CINXE.COM
Факториал — Википедия
<!DOCTYPE html> <html class="client-nojs" lang="ru" dir="ltr"> <head> <meta charset="UTF-8"> <title>Факториал — Википедия</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )ruwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","январь","февраль","март","апрель","май","июнь","июль","август","сентябрь","октябрь","ноябрь","декабрь"],"wgRequestId":"f0750cbe-a692-4afb-9ee9-96b4dcb29878","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Факториал","wgTitle":"Факториал","wgCurRevisionId":141138568,"wgRevisionId":141138568,"wgArticleId":13509,"wgIsArticle":true,"wgIsRedirect":false ,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Страницы, использующие расширение JsonConfig","Википедия:Статьи со ссылками на статьи об отдельных числах","Статьи со ссылками на Викисловарь","Википедия:Ссылка на Викиучебник непосредственно в статье","Математические знаки","Целочисленные последовательности","Теория чисел","Комбинаторика"],"wgPageViewLanguage":"ru","wgPageContentLanguage":"ru","wgPageContentModel":"wikitext","wgRelevantPageName":"Факториал","wgRelevantArticleId":13509,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}}, "wgStableRevisionId":139901225,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ru","pageLanguageDir":"ltr","pageVariantFallbacks":"ru"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q120976","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.common-site":"ready","ext.globalCssJs.user.styles": "ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","jquery.makeCollapsible.styles":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.collapserefs","ext.gadget.directLinkToCommons","ext.gadget.referenceTooltips","ext.gadget.logo","ext.gadget.edittop","ext.gadget.navboxDefaultGadgets","ext.gadget.wikibugs","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ru&modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cjquery.makeCollapsible.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&only=styles&skin=vector"> <script async="" src="/w/load.php?lang=ru&modules=startup&only=scripts&raw=1&skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ru&modules=ext.gadget.common-site&only=styles&skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=ru&modules=site.styles&only=styles&skin=vector"> <noscript><link rel="stylesheet" href="/w/load.php?lang=ru&modules=noscript&only=styles&skin=vector"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="noindex,nofollow,max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Факториал — Википедия"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ru.m.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB"> <link rel="alternate" type="application/x-wiki" title="Править" href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Википедия (ru)"> <link rel="EditURI" type="application/rsd+xml" href="//ru.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ru"> <link rel="alternate" type="application/atom+xml" title="Википедия — Atom-лента" href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Факториал rootpage-Факториал skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Факториал</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">Материал из Википедии — свободной энциклопедии</div> <div id="contentSub"><div id="mw-content-subtitle"><div id="mw-fr-revision-messages"><div class="cdx-message mw-fr-message-box cdx-message--block cdx-message--notice mw-fr-basic mw-fr-draft-not-synced plainlinks noprint"><span class="cdx-message__icon"></span><div class="cdx-message__content">Текущая версия страницы пока <a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B0_%D1%81%D1%82%D0%B0%D1%82%D0%B5%D0%B9/%D0%9F%D0%BE%D1%8F%D1%81%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B4%D0%BB%D1%8F_%D1%87%D0%B8%D1%82%D0%B0%D1%82%D0%B5%D0%BB%D0%B5%D0%B9" title="Википедия:Проверка статей/Пояснение для читателей">не проверялась</a> опытными участниками и может значительно отличаться от <a class="external text" href="https://ru.wikipedia.org/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&stable=1">версии, проверенной 31 августа 2024 года</a>; проверки требуют <a class="external text" href="https://ru.wikipedia.org/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&oldid=139901225&diff=cur&diffonly=0">3 правки</a>.</div></div></div></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Перейти к навигации</a> <a class="mw-jump-link" href="#searchInput">Перейти к поиску</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ru" dir="ltr"><p><b>Факториа́л</b> — <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика)">функция</a>, определённая на множестве неотрицательных <a href="/wiki/%D0%A6%D0%B5%D0%BB%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Целое число">целых чисел</a>. Название происходит от <a href="/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" title="Латинский язык">лат.</a> <span lang="la" style="font-style:italic;">factorialis</span> — действующий, производящий, умножающий; обозначается <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span>, произносится <i>эн факториа́л</i>. Факториал <a href="/wiki/%D0%9D%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Натуральное число">натурального числа</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> определяется как произведение всех натуральных чисел от 1 до <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> включительно: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0613b26bbfc65ef7ae0142723f8251988cc70ba0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.286ex; height:6.843ex;" alt="{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}"></span>.</dd></dl> <p>Например, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mo>!</mo> <mo>=</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>=</mo> <mn>120</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1a8407c750e7db04da88d96ba928413b94a812c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:24.022ex; height:2.176ex;" alt="{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}"></span>.</dd></dl> <p>Для <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span> принимается в качестве соглашения, что: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>!</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0!=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22956a0fa255c6c9562eab440f8c23c2954a6cf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.07ex; height:2.176ex;" alt="{\displaystyle 0!=1}"></span>.</dd></dl> <table class="wikitable" style="margin:0 0 0 1em; text-align:right; float:right;"> <caption>Факториалы всех чисел составляют последовательность <a href="//oeis.org/A000142" class="extiw" title="oeis:A000142">A000142</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a> </caption> <tbody><tr> <th><i>n</i> </th> <th><i>n</i>! </th></tr> <tr> <td>0</td> <td>1 </td></tr> <tr> <td>1</td> <td>1 </td></tr> <tr> <td>2</td> <td>2 </td></tr> <tr> <td>3</td> <td>6 </td></tr> <tr> <td>4</td> <td>24 </td></tr> <tr> <td>5</td> <td>120 </td></tr> <tr> <td>6</td> <td>720 </td></tr> <tr> <td>7</td> <td><span style="white-space: nowrap">5<span style="margin-left: 0.25em">040</span></span> </td></tr> <tr> <td>8</td> <td><span style="white-space: nowrap">40<span style="margin-left: 0.25em">320</span></span> </td></tr> <tr> <td>9</td> <td><span style="white-space: nowrap">362<span style="margin-left: 0.25em">880</span></span> </td></tr> <tr> <td>10</td> <td><span style="white-space: nowrap">3<span style="margin-left: 0.25em">628</span><span style="margin-left: 0.25em">800</span></span> </td></tr> <tr> <td>11</td> <td><span style="white-space: nowrap">39<span style="margin-left: 0.25em">916</span><span style="margin-left: 0.25em">800</span></span> </td></tr> <tr> <td>12</td> <td><span style="white-space: nowrap">479<span style="margin-left: 0.25em">001</span><span style="margin-left: 0.25em">600</span></span> </td></tr> <tr> <td>13</td> <td><span style="white-space: nowrap">6<span style="margin-left: 0.25em">227</span><span style="margin-left: 0.25em">020</span><span style="margin-left: 0.25em">800</span></span> </td></tr> <tr> <td>14</td> <td><span style="white-space: nowrap">87<span style="margin-left: 0.25em">178</span><span style="margin-left: 0.25em">291</span><span style="margin-left: 0.25em">200</span></span> </td></tr> <tr> <td>15</td> <td><span style="white-space: nowrap">1<span style="margin-left: 0.25em">307</span><span style="margin-left: 0.25em">674</span><span style="margin-left: 0.25em">368</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>16</td> <td><span style="white-space: nowrap">20<span style="margin-left: 0.25em">922</span><span style="margin-left: 0.25em">789</span><span style="margin-left: 0.25em">888</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>17</td> <td><span style="white-space: nowrap">355<span style="margin-left: 0.25em">687</span><span style="margin-left: 0.25em">428</span><span style="margin-left: 0.25em">096</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>18</td> <td><span style="white-space: nowrap">6<span style="margin-left: 0.25em">402</span><span style="margin-left: 0.25em">373</span><span style="margin-left: 0.25em">705</span><span style="margin-left: 0.25em">728</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>19</td> <td><span style="white-space: nowrap">121<span style="margin-left: 0.25em">645</span><span style="margin-left: 0.25em">100</span><span style="margin-left: 0.25em">408</span><span style="margin-left: 0.25em">832</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>20</td> <td><span style="white-space: nowrap">2<span style="margin-left: 0.25em">432</span><span style="margin-left: 0.25em">902</span><span style="margin-left: 0.25em">008</span><span style="margin-left: 0.25em">176</span><span style="margin-left: 0.25em">640</span><span style="margin-left: 0.25em">000</span></span> </td></tr> <tr> <td>21</td> <td>51 090 942 171 709 440 000 </td></tr> <tr> <td>22</td> <td>1 124 000 727 777 607 700 000 </td></tr></tbody></table> <p>Факториал активно используется в различных разделах математики: <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0" title="Комбинаторика">комбинаторике</a>, <a href="/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7" title="Математический анализ">математическом анализе</a>, <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Теория чисел">теории чисел</a>, <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7" title="Функциональный анализ">функциональном анализе</a> и др. </p><p>Факториал является чрезвычайно быстро растущей функцией. Он растёт быстрее, чем любая <a href="/wiki/%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Показательная функция">показательная функция</a> или любая <a href="/wiki/%D0%A1%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Степенная функция">степенная функция</a>, а также быстрее, чем любая сумма произведений этих функций. Однако степенно-показательная функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88ce30228c74c7fb8b0d262d7d9363f87d30d42f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.613ex; height:2.343ex;" alt="{\displaystyle n^{n}}"></span> растёт быстрее факториала, так же как и большинство двойных степенных, например <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{e^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{e^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00eaa2a1043db1dbf373fd361ab600c7f9ffe30c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.047ex; height:2.676ex;" alt="{\displaystyle e^{e^{n}}}"></span>. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="ru" dir="ltr"><h2 id="mw-toc-heading">Содержание</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Свойства"><span class="tocnumber">1</span> <span class="toctext">Свойства</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Рекуррентная_формула"><span class="tocnumber">1.1</span> <span class="toctext">Рекуррентная формула</span></a></li> <li class="toclevel-2 tocsection-3"><a href="#Комбинаторная_интерпретация"><span class="tocnumber">1.2</span> <span class="toctext">Комбинаторная интерпретация</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Связь_с_гамма-функцией"><span class="tocnumber">1.3</span> <span class="toctext">Связь с гамма-функцией</span></a></li> <li class="toclevel-2 tocsection-5"><a href="#Формула_Стирлинга"><span class="tocnumber">1.4</span> <span class="toctext">Формула Стирлинга</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Разложение_на_простые_множители"><span class="tocnumber">1.5</span> <span class="toctext">Разложение на простые множители</span></a></li> <li class="toclevel-2 tocsection-7"><a href="#Связь_с_производной_от_степенной_функции"><span class="tocnumber">1.6</span> <span class="toctext">Связь с производной от степенной функции</span></a></li> <li class="toclevel-2 tocsection-8"><a href="#Другие_свойства"><span class="tocnumber">1.7</span> <span class="toctext">Другие свойства</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-9"><a href="#История"><span class="tocnumber">2</span> <span class="toctext">История</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#Обобщения"><span class="tocnumber">3</span> <span class="toctext">Обобщения</span></a> <ul> <li class="toclevel-2 tocsection-11"><a href="#Двойной_факториал"><span class="tocnumber">3.1</span> <span class="toctext">Двойной факториал</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#Кратный_факториал"><span class="tocnumber">3.2</span> <span class="toctext">Кратный факториал</span></a></li> <li class="toclevel-2 tocsection-13"><a href="#Неполный_факториал"><span class="tocnumber">3.3</span> <span class="toctext">Неполный факториал</span></a> <ul> <li class="toclevel-3 tocsection-14"><a href="#Убывающий_факториал"><span class="tocnumber">3.3.1</span> <span class="toctext">Убывающий факториал</span></a></li> <li class="toclevel-3 tocsection-15"><a href="#Возрастающий_факториал"><span class="tocnumber">3.3.2</span> <span class="toctext">Возрастающий факториал</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-16"><a href="#Праймориал_или_примориал"><span class="tocnumber">3.4</span> <span class="toctext">Праймориал или примориал</span></a></li> <li class="toclevel-2 tocsection-17"><a href="#Фибонориал_или_фибоначчиал"><span class="tocnumber">3.5</span> <span class="toctext">Фибонориал или фибоначчиал</span></a></li> <li class="toclevel-2 tocsection-18"><a href="#Суперфакториалы"><span class="tocnumber">3.6</span> <span class="toctext">Суперфакториалы</span></a></li> <li class="toclevel-2 tocsection-19"><a href="#Субфакториал"><span class="tocnumber">3.7</span> <span class="toctext">Субфакториал</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-20"><a href="#См._также"><span class="tocnumber">4</span> <span class="toctext">См. также</span></a></li> <li class="toclevel-1 tocsection-21"><a href="#Примечания"><span class="tocnumber">5</span> <span class="toctext">Примечания</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Свойства"><span id=".D0.A1.D0.B2.D0.BE.D0.B9.D1.81.D1.82.D0.B2.D0.B0"></span>Свойства</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=1" title="Редактировать раздел «Свойства»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=1" title="Редактировать код раздела «Свойства»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Рекуррентная_формула"><span id=".D0.A0.D0.B5.D0.BA.D1.83.D1.80.D1.80.D0.B5.D0.BD.D1.82.D0.BD.D0.B0.D1.8F_.D1.84.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D0.B0"></span>Рекуррентная формула</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=2" title="Редактировать раздел «Рекуррентная формула»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=2" title="Редактировать код раздела «Рекуррентная формула»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Факториал может быть задан следующей <a href="/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%80%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0" title="Рекуррентная формула">рекуррентной формулой</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!={\begin{cases}1&n=0,\\n\cdot (n-1)!&n>0.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mtd> <mtd> <mi>n</mi> <mo>></mo> <mn>0.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!={\begin{cases}1&n=0,\\n\cdot (n-1)!&n>0.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/061936c90772779b902414ec897902cc4b61ca06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.187ex; height:6.176ex;" alt="{\displaystyle n!={\begin{cases}1&n=0,\\n\cdot (n-1)!&n>0.\end{cases}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Комбинаторная_интерпретация"><span id=".D0.9A.D0.BE.D0.BC.D0.B1.D0.B8.D0.BD.D0.B0.D1.82.D0.BE.D1.80.D0.BD.D0.B0.D1.8F_.D0.B8.D0.BD.D1.82.D0.B5.D1.80.D0.BF.D1.80.D0.B5.D1.82.D0.B0.D1.86.D0.B8.D1.8F"></span>Комбинаторная интерпретация</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=3" title="Редактировать раздел «Комбинаторная интерпретация»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=3" title="Редактировать код раздела «Комбинаторная интерпретация»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>В <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0" title="Комбинаторика">комбинаторике</a> факториал натурального числа <style data-mw-deduplicate="TemplateStyles:r117753614">.mw-parser-output .ts-math{white-space:nowrap;font-family:times,serif,palatino linotype,new athena unicode,athena,gentium,code2000;font-size:120%}</style><span class="ts-math"><i>n</i></span> интерпретируется как количество <a href="/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0" title="Перестановка">перестановок</a> (упорядочиваний) <a href="/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Множество">множества</a> из <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> элементов. </p><p>Например, для множества {<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>} из 4-х элементов существует 4! = 24 перестановки: </p> <pre>ABCD BACD CABD DABC ABDC BADC CADB DACB ACBD BCAD CBAD DBAC ACDB BCDA CBDA DBCA ADBC BDAC CDAB DCAB ADCB BDCA CDBA DCBA </pre> <p>Комбинаторная интерпретация факториала подтверждает целесообразность соглашения <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>!