CINXE.COM
Search results for: state feedback control
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: state feedback control</title> <meta name="description" content="Search results for: state feedback control"> <meta name="keywords" content="state feedback control"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="state feedback control" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="state feedback control"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18095</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: state feedback control</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18095</span> Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto">Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dither" title=" random dither"> random dither</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a> </p> <a href="https://publications.waset.org/abstracts/63970/stochastic-model-predictive-control-for-linear-discrete-time-systems-with-random-dither-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18094</span> On Fault Diagnosis of Asynchronous Sequential Machines with Parallel Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Min%20Yang">Jung-Min Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fault diagnosis of composite asynchronous sequential machines with parallel composition is addressed in this paper. An adversarial input can infiltrate one of two submachines comprising the composite asynchronous machine, causing an unauthorized state transition. The objective is to characterize the condition under which the controller can diagnose any fault occurrence. Two control configurations, state feedback and output feedback, are considered in this paper. In the case of output feedback, the exact estimation of the state is impossible since the current state is inaccessible and the output feedback is given as the form of burst. A simple example is provided to demonstrate the proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20sequential%20machines" title="asynchronous sequential machines">asynchronous sequential machines</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20composition" title=" parallel composition"> parallel composition</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=corrective%20control" title=" corrective control"> corrective control</a> </p> <a href="https://publications.waset.org/abstracts/76606/on-fault-diagnosis-of-asynchronous-sequential-machines-with-parallel-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18093</span> Output-Feedback Control Design for a General Class of Systems Subject to Sampling and Uncertainties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Menard">Tomas Menard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of output-feedback control law has been investigated by many researchers since the last century. While many results exist for the case of Linear Time Invariant systems whose measurements are continuously available, nowadays, control laws are usually implemented on micro-controller, then the measurements are discrete-time by nature. This fact has to be taken into account explicitly in order to obtain a satisfactory behavior of the closed-loop system. One considers here a general class of systems corresponding to an observability normal form and which is subject to uncertainties in the dynamics and sampling of the output. Indeed, in practice, the modeling of the system is never perfect, this results in unknown uncertainties in the dynamics of the model. We propose here an output feedback algorithm which is based on a linear state feedback and a continuous-discrete time observer. The main feature of the proposed control law is that only discrete-time measurements of the output are needed. Furthermore, it is formally proven that the state of the closed loop system exponentially converges toward the origin despite the unknown uncertainties. Finally, the performances of this control scheme are illustrated with simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20systems" title="dynamical systems">dynamical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20feedback%20control%20law" title=" output feedback control law"> output feedback control law</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling" title=" sampling"> sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20systems" title=" uncertain systems"> uncertain systems</a> </p> <a href="https://publications.waset.org/abstracts/90311/output-feedback-control-design-for-a-general-class-of-systems-subject-to-sampling-and-uncertainties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18092</span> Robust H∞ State Feedback Control for Discrete Time T-S Fuzzy Systems Based on Fuzzy Lyapunov Function Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walied%20Hanora">Walied Hanora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the problem of robust state feedback H∞ for discrete time nonlinear system represented by Takagi-Sugeno fuzzy systems. Based on fuzzy lyapunov function, the condition ,which is represented in the form of Liner Matrix Inequalities (LMI), guarantees the H∞ performance of the T-S fuzzy system with uncertainties. By comparison with recent literature, this approach will be more relaxed condition. Finally, an example is given to illustrate the proposed result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20lyapunov%20function" title="fuzzy lyapunov function">fuzzy lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%88%9E%20control" title=" H∞ control "> H∞ control </a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback" title=" state feedback"> state feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=T-S%20fuzzy%20systems" title=" T-S fuzzy systems"> T-S fuzzy systems</a> </p> <a href="https://publications.waset.org/abstracts/58045/robust-h-state-feedback-control-for-discrete-time-t-s-fuzzy-systems-based-on-fuzzy-lyapunov-function-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18091</span> H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Kaewpraek">N. Kaewpraek</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Assawinchaichote"> W. Assawinchaichote </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers an <em>H</em><sub>∞</sub> TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an <em>H</em><sub>∞ </sub>TS fuzzy state-derivative feedback control law which guarantees <em>L</em><sub>2</sub>-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and <em>H</em><sub>∞</sub> performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=h-infinity%20fuzzy%20control" title="h-infinity fuzzy control">h-infinity fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=an%20LMI%20approach" title=" an LMI approach"> an LMI approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Takagi-Sugano%20%28TS%29%20fuzzy%20system" title=" Takagi-Sugano (TS) fuzzy system"> Takagi-Sugano (TS) fuzzy system</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20photovoltaic%20systems" title=" the photovoltaic systems"> the photovoltaic systems</a> </p> <a href="https://publications.waset.org/abstracts/37998/h-takagi-sugeno-fuzzy-state-derivative-feedback-control-design-for-nonlinear-dynamic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18090</span> A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gwanghee%20Heo">Gwanghee Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Geonhyeok%20Bang"> Geonhyeok Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunggil%20Kim"> Chunggil Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinok%20Lee"> Chinok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20vibration%20control" title="structural vibration control">structural vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20system" title=" wireless system"> wireless system</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20damper" title=" MR damper"> MR damper</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20control" title=" feedback control"> feedback control</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a> </p> <a href="https://publications.waset.org/abstracts/93059/a-wireless-feedback-control-system-as-a-base-of-bio-inspired-structure-system-to-mitigate-vibration-in-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18089</span> Rationalized Haar Transforms Approach to Design of Observer for Control Systems with Unknown Inputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joon-Hoon%20Park">Joon-Hoon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fundamental concept of observability is important in both theoretical and practical points of modern control systems. In modern control theory, a control system has criteria for determining the design solution exists for the system parameters and design objectives. The idea of observability relates to the condition of observing or estimating the state variables from the output variables that is generally measurable. To design closed-loop control system, the practical problems of implementing the feedback of the state variables must be considered and implementing state feedback control problem has been existed in this case. All the state variables are not available, so it is requisite to design and implement an observer that will estimate the state variables form the output parameters. However sometimes unknown inputs are presented in control systems as practical cases. This paper presents a design method and algorithm for observer of control system with unknown input parameters based on Rationalized Haar transform. The proposed method is more advantageous than the other numerical method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20functions" title="orthogonal functions">orthogonal functions</a>, <a href="https://publications.waset.org/abstracts/search?q=rationalized%20Haar%20transforms" title=" rationalized Haar transforms"> rationalized Haar transforms</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system%20observer" title=" control system observer"> control system observer</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20method" title=" algebraic method"> algebraic method</a> </p> <a href="https://publications.waset.org/abstracts/69296/rationalized-haar-transforms-approach-to-design-of-observer-for-control-systems-with-unknown-inputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18088</span> Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Alsubaie">Muhammad A. Alsubaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubarak%20K.%20H.%20Alhajri"> Mubarak K. H. Alhajri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20S.%20Altowaim"> Tarek S. Altowaim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20mismatch" title="model mismatch">model mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=repetitive%20control" title=" repetitive control"> repetitive control</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20values" title=" singular values"> singular values</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback" title=" state feedback"> state feedback</a> </p> <a href="https://publications.waset.org/abstracts/99234/setting-uncertainty-conditions-using-singular-values-for-repetitive-control-in-state-feedback" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18087</span> Designing State Feedback Multi-Target Controllers by the Use of Particle Swarm Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedmahdi%20Mousavihashemi">Seyedmahdi Mousavihashemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important subjects of interest in researches is 'improving' which result in various algorithms. In so many geometrical problems we are faced with target functions which should be optimized. In group practices, all the functions’ cooperation lead to convergence. In the study, the optimization algorithm of dense particles is used. Usage of the algorithm improves the given performance norms. The results reveal that usage of swarm algorithm for reinforced particles in designing state feedback improves the given performance norm and in optimized designing of multi-target state feedback controlling, the network will maintain its bearing structure. The results also show that PSO is usable for optimization of state feedback controllers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-objective" title="multi-objective">multi-objective</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced" title=" enhanced"> enhanced</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback" title=" feedback"> feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle" title=" particle"> particle</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a> </p> <a href="https://publications.waset.org/abstracts/60194/designing-state-feedback-multi-target-controllers-by-the-use-of-particle-swarm-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18086</span> A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Basaran">Hasan Basaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Emre%20Unal"> Emre Unal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chief-deputy%20satellites" title="chief-deputy satellites">chief-deputy satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20linearization" title=" feedback linearization"> feedback linearization</a>, <a href="https://publications.waset.org/abstracts/search?q=follower-leader%20satellites" title=" follower-leader satellites"> follower-leader satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20flight" title=" formation flight"> formation flight</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=rendezvous" title=" rendezvous"> rendezvous</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode" title=" sliding mode"> sliding mode</a> </p> <a href="https://publications.waset.org/abstracts/130417/a-comparative-study-of-various-control-methods-for-rendezvous-of-a-satellite-couple" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18085</span> An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Nanda%20Kumar">M. P. Nanda Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Dheeraj"> K. Dheeraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20optimal%20control" title="inverse optimal control">inverse optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=controller%20design" title=" controller design"> controller design</a> </p> <a href="https://publications.waset.org/abstracts/9888/an-inverse-optimal-control-approach-for-the-nonlinear-system-design-using-ann" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18084</span> State Estimation Based on Unscented Kalman Filter for Burgers’ Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Shimizu">Takashi Shimizu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=observer%20systems" title="observer systems">observer systems</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Burgers%27%20equation" title=" Burgers' equation"> Burgers' equation</a> </p> <a href="https://publications.waset.org/abstracts/99541/state-estimation-based-on-unscented-kalman-filter-for-burgers-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18083</span> Discrete PID and Discrete State Feedback Control of a Brushed DC Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Valdez">I. Valdez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Perdomo"> J. Perdomo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Colindres"> M. Colindres</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Castro"> N. Castro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20motor" title=" DC motor"> DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20PID" title=" discrete PID"> discrete PID</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20state%20feedback" title=" discrete state feedback"> discrete state feedback</a> </p> <a href="https://publications.waset.org/abstracts/42513/discrete-pid-and-discrete-state-feedback-control-of-a-brushed-dc-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18082</span> T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Sheu">R. S. Sheu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Usman"> H. Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Lawal"> M. S. Lawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=T-S%20fuzzy%20model" title="T-S fuzzy model">T-S fuzzy model</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control" title=" state feedback control"> state feedback control</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequality%20%28LMI%29" title=" linear matrix inequality (LMI)"> linear matrix inequality (LMI)</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20deviation%20control" title=" frequency deviation control"> frequency deviation control</a> </p> <a href="https://publications.waset.org/abstracts/11563/t-s-fuzzy-modeling-based-on-power-coefficient-limit-nonlinearity-applied-to-an-isolated-single-machine-load-frequency-deviation-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18081</span> Robust State feedback Controller for an Active Suspension System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Altartouri">Hussein Altartouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to present a modeling and control of the active suspension system using robust state feedback controller implemented for a half car model. This system represents a mechatronic system which contains all the essential components to be considered a complete mechatronic system. This system must adapt different conditions which are difficult to compromise, such as disturbances, slippage, and motion on rough road (that contains rocks, stones, and other miscellanies). Some current automobile suspension systems use passive components only by utilizing spring and damping coefficient with fixed rates. Vehicle suspensions systems are used to provide good road handling and improve passenger comfort. Passive suspensions only offer compromise between these two conflicting criteria. Active suspension poses the ability to reduce the traditional design as a compromise between handling and comfort by directly controlling the suspensions force actuators. In this study, the robust state feedback controller implemented to the active suspensions system for half car model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=half-car%20model" title="half-car model">half-car model</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20suspension%20system" title=" active suspension system"> active suspension system</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback" title=" state feedback"> state feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20profile" title=" road profile"> road profile</a> </p> <a href="https://publications.waset.org/abstracts/11201/robust-state-feedback-controller-for-an-active-suspension-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18080</span> Control of Underactuated Biped Robots Using Event Based Fuzzy Partial Feedback Linearization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Heydarnia">Omid Heydarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Allahverdizadeh"> Akbar Allahverdizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Dadashzadeh"> Behnam Dadashzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Sayyed%20Noorani"> M. R. Sayyed Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underactuated biped robots control is one of the interesting topics in robotics. The main difficulties are its highly nonlinear dynamics, open-loop instability, and discrete event at the end of the gait. One of the methods to control underactuated systems is the partial feedback linearization, but