CINXE.COM

Most Rigid Representation and Cayley Index of Finitely Generated Groups | The Electronic Journal of Combinatorics

<!DOCTYPE html> <html lang="en-US" xml:lang="en-US"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> Most Rigid Representation and Cayley Index of Finitely Generated Groups | The Electronic Journal of Combinatorics </title> <meta name="generator" content="Open Journal Systems 3.1.2.4"> <link rel="icon" href="https://www.combinatorics.org/ojs/public/journals/1/favicon_en_US.png"> <meta name="gs_meta_revision" content="1.1"/> <meta name="citation_journal_title" content="The Electronic Journal of Combinatorics"/> <meta name="citation_journal_abbrev" content="1"/> <meta name="citation_issn" content="1077-8926"/> <meta name="citation_author" content="Paul-Henry Leemann"/> <meta name="citation_author_institution" content="Universit茅 de Neuch芒tel"/> <meta name="citation_author" content="Mikael de la Salle"/> <meta name="citation_author_institution" content="CNRS, UMPA ENS de Lyon"/> <meta name="citation_title" content="Most Rigid Representation and Cayley Index of Finitely Generated Groups"/> <meta name="citation_date" content="2022/12/16"/> <meta name="citation_firstpage" content="P4.40"/> <meta name="citation_lastpage" content="P4.40"/> <meta name="citation_doi" content="10.37236/10512"/> <meta name="citation_abstract_html_url" content="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v29i4p40"/> <meta name="citation_language" content="en"/> <meta name="citation_pdf_url" content="https://www.combinatorics.org/ojs/index.php/eljc/article/download/v29i4p40/pdf"/> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" /> <meta name="DC.Creator.PersonalName" content="Paul-Henry Leemann"/> <meta name="DC.Creator.PersonalName" content="Mikael de la Salle"/> <meta name="DC.Date.created" scheme="ISO8601" content="2022-12-16"/> <meta name="DC.Date.dateSubmitted" scheme="ISO8601" content="2021-06-20"/> <meta name="DC.Date.issued" scheme="ISO8601" content="2022-10-06"/> <meta name="DC.Date.modified" scheme="ISO8601" content="2022-12-16"/> <meta name="DC.Description" xml:lang="en" content=" If $G$ is a group and $S$ a generating set, $G$ canonically embeds into the automorphism group of its Cayley graph and it is natural to try to minimize, over all generating sets, the index of this inclusion. This infimum is called the Cayley index of the group. In a recent series of works, we have characterized the infinite finitely generated groups with Cayley index $1$. We complement this characterization by showing that the Cayley index is $2$ in the remaining cases and is attained for a finite generating set. "/> <meta name="DC.Description" xml:lang="en" content=" If $G$ is a group and $S$ a generating set, $G$ canonically embeds into the automorphism group of its Cayley graph and it is natural to try to minimize, over all generating sets, the index of this inclusion. This infimum is called the Cayley index of the group. In a recent series of works, we have characterized the infinite finitely generated groups with Cayley index $1$. We complement this characterization by showing that the Cayley index is $2$ in the remaining cases and is attained for a finite generating set. "/> <meta name="DC.Format" scheme="IMT" content="application/pdf"/> <meta name="DC.Identifier" content="v29i4p40"/> <meta name="DC.Identifier.pageNumber" content="P4.40"/> <meta name="DC.Identifier.DOI" content="10.37236/10512"/> <meta name="DC.Identifier.URI" content="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v29i4p40"/> <meta name="DC.Language" scheme="ISO639-1" content="en"/> <meta name="DC.Rights" content="Copyright (c) 2022 Paul-Henry Leemann, Mikael de la Salle"/> <meta name="DC.Rights" content=""/> <meta name="DC.Source" content="The Electronic Journal of Combinatorics"/> <meta