CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–9 of 9 results for author: <span class="mathjax">Assump莽茫o, G G T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Assump莽茫o, G G T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Assump%C3%A7%C3%A3o%2C+G+G+T&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Assump莽茫o, G G T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14867">arXiv:2502.14867</a> <span> [<a href="https://arxiv.org/pdf/2502.14867">pdf</a>, <a href="https://arxiv.org/format/2502.14867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergence of Fermi's Golden Rule in the Probing of a Quantum Many-Body System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Tsidilkovski%2C+A">Alan Tsidilkovski</a>, <a href="/search/cond-mat?searchtype=author&query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14867v1-abstract-short" style="display: inline;"> Fermi's Golden Rule (FGR) is one of the most impactful formulas in quantum mechanics, providing a link between easy-to-measure observables - such as transition rates - and fundamental microscopic properties - such as density of states or spectral functions. Its validity relies on three key assumptions: the existence of a continuum, an appropriate time window, and a weak coupling. Understanding the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14867v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14867v1-abstract-full" style="display: none;"> Fermi's Golden Rule (FGR) is one of the most impactful formulas in quantum mechanics, providing a link between easy-to-measure observables - such as transition rates - and fundamental microscopic properties - such as density of states or spectral functions. Its validity relies on three key assumptions: the existence of a continuum, an appropriate time window, and a weak coupling. Understanding the regime of validity of FGR is critical for the proper interpretation of most spectroscopic experiments. While the assumptions underlying FGR are straightforward to analyze in simple models, their applicability is significantly more complex in quantum many-body systems. Here, we observe the emergence and breakdown of FGR, using a strongly interacting homogeneous spin-$1/2$ Fermi gas coupled to a radio-frequency (rf) field. Measuring the transition probability into an outcoupled internal state, we map the system's dynamical response diagram versus the rf-pulse duration $t$ and Rabi frequency $惟_0$. For weak drives, we identify three regimes: an early-time regime where the transition probability takes off as $t^2$, an intermediate-time FGR regime, and a long-time non-perturbative regime. Beyond a threshold Rabi frequency, Rabi oscillations appear. Our results provide a blueprint for the applicability of linear response theory to the spectroscopy of quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14867v1-abstract-full').style.display = 'none'; document.getElementById('2502.14867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13769">arXiv:2407.13769</a> <span> [<a href="https://arxiv.org/pdf/2407.13769">pdf</a>, <a href="https://arxiv.org/format/2407.13769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergence of Sound in a Tunable Fermi Fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Repplinger%2C+T">Thomas Repplinger</a>, <a href="/search/cond-mat?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Vivanco%2C+F+J">Franklin J. Vivanco</a>, <a href="/search/cond-mat?searchtype=author&query=Kurkjian%2C+H">Hadrien Kurkjian</a>, <a href="/search/cond-mat?searchtype=author&query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13769v1-abstract-short" style="display: inline;"> Landau's Fermi-liquid (FL) theory has been successful at the phenomenological description of the normal phase of many different Fermi systems. Using a dilute atomic Fermi fluid with tunable interactions, we investigate the microscopic basis of Landau's theory with a system describable from first principles. We study transport properties of an interacting Fermi gas by measuring its density response… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13769v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13769v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13769v1-abstract-full" style="display: none;"> Landau's Fermi-liquid (FL) theory has been successful at the phenomenological description of the normal phase of many different Fermi systems. Using a dilute atomic Fermi fluid with tunable interactions, we investigate the microscopic basis of Landau's theory with a system describable from first principles. We study transport properties of an interacting Fermi gas by measuring its density response to a periodic external perturbation. In an ideal Fermi gas, we measure for the first time the celebrated Lindhard function. As the system is brought from the collisionless to the hydrodynamic regime, we observe the emergence of sound, and find that the experimental observations are quantitatively understood with a first-principle transport equation for the FL. When the system is more strongly interacting, we find deviations from such predictions. Finally, we observe the shape of the quasiparticle excitations directly from momentum-space tomography and see how it evolves from the collisionless to the collisional regime. Our study establishes this system as a clean platform for studying Landau's theory of the FL and paves the way for extending the theory to more exotic conditions, such as nonlinear dynamics and FLs with strong correlations in versatile settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13769v1-abstract-full').style.display = 'none'; document.getElementById('2407.13769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05746">arXiv:2308.05746</a> <span> [<a href="https://arxiv.org/pdf/2308.05746">pdf</a>, <a href="https://arxiv.org/format/2308.05746">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The strongly driven Fermi polaron </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vivanco%2C+F+J">Franklin J. Vivanco</a>, <a href="/search/cond-mat?searchtype=author&query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Knap%2C+M">Michael