it is not robust against uncertainties and disturbances that restrict its performance to control biped walking and running. In this paper, fuzzy partial feedback linearization is presented to overcome its drawback. Numerical simulations verify the effectiveness of the proposed method to generate stable and robust biped walking and running gaits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underactuated%20system" title="underactuated system">underactuated system</a>, <a href="https://publications.waset.org/abstracts/search?q=biped%20robot" title=" biped robot"> biped robot</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title=" fuzzy control"> fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20feedback%20linearization" title=" partial feedback linearization"> partial feedback linearization</a> </p> <a href="https://publications.waset.org/abstracts/53744/control-of-underactuated-biped-robots-using-event-based-fuzzy-partial-feedback-linearization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18079</span> Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Alsubaie">Muhammad A. Alsubaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iterative%20learning%20control" title="iterative learning control">iterative learning control</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20values" title=" singular values"> singular values</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback" title=" state feedback"> state feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20disturbance" title=" load disturbance"> load disturbance</a> </p> <a href="https://publications.waset.org/abstracts/108485/investigating-safe-operation-condition-for-iterative-learning-control-under-load-disturbances-effect-in-singular-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18078</span> Research on Robot Adaptive Polishing Control Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Ming%20Zhang">Yi Ming Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Xi%20Wang"> Zhan Xi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hang%20Chen"> Hang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Wang"> Gang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. It is more and more necessary to replace manual polishing with robot polishing. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a new type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model shows that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robot%20polishing" title="robot polishing">robot polishing</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20feedback" title=" force feedback"> force feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20control" title=" impedance control"> impedance control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a> </p> <a href="https://publications.waset.org/abstracts/133040/research-on-robot-adaptive-polishing-control-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18077</span> Comparison of Interactive Performance of Clicking Tasks Using Cursor Control Devices under Different Feedback Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinshou%20Shi">Jinshou Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaozhou%20Zhou"> Xiaozhou Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingwei%20Zhou"> Yingwei Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuoyang%20Zhou"> Tuoyang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Li"> Ning Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Zhang"> Chi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanshuo%20Zhang"> Zhanshuo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziang%20Chen"> Ziang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to select the optimal interaction method for common computer click tasks, the click experiment test adopts the ISO 9241-9 task paradigm, using four common operations: mouse, trackball, touch, and eye control under visual feedback, auditory feedback, and no feedback. Through data analysis of various parameters of movement time, throughput, and accuracy, it is found that the movement time of touch-control is the shortest, the operation accuracy and throughput are higher than others, and the overall operation performance is the best. In addition, the motion time of the click operation with auditory feedback is significantly lower than the other two feedback methods in each operation mode experiment. In terms of the size of the click target, it is found that when the target is too small (less than 14px), the click performance of all aspects is reduced, so it is proposed that the design of the interface button should not be less than 28px. In this article, we discussed in detail the advantages and disadvantages of the operation and feedback methods, and the results of the discussion of the click operation can be applied to the design of the buttons in the interactive interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cursor%20control%20performance" title="cursor control performance">cursor control performance</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback" title=" feedback"> feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=throughput" title=" throughput"> throughput</a> </p> <a href="https://publications.waset.org/abstracts/130066/comparison-of-interactive-performance-of-clicking-tasks-using-cursor-control-devices-under-different-feedback-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18076</span> Feedback in the Language Class: An Action Research Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Golzari%20Koloor">Arash Golzari Koloor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feedback seems to be an inseparable part of teaching a second/foreign language. One type of feedback is corrective feedback which is one type of error treatment in second language classrooms. This study is a report on the types of corrective feedback employed in an IELTS preparation course. The types of feedback, their frequencies, and their effectiveness are enlisted, enumerated, and interpreted. The results showed that explicit correction and recast were the most frequent types of feedback while repetition and elicitation were the least. The results also revealed that metalinguistic feedback, elicitation, and explicit correction were the most effective types of feedback and affected learners performance greatly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classroom%20interaction" title="classroom interaction">classroom interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=corrective%20feedback" title=" corrective