CINXE.COM

Determinant (matematika) – Wikipédia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="sk" dir="ltr"> <head> <meta charset="UTF-8"> <title>Determinant (matematika) – Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )skwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","január","február","marec","apríl","máj","jún","júl","august","september","október","november","december"],"wgRequestId":"0be08112-56cd-4061-b744-da6b3b4272da","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Determinant_(matematika)","wgTitle":"Determinant (matematika)","wgCurRevisionId":7391046,"wgRevisionId":7391046,"wgArticleId":272073,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Matematika","Teória matíc","Lineárna algebra"],"wgPageViewLanguage":"sk","wgPageContentLanguage":"sk","wgPageContentModel":"wikitext","wgRelevantPageName":"Determinant_(matematika)","wgRelevantArticleId":272073,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true, "wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"sk","pageLanguageDir":"ltr","pageVariantFallbacks":"sk"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q178546","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.2"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready", "user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.WikiMiniAtlas","ext.gadget.edit-summaries","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface", "ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=sk&amp;modules=ext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=sk&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=sk&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/0/0f/Sarrus_rule.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="575"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Sarrus_rule.png/800px-Sarrus_rule.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="383"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Sarrus_rule.png/640px-Sarrus_rule.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="307"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Determinant (matematika) – Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//sk.m.wikipedia.org/wiki/Determinant_(matematika)"> <link rel="alternate" type="application/x-wiki" title="Upraviť" href="/w/index.php?title=Determinant_(matematika)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (sk)"> <link rel="EditURI" type="application/rsd+xml" href="//sk.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://sk.wikipedia.org/wiki/Determinant_(matematika)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.sk"> <link rel="alternate" type="application/atom+xml" title="Atom kanál Wikipédia" href="/w/index.php?title=%C5%A0peci%C3%A1lne:Posledn%C3%A9%C3%9Apravy&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Determinant_matematika rootpage-Determinant_matematika skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Preskočiť na obsah</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Hlavné menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Hlavné menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Hlavné menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">presunúť do postranného panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">skryť</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigácia </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Hlavn%C3%A1_str%C3%A1nka" title="Navštíviť Hlavnú stránku [z]" accesskey="z"><span>Hlavná stránka</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Port%C3%A1l_komunity" title="O projekte, ako môžete prispieť, kde čo nájsť"><span>Portál komunity</span></a></li><li id="n-kaviaren" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Kaviare%C5%88"><span>Kaviareň</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%C5%A0peci%C3%A1lne:Posledn%C3%A9%C3%9Apravy" title="Zoznam posledných úprav na tejto wiki [r]" accesskey="r"><span>Posledné úpravy</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%C5%A0peci%C3%A1lne:N%C3%A1hodn%C3%A1" title="Zobraziť náhodnú stránku [x]" accesskey="x"><span>Náhodná stránka</span></a></li><li id="n-help" class="mw-list-item"><a href="https://sk.wikipedia.org/wiki/Pomoc:Obsah" title="Miesto, kde nájdete pomoc"><span>Pomocník</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Hlavn%C3%A1_str%C3%A1nka" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Slobodná encyklopédia" src="/static/images/mobile/copyright/wikipedia-tagline-sk.svg" width="118" height="13" style="width: 