</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0!=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22956a0fa255c6c9562eab440f8c23c2954a6cf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.07ex; height:2.176ex;" alt="{\displaystyle 0!=1}"></span> — количество перестановок пустого множества равно единице. Кроме того, формула для числа <a href="/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%89%D0%B5%D0%BD%D0%B8%D0%B5" title="Размещение">размещений</a> из <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> элементов по <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/823643d5bf61c64f6aefb70a14653afa3507c023" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.084ex; height:6.176ex;" alt="{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}}"></span></dd></dl> <p>при <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/480d6131c6cb07a90f4ec18a376a59fab884b860" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.534ex; height:1.676ex;" alt="{\displaystyle n=m}"></span> обращается в формулу для числа <a href="/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0" title="Перестановка">перестановок</a> из <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> элементов (порядка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>), которое равно <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Связь_с_гамма-функцией"><span id=".D0.A1.D0.B2.D1.8F.D0.B7.D1.8C_.D1.81_.D0.B3.D0.B0.D0.BC.D0.BC.D0.B0-.D1.84.D1.83.D0.BD.D0.BA.D1.86.D0.B8.D0.B5.D0.B9"></span>Связь с гамма-функцией</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=4" title="Редактировать раздел «Связь с гамма-функцией»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=4" title="Редактировать код раздела «Связь с гамма-функцией»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%93%D0%B0%D0%BC%D0%BC%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Гамма-функция">Гамма-функция</a></b></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Generalized_factorial_function.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Generalized_factorial_function.svg/325px-Generalized_factorial_function.svg.png" decoding="async" width="325" height="205" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Generalized_factorial_function.svg/488px-Generalized_factorial_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Generalized_factorial_function.svg/650px-Generalized_factorial_function.svg.png 2x" data-file-width="500" data-file-height="315" /></a><figcaption>Пи-функция, определённая для всех вещественных чисел, кроме отрицательных целых, и совпадающая при натуральных значениях аргумента с факториалом.</figcaption></figure> <p>Факториал связан с гамма-функцией от целочисленного аргумента соотношением </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!=\Gamma (n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!=\Gamma (n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b392e2ad60237c0560a6d82a6548cdf2b4399cb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.8ex; height:2.843ex;" alt="{\displaystyle n!=\Gamma (n+1)}"></span>.</dd></dl> <p>Это же выражение используют для обобщения понятия факториала на множество <a href="/wiki/%D0%92%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Вещественное число">вещественных чисел</a>. Используя <a href="/wiki/%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D0%B4%D0%BE%D0%BB%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5" title="Аналитическое продолжение">аналитическое продолжение</a> гамма-функции, область определения факториала также расширяют на всю <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BB%D0%BE%D1%81%D0%BA%D0%BE%D1%81%D1%82%D1%8C" title="Комплексная плоскость">комплексную плоскость</a>, исключая <a href="/wiki/%D0%9F%D0%BE%D0%BB%D1%8E%D1%81_(%D0%BA%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7)" title="Полюс (комплексный анализ)">особые точки</a> при <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=-1,-2,-3\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=-1,-2,-3\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0449919aee7384e0bf152a7e5a13b18f257bad1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.583ex; height:2.509ex;" alt="{\displaystyle n=-1,-2,-3\ldots }"></span>. </p><p>Непосредственным обобщением факториала на множества вещественных и комплексных чисел служит пи-функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi (z)=\Gamma (z+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Π<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi (z)=\Gamma (z+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afaeab7cd9337dc971ef557c8ab243ea99c4e69a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.092ex; height:2.843ex;" alt="{\displaystyle \Pi (z)=\Gamma (z+1)}"></span>, которая при <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Re} (z)>-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>></mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Re} (z)>-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d23b6461080be8fcb580556f9427397096d69bfd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.709ex; height:2.843ex;" alt="{\displaystyle \mathrm {Re} (z)>-1}"></span> может быть определена как </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Π<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5af7aa6991d44264ac136c8172abbfe3bdb6053b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.014ex; height:5.843ex;" alt="{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t}"></span> (интегральное определение).</dd></dl> <p>Пи-функция натурального числа или нуля совпадает с его факториалом: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi (n)=n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Π<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi (n)=n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9ef0864739a8c42ceb08426f10907a8c013d7f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.087ex; height:2.843ex;" alt="{\displaystyle \Pi (n)=n!}"></span>. Как и факториал, пи-функция удовлетворяет рекуррентному соотношению <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi (z)=z\Pi (z-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Π<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mi mathvariant="normal">Π<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi (z)=z\Pi (z-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5186c91dc94977c3e00783197963ab1ae8d19b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.471ex; height:2.843ex;" alt="{\displaystyle \Pi (z)=z\Pi (z-1)}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Формула_Стирлинга"><span id=".D0.A4.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D0.B0_.D0.A1.D1.82.D0.B8.D1.80.D0.BB.D0.B8.D0.BD.D0.B3.D0.B0"></span>Формула Стирлинга</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=5" title="Редактировать раздел «Формула Стирлинга»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=5" title="Редактировать код раздела «Формула Стирлинга»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%A1%D1%82%D0%B8%D1%80%D0%BB%D0%B8%D0%BD%D0%B3%D0%B0" title="Формула Стирлинга">Формула Стирлинга</a></b></div> <p><b>Формула Стирлинга</b> — <a href="/wiki/%D0%90%D1%81%D0%B8%D0%BC%D0%BF%D1%82%D0%BE%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BE%D1%86%D0%B5%D0%BD%D0%BA%D0%B0" class="mw-redirect" title="Асимптотическая оценка">асимптотическая формула</a> для вычисления факториала: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>12</mn> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>288</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>139</mn> <mrow> <mn>51840</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>571</mn> <mrow> <mn>2488320</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>163879</mn> <mrow> <mn>209018880</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5246819</mn> <mrow> <mn>75246796800</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>7</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd340b24e32f9c8dfc52e5ab1bb1a23a26facb88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:112.762ex; height:6.176ex;" alt="{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),}"></span></dd></dl> <p>см. <a href="/wiki/O-%D0%B1%D0%BE%D0%BB%D1%8C%D1%88%D0%BE%D0%B5" class="mw-redirect" title="O-большое">O-большое</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup>. </p><p>Во многих случаях для приближённого вычисления факториала достаточно рассматривать только главный член формулы Стирлинга: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3d4be66ea1a9ff3704455099fd4a7b967b75f67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.837ex; height:4.843ex;" alt="{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}"></span></dd></dl> <p>При этом можно утверждать, что </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}<n!<{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>12</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo><</mo> <mi>n</mi> <mo>!</mo> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>12</mn> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}<n!<{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e837a76392a4fb5655e4f0b42ef0a0d36fc90fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:48.824ex; height:4.843ex;" alt="{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}<n!<{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.}"></span></dd></dl> <p>Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Например, с помощью формулы Стирлинга легко подсчитать, что: </p> <ul><li>100! ≈ 9,33×10<sup>157</sup></li> <li>1000! ≈ 4,02×10<sup>2567</sup></li> <li>10 000! ≈ 2,85×10<sup>35 659</sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Разложение_на_простые_множители"><span id=".D0.A0.D0.B0.D0.B7.D0.BB.D0.BE.D0.B6.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D1.8B.D0.B5_.D0.BC.D0.BD.D0.BE.D0.B6.D0.B8.D1.82.D0.B5.D0.BB.D0.B8"></span>Разложение на простые множители</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=6" title="Редактировать раздел «Разложение на простые множители»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=6" title="Редактировать код раздела «Разложение на простые множители»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Каждое <a href="/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Простое число">простое число</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>p</i></span> входит в <a href="/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F" title="Факторизация">разложение</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i>!</span> на простые множители в степени определяемой следующей формулой: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>p</mi> </mfrac> </mrow> <mo>⌋</mo> </mrow> <mo>+</mo> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>⌋</mo> </mrow> <mo>+</mo> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>⌋</mo> </mrow> <mo>+</mo> <mo>…<!-- … --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4308b3f91baa14a5d4b4b8f86f1becdccd912f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.76ex; height:6.176ex;" alt="{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .}"></span></dd></dl> <p>Таким образом, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <munder> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munder> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>p</mi> </mfrac> </mrow> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo>+</mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo>+</mo> <mo>…<!-- … --></mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/305ffeb0b5ab9444b4953256a6baad04c5cc6d60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.893ex; height:6.676ex;" alt="{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },}"></span></dd></dl> <p>где произведение берётся по всем простым числам. Можно заметить, что для всякого простого <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>p</i></span> большего <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> соответствующий множитель в произведении равен 1; следовательно, произведение можно брать лишь по простым <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>p</i></span>, не превосходящим <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Связь_с_производной_от_степенной_функции"><span id=".D0.A1.D0.B2.D1.8F.D0.B7.D1.8C_.D1.81_.D0.BF.D1.80.D0.BE.D0.B8.D0.B7.D0.B2.D0.BE.D0.B4.D0.BD.D0.BE.D0.B9_.D0.BE.D1.82_.D1.81.D1.82.D0.B5.D0.BF.D0.B5.D0.BD.D0.BD.D0.BE.D0.B9_.D1.84.D1.83.D0.BD.D0.BA.D1.86.D0.B8.D0.B8"></span>Связь с <a href="/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D0%BD%D1%8B%D1%85" class="mw-redirect" title="Список производных">производной от степенной функции</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=7" title="Редактировать раздел «Связь с производной от степенной функции»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=7" title="Редактировать код раздела «Связь с производной от степенной функции»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Для целого неотрицательного числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(x^{n}\right)^{(n)}=n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(x^{n}\right)^{(n)}=n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcf097d45bcabb383c61db68793593a77f02bf44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.995ex; height:3.509ex;" alt="{\displaystyle \left(x^{n}\right)^{(n)}=n!}"></span></dd></dl> <p>Например: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)'''=\left(5\cdot 4\cdot 3\cdot x^{2}\right)''=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)'={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>‴</mo> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>″</mo> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> </mrow> <mo>=</mo> <mn>5</mn> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)'''=\left(5\cdot 4\cdot 3\cdot x^{2}\right)''=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)'={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/649a5cdff4b23db17a459f485f2c4158c2eb251f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:90.617ex; height:4.009ex;" alt="{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)'''=\left(5\cdot 4\cdot 3\cdot x^{2}\right)''=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)'={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Другие_свойства"><span id=".D0.94.D1.80.D1.83.D0.B3.D0.B8.D0.B5_.D1.81.D0.B2.D0.BE.D0.B9.D1.81.D1.82.D0.B2.D0.B0"></span>Другие свойства</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=8" title="Редактировать раздел «Другие свойства»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=8" title="Редактировать код раздела «Другие свойства»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd>Для натурального числа <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <msup> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⩾<!-- ⩾ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>⩾<!-- ⩾ --></mo> <mi>n</mi> <mo>!</mo> <mo>⩾<!-- ⩾ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/905fbda2d44ccdc9fc27e8c8b79c4639a25c84cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.441ex; height:2.843ex;" alt="{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n}"></span></dd></dl></dd></dl> <dl><dd>Для любого <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee74e1cc07e7041edf0fcbd4481f5cd32ad17b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n>1}"></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span> не является <a href="/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Квадрат (алгебра)">квадратом</a> целого числа;</dd></dl></dd></dl> <dl><dd>Для любого <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n>4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n>4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6b13dc8b113121cdaf76a723a61aa4f8be1468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n>4}"></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span> оканчивается на 0;</dd></dl></dd></dl> <dl><dd>Для любого <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n>9}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mn>9</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n>9}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a2966b368b6eeb84ae2104cffbcf74e35a6d17e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n>9}"></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span> оканчивается на 00.</dd></dl></dd></dl> <dl><dd>Если <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> простое число: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)!+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)!+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5241d2022a4a3e94d24081a5cfb9b7b5fbf98b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.857ex; height:2.843ex;" alt="{\displaystyle (n-1)!