Knap</a>, <a href="/search/cond-mat?searchtype=author&query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05746v1-abstract-short" style="display: inline;"> Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems. Therefore, the prospect of manipulating their properties with external fields -- or even destroying them -- has both fundamental and practical implications. However, in solid-state materials it is often challenging to understand how quasiparticles are modified by external fields… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05746v1-abstract-full').style.display = 'inline'; document.getElementById('2308.05746v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05746v1-abstract-full" style="display: none;"> Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems. Therefore, the prospect of manipulating their properties with external fields -- or even destroying them -- has both fundamental and practical implications. However, in solid-state materials it is often challenging to understand how quasiparticles are modified by external fields owing to their complex interplay with other collective excitations, such as phonons. Here, we take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons -- quasiparticles formed by impurities interacting with a non-interacting Fermi gas -- from weak to ultrastrong drives. Exploiting two internal states of the impurity species, we develop a steady-state spectroscopy, from which we extract the energy of the driven polaron. We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states. At large drive strengths, the so-extracted quasiparticle residue exceeds unity, raising intriguing questions on the relationship between the Rabi oscillations and the impurity's spectral functions. Our experiment establishes the driven Fermi polaron as a promising platform for studying controllable quasiparticles in strongly driven quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05746v1-abstract-full').style.display = 'none'; document.getElementById('2308.05746v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16320">arXiv:2305.16320</a> <span> [<a href="https://arxiv.org/pdf/2305.16320">pdf</a>, <a href="https://arxiv.org/format/2305.16320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.153402">10.1103/PhysRevLett.132.153402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the Fermionic Joule-Thomson Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Vivanco%2C+F+J">Franklin J. Vivanco</a>, <a href="/search/cond-mat?searchtype=author&query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16320v1-abstract-short" style="display: inline;"> We report the observation of the quantum Joule-Thomson (JT) effect in ideal and unitary Fermi gases. We study the temperature dynamics of these systems while they undergo an energy-per-particle conserving rarefaction. For scale-invariant systems, whose equations of state satisfy the relation $U\propto PV$, this rarefaction conserves the specific enthalpy, which makes it thermodynamically equivalen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16320v1-abstract-full').style.display = 'inline'; document.getElementById('2305.16320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16320v1-abstract-full" style="display: none;"> We report the observation of the quantum Joule-Thomson (JT) effect in ideal and unitary Fermi gases. We study the temperature dynamics of these systems while they undergo an energy-per-particle conserving rarefaction. For scale-invariant systems, whose equations of state satisfy the relation $U\propto PV$, this rarefaction conserves the specific enthalpy, which makes it thermodynamically equivalent to a JT throttling process. We observe JT heating in an ideal Fermi gas, stronger at higher quantum degeneracy, a result of the repulsive quantum-statistical `force' arising from Pauli blocking. In a unitary Fermi gas, we observe that the JT heating is marginal in the temperature range $0.2 \lesssim T/T_{\mathrm{F}} \lesssim 0.8 $ as the repulsive quantum-statistical effect is lessened by the attractive interparticle interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16320v1-abstract-full').style.display = 'none'; document.getElementById('2305.16320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132 (2024) 153402 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02237">arXiv:2301.02237</a> <span> [<a href="https://arxiv.org/pdf/2301.02237">pdf</a>, <a href="https://arxiv.org/format/2301.02237">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of Anomalous Decay of a Polarized Three-Component Fermi Gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%A4kinen%2C+J+T">Jere T. M盲kinen</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Vivanco%2C+F+J">Franklin J. Vivanco</a>, <a href="/search/cond-mat?searchtype=author&query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02237v1-abstract-short" style="display: inline;"> Systems of fermions with multiple internal states, such as quarks in quantum chromodynamics and nucleons in nuclear matter, are at the heart of some of the most complex quantum many-body problems. The stability of such many-body multi-component systems is crucial to understanding, for instance, baryon formation and the structure of nuclei, but these fermionic problems are typically very challengin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02237v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02237v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02237v1-abstract-full" style="display: none;"> Systems of fermions with multiple internal states, such as quarks in quantum chromodynamics and nucleons in nuclear matter, are at the heart of some of the most complex quantum many-body problems. The stability of such many-body multi-component systems is crucial to understanding, for instance, baryon formation and the structure of nuclei, but these fermionic problems are typically very challenging to tackle theoretically. Versatile experimental platforms on which to study analogous problems are thus sought after. Here, we report the creation of a uniform gas of three-component