7.375em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%C5%A0peci%C3%A1lne:H%C4%BEadanie" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Vyhľadať na Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Hľadať</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Hľadať na Wikipédii" aria-label="Hľadať na Wikipédii" autocapitalize="sentences" title="Vyhľadať na Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Špeciálne:Hľadanie"> </div> <button class="cdx-button cdx-search-input__end-button">Hľadať</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Osobné nástroje"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Vzhľad"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Zmeniť vzhľad veľkosti písma, šírky stránky a farby" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Vzhľad" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Vzhľad</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_sk.wikipedia.org&amp;uselang=sk" class=""><span>Prispieť</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%C5%A0peci%C3%A1lne:Vytvorenie%C3%9A%C4%8Dtu&amp;returnto=Determinant+%28matematika%29" title="Odporúčame vytvoriť si vlastný účet a prihlásiť sa, nie je to však povinné." class=""><span>Vytvoriť účet</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%C5%A0peci%C3%A1lne:Prihl%C3%A1seniePou%C5%BE%C3%ADvate%C4%BEa&amp;returnto=Determinant+%28matematika%29" title="Odporúčame vám prihlásiť sa, nie je to však povinné. [o]" accesskey="o" class=""><span>Prihlásiť sa</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Ďalšie možnosti" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Osobné nástroje" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Osobné nástroje</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Uživatelské menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_sk.wikipedia.org&amp;uselang=sk"><span>Prispieť</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%C5%A0peci%C3%A1lne:Vytvorenie%C3%9A%C4%8Dtu&amp;returnto=Determinant+%28matematika%29" title="Odporúčame vytvoriť si vlastný účet a prihlásiť sa, nie je to však povinné."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Vytvoriť účet</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%C5%A0peci%C3%A1lne:Prihl%C3%A1seniePou%C5%BE%C3%ADvate%C4%BEa&amp;returnto=Determinant+%28matematika%29" title="Odporúčame vám prihlásiť sa, nie je to však povinné. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Prihlásiť sa</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Stránky pre odhlásených redaktorov <a href="/wiki/Pomoc:%C3%9Avod" aria-label="Viac informácií o editovaní"><span>zistiť viac</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%C5%A0peci%C3%A1lne:MojePr%C3%ADspevky" title="Zoznam úprav vykonaných z tejto IP adresy [y]" accesskey="y"><span>Príspevky</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%C5%A0peci%C3%A1lne:MojaDiskusia" title="Diskusia o úpravách z tejto ip adresy [n]" accesskey="n"><span>Diskusia</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Enezobrazovať\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"sk\" dir=\"ltr\"\u003E\u003Ctable width=\"100%\" class=\"skin-nightmode-reset-color\" style=\"background:var( --background-color-base, #FFF); color:#27408B;\"\u003E\n\n\u003Ctbody\u003E\u003Ctr valign=\"top\"\u003E\n\u003Ctd style=\"text-align:center;\"\u003E\u003Cdiv style=\"display: flex; text-align:center; border: 1px solid black;\" class=\"plainlinks\"\u003E\u003Cdiv style=\"padding-left:0.5em; padding-top:0.2em; margin-bottom: -0.4em;\"\u003E\u003Cfigure class=\"mw-halign-left\" typeof=\"mw:File\"\u003E\u003Ca href=\"/wiki/Wikip%C3%A9dia:%C3%81zijsk%C3%BD_mesiac_Wikip%C3%A9die\" title=\"Ázijský mesiac Wikipédie\"\u003E\u003Cimg alt=\"Ázijský mesiac Wikipédie\" src=\"//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/WAM_logo_without_text.svg/38px-WAM_logo_without_text.svg.png\" decoding=\"async\" width=\"38\" height=\"41\" class=\"mw-file-element\" srcset=\"//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/WAM_logo_without_text.svg/57px-WAM_logo_without_text.