+1}"></span> делится на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> (<a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%92%D0%B8%D0%BB%D1%8C%D1%81%D0%BE%D0%BD%D0%B0" title="Теорема Вильсона">теорема Вильсона</a>)</dd></dl></dd></dl> <div class="mw-heading mw-heading2"><h2 id="История"><span id=".D0.98.D1.81.D1.82.D0.BE.D1.80.D0.B8.D1.8F"></span>История</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=9" title="Редактировать раздел «История»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=9" title="Редактировать код раздела «История»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Факториальные выражения появились ещё в ранних исследованиях по <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0" title="Комбинаторика">комбинаторике</a>, хотя компактное обозначение <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span> предложил французский математик <a href="/wiki/%D0%9A%D1%80%D0%B0%D0%BC%D0%BF,_%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%B0%D0%BD" title="Крамп, Кристиан">Кристиан Крамп</a> только в 1808 году<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>. Важным этапом стало открытие <a href="/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%A1%D1%82%D0%B8%D1%80%D0%BB%D0%B8%D0%BD%D0%B3%D0%B0" title="Формула Стирлинга">формулы Стирлинга</a>, которую <a href="/wiki/%D0%A1%D1%82%D0%B8%D1%80%D0%BB%D0%B8%D0%BD%D0%B3,_%D0%94%D0%B6%D0%B5%D0%B9%D0%BC%D1%81" title="Стирлинг, Джеймс">Джеймс Стирлинг</a> опубликовал в своём трактате «Дифференциальный метод» (<a href="/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" title="Латинский язык">лат.</a> <span lang="la" style="font-style:italic;">Methodus differentialis</span>, 1730 год). Немного ранее почти такую же формулу опубликовал друг Стирлинга <a href="/wiki/%D0%90%D0%B1%D1%80%D0%B0%D1%85%D0%B0%D0%BC_%D0%B4%D0%B5_%D0%9C%D1%83%D0%B0%D0%B2%D1%80" class="mw-redirect" title="Абрахам де Муавр">Абрахам де Муавр</a>, но в менее завершённом виде (вместо коэффициента <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a9b009153bbbb3273a7e7279cb6b084fd650a80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.43ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2\pi }}}"></span> была неопределённая константа)<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>. </p><p>Стирлинг подробно исследовал свойства факториала, вплоть до выяснения вопроса о том, нельзя ли распространить это понятие на произвольные вещественные числа. Он описал несколько возможных путей к реализации этой идеи и высказал мнение, что: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi>π<!-- π --></mi> </msqrt> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6060d68d00ad13d2fbc9a13539764e430068e861" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.269ex; height:6.509ex;" alt="{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}}"></span></dd></dl> <p>Стирлинг не знал, что годом ранее решение проблемы уже нашёл <a href="/wiki/%D0%9B%D0%B5%D0%BE%D0%BD%D0%B0%D1%80%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80" class="mw-redirect" title="Леонард Эйлер">Леонард Эйлер</a>. В письме к <a href="/wiki/%D0%93%D0%BE%D0%BB%D1%8C%D0%B4%D0%B1%D0%B0%D1%85,_%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%B0%D0%BD" class="mw-redirect" title="Гольдбах, Кристиан">Кристиану Гольдбаху</a> Эйлер описал требуемое обобщение<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>!</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mi>m</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>…<!-- … --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccf8036f24b95c206c17e22f4ccc0cdc8fd3b3a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.828ex; height:6.176ex;" alt="{\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}}"></span></dd></dl> <p>Развивая эту идею, Эйлер в следующем, 1730 году, ввёл понятие <a href="/wiki/%D0%93%D0%B0%D0%BC%D0%BC%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Гамма-функция">гамма-функции</a> в виде классического интеграла. Эти результаты он опубликовал в журнале <a href="/wiki/%D0%9F%D0%B5%D1%82%D0%B5%D1%80%D0%B1%D1%83%D1%80%D0%B3%D1%81%D0%BA%D0%B0%D1%8F_%D0%B0%D0%BA%D0%B0%D0%B4%D0%B5%D0%BC%D0%B8%D1%8F_%D0%BD%D0%B0%D1%83%D0%BA" title="Петербургская академия наук">Петербургской академии наук</a> в 1729—1730 годах. </p> <div class="mw-heading mw-heading2"><h2 id="Обобщения"><span id=".D0.9E.D0.B1.D0.BE.D0.B1.D1.89.D0.B5.D0.BD.D0.B8.D1.8F"></span>Обобщения</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=10" title="Редактировать раздел «Обобщения»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=10" title="Редактировать код раздела «Обобщения»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Двойной_факториал"><span id=".D0.94.D0.B2.D0.BE.D0.B9.D0.BD.D0.BE.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Двойной факториал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=11" title="Редактировать раздел «Двойной факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=11" title="Редактировать код раздела «Двойной факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable dabhide">Запрос «‼» перенаправляется сюда; см. также <a href="/wiki/!!_(%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D1%8F)" title="!! (значения)">другие значения</a>.</div> <p><b>Двойной факториал</b> числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> обозначается <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i>‼</span> и определяется как произведение всех натуральных чисел в отрезке [1,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>], имеющих ту же <a href="/wiki/%D0%A7%D1%91%D1%82%D0%BD%D1%8B%D0%B5_%D0%B8_%D0%BD%D0%B5%D1%87%D1%91%D1%82%D0%BD%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0" title="Чётные и нечётные числа">чётность</a>, что и <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>. </p> <ul><li>Для чётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </munderover> <mn>2</mn> <mi>i</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d079273a0fea61df36d587e3ce3fab700097a22a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.429ex; height:8.343ex;" alt="{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}"></span></dd></dl> <ul><li>Для нечётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> </mrow> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </munderover> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd537c895096ec3787831f2abcdb0966e982fe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:51.46ex; height:11.343ex;" alt="{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"></span></dd></dl> <p>Связь между двойными факториалами двух соседних целых неотрицательных чисел и обычным факториалом одного из них. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={\frac {n!}{(n-1)!!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!={\frac {n!}{(n-1)!!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f76cec6d851036a6a453fe5b6b63e95617dbf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.124ex; height:6.176ex;" alt="{\displaystyle n!!={\frac {n!}{(n-1)!!}}}"></span></dd></dl> <style data-mw-deduplicate="TemplateStyles:r137842454">.mw-parser-output .ts-Скрытый_блок{margin:0;overflow:hidden;border-collapse:collapse;box-sizing:border-box;font-size:95%}.mw-parser-output .ts-Скрытый_блок-title{text-align:center;font-weight:bold;line-height:1.6em;min-height:1.2em}.mw-parser-output .ts-Скрытый_блок .mw-collapsible-content{overflow-x:auto;overflow-y:hidden;clear:both}.mw-parser-output .ts-Скрытый_блок::before,.mw-parser-output .ts-Скрытый_блок .mw-collapsible-toggle{padding-top:.1em;width:6em;font-weight:normal;font-size:calc(90%/0.95)}.mw-parser-output .ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{float:right;text-align:right}.mw-parser-output .ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{float:left;text-align:left}.mw-parser-output .ts-Скрытый_блок-gray{padding:2px;border:1px solid var(--border-color-base,#a2a9b1)}.mw-parser-output .ts-Скрытый_блок-transparent{border:none}.mw-parser-output .ts-Скрытый_блок-gray .ts-Скрытый_блок-title{background:var(--background-color-neutral,#eaecf0);padding:.1em 6em;padding-right:0}.mw-parser-output .ts-Скрытый_блок-transparent .ts-Скрытый_блок-title{background:transparent;padding:.1em 5.5em;padding-right:0}.mw-parser-output .ts-Скрытый_блок-gray .mw-collapsible-content{padding:.25em 1em}.mw-parser-output .ts-Скрытый_блок-transparent .mw-collapsible-content{padding:.25em 0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{padding-right:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{padding-right:0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{padding-left:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{padding-left:0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:1em}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:6.5em}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-rightTitle{padding-right:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-rightTitle,.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:0}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-rightTitle,.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-leftTitle{padding-right:0}.mw-parser-output .ts-Скрытый_блок+.ts-Скрытый_блок,.mw-parser-output .ts-Скрытый_блок+link+.ts-Скрытый_блок{border-top-style:hidden}</style><div class="mw-collapsible mw-collapsed ts-Скрытый_блок ts-Скрытый_блок-gray ts-Скрытый_блок-rightHideLink" style=""><div class="ts-Скрытый_блок-title" style="">Вывод формул<div class="mw-collapsible-toggle-placeholder"></div></div><div class="mw-collapsible-content" style=""> <ul><li><b>Формула для чётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>:</b></li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690e4b9a0a60e41a8849b060439bd57e0be81595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.588ex; height:5.676ex;" alt="{\displaystyle n!!=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}"></span></dd></dl> <table class="wikitable"> <tbody><tr> <td> <dl><dd><b>Выведение формулы:</b></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}n!!&={\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot n} _{\color {Black}{\tfrac {n}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot n\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}}=\\&={2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>n</mi> <mo>!</mo> <mo>!</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#221E1F"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mspace width="thickmathspace" /> <mo>⋅<!-- ⋅ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thickmathspace" /> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> <mspace width="thickmathspace" /> </mrow> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}n!!&={\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot n} _{\color {Black}{\tfrac {n}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot n\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}}=\\&={2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b5774f507bbe520fd11ea8c850c6a638369260" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:59.919ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}n!!&={\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot n} _{\color {Black}{\tfrac {n}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot n\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n}{2}}}}}=\\&={2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!\end{aligned}}}"></span></dd></dl> </td></tr></tbody></table> <dl><dd><b>Пример</b>, иллюстрирующий использованное выше выведение формулы:</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}14!!&=2^{\frac {14}{2}}\cdot \left({\frac {14}{2}}\right)!=2^{7}\cdot 7!=\\&=(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)=\\&=(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)=\\&=2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14=645120\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn>14</mn> <mo>!</mo> <mo>!</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>14</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>14</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>!</mo> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mn>8</mn> <mo>⋅<!-- ⋅ --></mo> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <mn>12</mn> <mo>⋅<!-- ⋅ --></mo> <mn>14</mn> <mo>=</mo> <mn>645120</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}14!!&=2^{\frac {14}{2}}\cdot \left({\frac {14}{2}}\right)!=2^{7}\cdot 7!=\\&=(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)=\\&=(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)=\\&=2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14=645120\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c49198a8425da09e4be000c2ef664a62f6fde25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:51.643ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}14!!&=2^{\frac {14}{2}}\cdot \left({\frac {14}{2}}\right)!=2^{7}\cdot 7!=\\&=(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)=\\&=(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)=\\&=2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14=645120\end{aligned}}}"></span></dd></dl> <p><br /> </p> <ul><li><b>Формула для нечётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>:</b></li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74b819998493be2f4415cf56b06560f74b55cee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:19.822ex; height:9.176ex;" alt="{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"></span></dd></dl> <table class="wikitable"> <tbody><tr> <td> <dl><dd><b>Выведение формулы:</b></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}n!!&={\color {Gray}\underbrace {\color {Black}1\cdot 3\cdot 5\cdot \ldots \cdot n} _{\color {Black}{\frac {n+1}{2}}}}={\frac {{\color {Gray}\overbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} ^{\color {Black}{\frac {n-1}{2}}}}\cdot {\color {Gray}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot \ldots \cdot (n-2)\cdot n} ^{\color {Black}{\frac {n+1}{2}}}}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}=\\&={\frac {\color {Gray}\overbrace {\color {Black}1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot \ldots \cdot (n-2)\cdot {\color {OliveGreen}(n-1)}\cdot n} ^{\color {Black}n}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{(n-1)!!}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>n</mi> <mo>!</mo> <mo>!</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#221E1F"> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </mover> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> </mstyle> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </mover> </mstyle> </mrow> </mrow> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle mathcolor="#949698"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>2</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>4</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>6</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> </mstyle> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mi>n</mi> </mstyle> </mrow> </mover> </mstyle> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#221E1F"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}n!!&={\color {Gray}\underbrace {\color {Black}1\cdot 3\cdot 5\cdot \ldots \cdot n} _{\color {Black}{\frac {n+1}{2}}}}={\frac {{\color {Gray}\overbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} ^{\color {Black}{\frac {n-1}{2}}}}\cdot {\color {Gray}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot \ldots \cdot (n-2)\cdot n} ^{\color {Black}{\frac {n+1}{2}}}}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}=\\&={\frac {\color {Gray}\overbrace {\color {Black}1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot \ldots \cdot (n-2)\cdot {\color {OliveGreen}(n-1)}\cdot n} ^{\color {Black}n}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{(n-1)!!}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6109b0877e1920efe12e853096b55a14f5371a8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.656ex; margin-bottom: -0.182ex; width:87.338ex; height:30.843ex;" alt="{\displaystyle {\begin{aligned}n!!&={\color {Gray}\underbrace {\color {Black}1\cdot 3\cdot 5\cdot \ldots \cdot n} _{\color {Black}{\frac {n+1}{2}}}}={\frac {{\color {Gray}\overbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} ^{\color {Black}{\frac {n-1}{2}}}}\cdot {\color {Gray}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot \ldots \cdot (n-2)\cdot n} ^{\color {Black}{\frac {n+1}{2}}}}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}=\\&={\frac {\color {Gray}\overbrace {\color {Black}1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot \ldots \cdot (n-2)\cdot {\color {OliveGreen}(n-1)}\cdot n} ^{\color {Black}n}}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}}={\frac {n!}{(n-1)!!}}\end{aligned}}}"></span></dd> <dd>Таким образом можно показать связь между двойными факториалами двух соседних неотрицательных целых чисел через обычный факториал одного из них. Далее продолжим выведение формулы для двойного факториала нечётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>. Вернёмся на шаг назад (до возникновения в явном виде <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math">(<i>n</i>-1)!!</span>) и осуществим некоторые <a href="/wiki/%D0%A2%D0%BE%D0%B6%D0%B4%D0%B5%D1%81%D1%82%D0%B2%D0%BE_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Тождество (математика)">тождественные алгебраические преобразования</a> над знаменателем:</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}}=\\&={2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n-1}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#221E1F"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mrow> <mspace width="thickmathspace" /> <mo>⋅<!-- ⋅ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thickmathspace" /> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> </mrow> <mstyle mathcolor="#949698"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> </mstyle> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> </munder> </mstyle> </mfrac> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}}=\\&={2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n-1}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546b87d98460d66a29becc4eff9ae30bc05284e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.505ex; width:65.756ex; height:18.176ex;" alt="{\displaystyle {\begin{aligned}&{\color {Gray}\underbrace {\color {Black}2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)} _{\color {Black}{\frac {n-1}{2}}}}={\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}\;\cdot \;{\frac {\;2\cdot 4\cdot 6\cdot \ldots \cdot (n-1)\;}{\color {Gray}\underbrace {\color {OliveGreen}2\cdot 2\cdot 2\cdot \ldots \cdot 2} _{\color {Black}{\tfrac {n-1}{2}}}}}=\\&={2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left(1\cdot 2\cdot 3\cdot \ldots \cdot {\frac {n-1}{2}}\right)}=2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!