name="DC.Source.ISSN" content="1077-8926"/> <meta name="DC.Source.URI" content="https://www.combinatorics.org/ojs/index.php/eljc"/> <meta name="DC.Title" content="Most Rigid Representation and Cayley Index of Finitely Generated Groups"/> <meta name="DC.Type" content="Text.Serial.Journal"/> <meta name="DC.Type.articleType" content="Papers"/> <link rel="stylesheet" href="https://www.combinatorics.org/ojs/index.php/eljc/$$$call$$$/page/page/css?name=stylesheet" type="text/css" /><link rel="stylesheet" href="https://www.combinatorics.org/ojs/lib/pkp/styles/fontawesome/fontawesome.css?v=3.1.2.4" type="text/css" /><link rel="stylesheet" href="https://www.combinatorics.org/ojs/public/journals/1/styleSheet.css?v=3.1.2.4" type="text/css" /> </head> <body class="pkp_page_article pkp_op_view has_site_logo" dir="ltr"> <div class="cmp_skip_to_content"> <a href="#pkp_content_main">Skip to main content</a> <a href="#pkp_content_nav">Skip to main navigation menu</a> <a href="#pkp_content_footer">Skip to site footer</a> </div> <div class="pkp_structure_page"> <header class="pkp_structure_head" id="headerNavigationContainer" role="banner"> <div class="pkp_head_wrapper"> <div class="pkp_site_name_wrapper"> <div class="pkp_site_name"> <a href=" https://www.combinatorics.org/ojs/index.php " class="is_img"> <img src="https://www.combinatorics.org/ojs/public/journals/1/pageHeaderLogoImage_en_US.png" width="744" height="137" alt="Page Header Logo" /> </a> </div> </div> <nav class="pkp_navigation_primary_row" aria-label="Site Navigation"> <div class="pkp_navigation_primary_wrapper"> <ul id="navigationPrimary" class="pkp_navigation_primary pkp_nav_list"> <li class=""> <a href="https://www.combinatorics.org"> Home </a> </li> <li class=""> <a href="https://www.combinatorics.org/ojs/index.php/eljc/issue/archive"> All Issues </a> </li> <li class=""> <a href="https://www.combinatorics.org/ojs/index.php/eljc/issue/view/Surveys"> Dynamic Surveys </a> </li> <li class=""> <a href="https://www.combinatorics.org/ojs/index.php/eljc/about/submissions"> Submissions </a> </li> <li class=""> <a href="https://www.combinatorics.org/ojs/index.php/eljc/about"> About </a> <ul> <li class=""> <a href="https://www.combinatorics.org/ojs/index.php/eljc/about"> About the Journal </a> </li> <li class=""> <a href="https://www.combinatorics.org/ojs/index.php/eljc/about/contact"> Contact </a> </li> <li class=""> <a href="https://www.combinatorics.org/ojs/index.php/eljc/about/editorialTeam"> Editorial Team </a> </li> </ul> </li> </ul> <form class="pkp_search" action="https://www.combinatorics.org/ojs/index.php/eljc/search/search" method="get" role="search"> <input type="hidden" name="csrfToken" value="4d5dc0a3e077fce41c7327f339029c28"> <input name="query" value="" type="text" aria-label="Search Query"> <button type="submit"> Search </button> <div class="search_controls" aria-hidden="true"> <a href="https://www.combinatorics.org/ojs/index.php/eljc/search/search" class="headerSearchPrompt search_prompt" aria-hidden="true"> Search </a> <a href="#" class="search_cancel headerSearchCancel" aria-hidden="true"></a> <span class="search_loading" aria-hidden="true"></span> </div> </form> </div> </nav> <nav class="pkp_navigation_user_wrapper" id="navigationUserWrapper" aria-label="User Navigation"> <ul id="navigationUser" class="pkp_navigation_user pkp_nav_list"> <li class="profile"> <a href="https://www.combinatorics.org/ojs/index.php/eljc/user/register"> Register </a> </li> <li class="profile"> <a href="https://www.combinatorics.org/ojs/index.php/eljc/login"> Login </a> </li> </ul> </nav> </div><!-- .pkp_head_wrapper --> </header><!