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/WAM_logo_without_text.svg/76px-WAM_logo_without_text.svg.png 2x\" data-file-width=\"800\" data-file-height=\"859\" /\u003E\u003C/a\u003E\u003Cfigcaption\u003EÁzijský mesiac Wikipédie\u003C/figcaption\u003E\u003C/figure\u003E\u003C/div\u003E\u003Cdiv style=\"text-align:center; flex: 1; margin: 0.2em 0;\"\u003E\u003Cbig\u003E\u003Cb\u003E\u003Ca href=\"/wiki/Wikip%C3%A9dia:%C3%81zijsk%C3%BD_mesiac_Wikip%C3%A9die_2024\" title=\"Wikipédia:Ázijský mesiac Wikipédie 2024\"\u003EÁzijský mesiac Wikipédie 2024\u003C/a\u003E\u003C/b\u003E\u003C/big\u003E\u003Cbr /\u003E\u003Cb\u003EZapojte sa a\u0026#160;získajte cenu\u003C/b\u003E\n\u003C/div\u003E\n\u003C/div\u003E\u003C/td\u003E\u003C/tr\u003E\u003C/tbody\u003E\u003C/table\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Obsah" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Obsah</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">presunúť do postranného panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">skryť</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Začiatok</div> </a> </li> <li id="toc-Značenie" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Značenie"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Značenie</span> </div> </a> <ul id="toc-Značenie-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definícia_determinantu" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definícia_determinantu"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definícia determinantu</span> </div> </a> <button aria-controls="toc-Definícia_determinantu-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Definícia determinantu</span> </button> <ul id="toc-Definícia_determinantu-sublist" class="vector-toc-list"> <li id="toc-Všeobecná_definícia" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Všeobecná_definícia"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Všeobecná definícia</span> </div> </a> <ul id="toc-Všeobecná_definícia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Špeciálny_prípad" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Špeciálny_prípad"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Špeciálny prípad</span> </div> </a> <ul id="toc-Špeciálny_prípad-sublist" class="vector-toc-list"> <li id="toc-Matica_rádu_1" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Matica_rádu_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Matica rádu 1</span> </div> </a> <ul id="toc-Matica_rádu_1-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matica_rádu_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Matica_rádu_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.2</span> <span>Matica rádu 2</span> </div> </a> <ul id="toc-Matica_rádu_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matica_rádu_3" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Matica_rádu_3"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.3</span> <span>Matica rádu 3</span> </div> </a> <ul id="toc-Matica_rádu_3-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Výpočet_determinantu" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Výpočet_determinantu"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Výpočet determinantu</span> </div> </a> <button aria-controls="toc-Výpočet_determinantu-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Výpočet determinantu</span> </button> <ul id="toc-Výpočet_determinantu-sublist" class="vector-toc-list"> <li id="toc-Sarrusovo_pravidlo" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sarrusovo_pravidlo"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Sarrusovo pravidlo</span> </div> </a> <ul id="toc-Sarrusovo_pravidlo-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Laplaceova_veta_o_rozvoji_determinantu_podľa_jedného_riadka,_resp._stĺpca" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laplaceova_veta_o_rozvoji_determinantu_podľa_jedného_riadka,_resp._stĺpca"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Laplaceova veta o rozvoji determinantu podľa jedného riadka, resp. stĺpca</span> </div> </a> <ul id="toc-Laplaceova_veta_o_rozvoji_determinantu_podľa_jedného_riadka,_resp._stĺpca-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Všeobecná_Laplaceova_veta_o_rozvoji_determinantu" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Všeobecná_Laplaceova_veta_o_rozvoji_determinantu"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Všeobecná Laplaceova veta o rozvoji determinantu</span> </div> </a> <ul id="toc-Všeobecná_Laplaceova_veta_o_rozvoji_determinantu-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Základné_vlastnosti_determinantov" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Základné_vlastnosti_determinantov"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Základné vlastnosti determinantov</span> </div> </a> <ul