\end{aligned}}}"></span></dd> <dd>Подставим полученное выражение для знаменателя обратно в формулу для <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511717d541dba5357928e8d8631f1b4d4f8d5b31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.688ex; height:2.176ex;" alt="{\displaystyle n!!}"></span>:</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74b819998493be2f4415cf56b06560f74b55cee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:19.822ex; height:9.176ex;" alt="{\displaystyle n!!={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}"></span></dd></dl> </td></tr></tbody></table> <p><b>Пример</b>, иллюстрирующий использованное выше выведение формулы: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}15!!&={\frac {15!}{2^{{\color {white}1}^{\!\!\!\!{\frac {15-1}{2}}}}\cdot \left({\frac {15-1}{2}}\right)!}}={\frac {15!}{2^{{\color {white}1}^{\!\!\!7}}\cdot 7!}}=\\&={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)}}} }=\\&={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)}}} }=\\&={\color {white}\overbrace {\color {Black}{\frac {1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot {\color {OliveGreen}8}\cdot 9\cdot {\color {OliveGreen}10}\cdot 11\cdot {\color {OliveGreen}12}\cdot 13\cdot {\color {OliveGreen}14}\cdot 15}{\color {OliveGreen}2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14}}} }=\\&={\color {white}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot 9\cdot 11\cdot 13\cdot 15} }=2027025\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn>15</mn> <mo>!</mo> <mo>!</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>15</mn> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>15</mn> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>15</mn> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>15</mn> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mn>1</mn> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mn>7</mn> </mrow> </msup> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>⋅<!-- ⋅ --></mo> <mn>8</mn> <mo>⋅<!-- ⋅ --></mo> <mn>9</mn> <mo>⋅<!-- ⋅ --></mo> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <mn>11</mn> <mo>⋅<!-- ⋅ --></mo> <mn>12</mn> <mo>⋅<!-- ⋅ --></mo> <mn>13</mn> <mo>⋅<!-- ⋅ --></mo> <mn>14</mn> <mo>⋅<!-- ⋅ --></mo> <mn>15</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> </mstyle> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>⋅<!-- ⋅ --></mo> <mn>8</mn> <mo>⋅<!-- ⋅ --></mo> <mn>9</mn> <mo>⋅<!-- ⋅ --></mo> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <mn>11</mn> <mo>⋅<!-- ⋅ --></mo> <mn>12</mn> <mo>⋅<!-- ⋅ --></mo> <mn>13</mn> <mo>⋅<!-- ⋅ --></mo> <mn>14</mn> <mo>⋅<!-- ⋅ --></mo> <mn>15</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> </mstyle> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>2</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>4</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>6</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>8</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>9</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>10</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>11</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>12</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>13</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="#3C8031"> <mn>14</mn> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>15</mn> </mrow> <mstyle mathcolor="#3C8031"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mn>8</mn> <mo>⋅<!-- ⋅ --></mo> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <mn>12</mn> <mo>⋅<!-- ⋅ --></mo> <mn>14</mn> </mstyle> </mfrac> </mrow> </mstyle> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> </mstyle> </mrow> <mo>=</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="white"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mstyle mathcolor="#221E1F"> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>⋅<!-- ⋅ --></mo> <mn>9</mn> <mo>⋅<!-- ⋅ --></mo> <mn>11</mn> <mo>⋅<!-- ⋅ --></mo> <mn>13</mn> <mo>⋅<!-- ⋅ --></mo> <mn>15</mn> </mstyle> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> </mstyle> </mrow> <mo>=</mo> <mn>2027025</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}15!!&={\frac {15!}{2^{{\color {white}1}^{\!\!\!\!{\frac {15-1}{2}}}}\cdot \left({\frac {15-1}{2}}\right)!}}={\frac {15!}{2^{{\color {white}1}^{\!\!\!7}}\cdot 7!}}=\\&={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)}}} }=\\&={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)}}} }=\\&={\color {white}\overbrace {\color {Black}{\frac {1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot {\color {OliveGreen}8}\cdot 9\cdot {\color {OliveGreen}10}\cdot 11\cdot {\color {OliveGreen}12}\cdot 13\cdot {\color {OliveGreen}14}\cdot 15}{\color {OliveGreen}2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14}}} }=\\&={\color {white}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot 9\cdot 11\cdot 13\cdot 15} }=2027025\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa1a584546d2eff70aa320ee8a386dd05aec7d33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -17.338ex; width:58.677ex; height:35.843ex;" alt="{\displaystyle {\begin{aligned}15!!&={\frac {15!}{2^{{\color {white}1}^{\!\!\!\!{\frac {15-1}{2}}}}\cdot \left({\frac {15-1}{2}}\right)!}}={\frac {15!}{2^{{\color {white}1}^{\!\!\!7}}\cdot 7!}}=\\&={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7)}}} }=\\&={\color {white}\overbrace {\color {Black}{\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{(2\cdot 1)(2\cdot 2)(2\cdot 3)(2\cdot 4)(2\cdot 5)(2\cdot 6)(2\cdot 7)}}} }=\\&={\color {white}\overbrace {\color {Black}{\frac {1\cdot {\color {OliveGreen}2}\cdot 3\cdot {\color {OliveGreen}4}\cdot 5\cdot {\color {OliveGreen}6}\cdot 7\cdot {\color {OliveGreen}8}\cdot 9\cdot {\color {OliveGreen}10}\cdot 11\cdot {\color {OliveGreen}12}\cdot 13\cdot {\color {OliveGreen}14}\cdot 15}{\color {OliveGreen}2\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 14}}} }=\\&={\color {white}\overbrace {\color {Black}1\cdot 3\cdot 5\cdot 7\cdot 9\cdot 11\cdot 13\cdot 15} }=2027025\end{aligned}}}"></span></dd></dl> </div></div> <p>Осуществив замену <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bd8a6ccffc0438075ec3661f22fd88da9085491" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.867ex; height:2.176ex;" alt="{\displaystyle n=2k}"></span> для чётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2k+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2k+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8d78e073288d28d26412ff8156603893b649e4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.87ex; height:2.343ex;" alt="{\displaystyle n=2k+1}"></span> для нечётного <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> соответственно, где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> — целое неотрицательное число, получим: </p> <ul><li>для чётного числа:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mi>k</mi> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mn>2</mn> <mi>i</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mi>k</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21f8dcc014d46ec022736160ffc0f8b19a45e5b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.183ex; height:7.343ex;" alt="{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!}"></span></dd></dl> <ul><li>для нечётного числа:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cf8ec16672e3b1a615dd7bb8e7abb6e1e1f822e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:60.303ex; height:7.343ex;" alt="{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}}"></span></dd></dl> <p>По договорённости: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!!=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>!</mo> <mo>!</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0!!=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d76cc1cbbe956bc23fea02d7e7be73dfcf4a93d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.717ex; height:2.176ex;" alt="{\displaystyle 0!!=1}"></span>. Также это равенство выполняется естественным образом: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>!</mo> <mo>!</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>!</mo> <mo>=</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8f04f7cd2ba6c47b46c496de283d21392550b22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:22.623ex; height:2.676ex;" alt="{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1}"></span></dd></dl> <p>Двойной факториал, так же, как и обычный факториал, определён только для целых неотрицательных чисел. </p><p>Последовательность значений <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i>!!</span> начинается так<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup>: </p> <dl><dd>1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10 395, 46 080, 135 135, 645 120, 2 027 025, 10 321 920, 34 459 425, 185 794 560, 654 729 075, 3 715 891 200, 13 749 310 575, 81 749 606 400, 316 234 143 225, 1 961 990 553 600, 7 905 853 580 625, 51 011 754 393 600, …</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Кратный_факториал"><span id=".D0.9A.D1.80.D0.B0.D1.82.D0.BD.D1.8B.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Кратный факториал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=12" title="Редактировать раздел «Кратный факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=12" title="Редактировать код раздела «Кратный факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i></span>-кратный факториал</b> числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> обозначается <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>!</mo> <mo>!</mo> <mo>…<!-- … --></mo> <mo>!</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munder> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9958f81e973e1bb474cc600a38b82a61a0900ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; margin-right: -0.028ex; width:6.473ex; height:5.509ex;" alt="{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}"></span> и определяется следующим образом. Пусть число <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> представимо в виде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=mk-r,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>m</mi> <mi>k</mi> <mo>−<!-- − --></mo> <mi>r</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=mk-r,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09efc8e99d03d50dccc4bd17ba78b502022604aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.281ex; height:2.509ex;" alt="{\displaystyle n=mk-r,}"></span> где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec3a59bfa1fddae9c292b0a08f06e0d43a9aa257" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.249ex; height:2.509ex;" alt="{\displaystyle k\in \mathbb {Z} ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in \{0,1,\ldots ,m-1\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in \{0,1,\ldots ,m-1\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe630e7273a0d887b6c6d1fff748076d19f2fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.441ex; height:2.843ex;" alt="{\displaystyle r\in \{0,1,\ldots ,m-1\}.}"></span> Тогда<sup id="cite_ref-avantaplus_6-0" class="reference"><a href="#cite_note-avantaplus-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>!</mo> <mo>!</mo> <mo>…<!-- … --></mo> <mo>!</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munder> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>m</mi> <mi>i</mi> <mo>−<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7667522721b3d4d995972ce0a36cc3ac5b9fa43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:21.055ex; height:8.009ex;" alt="{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)}"></span></dd></dl> <p>Обычный и двойной факториалы являются частными случаями <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i></span>-кратного факториала для <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i> = 1</span> и <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i> = 2</span> соответственно. </p><p>Кратный факториал связан с гамма-функцией следующим соотношением<sup id="cite_ref-prooflink_7-0" class="reference"><a href="#cite_note-prooflink-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>!</mo> <mo>!</mo> <mo>…<!-- … --></mo> <mo>!</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munder> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>m</mi> <mi>i</mi> <mo>−<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mi>m</mi> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mi>m</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9fb2036768642ccdad817054f83caccfe434ea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:44.747ex; height:8.009ex;" alt="{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.}"></span></dd></dl> <p>Также кратный факториал <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>!</mo> <mo>!</mo> <mo>…<!-- … --></mo> <mo>!</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munder> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9958f81e973e1bb474cc600a38b82a61a0900ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; margin-right: -0.028ex; width:6.473ex; height:5.509ex;" alt="{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}"></span> возможно записывать в сокращенном виде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!_{(m)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <msub> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!_{(m)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/069e615adcba6252cfd0462e72161ab773bbff01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.996ex; height:3.009ex;" alt="{\displaystyle n!_{(m)}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Неполный_факториал"><span id=".D0.9D.D0.B5.D0.BF.D0.BE.D0.BB.D0.BD.D1.8B.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Неполный факториал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=13" title="Редактировать раздел «Неполный факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=13" title="Редактировать код раздела «Неполный факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Убывающий_факториал"><span id=".D0.A3.D0.B1.D1.8B.D0.B2.D0.B0.D1.8E.D1.89.D0.B8.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Убывающий факториал</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=14" title="Редактировать раздел «Убывающий факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=14" title="Редактировать код раздела «Убывающий факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b><a href="/wiki/%D0%A3%D0%B1%D1%8B%D0%B2%D0%B0%D1%8E%D1%89%D0%B8%D0%B5_%D0%B8_%D0%B2%D0%BE%D0%B7%D1%80%D0%B0%D1%81%D1%82%D0%B0%D1%8E%D1%89%D0%B8%D0%B5_%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB%D1%8B" title="Убывающие и возрастающие факториалы">Убывающим факториалом</a></b> называется выражение </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>k</mi> <mo>_<!-- _ --></mo> </munder> </mrow> </msup> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mrow> </msup> <mo>=</mo> <mi>n</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001e78ea0bc33bb150e1628f7af1d7d03d5ad1f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:70.285ex; height:7.009ex;" alt="{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i}"></span>.</dd></dl> <p>Например: </p> <dl><dd><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> = 7; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>k</i></span> = 4,</dd> <dd>(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i> − <i>k</i></span>) + 1 = 4,</dd> <dd>n<sup><u>k</u></sup> = 7 • 6 • 5 • 4 = 840.</dd></dl> <p>Убывающий факториал даёт число <a href="/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%89%D0%B5%D0%BD%D0%B8%D0%B5" title="Размещение">размещений</a> из <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> по <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>k</i></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Возрастающий_факториал"><span id=".D0.92.D0.BE.D0.B7.D1.80.D0.B0.D1.81.D1.82.D0.B0.D1.8E.D1.89.D0.B8.D0.B9_.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Возрастающий факториал</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=15" title="Редактировать раздел «Возрастающий факториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=15" title="Редактировать код раздела «Возрастающий факториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%A1%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB_%D0%9F%D0%BE%D1%85%D0%B3%D0%B0%D0%BC%D0%BC%D0%B5%D1%80%D0%B0" class="mw-redirect" title="Символ Похгаммера">Символ Похгаммера</a></b></div> <p><b>Возрастающим факториалом</b> называется выражение </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </msup> <mo>=</mo> <mi>n</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo>…<!-- … --></mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>i</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc738894089d8dc4372ae44fc4b44ac9fd3ef3a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:67.433ex; height:7.676ex;" alt="{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Праймориал_или_примориал"><span id=".D0.9F.D1.80.D0.B0.D0.B9.D0.BC.D0.BE.D1.80.D0.B8.D0.B0.D0.BB_.D0.B8.D0.BB.D0.B8_.D0.BF.D1.80.D0.B8.D0.BC.