n"><span>Обсуждение</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D0%B9_%D0%B2%D0%BA%D0%BB%D0%B0%D0%B4" title="Список правок, сделанных с этого IP-адреса [y]" accesskey="y"><span>Вклад</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BE%D0%B7%D0%B4%D0%B0%D1%82%D1%8C_%D1%83%D1%87%D1%91%D1%82%D0%BD%D1%83%D1%8E_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D1%8C&amp;returnto=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;returntoquery=section%3D6%26veaction%3Dedit" title="Мы предлагаем вам создать учётную запись и войти в систему, хотя это и не обязательно."><span>Создать учётную запись</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%92%D1%85%D0%BE%D0%B4&amp;returnto=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;returntoquery=section%3D6%26veaction%3Dedit" title="Здесь можно зарегистрироваться в системе, но это необязательно. [o]" accesskey="o"><span>Войти</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Пространства имён</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Просмотреть контентную страницу [c]" accesskey="c"><span>Статья</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/%D0%9E%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5:%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" rel="discussion" title="Обсуждение основной страницы [t]" accesskey="t"><span>Обсуждение</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">русский</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Просмотры</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;stable=1"><span>Читать</span></a></li><li id="ca-current" class="collapsible selected mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;stable=0&amp;redirect=no" title="Показать текущую версию этой страницы [v]" accesskey="v"><span>Текущая версия</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;veaction=edit" title="Редактировать данную страницу [v]" accesskey="v"><span>Править</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=edit" title="Править исходный текст этой страницы [e]" accesskey="e"><span>Править код</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=history" title="Журнал изменений страницы [h]" accesskey="h"><span>История</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Больше возможностей" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ещё</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Поиск</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Искать в Википедии" aria-label="Искать в Википедии" autocapitalize="sentences" title="Искать в Википедии [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Служебная:Поиск"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Найти страницы, содержащие указанный текст" value="Найти"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Перейти к странице, имеющей в точности такое название" value="Перейти"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Навигация</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу [z]" accesskey="z"><span>Заглавная страница</span></a></li><li id="n-content" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%B4%D0%B5%D1%80%D0%B6%D0%B0%D0%BD%D0%B8%D0%B5"><span>Содержание</span></a></li><li id="n-featured" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%98%D0%B7%D0%B1%D1%80%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8" title="Статьи, считающиеся лучшими статьями проекта"><span>Избранные статьи</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Посмотреть случайно выбранную страницу [x]" accesskey="x"><span>Случайная статья</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%A2%D0%B5%D0%BA%D1%83%D1%89%D0%B8%D0%B5_%D1%81%D0%BE%D0%B1%D1%8B%D1%82%D0%B8%D1%8F" title="Статьи о текущих событиях в мире"><span>Текущие события</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ru.wikipedia.org&amp;uselang=ru" title="Поддержите нас"><span>Пожертвовать</span></a></li> </ul> </div> </nav> <nav id="p-participation" class="mw-portlet mw-portlet-participation vector-menu-portal portal vector-menu" aria-labelledby="p-participation-label" > <h3 id="p-participation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Участие</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BE%D0%B1_%D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B0%D1%85" title="Сообщить об ошибке в этой статье"><span>Сообщить об ошибке</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0:%D0%92%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5"><span>Как править статьи</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="О проекте, о том, чем здесь можно заниматься, а также — где что находится"><span>Сообщество</span></a></li><li id="n-forum" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A4%D0%BE%D1%80%D1%83%D0%BC" title="Форум участников Википедии"><span>Форум</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8" title="Список последних изменений [r]" accesskey="r"><span>Свежие правки</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9D%D0%BE%D0%B2%D1%8B%D0%B5_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список