id="toc-Základné_vlastnosti_determinantov-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pozri_aj" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Pozri_aj"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Pozri aj</span> </div> </a> <ul id="toc-Pozri_aj-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Iné_projekty" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Iné_projekty"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Iné projekty</span> </div> </a> <ul id="toc-Iné_projekty-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Literatúra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Literatúra"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Literatúra</span> </div> </a> <ul id="toc-Literatúra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Externé_odkazy" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Externé_odkazy"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Externé odkazy</span> </div> </a> <ul id="toc-Externé_odkazy-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Obsah" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Prepnúť obsah" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Prepnúť obsah</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Determinant (matematika)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Prejsť na článok v inom jazyku. Je dostupný v 69 jazykoch" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-69" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">69 jazykov</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AD%D8%AF%D8%AF_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="محدد (رياضيات) – arabčina" lang="ar" hreflang="ar" data-title="محدد (رياضيات)" data-language-autonym="العربية" data-language-local-name="arabčina" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Determinant" title="Determinant – azerbajdžančina" lang="az" hreflang="az" data-title="Determinant" data-language-autonym="Azərbaycanca" data-language-local-name="azerbajdžančina" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D1%8B%D0%B7%D0%BD%D0%B0%D1%87%D0%BD%D1%96%D0%BA_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Вызначнік (алгебра) – bieloruština" lang="be" hreflang="be" data-title="Вызначнік (алгебра)" data-language-autonym="Беларуская" data-language-local-name="bieloruština" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%94%D0%B5%D1%82%D0%B5%D1%80%D0%BC%D0%B8%D0%BD%D0%B0%D0%BD%D1%82%D0%B0" title="Детерминанта – bulharčina" lang="bg" hreflang="bg" data-title="Детерминанта" data-language-autonym="Български" data-language-local-name="bulharčina" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A8%E0%A6%BF%E0%A6%B0%E0%A7%8D%E0%A6%A3%E0%A6%BE%E0%A6%AF%E0%A6%BC%E0%A6%95" title="নির্ণায়ক – bengálčina" lang="bn" hreflang="bn" data-title="নির্ণায়ক" data-language-autonym="বাংলা" data-language-local-name="bengálčina" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Determinanta" title="Determinanta – bosniačtina" lang="bs" hreflang="bs" data-title="Determinanta" data-language-autonym="Bosanski" data-language-local-name="bosniačtina" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca badge-Q17437796 badge-featuredarticle mw-list-item" title="najlepší článok"><a href="https://ca.wikipedia.org/wiki/Determinant_(matem%C3%A0tiques)" title="Determinant (matemàtiques) – katalánčina" lang="ca" hreflang="ca" data-title="Determinant (matemàtiques)" data-language-autonym="Català" data-language-local-name="katalánčina" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AF%DB%8C%D8%AA%DB%8E%D8%B1%D9%85%DB%8C%D9%86%D9%86%D8%AA" title="دیتێرمیننت – kurdčina (sorání)" lang="ckb" hreflang="ckb" data-title="دیتێرمیننت" data-language-autonym="کوردی" data-language-local-name="kurdčina (sorání)" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Determinant" title="Determinant – čeština" lang="cs" hreflang="cs" data-title="Determinant" data-language-autonym="Čeština" data-language-local-name="čeština" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9F%D0%B0%D0%BB%C4%83%D1%80%D1%82%D0%B0%D0%B2%C3%A7%C4%83" title="Палăртавçă – čuvaština" lang="cv" hreflang="cv" data-title="Палăртавçă" data-language-autonym="Чӑвашла" data-language-local-name="čuvaština" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Determinant" title="Determinant – dánčina" lang="da" hreflang="da" data-title="Determinant" data-language-autonym="Dansk" data-language-local-name="dánčina" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Determinante" title="Determinante – nemčina" lang="de" hreflang="de" data-title="Determinante" data-language-autonym="Deutsch" data-language-local-name="nemčina" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9F%CF%81%CE%AF%CE%B6%CE%BF%CF%85%CF%83%CE%B1" title="Ορίζουσα – gréčtina" lang="el" hreflang="el" data-title="Ορίζουσα" data-language-autonym="Ελληνικά" data-language-local-name="gréčtina" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Determinant" title="Determinant – angličtina" lang="en" hreflang="en" data-title="Determinant" data-language-autonym="English" data-language-local-name="angličtina" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Determinanto" title="Determinanto – esperanto" lang="eo" hreflang="eo" data-title="Determinanto" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Determinante_(matem%C3%A1tica)" title="Determinante (matemática) – španielčina" lang="es" hreflang="es" data-title="Determinante (matemática)" data-language-autonym="Español" data-language-local-name="španielčina" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Determinant" title="Determinant – estónčina" lang="et" hreflang="et" data-title="Determinant" data-language-autonym="Eesti" data-language-local-name="estónčina" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Determinante" title="Determinante – baskičtina" lang="eu" hreflang="eu" data-title="Determinante" data-language-autonym="Euskara" data-language-local-name="baskičtina" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AF%D8%AA%D8%B1%D9%85%DB%8C%D9%86%D8%A7%D9%86" title="دترمینان – perzština" lang="fa" hreflang="fa" data-title="دترمینان" data-language-autonym="فارسی" data-language-local-name="perzština" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Determinantti" title="Determinantti – fínčina" lang="fi" hreflang="fi" data-title="Determinantti" data-language-autonym="Suomi" data-language-local-name="fínčina" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/D%C3%A9terminant_(math%C3%A9matiques)" title="Déterminant (mathématiques) – francúzština" lang="fr" hreflang="fr" data-title="Déterminant (mathématiques)" data-language-autonym="Français" data-language-local-name="francúzština" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Determinant" title="Determinant – severná frízština" lang="frr" hreflang="frr" data-title="Determinant" data-language-autonym="Nordfriisk" data-language-local-name="severná frízština" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Deit%C3%A9armanant" title="Deitéarmanant – írčina" lang="ga" hreflang="ga" data-title="Deitéarmanant" data-language-autonym="Gaeilge" data-language-local-name="írčina" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Determinante_(matem%C3%A1ticas)" title="Determinante (matemáticas) – galícijčina" lang="gl" hreflang="gl" data-title="Determinante (matemáticas)" data-language-autonym="Galego" data-language-local-name="galícijčina" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%93%D7%98%D7%A8%D7%9E%D7%99%D7%A0%D7%A0%D7%98%D7%94" title="דטרמיננטה – hebrejčina" lang="he" hreflang="he" data-title="דטרמיננטה" data-language-autonym="עברית" data-language-local-name="hebrejčina" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%BE%E0%A4%B0%E0%A4%A3%E0%A4%BF%E0%A4%95" title="सारणिक – hindčina" lang="hi" hreflang="hi" data-title="सारणिक" data-language-autonym="हिन्दी" data-language-local-name="hindčina" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Determinanta" title="Determinanta – chorvátčina" lang="hr" hreflang="hr" data-title="Determinanta" data-language-autonym="Hrvatski" data-language-local-name="chorvátčina" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Determin%C3%A1ns_(matematika)" title="Determináns (matematika) – maďarčina" lang="hu" hreflang="hu" data-title="Determináns (matematika)" data-language-autonym="Magyar" data-language-local-name="maďarčina" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%88%D6%80%D5%B8%D5%B7%D5%AB%D5%B9_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Որոշիչ (մաթեմատիկա) – arménčina" lang="hy" hreflang="hy" data-title="Որոշիչ (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="arménčina" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Determinan" title="Determinan – indonézština" lang="id" hreflang="id" data-title="Determinan" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonézština" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/%C3%81kve%C3%B0a" title="Ákveða – islandčina" lang="is" hreflang="is" data-title="Ákveða" data-language-autonym="Íslenska" data-language-local-name="islandčina" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Determinante_(algebra)" title="Determinante (algebra) – taliančina" lang="it" hreflang="it" data-title="Determinante (algebra)" data-language-autonym="Italiano" data-language-local-name="taliančina" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F" title="行列式 – japončina" lang="ja" hreflang="ja" data-title="行列式" data-language-autonym="日本語" data-language-local-name="japončina" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%93%E1%83%94%E1%83%A2%E1%83%94%E1%83%A0%E1%83%9B%E1%83%98%E1%83%9C%E1%83%90%E1%83%9C%E1%83%A2%E1%83%98" title="დეტერმინანტი – gruzínčina" lang="ka" hreflang="ka" data-title="დეტერმინანტი" data-language-autonym="ქართული" data-language-local-name="gruzínčina" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%90%D0%BD%D1%8B%D2%9B%D1%82%D0%B0%D1%83%D1%8B%D1%88_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Анықтауыш (математика) – kazaština" lang="kk" hreflang="kk" data-title="Анықтауыш (математика)" data-language-autonym="Қазақша" data-language-local-name="kazaština" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%A8%E0%B2%BF%E0%B2%B0%E0%B3%8D%E0%B2%A7%E0%B2%BE%E0%B2%B0%E0%B2%95" title="ನಿರ್ಧಾರಕ – kannadčina" lang="kn" hreflang="kn" data-title="ನಿರ್ಧಾರಕ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kannadčina" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식 – kórejčina" lang="ko" hreflang="ko" data-title="행렬식" data-language-autonym="한국어" data-language-local-name="kórejčina" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D0%BD%D1%8B%D0%BA%D1%82%D0%B0%D0%B3%D1%8B%D1%87" title="Аныктагыч – kirgizština" lang="ky" hreflang="ky" data-title="Аныктагыч" data-language-autonym="Кыргызча" data-language-local-name="kirgizština" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Determinans" title="Determinans – latinčina" lang="la" hreflang="la" data-title="Determinans" data-language-autonym="Latina" data-language-local-name="latinčina" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Determinant" title="Determinant – lombardština" lang="lmo" hreflang="lmo" data-title="Determinant" data-language-autonym="Lombard" data-language-local-name="lombardština" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Determinantas" title="Determinantas – litovčina" lang="lt" hreflang="lt" data-title="Determinantas" data-language-autonym="Lietuvių" data-language-local-name="litovčina" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Determinants" title="Determinants – lotyština" lang="lv" hreflang="lv" data-title="Determinants" data-language-autonym="Latviešu" data-language-local-name="lotyština" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%94%D0%B5%D1%82%D0%B5%D1%80%D0%BC%D0%B8%D0%BD%D0%B0%D0%BD%D1%82%D0%B0" title="Детерминанта – macedónčina" lang="mk" hreflang="mk" data-title="Детерминанта" data-language-autonym="Македонски" data-language-local-name="macedónčina" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B8%E0%B4%BE%E0%B4%B0%E0%B4%A3%E0%B4%BF%E0%B4%95%E0%B4%82" title="സാരണികം – malajálamčina" lang="ml" hreflang="ml" data-title="സാരണികം" data-language-autonym="മലയാളം" data-language-local-name="malajálamčina" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Determinant" title="Determinant – holandčina" lang="nl" hreflang="nl" data-title="Determinant" data-language-autonym="Nederlands" data-language-local-name="holandčina" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Determinant" title="Determinant – nórčina (nynorsk)" lang="nn" hreflang="nn" data-title="Determinant" data-language-autonym="Norsk nynorsk" data-language-local-name="nórčina (nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Determinant" title="Determinant – nórčina (bokmal)" lang="nb" hreflang="nb" data-title="Determinant" data-language-autonym="Norsk bokmål" data-language-local-name="nórčina (bokmal)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wyznacznik" title="Wyznacznik – poľština" lang="pl" hreflang="pl" data-title="Wyznacznik" data-language-autonym="Polski" data-language-local-name="poľština" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DA%88%DB%8C%D9%B9%D8%B1%D9%85%DB%8C%D9%86%D9%86%D9%B9" title="ڈیٹرمیننٹ – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ڈیٹرمیننٹ" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Determinante" title="Determinante – portugalčina" lang="pt" hreflang="pt" data-title="Determinante" data-language-autonym="Português" data-language-local-name="portugalčina" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Determinant_(matematic%C4%83)" title="Determinant (matematică) – rumunčina" lang="ro" hreflang="ro" data-title="Determinant (matematică)" data-language-autonym="Română" data-language-local-name="rumunčina" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9E%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C" title="Определитель – ruština" lang="ru" hreflang="ru" data-title="Определитель" data-language-autonym="Русский" data-language-local-name="ruština" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Determinanta" title="Determinanta – srbochorvátčina" lang="sh" hreflang="sh" data-title="Determinanta" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="srbochorvátčina" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Determinant" title="Determinant – Simple English" lang="en-simple" hreflang="en-simple" data-title="Determinant" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Determinanta" title="Determinanta – slovinčina" lang="sl" hreflang="sl" data-title="Determinanta" data-language-autonym="Slovenščina" data-language-local-name="slovinčina" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Determinanti" title="Determinanti – albánčina" lang="sq" hreflang="sq" data-title="Determinanti" data-language-autonym="Shqip" data-language-local-name="albánčina" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%94%D0%B5%D1%82%D0%B5%D1%80%D0%BC%D0%B8%D0%BD%D0%B0%D0%BD%D1%82%D0%B0" title="Детерминанта – srbčina" lang="sr" hreflang="sr" data-title="Детерминанта" data-language-autonym="Српски / srpski" data-language-local-name="srbčina" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Determinant" title="Determinant – švédčina" lang="sv" hreflang="sv" data-title="Determinant" data-language-autonym="Svenska" data-language-local-name="švédčina" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%85%E0%AE%A3%E0%AE%BF%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%8B%E0%AE%B5%E0%AF%88" title="அணிக்கோவை – tamilčina" lang="ta" hreflang="ta" data-title="அணிக்கோவை" data-language-autonym="தமிழ்" data-language-local-name="tamilčina" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%94%E0%B8%B5%E0%B9%80%E0%B8%97%E0%B8%AD%E0%B8%A3%E0%B9%8C%E0%B8%A1%E0%B8%B4%E0%B9%81%E0%B8%99%E0%B8%99%E0%B8%95%E0%B9%8C" title="ดีเทอร์มิแนนต์ – thajčina" lang="th" hreflang="th" data-title="ดีเทอร์มิแนนต์" data-language-autonym="ไทย" data-language-local-name="thajčina" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Determinant" title="Determinant – turečtina" lang="tr" hreflang="tr" data-title="Determinant" data-language-autonym="Türkçe" data-language-local-name="turečtina" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B8%D0%B7%D0%BD%D0%B0%D1%87%D0%BD%D0%B8%D0%BA" title="Визначник – ukrajinčina" lang="uk" hreflang="uk" data-title="Визначник" data-language-autonym="Українська" data-language-local-name="ukrajinčina" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AF%D8%AA%D8%B1%D9%85%DB%8C%D9%86%D8%A7%D9%86" title="دترمینان – urdčina" lang="ur" hreflang="ur" data-title="دترمینان" data-language-autonym="اردو" data-language-local-name="urdčina" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Aniqlovchi_(matematika)" title="Aniqlovchi (matematika) – uzbečtina" lang="uz" hreflang="uz" data-title="Aniqlovchi (matematika)" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="uzbečtina" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_th%E1%BB%A9c" title="Định thức – vietnamčina" lang="vi" hreflang="vi" data-title="Định thức" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamčina" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F" title="行列式 – čínština (wu)" lang="wuu" hreflang="wuu" data-title="行列式" data-language-autonym="吴语" data-language-local-name="čínština (wu)" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437796 badge-featuredarticle mw-list-item" title="najlepší článok"><a href="https://zh.