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Праймориал или примориал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=16" title="Редактировать раздел «Праймориал или примориал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=16" title="Редактировать код раздела «Праймориал или примориал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%9F%D1%80%D0%B0%D0%B9%D0%BC%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Праймориал">Праймориал</a></b></div> <p><b>Праймориал</b> или <b>примориал</b> (<a href="/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" title="Английский язык">англ.</a> <span lang="en" style="font-style:italic;">primorial</span>) числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> обозначается <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>p<sub>n</sub></i>#</span> и определяется как произведение <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> первых простых чисел. Например, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mi mathvariant="normal">#<!-- # --></mi> <mo>=</mo> <mn>2</mn> <mo>×<!-- × --></mo> <mn>3</mn> <mo>×<!-- × --></mo> <mn>5</mn> <mo>×<!-- × --></mo> <mn>7</mn> <mo>×<!-- × --></mo> <mn>11</mn> <mo>=</mo> <mn>2310</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cf2d1e6a00a380d59cb8326eee731e0bf5cf7f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:33.432ex; height:2.509ex;" alt="{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310}"></span>.</dd></dl> <p>Иногда праймориалом называют число <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\#}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi mathvariant="normal">#<!-- # --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\#}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/167c3481839df4ace6689a25e170c5e0c0d5551e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.331ex; height:2.509ex;" alt="{\displaystyle n\#}"></span>, определяемое как произведение всех <a href="/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Простое число">простых чисел</a>, не превышающих заданное <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math" style="font-style:italic;">n</span>. </p><p>Последовательность праймориалов (включая <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textstyle {1\#\equiv 1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi mathvariant="normal">#<!-- # --></mi> <mo>≡<!-- ≡ --></mo> <mn>1</mn> </mrow> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textstyle {1\#\equiv 1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72bed1fe8c4d43f71652d4b801857732f615bfe3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.359ex; height:2.509ex;" alt="{\displaystyle {\textstyle {1\#\equiv 1}}}"></span>) начинается так<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup>: </p> <dl><dd><a href="/wiki/1_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="1 (число)">1</a>, <a href="/wiki/2_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="2 (число)">2</a>, <a href="/wiki/6_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="6 (число)">6</a>, <a href="/wiki/30_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="30 (число)">30</a>, <a href="/wiki/210_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="210 (число)">210</a>, <a href="/w/index.php?title=2310_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)&action=edit&redlink=1" class="new" title="2310 (число) (страница отсутствует)">2310</a>, 30 030, 510 510, 9 699 690, 223 092 870, 6 469 693 230, 200 560 490 130, 7 420 738 134 810, 304 250 263 527 210, 13 082 761 331 670 030, 614 889 782 588 491 400, 32 589 158 477 190 046 000, 1 922 760 350 154 212 800 000, …</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Фибонориал_или_фибоначчиал"><span id=".D0.A4.D0.B8.D0.B1.D0.BE.D0.BD.D0.BE.D1.80.D0.B8.D0.B0.D0.BB_.D0.B8.D0.BB.D0.B8_.D1.84.D0.B8.D0.B1.D0.BE.D0.BD.D0.B0.D1.87.D1.87.D0.B8.D0.B0.D0.BB"></span>Фибонориал или фибоначчиал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=17" title="Редактировать раздел «Фибонориал или фибоначчиал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=17" title="Редактировать код раздела «Фибонориал или фибоначчиал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Произведение нескольких первых чисел Фибоначчи. Записывается <i>n</i>!<sub><i>F</i></sub>. </p><p>Например, : 6!<sub><i>F</i></sub> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\times 1\times 2\times 3\times 5\times 8=240}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>×<!-- × --></mo> <mn>1</mn> <mo>×<!-- × --></mo> <mn>2</mn> <mo>×<!-- × --></mo> <mn>3</mn> <mo>×<!-- × --></mo> <mn>5</mn> <mo>×<!-- × --></mo> <mn>8</mn> <mo>=</mo> <mn>240</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\times 1\times 2\times 3\times 5\times 8=240}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45ded18a22ea8de155295870c3d3168d19f704ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:27.763ex; height:2.176ex;" alt="{\displaystyle 1\times 1\times 2\times 3\times 5\times 8=240}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Суперфакториалы"><span id=".D0.A1.D1.83.D0.BF.D0.B5.D1.80.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB.D1.8B"></span>Суперфакториалы</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=18" title="Редактировать раздел «Суперфакториалы»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=18" title="Редактировать код раздела «Суперфакториалы»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%D0%9D%D0%B5%D0%B9%D0%BB_%D0%A1%D0%BB%D0%BE%D0%B0%D0%BD" class="mw-redirect" title="Нейл Слоан">Нейл Слоан</a> и <span data-interwiki-lang="en" data-interwiki-article="Simon Plouffe"><a href="/w/index.php?title=%D0%A1%D0%B8%D0%BC%D0%BE%D0%BD_%D0%9F%D0%BB%D1%83%D1%84%D1%84%D1%8D&action=edit&redlink=1" class="new" title="Симон Плуффэ (страница отсутствует)">Симон Плуффэ</a></span><sup class="noprint" style="font-style:normal; font-weight:normal;"><a href="https://en.wikipedia.org/wiki/Simon_Plouffe" class="extiw" title="en:Simon Plouffe"><span title="Simon Plouffe — версия статьи «Симон Плуффэ» на английском языке">[англ.]</span></a></sup> в <a href="/wiki/1995_%D0%B3%D0%BE%D0%B4" title="1995 год">1995 году</a> определили <b>суперфакториал</b> как произведение первых <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> факториалов. Согласно этому определению, суперфакториал четырёх равен </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sf</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>!</mo> <mo>×<!-- × --></mo> <mn>2</mn> <mo>!</mo> <mo>×<!-- × --></mo> <mn>3</mn> <mo>!</mo> <mo>×<!-- × --></mo> <mn>4</mn> <mo>!</mo> <mo>=</mo> <mn>288</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9f7980110eb3dbc3c437c62965df2b8b3bac937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.043ex; height:2.843ex;" alt="{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288}"></span></dd></dl> <p>(поскольку устоявшегося обозначения нет, используется функциональное). </p><p>В общем </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sf</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>k</mi> <mo>!</mo> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>⋯<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57a16bdd836d57633ce95b089c88dfdd80f1003c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:60.599ex; height:6.843ex;" alt="{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.}"></span></dd></dl> <p>Последовательность суперфакториалов чисел <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geqslant 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>⩾<!-- ⩾ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geqslant 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0197a6a3f5aa0b8b9e4cc05f849b97c85c8f781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geqslant 0}"></span> начинается так<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup>: </p> <dl><dd>1, 1, 2, 12, 288, 34 560, 24 883 200, 125 411 328 000, 5 056 584 744 960 000, 1 834 933 472 251 084 800 000, 6 658 606 584 104 737 000 000 000 000, 265 790 267 296 391 960 000 000 000 000 000 000, 127 313 963 299 399 430 000 000 000 000 000 000 000 000 000, …</dd></dl> <p>Идея была обобщена в <a href="/wiki/2000_%D0%B3%D0%BE%D0%B4" title="2000 год">2000 году</a> <span data-interwiki-lang="en" data-interwiki-article="Henry Bottomley"><a href="/w/index.php?title=%D0%93%D0%B5%D0%BD%D1%80%D0%B8_%D0%91%D0%BE%D1%82%D1%82%D0%BE%D0%BC%D0%BB%D0%B8&action=edit&redlink=1" class="new" title="Генри Боттомли (страница отсутствует)">Генри Боттомли</a></span><sup class="noprint" style="font-style:normal; font-weight:normal;"><a href="https://en.wikipedia.org/wiki/Henry_Bottomley" class="extiw" title="en:Henry Bottomley"><span title="Henry Bottomley — версия статьи «Генри Боттомли» на английском языке">[англ.]</span></a></sup>, что привело к <b>гиперфакториалам</b> (<a href="/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" title="Английский язык">англ.</a> <span lang="en" style="font-style:italic;">Hyperfactorial</span>), которые являются произведением первых <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> суперфакториалов. Последовательность гиперфакториалов чисел <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geqslant 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>⩾<!-- ⩾ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geqslant 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0197a6a3f5aa0b8b9e4cc05f849b97c85c8f781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geqslant 0}"></span> начинается так<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup>: </p> <dl><dd>1, 1, 2, 24, 6912, 238 878 720, 5 944 066 965 504 000, 745 453 331 864 786 800 000 000 000, 3 769 447 945 987 085 600 000 000 000 000 000 000 000 000, 6 916 686 207 999 801 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000, …</dd></dl> <p>Продолжая <a href="/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%80%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0" title="Рекуррентная формула">рекуррентно</a>, можно определить <b>факториал кратного уровня</b>, или <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i></span>-уровневый факториал числа <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>, как произведение (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>m</i></span> − 1)-уровневых факториалов чисел от 1 до <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>, то есть </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {mf} (n,m)=\operatorname {mf} (n-1,m)\operatorname {mf} (n,m-1)=\prod _{k=1}^{n}k^{n-k+m-1 \choose n-k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>mf</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>mf</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mi>mf</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {mf} (n,m)=\operatorname {mf} (n-1,m)\operatorname {mf} (n,m-1)=\prod _{k=1}^{n}k^{n-k+m-1 \choose n-k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c0b23ee5f2e92bc16e360ff4d4bbc315292a2af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:55.226ex; height:6.843ex;" alt="{\displaystyle \operatorname {mf} (n,m)=\operatorname {mf} (n-1,m)\operatorname {mf} (n,m-1)=\prod _{k=1}^{n}k^{n-k+m-1 \choose n-k},}"></span></dd></dl> <p>где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {mf} (n,0)=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>mf</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {mf} (n,0)=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e79f349af84af8525f0a6c06b7b466d9b52240be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.541ex; height:2.843ex;" alt="{\displaystyle \operatorname {mf} (n,0)=n}"></span> для <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a6a5d982d54202a14f111cb8a49210501b2c96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n>0}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {mf} (0,m)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>mf</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {mf} (0,m)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58c9ab8a327093b531a8c91ad59bca187bfcb389" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.602ex; height:2.843ex;" alt="{\displaystyle \operatorname {mf} (0,m)=1.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Субфакториал"><span id=".D0.A1.D1.83.D0.B1.D1.84.D0.B0.D0.BA.D1.82.D0.BE.D1.80.D0.B8.D0.B0.D0.BB"></span>Субфакториал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=19" title="Редактировать раздел «Субфакториал»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=19" title="Редактировать код раздела «Субфакториал»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote navigation-not-searchable">Основная статья: <b><a href="/wiki/%D0%A1%D1%83%D0%B1%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Субфакториал">Субфакториал</a></b></div> <p><b>Субфакториал</b> !<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span> определяется как количество <a href="/wiki/%D0%91%D0%B5%D1%81%D0%BF%D0%BE%D1%80%D1%8F%D0%B4%D0%BE%D0%BA_(%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0)" title="Беспорядок (перестановка)">беспорядков</a> порядка <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>, то есть перестановок <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r117753614"><span class="ts-math"><i>n</i></span>-элементного <a href="/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Множество">множества</a> без <a href="/wiki/%D0%9D%D0%B5%D0%BF%D0%BE%D0%B4%D0%B2%D0%B8%D0%B6%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D1%87%D0%BA%D0%B0" title="Неподвижная точка">неподвижных точек</a>. </p> <div class="mw-heading mw-heading2"><h2 id="См._также"><span id=".D0.A1.D0.BC._.D1.82.D0.B0.D0.BA.D0.B6.D0.B5"></span>См. также</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=20" title="Редактировать раздел «См. также»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=20" title="Редактировать код раздела «См. также»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r141520016">.mw-parser-output .ts-Родственный_проект{background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);font-size:90%;margin:0 0 1em;padding:.4em;max-width:19em;width:19em;line-height:1.5}.mw-parser-output .ts-Родственный_проект th,.mw-parser-output .ts-Родственный_проект td{padding:.2em 0;vertical-align:middle}.mw-parser-output .ts-Родственный_проект th+td{padding-left:.4em}@media(min-width:720px){.mw-parser-output .ts-Родственный_проект{clear:right;float:right;width:19em;margin-left:1em}}</style> <table role="presentation" class="metadata plainlinks ts-Родственный_проект noprint ruwikiWikimediaNavigation"> <tbody><tr> <th style="width:10%;"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Notification-icon-Wiktionary-logo.svg/24px-Notification-icon-Wiktionary-logo.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Notification-icon-Wiktionary-logo.svg/36px-Notification-icon-Wiktionary-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Notification-icon-Wiktionary-logo.svg/48px-Notification-icon-Wiktionary-logo.svg.png 2x" data-file-width="30" data-file-height="30" /></span></span> </th> <td>В <a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D0%B0%D1%80%D1%8C" title="Викисловарь">Викисловаре</a> есть статья «<span class="wikidict-ref"><b><a href="https://ru.wiktionary.org/wiki/%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" class="extiw" title="wikt:факториал">факториал</a></b></span>» </td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r141520016"> <table role="presentation" class="metadata plainlinks ts-Родственный_проект noprint ruwikiWikimediaNavigation"> <tbody><tr> <th style="width:10%;"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Notification-icon-Wikibooks-logo.svg/24px-Notification-icon-Wikibooks-logo.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Notification-icon-Wikibooks-logo.svg/36px-Notification-icon-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Notification-icon-Wikibooks-logo.svg/48px-Notification-icon-Wikibooks-logo.svg.png 2x" data-file-width="30" data-file-height="30" /></span></span> </th> <td>Имеется <a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D1%83%D1%87%D0%B5%D0%B1%D0%BD%D0%B8%D0%BA" title="Викиучебник">викиучебник</a> по теме <span class="wikibooks-ref"><b>«<a href="https://ru.wikibooks.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%BE%D0%B2/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" class="extiw" title="b:Реализации алгоритмов/Факториал">Реализации алгоритмов/Факториал</a>»</b></span> </td></tr></tbody></table> <ul><li><a href="/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%BE%D0%BD" title="Факторион">Факторион</a></li> <li><a href="/wiki/%D0%94%D0%B2%D0%BE%D0%B9%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BA%D1%81%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Двойная экспоненциальная функция">Двойная экспоненциальная функция</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Примечания"><span id=".D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.87.D0.B0.D0.BD.D0.B8.D1.8F"></span>Примечания</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit&section=21" title="Редактировать раздел «Примечания»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit&section=21" title="Редактировать код раздела «Примечания»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns" style="list-style-type: decimal;"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">Коэффициенты этого разложения дают последовательности <a href="//oeis.org/A001163" class="extiw" title="oeis:A001163">A001163</a> (числители) и <a href="//oeis.org/A001164" class="extiw" title="oeis:A001164">A001164</a> (знаменатели)</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><span class="citation"><span lang="und"><a rel="nofollow" class="external text" href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Kramp.html">Крамп, Кристиан</a></span><span class="hidden-ref" style="display:none;">  <small class="ref-info" style="cursor:help;" title="на неопределённом языке">(неопр.)