fermions. We characterize the decay of this system across a range of interaction strengths and observe nontrivial competition between two- and three-body loss processes. We observe anomalous decay of the polarized (i.e. spin-population imbalanced) gas, in which the loss rates of each component unexpectedly differ. We introduce a generalized three-body rate equation which captures the decay dynamics, but the underlying microscopic mechanism is unknown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02237v1-abstract-full').style.display = 'none'; document.getElementById('2301.02237v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text: 6 pages, 4 figures, 56 references. Supplementary Material: 8 pages, 8 figures, 8 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.03644">arXiv:2204.03644</a> <span> [<a href="https://arxiv.org/pdf/2204.03644">pdf</a>, <a href="https://arxiv.org/format/2204.03644">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.203402">10.1103/PhysRevLett.129.203402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Stability of the Repulsive Fermi Gas with Contact Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%A4kinen%2C+J">Jere M盲kinen</a>, <a href="/search/cond-mat?searchtype=author&query=Vivanco%2C+F+J">Franklin J. Vivanco</a>, <a href="/search/cond-mat?searchtype=author&query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.03644v1-abstract-short" style="display: inline;"> We report the creation and the study of the stability of a repulsive quasi-homogeneous spin-$1/2$ Fermi gas with contact interactions. For the range of scattering lengths $a$ explored, the dominant mechanism of decay is a universal three-body recombination towards a Feshbach bound state. We observe that the recombination coefficient $K_3\propto 蔚_\text{kin} a^6$, where the first factor, the averag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03644v1-abstract-full').style.display = 'inline'; document.getElementById('2204.03644v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.03644v1-abstract-full" style="display: none;"> We report the creation and the study of the stability of a repulsive quasi-homogeneous spin-$1/2$ Fermi gas with contact interactions. For the range of scattering lengths $a$ explored, the dominant mechanism of decay is a universal three-body recombination towards a Feshbach bound state. We observe that the recombination coefficient $K_3\propto 蔚_\text{kin} a^6$, where the first factor, the average kinetic energy per particle $蔚_\text{kin}$, arises from a three-body threshold law, and the second one from the universality of recombination. Both scaling laws are consequences of Pauli blocking effects in three-body collisions involving two identical fermions. As a result of the interplay between Fermi statistics and the momentum dependence of the recombination process, the system exhibits non-trivial temperature dynamics during recombination, alternatively heating or cooling depending on its initial quantum degeneracy. The measurement of $K_3$ provides an upper bound for the interaction strength achievable in equilibrium for a uniform repulsive Fermi gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03644v1-abstract-full').style.display = 'none'; document.getElementById('2204.03644v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129 (2022) 203402 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.11273">arXiv:1906.11273</a> <span> [<a href="https://arxiv.org/pdf/1906.11273">pdf</a>, <a href="https://arxiv.org/format/1906.11273">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.12.044027">10.1103/PhysRevApplied.12.044027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of membrane phononic crystals with wide bandgaps and low-mass defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Reetz%2C+C">Chris Reetz</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+R">Ran Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Assumpcao%2C+G+G+T">Gabriel G. T. Assumpcao</a>, <a href="/search/cond-mat?searchtype=author&query=McNally%2C+D+P">Dylan P. McNally</a>, <a href="/search/cond-mat?searchtype=author&query=Burns%2C+P+S">Peter S. Burns</a>, <a href="/search/cond-mat?searchtype=author&query=Sankey%2C+J+C">Jack C. Sankey</a>, <a href="/search/cond-mat?searchtype=author&query=Regal%2C+C+A">Cindy A. Regal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.11273v1-abstract-short" style="display: inline;"> We present techniques to model and design membrane phononic crystals with low-mass defects, optimized for force sensing. Further, we identify the importance of the phononic crystal mass contrast as it pertains to the size of acoustic bandgaps and to the dissipation properties of defect modes. In particular, we quantify the tradeoff between high mass contrast phononic crystals with their associated… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11273v1-abstract-full').style.display = 'inline'; document.getElementById('1906.11273v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.11273v1-abstract-full" style="display: none;"> We present techniques to model and design membrane phononic crystals with low-mass defects, optimized for force sensing. Further, we identify the importance of the phononic crystal mass contrast as it pertains to the size of acoustic bandgaps and to the dissipation properties of defect modes. In particular, we quantify the tradeoff between high mass contrast phononic crystals with their associated robust acoustic isolation, and a reduction of soft clamping of the defect mode. We fabricate a set of phononic crystals with a variety of defect geometries out of high stress stoichiometric silicon nitride membranes, and measured at both room temperature and 4 K in order to characterize the dissipative pathways across a variety of geometries. Analysis of these devices highlights a number of design principles integral to the implementation of low-mass, low-dissipation mechanical modes into optomechanical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11273v1-abstract-full').style.display = 'none'; document.getElementById('1906.11273v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 