недавно созданных страниц"><span>Новые страницы</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0" title="Место расположения Справки"><span>Справка</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D1%81%D1%8B%D0%BB%D0%BA%D0%B8_%D1%81%D1%8E%D0%B4%D0%B0/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Список всех страниц, ссылающихся на данную [j]" accesskey="j"><span>Ссылки сюда</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D1%8F%D0%B7%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" rel="nofollow" title="Последние изменения в страницах, на которые ссылается эта страница [k]" accesskey="k"><span>Связанные правки</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BF%D0%B5%D1%86%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список служебных страниц [q]" accesskey="q"><span>Служебные страницы</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;oldid=141138568" title="Постоянная ссылка на эту версию страницы"><span>Постоянная ссылка</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=info" title="Подробнее об этой странице"><span>Сведения о странице</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A6%D0%B8%D1%82%D0%B0%D1%82%D0%B0&amp;page=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;id=141138568&amp;wpFormIdentifier=titleform" title="Информация о том, как цитировать эту страницу"><span>Цитировать страницу</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:UrlShortener&amp;url=https%3A%2F%2Fru.wikipedia.org%2Fw%2Findex.php%3Ftitle%3D%25D0%25A4%25D0%25B0%25D0%25BA%25D1%2582%25D0%25BE%25D1%2580%25D0%25B8%25D0%25B0%25D0%25BB%26section%3D6%26veaction%3Dedit"><span>Получить короткий URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:QrCode&amp;url=https%3A%2F%2Fru.wikipedia.org%2Fw%2Findex.php%3Ftitle%3D%25D0%25A4%25D0%25B0%25D0%25BA%25D1%2582%25D0%25BE%25D1%2580%25D0%25B8%25D0%25B0%25D0%25BB%26section%3D6%26veaction%3Dedit"><span>Скачать QR-код</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Печать/экспорт</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:DownloadAsPdf&amp;page=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;action=show-download-screen" title="Скачать эту страницу как файл PDF"><span>Скачать как PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;printable=yes" title="Версия этой страницы для печати [p]" accesskey="p"><span>Версия для печати</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">В других проектах</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Factorial_(function)" hreflang="en"><span>Викисклад</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://ru.wikibooks.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%BE%D0%B2/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" hreflang="ru"><span>Викиучебник</span></a></li><li class="wb-otherproject-link wb-otherproject-wikifunctions mw-list-item"><a href="https://www.wikifunctions.org/wiki/Z13667" hreflang="en"><span>Викифункции</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q120976" title="Ссылка на связанный элемент репозитория данных [g]" accesskey="g"><span>Элемент Викиданных</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">На других языках</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Fakulteit_(wiskunde)" title="Fakulteit (wiskunde) — африкаанс" lang="af" hreflang="af" data-title="Fakulteit (wiskunde)" data-language-autonym="Afrikaans" data-language-local-name="африкаанс" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8D%8B%E1%8A%AD%E1%89%B6%E1%88%AA%E1%8B%AB%E1%88%8D" title="ፋክቶሪያል — амхарский" lang="am" hreflang="am" data-title="ፋክቶሪያል" data-language-autonym="አማርኛ" data-language-local-name="амхарский" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%A7%D9%85%D9%84%D9%8A" title="عاملي — арабский" lang="ar" hreflang="ar" data-title="عاملي" data-language-autonym="العربية" data-language-local-name="арабский" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Factorial" title="Factorial — астурийский" lang="ast" hreflang="ast" data-title="Factorial" data-language-autonym="Asturianu" data-language-local-name="астурийский" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Faktorial" title="Faktorial — азербайджанский" lang="az" hreflang="az" data-title="Faktorial" data-language-autonym="Azərbaycanca" data-language-local-name="азербайджанский" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Факториал — башкирский" lang="ba" hreflang="ba" data-title="Факториал" data-language-autonym="Башҡортса" data-language-local-name="башкирский" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%B0%D1%80%D1%8B%D1%8F%D0%BB" title="Фактарыял — белорусский" lang="be" hreflang="be" data-title="Фактарыял" data-language-autonym="Беларуская" data-language-local-name="белорусский" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B5%D0%BB" title="Факториел — болгарский" lang="bg" hreflang="bg" data-title="Факториел" data-language-autonym="Български" data-language-local-name="болгарский" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%97%E0%A7%8C%E0%A6%A3%E0%A6%BF%E0%A6%95" title="গৌণিক — бенгальский" lang="bn" hreflang="bn" data-title="গৌণিক" data-language-autonym="বাংলা" data-language-local-name="бенгальский" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Faktorijel" title="Faktorijel — боснийский" lang="bs" hreflang="bs" data-title="Faktorijel" data-language-autonym="Bosanski" data-language-local-name="боснийский" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Factorial" title="Factorial — каталанский" lang="ca" hreflang="ca" data-title="Factorial" data-language-autonym="Català" data-language-local-name="каталанский" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%81%D8%A7%DA%A9%D8%AA%DB%86%D8%B1%DB%8C%DB%8E%D9%84" title="فاکتۆریێل — центральнокурдский" lang="ckb" hreflang="ckb" data-title="فاکتۆریێل" data-language-autonym="کوردی" data-language-local-name="центральнокурдский" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Faktori%C3%A1l" title="Faktoriál — чешский" lang="cs" hreflang="cs" data-title="Faktoriál" data-language-autonym="Čeština" data-language-local-name="чешский" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Факториал — чувашский" lang="cv" hreflang="cv" data-title="Факториал" data-language-autonym="Чӑвашла" data-language-local-name="чувашский" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Fakultet_(matematik)" title="Fakultet (matematik) — датский" lang="da" hreflang="da" data-title="Fakultet (matematik)" data-language-autonym="Dansk" data-language-local-name="датский" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Fakult%C3%A4t_(Mathematik)" title="Fakultät (Mathematik) — немецкий" lang="de" hreflang="de" data-title="Fakultät (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="немецкий" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%B1%CF%81%CE%B1%CE%B3%CE%BF%CE%BD%CF%84%CE%B9%CE%BA%CF%8C" title="Παραγοντικό — греческий" lang="el" hreflang="el" data-title="Παραγοντικό" data-language-autonym="Ελληνικά" data-language-local-name="греческий" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="хорошая статья"><a href="https://en.wikipedia.org/wiki/Factorial" title="Factorial — английский" lang="en" hreflang="en" data-title="Factorial" data-language-autonym="English" data-language-local-name="английский" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Faktorialo" title="Faktorialo — эсперанто" lang="eo" hreflang="eo" data-title="Faktorialo" data-language-autonym="Esperanto" data-language-local-name="эсперанто" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Factorial" title="Factorial — испанский" lang="es" hreflang="es" data-title="Factorial" data-language-autonym="Español" data-language-local-name="испанский" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Faktoriaal" title="Faktoriaal — эстонский" lang="et" hreflang="et" data-title="Faktoriaal" data-language-autonym="Eesti" data-language-local-name="эстонский" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Faktorial" title="Faktorial — баскский" lang="eu" hreflang="eu" data-title="Faktorial" data-language-autonym="Euskara" data-language-local-name="баскский" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%A7%DA%A9%D8%AA%D9%88%D8%B1%DB%8C%D9%84" title="فاکتوریل — персидский" lang="fa" hreflang="fa" data-title="فاکتوریل" data-language-autonym="فارسی" data-language-local-name="персидский" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kertoma" title="Kertoma — финский" lang="fi" hreflang="fi" data-title="Kertoma" data-language-autonym="Suomi" data-language-local-name="финский" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Factorielle" title="Factorielle — французский" lang="fr" hreflang="fr" data-title="Factorielle" data-language-autonym="Français" data-language-local-name="французский" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Factorial" title="Factorial — галисийский" lang="gl" hreflang="gl" data-title="Factorial" data-language-autonym="Galego" data-language-local-name="галисийский" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A2%D7%A6%D7%A8%D7%AA_(%D7%9E%D7%AA%D7%9E%D7%98%D7%99%D7%A7%D7%94)" title="עצרת (מתמטיקה) — иврит" lang="he" hreflang="he" data-title="עצרת (מתמטיקה)" data-language-autonym="עברית" data-language-local-name="иврит" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A4%97%E0%A5%81%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="क्रमगुणित — хинди" lang="hi" hreflang="hi" data-title="क्रमगुणित" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Faktorijel" title="Faktorijel — хорватский" lang="hr" hreflang="hr" data-title="Faktorijel" data-language-autonym="Hrvatski" data-language-local-name="хорватский" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Faktori%C3%A1lis" title="Faktoriális — венгерский" lang="hu" hreflang="hu" data-title="Faktoriális" data-language-autonym="Magyar" data-language-local-name="венгерский" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%96%D5%A1%D5%AF%D5%BF%D5%B8%D6%80%D5%AB%D5%A1%D5%AC" title="Ֆակտորիալ — армянский" lang="hy" hreflang="hy" data-title="Ֆակտորիալ" data-language-autonym="Հայերեն" data-language-local-name="армянский" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Factorial" title="Factorial — интерлингва" lang="ia" hreflang="ia" data-title="Factorial" data-language-autonym="Interlingua" data-language-local-name="интерлингва" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Faktorial" title="Faktorial — ибанский" lang="iba" hreflang="iba" data-title="Faktorial" data-language-autonym="Jaku Iban" data-language-local-name="ибанский" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Faktorial" title="Faktorial — индонезийский" lang="id" hreflang="id" data-title="Faktorial" data-language-autonym="Bahasa Indonesia" data-language-local-name="индонезийский" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Faktorialo" title="Faktorialo — идо" lang="io" hreflang="io" data-title="Faktorialo" data-language-autonym="Ido" data-language-local-name="идо" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/A%C3%B0feldi" title="Aðfeldi — исландский" lang="is" hreflang="is" data-title="Aðfeldi" data-language-autonym="Íslenska" data-language-local-name="исландский" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Fattoriale" title="Fattoriale — итальянский" lang="it" hreflang="it" data-title="Fattoriale" data-language-autonym="Italiano" data-language-local-name="итальянский" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%9A%8E%E4%B9%97" title="階乗 — японский" lang="ja" hreflang="ja" data-title="階乗" data-language-autonym="日本語" data-language-local-name="японский" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%A4%E1%83%90%E1%83%A5%E1%83%A2%E1%83%9D%E1%83%A0%E1%83%98%E1%83%90%E1%83%9A%E1%83%98" title="მათემატიკური ფაქტორიალი — грузинский" lang="ka" hreflang="ka" data-title="მათემატიკური ფაქტორიალი" data-language-autonym="ქართული" data-language-local-name="грузинский" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Факториал — казахский" lang="kk" hreflang="kk" data-title="Факториал" data-language-autonym="Қазақша" data-language-local-name="казахский" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%95%E0%B3%8D%E0%B2%B0%E0%B2%AE%E0%B2%97%E0%B3%81%E0%B2%A3%E0%B2%BF%E0%B2%A4" title="ಕ್ರಮಗುಣಿತ — каннада" lang="kn" hreflang="kn" data-title="ಕ್ರಮಗುಣಿತ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="каннада" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B3%84%EC%8A%B9_(%EC%88%98%ED%95%99)" title="계승 (수학) — корейский" lang="ko" hreflang="ko" data-title="계승 (수학)" data-language-autonym="한국어" data-language-local-name="корейский" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Factorialis" title="Factorialis — латинский" lang="la" hreflang="la" data-title="Factorialis" data-language-autonym="Latina" data-language-local-name="латинский" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Fatorial" title="Fatorial — Lombard" lang="lmo" hreflang="lmo" data-title="Fatorial" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Faktorialas" title="Faktorialas — литовский" lang="lt" hreflang="lt" data-title="Faktorialas" data-language-autonym="Lietuvių" data-language-local-name="литовский" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Faktori%C4%81ls" title="Faktoriāls — латышский" lang="lv" hreflang="lv" data-title="Faktoriāls" data-language-autonym="Latviešu" data-language-local-name="латышский" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B5%D0%BB" title="Факториел — македонский" lang="mk" hreflang="mk" data-title="Факториел" data-language-autonym="Македонски" data-language-local-name="македонский" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%95%E0%B5%8D%E0%B4%B0%E0%B4%AE%E0%B4%97%E0%B5%81%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B4%82" title="ക്രമഗുണിതം — малаялам" lang="ml" hreflang="ml" data-title="ക്രമഗുണിതം" data-language-autonym="മലയാളം" data-language-local-name="малаялам" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%95%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A4%97%E0%A5%81%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="क्रमगुणित — маратхи" lang="mr" hreflang="mr" data-title="क्रमगुणित" data-language-autonym="मराठी" data-language-local-name="маратхи" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Faktorial" title="Faktorial — малайский" lang="ms" hreflang="ms" data-title="Faktorial" data-language-autonym="Bahasa Melayu" data-language-local-name="малайский" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Faculteit_(wiskunde)" title="Faculteit (wiskunde) — нидерландский" lang="nl" hreflang="nl" data-title="Faculteit (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="нидерландский" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Fakultet_i_matematikk" title="Fakultet i matematikk — нюнорск" lang="nn" hreflang="nn" data-title="Fakultet i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="нюнорск" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Fakultet_(matematikk)" title="Fakultet (matematikk) — норвежский букмол" lang="nb" hreflang="nb" data-title="Fakultet (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="норвежский букмол" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Factoriala" title="Factoriala — окситанский" lang="oc" hreflang="oc" data-title="Factoriala" data-language-autonym="Occitan" data-language-local-name="окситанский" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A9%8D%E0%A8%B0%E0%A8%AE%E0%A8%97%E0%A9%81%E0%A8%A3%E0%A8%BF%E0%A8%A4" title="ਕ੍ਰਮਗੁਣਿਤ — панджаби" lang="pa" hreflang="pa" data-title="ਕ੍ਰਮਗੁਣਿਤ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="панджаби" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Silnia" title="Silnia — польский" lang="pl" hreflang="pl" data-title="Silnia" data-language-autonym="Polski" data-language-local-name="польский" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Fatorial" title="Fatorial — Piedmontese" lang="pms" hreflang="pms" data-title="Fatorial" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fatorial" title="Fatorial — португальский" lang="pt" hreflang="pt" data-title="Fatorial" data-language-autonym="Português" data-language-local-name="португальский" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Factorial" title="Factorial — румынский" lang="ro" hreflang="ro" data-title="Factorial" data-language-autonym="Română" data-language-local-name="румынский" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Fatturiali" title="Fatturiali — сицилийский" lang="scn" hreflang="scn" data-title="Fatturiali" data-language-autonym="Sicilianu" data-language-local-name="сицилийский" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Faktorijel" title="Faktorijel — сербскохорватский" lang="sh" hreflang="sh" data-title="Faktorijel" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="сербскохорватский" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%9A%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B6%B8%E0%B7%8F%E0%B6%BB%E0%B7%9D%E0%B6%B4%E0%B7%92%E0%B6%AD%E0%B6%BA" title="ක්‍රමාරෝපිතය — сингальский" lang="si" hreflang="si" data-title="ක්‍රමාරෝපිතය" data-language-autonym="සිංහල" data-language-local-name="сингальский" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Factorial" title="Factorial — Simple English" lang="en-simple" hreflang="en-simple" data-title="Factorial" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Faktori%C3%A1l" title="Faktoriál — словацкий" lang="sk" hreflang="sk" data-title="Faktoriál" data-language-autonym="Slovenčina" data-language-local-name="словацкий" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Fakulteta_(funkcija)" title="Fakulteta (funkcija) — словенский" lang="sl" hreflang="sl" data-title="Fakulteta (funkcija)" data-language-autonym="Slovenščina" data-language-local-name="словенский" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Faktoriali" title="Faktoriali — албанский" lang="sq" hreflang="sq" data-title="Faktoriali" data-language-autonym="Shqip" data-language-local-name="албанский" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D1%98%D0%B5%D0%BB" title="Факторијел — сербский" lang="sr" hreflang="sr" data-title="Факторијел" data-language-autonym="Српски / srpski" data-language-local-name="сербский" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Fakultet_(matematik)" title="Fakultet (matematik) — шведский" lang="sv" hreflang="sv" data-title="Fakultet (matematik)" data-language-autonym="Svenska" data-language-local-name="шведский" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AF%8A%E0%AE%9F%E0%AE%B0%E0%AF%8D_%E0%AE%AA%E0%AF%86%E0%AE%B0%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%AE%E0%AF%8D" title="தொடர் பெருக்கம் — тамильский" lang="ta" hreflang="ta" data-title="தொடர் பெருக்கம்" data-language-autonym="தமிழ்" data-language-local-name="тамильский" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%81%E0%B8%9F%E0%B8%81%E0%B8%97%E0%B8%AD%E0%B9%80%E0%B8%A3%E0%B8%B5%E0%B8%A2%E0%B8%A5" title="แฟกทอเรียล — тайский" lang="th" hreflang="th" data-title="แฟกทอเรียล" data-language-autonym="ไทย" data-language-local-name="тайский" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Paktoryal" title="Paktoryal — тагалог" lang="tl" hreflang="tl" data-title="Paktoryal" data-language-autonym="Tagalog" data-language-local-name="тагалог" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Fakt%C3%B6riyel" title="Faktöriyel — турецкий" lang="tr" hreflang="tr" data-title="Faktöriyel" data-language-autonym="Türkçe" data-language-local-name="турецкий" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D1%96%D0%B0%D0%BB" title="Факторіал — украинский" lang="uk" hreflang="uk" data-title="Факторіал" data-language-autonym="Українська" data-language-local-name="украинский" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B9%D8%A7%D9%85%D9%84%DB%8C%DB%81" title="عاملیہ — урду" lang="ur" hreflang="ur" data-title="عاملیہ" data-language-autonym="اردو" data-language-local-name="урду" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Faktorial" title="Faktorial — узбекский" lang="uz" hreflang="uz" data-title="Faktorial" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="узбекский" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Giai_th%E1%BB%ABa" title="Giai thừa — вьетнамский" lang="vi" hreflang="vi" data-title="Giai thừa" data-language-autonym="Tiếng Việt" data-language-local-name="вьетнамский" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E9%98%B6%E4%B9%98" title="阶乘 — у" lang="wuu" hreflang="wuu" data-title="阶乘" data-language-autonym="吴语" data-language-local-name="у" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%9A%8E%E4%B9%98" title="階乘 — китайский" lang="zh" hreflang="zh" data-title="階乘" data-language-autonym="中文" data-language-local-name="китайский" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E9%9A%8E%E4%B9%98" title="階乘 — Literary Chinese" lang="lzh" hreflang="lzh" data-title="階乘" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%9A%8E%E4%B9%98" title="階乘 — кантонский" lang="yue" hreflang="yue" data-title="階乘" data-language-autonym="粵語" data-language-local-name="кантонский" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q120976#sitelinks-wikipedia" title="Править ссылки на другие языки" class="wbc-editpage">Править ссылки</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Эта страница в последний раз была отредактирована 29 октября 2024 в 10:46.</li> <li id="footer-info-copyright">Текст доступен по <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ru">лицензии Creative Commons «С указанием авторства — С сохранением условий» (CC BY-SA)</a>; в отдельных случаях могут действовать дополнительные условия. <span class="noprint">Подробнее см. <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/ru">Условия использования</a>.</span><br /> Wikipedia®&#160;— зарегистрированный товарный знак некоммерческой организации <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/ru/">«Фонд Викимедиа» (Wikimedia Foundation, Inc.)</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/ru">Политика конфиденциальности</a></li> <li id="footer-places-about"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5">Описание Википедии</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D1%82%D0%BA%D0%B0%D0%B7_%D0%BE%D1%82_%D0%BE%D1%82%D0%B2%D0%B5%D1%82%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D0%B8">Отказ от ответственности</a></li> <li id="footer-places-contact"><a href="//ru.wikipedia.org/wiki/Википедия:Контакты">Свяжитесь с нами</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Policy:Universal_Code_of_Conduct/ru">Кодекс поведения</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Разработчики</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ru.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Заявление о куки</a></li> <li id="footer-places-mobileview"><a href="//ru.m.wikipedia.org/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&amp;section=6&amp;veaction=edit&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Мобильная версия</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-7fc47fc68d-dqpwp","wgBackendResponseTime":164,"wgPageParseReport":{"limitreport":{"cputime":"0.428","walltime":"0.693","ppvisitednodes":{"value":5016,"limit":1000000},"postexpandincludesize":{"value":52268,"limit":2097152},"templateargumentsize":{"value":4206,"limit":2097152},"expansiondepth":{"value":30,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":31143,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 432.115 1 -total"," 48.94% 211.498 1 Шаблон:Примечания"," 21.09% 91.125 1 Шаблон:Citation"," 18.82% 81.336 24 Шаблон:Без_начала"," 17.46% 75.463 6 Шаблон:OEIS_short"," 16.71% 72.220 6 Шаблон:OEIS2C"," 16.23% 70.135 54 Шаблон:Str_len"," 16.00% 69.157 6 Шаблон:OEIS-id-norm"," 14.28% 61.718 2 Шаблон:Родственный_проект"," 12.51% 54.060 1 Шаблон:Викиучебник"]},"scribunto":{"limitreport-timeusage":{"value":"0.136","limit":"10.000"},"limitreport-memusage":{"value":6136815,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-55747fd74f-6n6tt","timestamp":"20241125210721","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u0424\u0430\u043a\u0442\u043e\u0440\u0438\u0430\u043b","url":"https:\/\/ru.wikipedia.org\/wiki\/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB","sameAs":"http:\/\/www.wikidata.org\/entity\/Q120976","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q120976","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"\u0424\u043e\u043d\u0434 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0430","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-10-05T08:17:28Z","dateModified":"2024-10-29T10:46:00Z","headline":"\u0444\u0443\u043d\u043a\u0446\u0438\u044f, \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0451\u043d\u043d\u0430\u044f \u043d\u0430 \u043c\u043d\u043e\u0436\u0435\u0441\u0442\u0432\u0435 \u043d\u0435\u043e\u0442\u0440\u0438\u0446\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0445 \u0446\u0435\u043b\u044b\u0445 \u0447\u0438\u0441\u0435\u043b"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10