</small></span>. Дата обращения: 19 сентября 2016. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160919225318/http://www-history.mcs.st-andrews.ac.uk/Biographies/Kramp.html">Архивировано</a> 19 сентября 2016 года.</span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r141305934">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a::after,.mw-parser-output .id-lock-limited a::after,.mw-parser-output .id-lock-registration a::after,.mw-parser-output .id-lock-subscription a::after,.mw-parser-output .cs1-ws-icon a::after{content:"";width:1.1em;height:1.1em;display:inline-block;vertical-align:middle;background-position:center;background-repeat:no-repeat;background-size:contain}.mw-parser-output .id-lock-free.id-lock-free a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")}.mw-parser-output .id-lock-limited.id-lock-limited a::after,.mw-parser-output .id-lock-registration.id-lock-registration a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")}.mw-parser-output .id-lock-subscription.id-lock-subscription a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")}.mw-parser-output .cs1-ws-icon a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}html.skin-theme-clientpref-night .mw-parser-output .id-lock-free a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-limited a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-registration a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-subscription a::after{filter:invert(1)hue-rotate(180deg)}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}html.skin-theme-clientpref-os .mw-parser-output .id-lock-free a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-limited a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-registration a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-subscription a::after{filter:invert(1)hue-rotate(180deg)}}</style><cite id="CITEREFPearson1924" class="citation cs2">Pearson, Karl (1924), "Historical note on the origin of the normal curve of errors", <i>Biometrika</i>, <b>16</b>: 402–404 [p. 403], <a href="/wiki/%D0%A6%D0%B8%D1%84%D1%80%D0%BE%D0%B2%D0%BE%D0%B9_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80_%D0%BE%D0%B1%D1%8A%D0%B5%D0%BA%D1%82%D0%B0" title="Цифровой идентификатор объекта">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2331714">10.2307/2331714</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biometrika&rft.atitle=Historical+note+on+the+origin+of+the+normal+curve+of+errors&rft.volume=16&rft.pages=402-404+p.+403&rft.date=1924&rft_id=info%3Adoi%2F10.2307%2F2331714&rft.aulast=Pearson&rft.aufirst=Karl&rfr_id=info%3Asid%2Fru.wikipedia.org%3A%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" class="Z3988"></span>: «Стирлинг лишь показал, что арифметическая константа в формуле Муавра равна <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a9b009153bbbb3273a7e7279cb6b084fd650a80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.43ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2\pi }}}"></span>. Я считаю, что это не делает его автором теоремы»</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r141305934"><span class="citation no-wikidata" data-wikidata-property-id="P1343"><i><a href="/wiki/%D0%94%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%B4_%D0%9A%D0%BD%D1%83%D1%82" class="mw-redirect" title="Дональд Кнут">Дональд Кнут</a>.</i> Искусство программирования, том I. Основные алгоритмы. — <abbr title="Москва">М.</abbr>: <a href="/wiki/%D0%9C%D0%B8%D1%80_(%D0%B8%D0%B7%D0%B4%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%BE)" title="Мир (издательство)">Мир</a>, 1976. — С. 79—81. — 736 с.</span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">Последовательность <a href="//oeis.org/A006882" class="extiw" title="oeis:A006882">A006882</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a></span> </li> <li id="cite_note-avantaplus-6"><span class="mw-cite-backlink"><a href="#cite_ref-avantaplus_6-0">↑</a></span> <span class="reference-text">«Энциклопедия для детей» Аванта+. Математика.</span> </li> <li id="cite_note-prooflink-7"><span class="mw-cite-backlink"><a href="#cite_ref-prooflink_7-0">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=product+%28m*i-r%29%2C+i%3D1..k">wolframalpha.com</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131101145848/http://www.wolframalpha.com/input/?i=product+%28m*i-r%29%2C+i%3D1..k">Архивная копия</a> от 1 ноября 2013 на <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text">Последовательность <a href="//oeis.org/A002110" class="extiw" title="oeis:A002110">A002110</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text">Последовательность <a href="//oeis.org/A000178" class="extiw" title="oeis:A000178">A000178</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text">Последовательность <a href="//oeis.org/A055462" class="extiw" title="oeis:A055462">A055462</a> в <a href="/wiki/%D0%9E%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_%D1%86%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Онлайн-энциклопедия целочисленных последовательностей">OEIS</a></span> </li> </ol></div></div> <div role="navigation" class="navbox" aria-labelledby="Математические_знаки" data-name="Математические знаки"><table class="nowraplinks hlist hlist-items-nowrap collapsible collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="colgroup" class="navbox-title" colspan="2"><span class="navbox-gear" style="float:left;text-align:left;width:5em;margin-right:0.5em"><span class="noprint skin-invert-image" typeof="mw:File"><a href="/wiki/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%B7%D0%BD%D0%B0%D0%BA%D0%B8" title="Перейти к шаблону «Математические знаки»"><img alt="Перейти к шаблону «Математические знаки»" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/14px-Wikipedia_interwiki_section_gear_icon.svg.png" decoding="async" width="14" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/21px-Wikipedia_interwiki_section_gear_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/28px-Wikipedia_interwiki_section_gear_icon.svg.png 2x" data-file-width="14" data-file-height="14" /></a></span></span><div id="Математические_знаки" style="font-size:114%;margin:0 5em"><a href="/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%BE%D0%B1%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D1%8F" title="Математические обозначения">Математические знаки</a></div></th></tr><tr><td class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%9F%D0%BB%D1%8E%D1%81" title="Плюс">Плюс</a> (<span style="padding:0 2px;"><b>+</b></span>)</li> <li><a href="/wiki/%D0%9C%D0%B8%D0%BD%D1%83%D1%81" title="Минус">Минус</a> (<span style="padding:0 2px;"><b>−</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D1%83%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F" title="Знак умножения">Знак умножения</a> (<span style="padding:0 2px;"><b>·</b> или <b>×</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F" title="Знак деления">Знак деления</a> (<span style="padding:0 2px;"><b>:</b> или <b>/</b></span>)</li> <li><a href="/wiki/%D0%9E%D0%B1%D0%B5%D0%BB%D1%8E%D1%81" title="Обелюс">Обелюс</a> (<span style="padding:0 2px;"><b>÷</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%BA%D0%BE%D1%80%D0%BD%D1%8F" title="Знак корня">Знак корня</a> (<span style="padding:0 2px;"><b>√</b></span>)</li> <li><a class="mw-selflink selflink">Факториал</a> (<span style="padding:0 2px;"><b>!</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%B0" title="Знак интеграла">Знак интеграла</a> (<span style="padding:0 2px;"><b>∫</b></span>)</li> <li><a href="/wiki/%D0%9D%D0%B0%D0%B1%D0%BB%D0%B0" title="Набла">Набла</a> (<span style="padding:0 2px;"><b>∇</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%B0" title="Знак равенства">Знак равенства</a> (<span style="padding:0 2px;"><b>=</b>, <b>≈</b>, <b>≡</b> и др.</span>)</li> <li><a href="/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Неравенство">Знаки неравенства</a> (<span style="padding:0 2px;"><b>≠</b>, <b>></b>, <b><</b> и др.</span>)</li> <li><a href="/wiki/%D0%9F%D1%80%D0%BE%D0%BF%D0%BE%D1%80%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Пропорциональность">Пропорциональность</a> (<span style="padding:0 2px;"><b>∝</b></span>)</li> <li><a href="/wiki/%D0%A1%D0%BA%D0%BE%D0%B1%D0%BA%D0%B8" title="Скобки">Скобки</a> (<span style="padding:0 2px;"><b>( )</b>, <b>[ ]</b>, <b>⌈ ⌉</b>, <b>⌊ ⌋</b>, <b>{ }</b>, <b>⟨ ⟩</b></span>)</li> <li><a href="/wiki/%D0%92%D0%B5%D1%80%D1%82%D0%B8%D0%BA%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%87%D0%B5%D1%80%D1%82%D0%B0" title="Вертикальная черта">Вертикальная черта</a> (<span style="padding:0 2px;"><b>|</b></span>)</li> <li><a href="/wiki/%D0%9A%D0%BE%D1%81%D0%B0%D1%8F_%D1%87%D0%B5%D1%80%D1%82%D0%B0" title="Косая черта">Косая черта, слеш</a> (<span style="padding:0 2px;"><b>/</b></span>)</li> <li><a href="/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D0%BA%D0%BE%D1%81%D0%B0%D1%8F_%D1%87%D0%B5%D1%80%D1%82%D0%B0" title="Обратная косая черта">Обратная косая черта, бэкслеш</a> (<span style="padding:0 2px;"><b>\</b></span>)</li> <li><a href="/wiki/%D0%A1%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB_%D0%B1%D0%B5%D1%81%D0%BA%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Символ бесконечности">Знак бесконечности</a> (<span style="padding:0 2px;"><b>∞</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%B3%D1%80%D0%B0%D0%B4%D1%83%D1%81%D0%B0" title="Знак градуса">Знак градуса</a> (<span style="padding:0 2px;"><b>°</b></span>)</li> <li><a href="/wiki/%D0%A8%D1%82%D1%80%D0%B8%D1%85_(%D0%BF%D0%B8%D1%81%D1%8C%D0%BC%D0%BE)" title="Штрих (письмо)">Штрих</a> (<span style="padding:0 2px;"><b>′</b>, <b>″</b>, <b>‴</b>, <b>⁗</b></span>)</li> <li><a href="/wiki/%D0%97%D0%B2%D1%91%D0%B7%D0%B4%D0%BE%D1%87%D0%BA%D0%B0_(%D1%82%D0%B8%D0%BF%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D0%BA%D0%B0)" title="Звёздочка (типографика)">Звёздочка</a> (<span style="padding:0 2px;"><b>*</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D0%BD%D1%82%D0%B0" title="Знак процента">Процент</a> (<span style="padding:0 2px;"><b>%</b></span>)</li> <li><a href="/wiki/%D0%9F%D1%80%D0%BE%D0%BC%D0%B8%D0%BB%D0%BB%D0%B5" title="Промилле">Промилле</a> (<span style="padding:0 2px;"><b>‰</b></span>)</li> <li><a href="/wiki/%D0%A2%D0%B8%D0%BB%D1%8C%D0%B4%D0%B0" title="Тильда">Тильда</a> (<span style="padding:0 2px;"><b>~</b></span>)</li> <li><a href="/wiki/%D0%9A%D0%B0%D1%80%D0%B5%D1%82" title="Карет">Карет</a> (<span style="padding:0 2px;"><b>^</b></span>)</li> <li><a href="/wiki/%D0%A6%D0%B8%D1%80%D0%BA%D1%83%D0%BC%D1%84%D0%BB%D0%B5%D0%BA%D1%81" title="Циркумфлекс">Циркумфлекс</a> (<span style="padding:0 2px;"><b>ˆ</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%BF%D0%BB%D1%8E%D1%81-%D0%BC%D0%B8%D0%BD%D1%83%D1%81" title="Знак плюс-минус">Плюс-минус</a> (<span style="padding:0 2px;"><b>±</b></span>)</li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA_%D0%BF%D0%BB%D1%8E%D1%81-%D0%BC%D0%B8%D0%BD%D1%83%D1%81#Знак_минус-плюс" title="Знак плюс-минус">Знак минус-плюс</a> (<span style="padding:0 2px;"><b>∓</b></span>)</li> <li><a href="/wiki/%D0%94%D0%B5%D1%81%D1%8F%D1%82%D0%B8%D1%87%D0%BD%D1%8B%D0%B9_%D1%80%D0%B0%D0%B7%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C" title="Десятичный разделитель">Десятичный разделитель</a> (<span style="padding:0 2px;"><b>,</b> или <b>.</b></span>)</li> <li><a href="/wiki/%D0%A1%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB_%D0%BA%D0%BE%D0%BD%D1%86%D0%B0_%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%B0" title="Символ конца доказательства">Символ конца доказательства</a> (<span style="padding:0 2px;"><b>∎</b></span>)</li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D1%81%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB%D0%BE%D0%B2" title="Таблица математических символов">Таблица математических символов</a></li> <li><a href="/wiki/%D0%98%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D0%BE%D0%B1%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D0%B9" title="История математических обозначений">История математических обозначений</a></li></ul> </div></td></tr></tbody></table></div> <div role="navigation" class="navbox" aria-labelledby="Последовательности_и_ряды" data-name="Последовательности и ряды"><table class="nowraplinks collapsible collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="colgroup" class="navbox-title" colspan="2"><span class="navbox-gear" style="float:left;text-align:left;width:5em;margin-right:0.5em"><span class="noprint skin-invert-image" typeof="mw:File"><a href="/wiki/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8_%D0%B8_%D1%80%D1%8F%D0%B4%D1%8B" title="Перейти к шаблону «Последовательности и ряды»"><img alt="Перейти к шаблону «Последовательности и ряды»" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/14px-Wikipedia_interwiki_section_gear_icon.svg.png" decoding="async" width="14" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/21px-Wikipedia_interwiki_section_gear_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Wikipedia_interwiki_section_gear_icon.svg/28px-Wikipedia_interwiki_section_gear_icon.svg.png 2x" data-file-width="14" data-file-height="14" /></a></span></span><div id="Последовательности_и_ряды" style="font-size:114%;margin:0 5em">Последовательности и ряды</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1px"><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Последовательность">Последовательности</a></th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Числовая последовательность">Числовая последовательность</a></li> <li><a href="/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Фундаментальная последовательность">Фундаментальная последовательность</a></li> <li><a href="/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%BA%D1%83%D1%80%D1%80%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Линейная рекуррентная последовательность">Линейная рекуррентная последовательность</a></li> <li><a href="/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D1%87%D0%B8" title="Числа Фибоначчи">Числа Фибоначчи</a></li> <li><a href="/wiki/%D0%A4%D0%B8%D0%B3%D1%83%D1%80%D0%BD%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0" title="Фигурные числа">Фигурные числа</a></li> <li><a class="mw-selflink selflink">Факториал</a> (<a href="/wiki/%D0%9F%D1%80%D0%B0%D0%B9%D0%BC%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Праймориал">Праймориал</a> * <a href="/wiki/%D0%A3%D0%B1%D1%8B%D0%B2%D0%B0%D1%8E%D1%89%D0%B8%D0%B5_%D0%B8_%D0%B2%D0%BE%D0%B7%D1%80%D0%B0%D1%81%D1%82%D0%B0%D1%8E%D1%89%D0%B8%D0%B5_%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB%D1%8B" title="Убывающие и возрастающие факториалы">Символ Похгаммера</a> * <a href="/wiki/%D0%A1%D1%83%D0%B1%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Субфакториал">Субфакториал</a>)</li> <li><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%91%D0%B0%D1%80%D0%BA%D0%B5%D1%80%D0%B0" title="Последовательность Баркера">Последовательность Баркера</a></li> <li><a href="/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%B4%D0%B5_%D0%91%D1%80%D1%91%D0%B9%D0%BD%D0%B0" title="Последовательность де Брёйна">Последовательность де Брёйна</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1px">Ряды, основное</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0_%D1%80%D1%8F%D0%B4%D0%B0" class="mw-redirect" title="Сумма ряда">Сумма ряда</a></li> <li><a href="/wiki/%D0%9E%D1%81%D1%82%D0%B0%D1%82%D0%BE%D0%BA_%D1%80%D1%8F%D0%B4%D0%B0" title="Остаток ряда">Остаток ряда</a></li> <li><a href="/wiki/%D0%A3%D1%81%D0%BB%D0%BE%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%85%D0%BE%D0%B4%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C" title="Условная сходимость">Условная сходимость</a></li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA%D0%BE%D1%87%D0%B5%D1%80%D0%B5%D0%B4%D1%83%D1%8E%D1%89%D0%B8%D0%B9%D1%81%D1%8F_%D1%80%D1%8F%D0%B4" title="Знакочередующийся ряд">Знакочередующийся ряд</a></li> <li><a href="/wiki/%D0%9C%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D1%81%D0%B5%D0%BA%D1%86%D0%B8%D1%8F_%D1%80%D1%8F%D0%B4%D0%B0" title="Мультисекция ряда">Мультисекция ряда</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1px"><a href="/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D0%BE%D0%B9_%D1%80%D1%8F%D0%B4" class="mw-redirect" title="Числовой ряд">Числовые ряды</a><br />(<a href="/wiki/%D0%94%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F_%D1%81_%D1%87%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D1%8B%D0%BC%D0%B8_%D1%80%D1%8F%D0%B4%D0%B0%D0%BC%D0%B8" title="Действия с числовыми рядами">действия с числовыми рядами</a>)</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%93%D0%B0%D1%80%D0%BC%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D1%8F%D0%B4" title="Гармонический ряд">Гармонический ряд</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9B%D0%B5%D0%B9%D0%B1%D0%BD%D0%B8%D1%86%D0%B0" title="Ряд Лейбница">Ряд Лейбница</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D1%85_%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BE%D0%B2" title="Ряд обратных квадратов">Ряд обратных квадратов</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D1%85_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Ряд обратных простых чисел">Ряд обратных простых чисел</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%94%D0%B8%D1%80%D0%B8%D1%85%D0%BB%D0%B5" title="Ряд Дирихле">Ряд Дирихле</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9C%D0%B5%D1%80%D0%BA%D0%B0%D1%82%D0%BE%D1%80%D0%B0" title="Ряд Меркатора">Ряд Меркатора</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%93%D1%80%D0%B0%D0%BD%D0%B4%D0%B8" title="Ряд Гранди">Ряд Гранди</a></li> <li><a href="/wiki/%D0%97%D0%BD%D0%B0%D0%BA%D0%BE%D1%87%D0%B5%D1%80%D0%B5%D0%B4%D1%83%D1%8E%D1%89%D0%B8%D0%B9%D1%81%D1%8F_%D1%80%D1%8F%D0%B4_%D0%BD%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Знакочередующийся ряд натуральных чисел">1 − 2 + 3 − 4 + …</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%B8%D0%B7_%D0%BD%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Ряд из натуральных чисел">1 + 2 + 3 + 4 + …</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1px"><a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D1%80%D1%8F%D0%B4" title="Функциональный ряд">Функциональные ряды</a></th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%A2%D0%B5%D0%B9%D0%BB%D0%BE%D1%80%D0%B0" title="Ряд Тейлора">Ряд Тейлора</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9B%D0%BE%D1%80%D0%B0%D0%BD%D0%B0" title="Ряд Лорана">Ряд Лорана</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%A4%D1%83%D1%80%D1%8C%D0%B5" title="Ряд Фурье">Ряд Фурье</a></li> <li><a href="/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D1%8F%D0%B4_%D0%A4%D1%83%D1%80%D1%8C%D0%B5" title="Тригонометрический ряд Фурье">Тригонометрический ряд Фурье</a></li> <li><a href="/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D1%8F%D0%B4" title="Тригонометрический ряд">Тригонометрический ряд</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%92%D0%B8%D0%BD%D0%B5%D1%80%D0%B0" title="Ряд Винера">Ряд Винера</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1px">Другие виды рядов</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9D%D0%B5%D0%B9%D0%BC%D0%B0%D0%BD%D0%B0" title="Ряд Неймана">Ряд Неймана</a></li> <li><a href="/wiki/%D0%A0%D1%8F%D0%B4_%D0%9F%D1%8E%D0%B8%D0%B7%D1%91" title="Ряд Пюизё">Ряд Пюизё</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐55747fd74f‐6n6tt Cached time: 20241125210721 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.428 seconds Real time usage: 0.693 seconds Preprocessor visited node count: 5016/1000000 Post‐expand include size: 52268/2097152 bytes Template argument size: 4206/2097152 bytes Highest expansion depth: 30/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 31143/5000000 bytes Lua time usage: 0.136/10.000 seconds Lua memory usage: 6136815/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 432.115 1 -total 48.94% 211.498 1 Шаблон:Примечания 21.09% 91.125 1 Шаблон:Citation 18.82% 81.336 24 Шаблон:Без_начала 17.46% 75.463 6 Шаблон:OEIS_short 16.71% 72.220 6 Шаблон:OEIS2C 16.23% 70.135 54 Шаблон:Str_len 16.00% 69.157 6 Шаблон:OEIS-id-norm 14.28% 61.718 2 Шаблон:Родственный_проект 12.51% 54.060 1 Шаблон:Викиучебник --> <!