feedback"> corrective feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20treatment" title=" error treatment"> error treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20performance" title=" oral performance"> oral performance</a> </p> <a href="https://publications.waset.org/abstracts/63657/feedback-in-the-language-class-an-action-research-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18075</span> Static Output Feedback Control of a Two-Wheeled Inverted Pendulum Using Sliding Mode Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yankun%20Yang">Yankun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinggang%20Yan"> Xinggang Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Sirlantzis"> Konstantinos Sirlantzis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20Howells"> Gareth Howells</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a static output feedback sliding mode control method to regulate a two-wheeled inverted pendulum system with considerations of matched and unmatched uncertainties. A sliding surface is designed and the associated sliding motion stability is analysed based on the reduced-order dynamics. A static output sliding mode control law is synthesised to drive the system to the sliding surface and maintain a sliding motion afterwards. The nonlinear bounds on the uncertainties are employed in the stability analysis and control design to improve the robustness. The simulation results demonstrate the effectiveness of the proposed control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-wheeled%20inverted%20pendulum" title="two-wheeled inverted pendulum">two-wheeled inverted pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20feedback%20sliding%20mode%20control" title=" output feedback sliding mode control"> output feedback sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a> </p> <a href="https://publications.waset.org/abstracts/139281/static-output-feedback-control-of-a-two-wheeled-inverted-pendulum-using-sliding-mode-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18074</span> Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Li">Hao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20Y.%20Cornejo%20Maceda"> Guy Y. Cornejo Maceda</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqing%20Li"> Yiqing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Tan"> Jianguo Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Morzynski"> Marek Morzynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernd%20R.%20Noack"> Bernd R. Noack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20control" title="machine learning control">machine learning control</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20layer" title=" mixing layer"> mixing layer</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20control" title=" feedback control"> feedback control</a>, <a href="https://publications.waset.org/abstracts/search?q=model-free%20control" title=" model-free control"> model-free control</a> </p> <a href="https://publications.waset.org/abstracts/139617/towards-human-interpretable-automated-learning-of-feedback-control-for-the-mixing-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18073</span> Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Shimizu">Takashi Shimizu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/97739/model-predictive-control-with-unscented-kalman-filter-for-nonlinear-implicit-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18072</span> Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Abu%20Ahmada">Jana Abu Ahmada</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaineb%20Mohamed"> Zaineb Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilyasse%20Aksikas"> Ilyasse Aksikas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PDEs" title="PDEs">PDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20iteration" title=" reinforcement iteration"> reinforcement iteration</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20characteristics" title=" method of characteristics"> method of characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=riccati%20equation" title=" riccati equation"> riccati equation</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20reactor" title=" cracking reactor"> cracking reactor</a> </p> <a href="https://publications.waset.org/abstracts/156852/characteristics-based-lq-control-of-cracking-reactor-by-integral-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18071</span> On Control of Asynchronous Sequential Machines with Switching Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Min%20Yang">Jung-Min Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrective control enables us to change the stable state behavior of an asynchronous sequential machine without modifying inner logic of the machine. This paper addresses corrective control for asynchronous machines with switching capability. The considered asynchronous machine consists of a set of different submachines and switches to each machine according to a constant switching sequence. The control goal is to design a corrective controller such that the closed-loop system can match the behavior of a reference model. The reachability of the switched asynchronous machine is described by a logic calculation of the reachability of submachines. The design procedure of the proposed corrective controller is outlined, and the applicability of the proposed scheme is validated in an example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=switched%20asynchronous%20sequential%20machines" title="switched asynchronous sequential machines">switched asynchronous sequential machines</a>, <a href="https://publications.waset.org/abstracts/search?q=corrective%20control" title=" corrective control"> corrective control</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback" title=" state feedback"> state feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20sequences" title=" switching sequences"> switching sequences</a> </p> <a href="https://publications.waset.org/abstracts/14853/on-control-of-asynchronous-sequential-machines-with-switching-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18070</span> Attitude Stabilization of Satellites Using Random Dither Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuma%20Okada">Kazuma Okada</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirokazu%20Tahara"> Hirokazu Tahara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantized%20control" title="quantized