12, 044027 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05718">arXiv:1811.05718</a> <span> [<a href="https://arxiv.org/pdf/1811.05718">pdf</a>, <a href="https://arxiv.org/format/1811.05718">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab117a">10.1088/1367-2630/ab117a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin detection with a micromechanical trampoline: Towards magnetic resonance microscopy harnessing cavity optomechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+R">Ran Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=McNally%2C+D+P">Dylan P. McNally</a>, <a href="/search/cond-mat?searchtype=author&query=Reetz%2C+C">Chris Reetz</a>, <a href="/search/cond-mat?searchtype=author&query=Assumpcao%2C+G+G+T">Gabriel G. T. Assumpcao</a>, <a href="/search/cond-mat?searchtype=author&query=Knief%2C+T+R">Thomas R. Knief</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Y">Yiheng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Regal%2C+C+A">Cindy A. Regal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05718v2-abstract-short" style="display: inline;"> We explore the prospects and benefits of combining the techniques of cavity optomechanics with efforts to image spins using magnetic resonance force microscopy (MRFM). In particular, we focus on a common mechanical resonator used in cavity optomechanics -- high-stress stoichiometric silicon nitride (Si$_3$N$_4$) membranes. We present experimental work with a trampoline membrane resonator that has… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05718v2-abstract-full').style.display = 'inline'; document.getElementById('1811.05718v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05718v2-abstract-full" style="display: none;"> We explore the prospects and benefits of combining the techniques of cavity optomechanics with efforts to image spins using magnetic resonance force microscopy (MRFM). In particular, we focus on a common mechanical resonator used in cavity optomechanics -- high-stress stoichiometric silicon nitride (Si$_3$N$_4$) membranes. We present experimental work with a trampoline membrane resonator that has a quality factor above $10^6$ and an order of magnitude lower mass than a comparable standard membrane resonators. Such high-stress resonators are on a trajectory to reach 0.1 $\rm{aN}/\sqrt{\rm{Hz}}$ force sensitivities at MHz frequencies by using techniques such as soft clamping and phononic-crystal control of acoustic radiation in combination with cryogenic cooling. We present a demonstration of force-detected electron spin resonance of an ensemble at room temperature using the trampoline resonators functionalized with a magnetic grain. We discuss prospects for combining such a resonator with an integrated Fabry-Perot cavity readout at cryogenic temperatures, and provide ideas for future impacts of membrane cavity optomechanical devices on MRFM of nuclear spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05718v2-abstract-full').style.display = 'none'; document.getElementById('1811.05718v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 21, 043049 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00878">arXiv:1611.00878</a> <span> [<a href="https://arxiv.org/pdf/1611.00878">pdf</a>, <a href="https://arxiv.org/ps/1611.00878">ps</a>, <a href="https://arxiv.org/format/1611.00878">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical probing of mechanical loss of a Si_{3}N_{4} membrane below 100 mK </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+R">R. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Kampel%2C+N+S">N. S. Kampel</a>, <a href="/search/cond-mat?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">G. G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+P+-">P. -L. Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Cicak%2C+K">K. Cicak</a>, <a href="/search/cond-mat?searchtype=author&query=Peterson%2C+R+W">R. W. Peterson</a>, <a href="/search/cond-mat?searchtype=author&query=Simmonds%2C+R+W">R. W. Simmonds</a>, <a href="/search/cond-mat?searchtype=author&query=Regal%2C+C+A">C. A. Regal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00878v1-abstract-short" style="display: inline;"> We report on low mechanical loss in a high-stress silicon nitride (Si_{3}N_{4}) membrane at temperatures below 100 mK. We isolate a membrane via a phononic shield formed within a supporting silicon frame, and measure the mechanical quality factor of a number of high-tension membrane modes as we vary our dilution refrigerator base temperature between 35 mK and 5 K. At the lowest temperatures, we ob… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00878v1-abstract-full').style.display = 'inline'; document.getElementById('1611.00878v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00878v1-abstract-full" style="display: none;"> We report on low mechanical loss in a high-stress silicon nitride (Si_{3}N_{4}) membrane at temperatures below 100 mK. We isolate a membrane via a phononic shield formed within a supporting silicon frame, and measure the mechanical quality factor of a number of high-tension membrane modes as we vary our dilution refrigerator base temperature between 35 mK and 5 K. At the lowest temperatures, we obtain a maximum quality factor (Q) of 2.3\times10^{8}, corresponding to a Q-frequency product (QFP) of 3.7\times10^{14} Hz. These measurements complement the recent observation of improved quality factors of Si_{3}N_{4} at ultralow temperatures via electrical detection. We also observe a dependence of the quality factor on optical heating of the device. By combining exceptional material properties, high tension, advanced isolation and clamping techniques, high-stress mechanical objects are poised to explore a new regime of exceptional quality factors. Such quality factors combined with an optical probe at cryogenic temperatures will have a direct impact on resonators as quantum objects, as well as force sensors at mK temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00878v1-abstract-full').style.display = 'none'; document.getElementById('1611.00878v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>