-- Saved in parser cache with key ruwiki:pcache:idhash:13509-0!canonical and timestamp 20241125210721 and revision id 141138568. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Источник — <a dir="ltr" href="https://ru.wikipedia.org/w/index.php?title=Факториал&oldid=141138568">https://ru.wikipedia.org/w/index.php?title=Факториал&oldid=141138568</a></div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D0%B8" title="Служебная:Категории">Категории</a>: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%B7%D0%BD%D0%B0%D0%BA%D0%B8" title="Категория:Математические знаки">Математические знаки</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A6%D0%B5%D0%BB%D0%BE%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Категория:Целочисленные последовательности">Целочисленные последовательности</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Категория:Теория чисел">Теория чисел</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0" title="Категория:Комбинаторика">Комбинаторика</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Скрытые категории: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A1%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B,_%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D1%83%D1%8E%D1%89%D0%B8%D0%B5_%D1%80%D0%B0%D1%81%D1%88%D0%B8%D1%80%D0%B5%D0%BD%D0%B8%D0%B5_JsonConfig" title="Категория:Страницы, использующие расширение JsonConfig">Страницы, использующие расширение JsonConfig</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D0%B8_%D1%81%D0%BE_%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B0%D0%BC%D0%B8_%D0%BD%D0%B0_%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8_%D0%BE%D0%B1_%D0%BE%D1%82%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%BB%D0%B0%D1%85" title="Категория:Википедия:Статьи со ссылками на статьи об отдельных числах">Википедия:Статьи со ссылками на статьи об отдельных числах</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D0%B8_%D1%81%D0%BE_%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B0%D0%BC%D0%B8_%D0%BD%D0%B0_%D0%92%D0%B8%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D0%B0%D1%80%D1%8C" title="Категория:Статьи со ссылками на Викисловарь">Статьи со ссылками на Викисловарь</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D1%81%D1%8B%D0%BB%D0%BA%D0%B0_%D0%BD%D0%B0_%D0%92%D0%B8%D0%BA%D0%B8%D1%83%D1%87%D0%B5%D0%B1%D0%BD%D0%B8%D0%BA_%D0%BD%D0%B5%D0%BF%D0%BE%D1%81%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE_%D0%B2_%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B5" title="Категория:Википедия:Ссылка на Викиучебник непосредственно в статье">Википедия:Ссылка на Викиучебник непосредственно в статье</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Навигация</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Персональные инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Страница участника для моего IP">Вы не представились системе</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D1%91_%D0%BE%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" title="Страница обсуждений для моего IP [n]" accesskey="n"><span>Обсуждение</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D0%B9_%D0%B2%D0%BA%D0%BB%D0%B0%D0%B4" title="Список правок, сделанных с этого IP-адреса [y]" accesskey="y"><span>Вклад</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BE%D0%B7%D0%B4%D0%B0%D1%82%D1%8C_%D1%83%D1%87%D1%91%D1%82%D0%BD%D1%83%D1%8E_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D1%8C&returnto=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&returntoquery=section%3D6%26veaction%3Dedit" title="Мы предлагаем вам создать учётную запись и войти в систему, хотя это и не обязательно."><span>Создать учётную запись</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%92%D1%85%D0%BE%D0%B4&returnto=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&returntoquery=section%3D6%26veaction%3Dedit" title="Здесь можно зарегистрироваться в системе, но это необязательно. [o]" accesskey="o"><span>Войти</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Пространства имён</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Просмотреть контентную страницу [c]" accesskey="c"><span>Статья</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/%D0%9E%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5:%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" rel="discussion" title="Обсуждение основной страницы [t]" accesskey="t"><span>Обсуждение</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">русский</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Просмотры</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&stable=1"><span>Читать</span></a></li><li id="ca-current" class="collapsible selected mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&stable=0&redirect=no" title="Показать текущую версию этой страницы [v]" accesskey="v"><span>Текущая версия</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&veaction=edit" title="Редактировать данную страницу [v]" accesskey="v"><span>Править</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=edit" title="Править исходный текст этой страницы [e]" accesskey="e"><span>Править код</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=history" title="Журнал изменений страницы [h]" accesskey="h"><span>История</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Больше возможностей" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ещё</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Поиск</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Искать в Википедии" aria-label="Искать в Википедии" autocapitalize="sentences" title="Искать в Википедии [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Служебная:Поиск"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Найти страницы, содержащие указанный текст" value="Найти"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Перейти к странице, имеющей в точности такое название" value="Перейти"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Навигация</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу [z]" accesskey="z"><span>Заглавная страница</span></a></li><li id="n-content" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%B4%D0%B5%D1%80%D0%B6%D0%B0%D0%BD%D0%B8%D0%B5"><span>Содержание</span></a></li><li id="n-featured" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%98%D0%B7%D0%B1%D1%80%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8" title="Статьи, считающиеся лучшими статьями проекта"><span>Избранные статьи</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Посмотреть случайно выбранную страницу [x]" accesskey="x"><span>Случайная статья</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%A2%D0%B5%D0%BA%D1%83%D1%89%D0%B8%D0%B5_%D1%81%D0%BE%D0%B1%D1%8B%D1%82%D0%B8%D1%8F" title="Статьи о текущих событиях в мире"><span>Текущие события</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ru.wikipedia.org&uselang=ru" title="Поддержите нас"><span>Пожертвовать</span></a></li> </ul> </div> </nav> <nav id="p-participation" class="mw-portlet mw-portlet-participation vector-menu-portal portal vector-menu" aria-labelledby="p-participation-label" > <h3 id="p-participation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Участие</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BE%D0%B1_%D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B0%D1%85" title="Сообщить об ошибке в этой статье"><span>Сообщить об ошибке</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0:%D0%92%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5"><span>Как править статьи</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="О проекте, о том, чем здесь можно заниматься, а также — где что находится"><span>Сообщество</span></a></li><li id="n-forum" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A4%D0%BE%D1%80%D1%83%D0%BC" title="Форум участников Википедии"><span>Форум</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8" title="Список последних изменений [r]" accesskey="r"><span>Свежие правки</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9D%D0%BE%D0%B2%D1%8B%D0%B5_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список недавно созданных страниц"><span>Новые страницы</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0" title="Место расположения Справки"><span>Справка</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D1%81%D1%8B%D0%BB%D0%BA%D0%B8_%D1%81%D1%8E%D0%B4%D0%B0/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Список всех страниц, ссылающихся на данную [j]" accesskey="j"><span>Ссылки сюда</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D1%8F%D0%B7%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" rel="nofollow" title="Последние изменения в страницах, на которые ссылается эта страница [k]" accesskey="k"><span>Связанные правки</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BF%D0%B5%D1%86%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список служебных страниц [q]" accesskey="q"><span>Служебные страницы</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&oldid=141138568" title="Постоянная ссылка на эту версию страницы"><span>Постоянная ссылка</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=info" title="Подробнее об этой странице"><span>Сведения о странице</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A6%D0%B8%D1%82%D0%B0%D1%82%D0%B0&page=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&id=141138568&wpFormIdentifier=titleform" title="Информация о том, как цитировать эту страницу"><span>Цитировать страницу</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:UrlShortener&url=https%3A%2F%2Fru.wikipedia.org%2Fw%2Findex.php%3Ftitle%3D%25D0%25A4%25D0%25B0%25D0%25BA%25D1%2582%25D0%25BE%25D1%2580%25D0%25B8%25D0%25B0%25D0%25BB%26section%3D6%26veaction%3Dedit"><span>Получить короткий URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:QrCode&url=https%3A%2F%2Fru.wikipedia.org%2Fw%2Findex.php%3Ftitle%3D%25D0%25A4%25D0%25B0%25D0%25BA%25D1%2582%25D0%25BE%25D1%2580%25D0%25B8%25D0%25B0%25D0%25BB%26section%3D6%26veaction%3Dedit"><span>Скачать QR-код</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Печать/экспорт</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:DownloadAsPdf&page=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&action=show-download-screen" title="Скачать эту страницу как файл PDF"><span>Скачать как PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&printable=yes" title="Версия этой страницы для печати [p]" accesskey="p"><span>Версия для печати</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">В других проектах</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Factorial_(function)" hreflang="en"><span>Викисклад</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://ru.wikibooks.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%BE%D0%B2/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" hreflang="ru"><span>Викиучебник</span></a></li><li class="wb-otherproject-link wb-otherproject-wikifunctions mw-list-item"><a href="https://www.wikifunctions.org/wiki/Z13667" hreflang="en"><span>Викифункции</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q120976" title="Ссылка на связанный элемент репозитория данных [g]" accesskey="g"><span>Элемент Викиданных</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">На других языках</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Fakulteit_(wiskunde)" title="Fakulteit (wiskunde) — африкаанс" lang="af" hreflang="af" data-title="Fakulteit (wiskunde)" data-language-autonym="Afrikaans" data-language-local-name="африкаанс" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8D%8B%E1%8A%AD%E1%89%B6%E1%88%AA%E1%8B%AB%E1%88%8D" title="ፋክቶሪያል — амхарский" lang="am" hreflang="am" data-title="ፋክቶሪያል" data-language-autonym="አማርኛ" data-language-local-name="амхарский" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%A7%D9%85%D9%84%D9%8A" title="عاملي — арабский" lang="ar" hreflang="ar" data-title="عاملي" data-language-autonym="العربية" data-language-local-name="арабский" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Factorial" title="Factorial — астурийский" lang="ast" hreflang="ast" data-title="Factorial" data-language-autonym="Asturianu" data-language-local-name="астурийский" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Faktorial" title="Faktorial — азербайджанский" lang="az" hreflang="az" data-title="Faktorial" data-language-autonym="Azərbaycanca" data-language-local-name="азербайджанский" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Факториал — башкирский" lang="ba" hreflang="ba" data-title="Факториал" data-language-autonym="Башҡортса" data-language-local-name="башкирский" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%B0%D1%80%D1%8B%D1%8F%D0%BB" title="Фактарыял — белорусский" lang="be" hreflang="be" data-title="Фактарыял" data-language-autonym="Беларуская" data-language-local-name="белорусский" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B5%D0%BB" title="Факториел — болгарский" lang="bg" hreflang="bg" data-title="Факториел" data-language-autonym="Български" data-language-local-name="болгарский" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%97%E0%A7%8C%E0%A6%A3%E0%A6%BF%E0%A6%95" title="গৌণিক — бенгальский" lang="bn" hreflang="bn" data-title="গৌণিক" data-language-autonym="বাংলা" data-language-local-name="бенгальский" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Faktorijel" title="Faktorijel — боснийский" lang="bs" hreflang="bs" data-title="Faktorijel" data-language-autonym="Bosanski" data-language-local-name="боснийский" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Factorial" title="Factorial — каталанский" lang="ca" hreflang="ca" data-title="Factorial" data-language-autonym="Català" data-language-local-name="каталанский" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%81%D8%A7%DA%A9%D8%AA%DB%86%D8%B1%DB%8C%DB%8E%D9%84" title="فاکتۆریێل — центральнокурдский" lang="ckb" hreflang="ckb" data-title="فاکتۆریێل" data-language-autonym="کوردی" data-language-local-name="центральнокурдский" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Faktori%C3%A1l" title="Faktoriál — чешский" lang="cs" hreflang="cs" data-title="Faktoriál" data-language-autonym="Čeština" data-language-local-name="чешский" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Факториал — чувашский" lang="cv" hreflang="cv" data-title="Факториал" data-language-autonym="Чӑвашла" data-language-local-name="чувашский" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Fakultet_(matematik)" title="Fakultet (matematik) — датский" lang="da" hreflang="da" data-title="Fakultet (matematik)" data-language-autonym="Dansk" data-language-local-name="датский" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Fakult%C3%A4t_(Mathematik)" title="Fakultät (Mathematik) — немецкий" lang="de" hreflang="de" data-title="Fakultät (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="немецкий" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%B1%CF%81%CE%B1%CE%B3%CE%BF%CE%BD%CF%84%CE%B9%CE%BA%CF%8C" title="Παραγοντικό — греческий" lang="el" hreflang="el" data-title="Παραγοντικό" data-language-autonym="Ελληνικά" data-language-local-name="греческий" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="хорошая статья"><a href="https://en.wikipedia.org/wiki/Factorial" title="Factorial — английский" lang="en" hreflang="en" data-title="Factorial" data-language-autonym="English" data-language-local-name="английский" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Faktorialo" title="Faktorialo — эсперанто" lang="eo" hreflang="eo" data-title="Faktorialo" data-language-autonym="Esperanto" data-language-local-name="эсперанто" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Factorial" title="Factorial — испанский" lang="es" hreflang="es" data-title="Factorial" data-language-autonym="Español" data-language-local-name="испанский" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Faktoriaal" title="Faktoriaal — эстонский" lang="et" hreflang="et" data-title="Faktoriaal" data-language-autonym="Eesti" data-language-local-name="эстонский" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Faktorial" title="Faktorial — баскский" lang="eu" hreflang="eu" data-title="Faktorial" data-language-autonym="Euskara" data-language-local-name="баскский" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%A7%DA%A9%D8%AA%D9%88%D8%B1%DB%8C%D9%84" title="فاکتوریل — персидский" lang="fa" hreflang="fa" data-title="فاکتوریل" data-language-autonym="فارسی" data-language-local-name="персидский" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kertoma" title="Kertoma — финский" lang="fi" hreflang="fi" data-title="Kertoma" data-language-autonym="Suomi" data-language-local-name="финский" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Factorielle" title="Factorielle — французский" lang="fr" hreflang="fr" data-title="Factorielle" data-language-autonym="Français" data-language-local-name="французский" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Factorial" title="Factorial — галисийский" lang="gl" hreflang="gl" data-title="Factorial" data-language-autonym="Galego" data-language-local-name="галисийский" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A2%D7%A6%D7%A8%D7%AA_(%D7%9E%D7%AA%D7%9E%D7%98%D7%99%D7%A7%D7%94)" title="עצרת (מתמטיקה) — иврит" lang="he" hreflang="he" data-title="עצרת (מתמטיקה)" data-language-autonym="עברית" data-language-local-name="иврит" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A4%97%E0%A5%81%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="क्रमगुणित — хинди" lang="hi" hreflang="hi" data-title="क्रमगुणित" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Faktorijel" title="Faktorijel — хорватский" lang="hr" hreflang="hr" data-title="Faktorijel" data-language-autonym="Hrvatski" data-language-local-name="хорватский" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Faktori%C3%A1lis" title="Faktoriális — венгерский" lang="hu" hreflang="hu" data-title="Faktoriális" data-language-autonym="Magyar" data-language-local-name="венгерский" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%96%D5%A1%D5%AF%D5%BF%D5%B8%D6%80%D5%AB%D5%A1%D5%AC" title="Ֆակտորիալ — армянский" lang="hy" hreflang="hy" data-title="Ֆակտորիալ" data-language-autonym="Հայերեն" data-language-local-name="армянский" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Factorial" title="Factorial — интерлингва" lang="ia" hreflang="ia" data-title="Factorial" data-language-autonym="Interlingua" data-language-local-name="интерлингва" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Faktorial" title="Faktorial — ибанский" lang="iba" hreflang="iba" data-title="Faktorial" data-language-autonym="Jaku Iban" data-language-local-name="ибанский" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Faktorial" title="Faktorial — индонезийский" lang="id" hreflang="id" data-title="Faktorial" data-language-autonym="Bahasa Indonesia" data-language-local-name="индонезийский" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Faktorialo" title="Faktorialo — идо" lang="io" hreflang="io" data-title="Faktorialo" data-language-autonym="Ido" data-language-local-name="идо" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/A%C3%B0feldi" title="Aðfeldi — исландский" lang="is" hreflang="is" data-title="Aðfeldi" data-language-autonym="Íslenska" data-language-local-name="исландский" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Fattoriale" title="Fattoriale — итальянский" lang="it" hreflang="it" data-title="Fattoriale" data-language-autonym="Italiano" data-language-local-name="итальянский" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%9A%8E%E4%B9%97" title="階乗 — японский" lang="ja" hreflang="ja" data-title="階乗" data-language-autonym="日本語" data-language-local-name="японский" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%A4%E1%83%90%E1%83%A5%E1%83%A2%E1%83%9D%E1%83%A0%E1%83%98%E1%83%90%E1%83%9A%E1%83%98" title="მათემატიკური ფაქტორიალი — грузинский" lang="ka" hreflang="ka" data-title="მათემატიკური ფაქტორიალი" data-language-autonym="ქართული" data-language-local-name="грузинский" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB" title="Факториал — казахский" lang="kk" hreflang="kk" data-title="Факториал" data-language-autonym="Қазақша" data-language-local-name="казахский" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%95%E0%B3%8D%E0%B2%B0%E0%B2%AE%E0%B2%97%E0%B3%81%E0%B2%A3%E0%B2%BF%E0%B2%A4" title="ಕ್ರಮಗುಣಿತ — каннада" lang="kn" hreflang="kn" data-title="ಕ್ರಮಗುಣಿತ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="каннада" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B3%84%EC%8A%B9_(%EC%88%98%ED%95%99)" title="계승 (수학) — корейский" lang="ko" hreflang="ko" data-title="계승 (수학)" data-language-autonym="한국어" data-language-local-name="корейский" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Factorialis" title="Factorialis — латинский" lang="la" hreflang="la" data-title="Factorialis" data-language-autonym="Latina" data-language-local-name="латинский" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Fatorial" title="Fatorial — Lombard" lang="lmo" hreflang="lmo" data-title="Fatorial" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Faktorialas" title="Faktorialas — литовский" lang="lt" hreflang="lt" data-title="Faktorialas" data-language-autonym="Lietuvių" data-language-local-name="литовский" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Faktori%C4%81ls" title="Faktoriāls — латышский" lang="lv" hreflang="lv" data-title="Faktoriāls" data-language-autonym="Latviešu" data-language-local-name="латышский" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B5%D0%BB" title="Факториел — македонский" lang="mk" hreflang="mk" data-title="Факториел" data-language-autonym="Македонски" data-language-local-name="македонский" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%95%E0%B5%8D%E0%B4%B0%E0%B4%AE%E0%B4%97%E0%B5%81%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B4%82" title="ക്രമഗുണിതം — малаялам" lang="ml" hreflang="ml" data-title="ക്രമഗുണിതം" data-language-autonym="മലയാളം" data-language-local-name="малаялам" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%95%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A4%97%E0%A5%81%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="क्रमगुणित — маратхи" lang="mr" hreflang="mr" data-title="क्रमगुणित" data-language-autonym="मराठी" data-language-local-name="маратхи" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Faktorial" title="Faktorial — малайский" lang="ms" hreflang="ms" data-title="Faktorial" data-language-autonym="Bahasa Melayu" data-language-local-name="малайский" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Faculteit_(wiskunde)" title="Faculteit (wiskunde) — нидерландский" lang="nl" hreflang="nl" data-title="Faculteit (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="нидерландский" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Fakultet_i_matematikk" title="Fakultet i matematikk — нюнорск" lang="nn" hreflang="nn" data-title="Fakultet i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="нюнорск" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Fakultet_(matematikk)" title="Fakultet (matematikk) — норвежский букмол" lang="nb" hreflang="nb" data-title="Fakultet (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="норвежский букмол" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Factoriala" title="Factoriala — окситанский" lang="oc" hreflang="oc" data-title="Factoriala" data-language-autonym="Occitan" data-language-local-name="окситанский" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A9%8D%E0%A8%B0%E0%A8%AE%E0%A8%97%E0%A9%81%E0%A8%A3%E0%A8%BF%E0%A8%A4" title="ਕ੍ਰਮਗੁਣਿਤ — панджаби" lang="pa" hreflang="pa" data-title="ਕ੍ਰਮਗੁਣਿਤ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="панджаби" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Silnia" title="Silnia — польский" lang="pl" hreflang="pl" data-title="Silnia" data-language-autonym="Polski" data-language-local-name="польский" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Fatorial" title="Fatorial — Piedmontese" lang="pms" hreflang="pms" data-title="Fatorial" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fatorial" title="Fatorial — португальский" lang="pt" hreflang="pt" data-title="Fatorial" data-language-autonym="Português" data-language-local-name="португальский" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Factorial" title="Factorial — румынский" lang="ro" hreflang="ro" data-title="Factorial" data-language-autonym="Română" data-language-local-name="румынский" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Fatturiali" title="Fatturiali — сицилийский" lang="scn" hreflang="scn" data-title="Fatturiali" data-language-autonym="Sicilianu" data-language-local-name="сицилийский" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Faktorijel" title="Faktorijel — сербскохорватский" lang="sh" hreflang="sh" data-title="Faktorijel" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="сербскохорватский" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%9A%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B6%B8%E0%B7%8F%E0%B6%BB%E0%B7%9D%E0%B6%B4%E0%B7%92%E0%B6%AD%E0%B6%BA" title="ක්රමාරෝපිතය — сингальский" lang="si" hreflang="si" data-title="ක්රමාරෝපිතය" data-language-autonym="සිංහල" data-language-local-name="сингальский" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Factorial" title="Factorial — Simple English" lang="en-simple" hreflang="en-simple" data-title="Factorial" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Faktori%C3%A1l" title="Faktoriál — словацкий" lang="sk" hreflang="sk" data-title="Faktoriál" data-language-autonym="Slovenčina" data-language-local-name="словацкий" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Fakulteta_(funkcija)" title="Fakulteta (funkcija) — словенский" lang="sl" hreflang="sl" data-title="Fakulteta (funkcija)" data-language-autonym="Slovenščina" data-language-local-name="словенский" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Faktoriali" title="Faktoriali — албанский" lang="sq" hreflang="sq" data-title="Faktoriali" data-language-autonym="Shqip" data-language-local-name="албанский" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D1%98%D0%B5%D0%BB" title="Факторијел — сербский" lang="sr" hreflang="sr" data-title="Факторијел" data-language-autonym="Српски / srpski" data-language-local-name="сербский" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Fakultet_(matematik)" title="Fakultet (matematik) — шведский" lang="sv" hreflang="sv" data-title="Fakultet (matematik)" data-language-autonym="Svenska" data-language-local-name="шведский" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AF%8A%E0%AE%9F%E0%AE%B0%E0%AF%8D_%E0%AE%AA%E0%AF%86%E0%AE%B0%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%AE%E0%AF%8D" title="தொடர் பெருக்கம் — тамильский" lang="ta" hreflang="ta" data-title="தொடர் பெருக்கம்" data-language-autonym="தமிழ்" data-language-local-name="тамильский" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%81%E0%B8%9F%E0%B8%81%E0%B8%97%E0%B8%AD%E0%B9%80%E0%B8%A3%E0%B8%B5%E0%B8%A2%E0%B8%A5" title="แฟกทอเรียล — тайский" lang="th" hreflang="th" data-title="แฟกทอเรียล" data-language-autonym="ไทย" data-language-local-name="тайский" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Paktoryal" title="Paktoryal — тагалог" lang="tl" hreflang="tl" data-title="Paktoryal" data-language-autonym="Tagalog" data-language-local-name="тагалог" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Fakt%C3%B6riyel" title="Faktöriyel — турецкий" lang="tr" hreflang="tr" data-title="Faktöriyel" data-language-autonym="Türkçe" data-language-local-name="турецкий" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D1%96%D0%B0%D0%BB" title="Факторіал — украинский" lang="uk" hreflang="uk" data-title="Факторіал" data-language-autonym="Українська" data-language-local-name="украинский" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B9%D8%A7%D9%85%D9%84%DB%8C%DB%81" title="عاملیہ — урду" lang="ur" hreflang="ur" data-title="عاملیہ" data-language-autonym="اردو" data-language-local-name="урду" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Faktorial" title="Faktorial — узбекский" lang="uz" hreflang="uz" data-title="Faktorial" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="узбекский" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Giai_th%E1%BB%ABa" title="Giai thừa — вьетнамский" lang="vi" hreflang="vi" data-title="Giai thừa" data-language-autonym="Tiếng Việt" data-language-local-name="вьетнамский" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E9%98%B6%E4%B9%98" title="阶乘 — у" lang="wuu" hreflang="wuu" data-title="阶乘" data-language-autonym="吴语" data-language-local-name="у" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%9A%8E%E4%B9%98" title="階乘 — китайский" lang="zh" hreflang="zh" data-title="階乘" data-language-autonym="中文" data-language-local-name="китайский" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E9%9A%8E%E4%B9%98" title="階乘 — Literary Chinese" lang="lzh" hreflang="lzh" data-title="階乘" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%9A%8E%E4%B9%98" title="階乘 — кантонский" lang="yue" hreflang="yue" data-title="階乘" data-language-autonym="粵語" data-language-local-name="кантонский" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q120976#sitelinks-wikipedia" title="Править ссылки на другие языки" class="wbc-editpage">Править ссылки</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Эта страница в последний раз была отредактирована 29 октября 2024 в 10:46.</li> <li id="footer-info-copyright">Текст доступен по <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ru">лицензии Creative Commons «С указанием авторства — С сохранением условий» (CC BY-SA)</a>; в отдельных случаях могут действовать дополнительные условия. <span class="noprint">Подробнее см. <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/ru">Условия использования</a>.</span><br /> Wikipedia® — зарегистрированный товарный знак некоммерческой организации <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/ru/">«Фонд Викимедиа» (Wikimedia Foundation, Inc.)</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/ru">Политика конфиденциальности</a></li> <li id="footer-places-about"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5">Описание Википедии</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D1%82%D0%BA%D0%B0%D0%B7_%D0%BE%D1%82_%D0%BE%D1%82%D0%B2%D0%B5%D1%82%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D0%B8">Отказ от ответственности</a></li> <li id="footer-places-contact"><a href="//ru.wikipedia.org/wiki/Википедия:Контакты">Свяжитесь с нами</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Policy:Universal_Code_of_Conduct/ru">Кодекс поведения</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Разработчики</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ru.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Заявление о куки</a></li> <li id="footer-places-mobileview"><a href="//ru.m.wikipedia.org/w/index.php?title=%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB&section=6&veaction=edit&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Мобильная версия</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-7fc47fc68d-dqpwp","wgBackendResponseTime":164,"wgPageParseReport":{"limitreport":{"cputime":"0.428","walltime":"0.693","ppvisitednodes":{"value":5016,"limit":1000000},"postexpandincludesize":{"value":52268,"limit":2097152},"templateargumentsize":{"value":4206,"limit":2097152},"expansiondepth":{"value":30,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":31143,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 432.115 1 -total"," 48.94% 211.498 1 Шаблон:Примечания"," 21.09% 91.125 1 Шаблон:Citation"," 18.82% 81.336 24 Шаблон:Без_начала"," 17.46% 75.463 6 Шаблон:OEIS_short"," 16.71% 72.220 6 Шаблон:OEIS2C"," 16.23% 70.135 54 Шаблон:Str_len"," 16.00% 69.157 6 Шаблон:OEIS-id-norm"," 14.28% 61.718 2 Шаблон:Родственный_проект"," 12.51% 54.060 1 Шаблон:Викиучебник"]},"scribunto":{"limitreport-timeusage":{"value":"0.136","limit":"10.000"},"limitreport-memusage":{"value":6136815,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-55747fd74f-6n6tt","timestamp":"20241125210721","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u0424\u0430\u043a\u0442\u043e\u0440\u0438\u0430\u043b","url":"https:\/\/ru.wikipedia.org\/wiki\/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB","sameAs":"http:\/\/www.wikidata.org\/entity\/Q120976","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q120976","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"\u0424\u043e\u043d\u0434 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0430","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-10-05T08:17:28Z","dateModified":"2024-10-29T10:46:00Z","headline":"\u0444\u0443\u043d\u043a\u0446\u0438\u044f, \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0451\u043d\u043d\u0430\u044f \u043d\u0430 \u043c\u043d\u043e\u0436\u0435\u0441\u0442\u0432\u0435 \u043d\u0435\u043e\u0442\u0440\u0438\u0446\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0445 \u0446\u0435\u043b\u044b\u0445 \u0447\u0438\u0441\u0435\u043b"}</script> </body> </html>