control">quantized control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dither%20quantization" title=" random dither quantization"> random dither quantization</a> </p> <a href="https://publications.waset.org/abstracts/76853/attitude-stabilization-of-satellites-using-random-dither-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18069</span> The Differential Role of Written Corrective Feedback in L2 Students’ Noticing and Its Impact on Writing Scores</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20ElEbyary">Khaled ElEbyary</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramy%20Shabara"> Ramy Shabara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L2 research has generally acknowledged the role of noticing in language learning. The role of teacher feedback is to trigger learners’ noticing of errors and direct the writing process. Recently L2 learners are seemingly using computerized applications which provide corrective feedback (CF) at different stages of writing (i.e., during and after writing). This study aimed principally to answer the question, “Is noticing likely to be maximized when feedback on erroneous output is electronically provided either during or after the composing stage, or does teacher annotated feedback have a stronger effect?”. Seventy-five participants were randomly distributed into four groups representing four conditions. These include receiving automated feedback at the composing stage, automated feedback after writing, teacher feedback, and no feedback. Findings demonstrate the impact of CF on writing and the intensity of noticing certain language areas at different writing stages and from different feedback sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=written%20corrective%20feedback" title="written corrective feedback">written corrective feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20correction" title=" error correction"> error correction</a>, <a href="https://publications.waset.org/abstracts/search?q=noticing" title=" noticing"> noticing</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20written%20corrective%20feedback" title=" automated written corrective feedback"> automated written corrective feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=L2%20acquisition" title=" L2 acquisition"> L2 acquisition</a> </p> <a href="https://publications.waset.org/abstracts/166316/the-differential-role-of-written-corrective-feedback-in-l2-students-noticing-and-its-impact-on-writing-scores" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18068</span> Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20O.%20Alamu">Samuel O. Alamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20W.%20Lee"> Seong W. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Blaise%20Kalmia"> Blaise Kalmia</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20J.%20Louise%20Caballes"> Marc J. Louise Caballes</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuejun%20Qian"> Xuejun Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20flow" title="air flow">air flow</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20combustion" title=" biomass combustion"> biomass combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20control%20signal" title=" feedback control signal"> feedback control signal</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20feeding" title=" fuel feeding"> fuel feeding</a>, <a href="https://publications.waset.org/abstracts/search?q=ladder%20logic" title=" ladder logic"> ladder logic</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20logic%20controller" title=" programmable logic controller"> programmable logic controller</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/121580/development-of-a-feedback-control-system-for-a-lab-scale-biomass-combustion-system-using-programmable-logic-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18067</span> Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%E2%80%93Min%20Yang">Jung–Min Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20sequential%20machines" title="asynchronous sequential machines">asynchronous sequential machines</a>, <a href="https://publications.waset.org/abstracts/search?q=corrective%20control" title=" corrective control"> corrective control</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20matching" title=" model matching"> model matching</a>, <a href="https://publications.waset.org/abstracts/search?q=input%2Foutput%20control" title=" input/output control"> input/output control</a> </p> <a href="https://publications.waset.org/abstracts/62600/conditions-for-model-matching-of-switched-asynchronous-sequential-machines-with-output-feedback" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18066</span> An Application of a Feedback Control System to Minimize Unforeseen Disruption in a Paper Manufacturing Industry in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martha%20E.%20Ndeley">Martha E. Ndeley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operation management is the key element within the manufacturing process. However, during this process, there are a number of unforeseen disruptions that causes the process to a standstill which are, machine breakdown, employees absenteeism, improper scheduling. When this happens, it forces the shop flow to a rescheduling process and these strategy reschedules only a limited part of the initial schedule to match up with the pre-schedule at some point with the objective to create a new schedule that is reliable which in the long run gets disrupted. In this work, we have developed feedback control system that minimizes any form of disruption before the impact becomes severe, the model was tested in a paper manufacturing industries and the results revealed that, if the disruption is minimized at the initial state, the impact becomes unnoticeable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disruption" title="disruption">disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=machine" title=" machine"> machine</a>, <a href="https://publications.waset.org/abstracts/search?q=absenteeism" title=" absenteeism"> absenteeism</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a> </p> <a href="https://publications.waset.org/abstracts/51085/an-application-of-a-feedback-control-system-to-minimize-unforeseen-disruption-in-a-paper-manufacturing-industry-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=603">603</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=604">604</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>