-- .pkp_structure_head --> <div class="pkp_structure_content"> <div id="pkp_content_main" class="pkp_structure_main" role="main"> <div class="page page_article"> <nav class="cmp_breadcrumbs" role="navigation" aria-label="You are here:"> <ol> <li> <a href="https://www.combinatorics.org/ojs/index.php/eljc/index"> Home </a> <span class="separator">/</span> </li> <li> <a href="https://www.combinatorics.org/ojs/index.php/eljc/issue/archive"> Archives </a> <span class="separator">/</span> </li> <li> <a href="https://www.combinatorics.org/ojs/index.php/eljc/issue/view/Volume29-4"> Volume 29, Issue 4 (2022) </a> <span class="separator">/</span> </li> <li class="current" aria-current="page"> <span aria-current="page"> Papers </span> </li> </ol> </nav> <article class="obj_article_details"> <h1 class="page_title"> Most Rigid Representation and Cayley Index of Finitely Generated Groups </h1> <div class="row"> <div class="main_entry"> <ul class="item authors"> <li> <span class="name"> Paul-Henry Leemann </span> </li> <li> <span class="name"> Mikael de la Salle </span> </li> </ul> <div class="item doi"> <span class="label"> DOI: </span> <span class="value"> <a href="https://doi.org/10.37236/10512"> https://doi.org/10.37236/10512 </a> </span> </div> <div class="item abstract"> <h3 class="label">Abstract</h3> <p>If $G$ is a group and $S$ a generating set, $G$ canonically embeds into the automorphism group of its Cayley graph and it is natural to try to minimize, over all generating sets, the index of this inclusion. This infimum is called the Cayley index of the group. In a recent series of works, we have characterized the infinite finitely generated groups with Cayley index $1$. We complement this characterization by showing that the Cayley index is $2$ in the remaining cases and is attained for a finite generating set.</p> </div> </div><!-- .main_entry --> <div class="entry_details"> <div class="item galleys"> <ul class="value galleys_links"> <li> <a class="obj_galley_link pdf" href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v29i4p40/pdf"> PDF </a> </li> </ul> </div> <div class="item published"> <div class="label"> Published </div> <div class="value"> 2022-12-16 </div> </div> <div class="item issue"> <div class="sub_item"> <div class="label"> Issue </div> <div class="value"> <a class="title" href="https://www.combinatorics.org/ojs/index.php/eljc/issue/view/Volume29-4"> Volume 29, Issue 4 (2022) </a> </div> </div> <div class="sub_item"> <div class="label"> Article Number </div> <div class="value"> <div class="pages"> P4.40 </div> </div> </div> </div> </div><!-- .entry_details --> </div><!-- .row --> </article> </div><!-- .page --> </div><!-- pkp_structure_main --> </div><!-- pkp_structure_content --> </div><!-- pkp_structure_page --> <script src="https://www.combinatorics.org/ojs/lib/pkp/lib/vendor/components/jquery/jquery.min.js?v=3.1.2.4" type="text/javascript"></script><script src="https://www.combinatorics.org/ojs/lib/pkp/lib/vendor/components/jqueryui/jquery-ui.min.js?v=3.1.2.4" type="text/javascript"></script><script src="https://www.combinatorics.org/ojs/lib/pkp/js/lib/jquery/plugins/jquery.tag-it.js?v=3.1.2.4" type="text/javascript"></script><script src="https://www.combinatorics.org/ojs/plugins/themes/default/js/lib/popper/popper.js?v=3.1.2.4" type="text/javascript"></script><script src="https://www.combinatorics.org/ojs/plugins/themes/default/js/lib/bootstrap/util.js?v=3.1.2.4" type="text/javascript"></script><script src="https://www.combinatorics.org/ojs/plugins/themes/default/js/lib/bootstrap/dropdown.js?v=3.1.2.4" type="text/javascript"></script><script src="https://www.combinatorics.org/ojs/plugins/themes/default/js/main.js?v=3.1.2.4" type="text/javascript"></script><script type="text/javascript"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']], displayMath: [ ['$$','$$'], ['\\[','\\]'] ], processEnvironments: true, processEscapes: true} }); </script> <script type="text/javascript" async src="https://cdn.jsdelivr.net/npm/mathjax@2.7.9/MathJax.js?config=TeX-MML-AM_CHTML"> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10