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F" title="行列式 – čínština" lang="zh" hreflang="zh" data-title="行列式" data-language-autonym="中文" data-language-local-name="čínština" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/H%C3%A2ng-lia%CC%8Dt-sek" title="Hâng-lia̍t-sek – čínština (dialekty Minnan)" lang="nan" hreflang="nan" data-title="Hâng-lia̍t-sek" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="čínština (dialekty Minnan)" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F" title="行列式 – kantončina" lang="yue" hreflang="yue" data-title="行列式" data-language-autonym="粵語" data-language-local-name="kantončina" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q178546#sitelinks-wikipedia" title="Upraviť medzijazykové odkazy" class="wbc-editpage">Upraviť odkazy</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Menné priestory"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Determinant_(matematika)" title="Zobraziť obsah stránky [c]" accesskey="c"><span>Stránka</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Diskusia:Determinant_(matematika)&amp;action=edit&amp;redlink=1" rel="discussion" class="new" title="Diskusia o obsahu stránky (stránka neexistuje) [t]" accesskey="t"><span>Diskusia</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Změnit variantu jazyka" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">slovenčina</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Zobrazenia"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Determinant_(matematika)"><span>Čítať</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit" title="Upraviť túto stránku [v]" accesskey="v"><span>Upraviť</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit" title="Upraviť zdrojový kód tejto stránky [e]" accesskey="e"><span>Upraviť zdroj</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Determinant_(matematika)&amp;action=history" title="Minulé revízie tejto stránky. [h]" accesskey="h"><span>Zobraziť históriu</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Nástroje stránky"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Nástroje" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Nástroje</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Nástroje</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">presunúť do postranného panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">skryť</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Další možnosti" > <div class="vector-menu-heading"> Akcie </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Determinant_(matematika)"><span>Čítať</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit" title="Upraviť túto stránku [v]" accesskey="v"><span>Upraviť</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit" title="Upraviť zdrojový kód tejto stránky [e]" accesskey="e"><span>Upraviť zdroj</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Determinant_(matematika)&amp;action=history"><span>Zobraziť históriu</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Všeobecné </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%C5%A0peci%C3%A1lne:%C4%8CoOdkazujeSem/Determinant_(matematika)" title="Zoznam všetkých wiki stránok, ktoré sem odkazujú [j]" accesskey="j"><span>Odkazy na túto stránku</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%C5%A0peci%C3%A1lne:S%C3%BAvisiacePosledn%C3%A9%C3%9Apravy/Determinant_(matematika)" rel="nofollow" title="Posledné úpravy na stránkach, na ktoré odkazuje táto stránka [k]" accesskey="k"><span>Súvisiace úpravy</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=sk" title="Nahranie súborov [u]" accesskey="u"><span>Nahrať súbor</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%C5%A0peci%C3%A1lne:%C5%A0peci%C3%A1lneStr%C3%A1nky" title="Zoznam všetkých špeciálnych stránok [q]" accesskey="q"><span>Špeciálne stránky</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Determinant_(matematika)&amp;oldid=7391046" title="Trvalý odkaz na túto verziu stránky"><span>Trvalý odkaz</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Determinant_(matematika)&amp;action=info" title="Viac informácií o tejto stránke"><span>Informácie o stránke</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%C5%A0peci%C3%A1lne:Citova%C5%A5&amp;page=Determinant_%28matematika%29&amp;id=7391046&amp;wpFormIdentifier=titleform" title="Informácie ako citovať túto stránku"><span>Citovať túto stránku</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%C5%A0peci%C3%A1lne:UrlShortener&amp;url=https%3A%2F%2Fsk.wikipedia.org%2Fwiki%2FDeterminant_%28matematika%29"><span>Získať skrátené URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%C5%A0peci%C3%A1lne:QrCode&amp;url=https%3A%2F%2Fsk.wikipedia.org%2Fwiki%2FDeterminant_%28matematika%29"><span>Stiahnuť QR kód</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Tlačiť/exportovať </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%C5%A0peci%C3%A1lne:Knihy&amp;bookcmd=book_creator&amp;referer=Determinant+%28matematika%29"><span>Vytvoriť knihu</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%C5%A0peci%C3%A1lne:DownloadAsPdf&amp;page=Determinant_%28matematika%29&amp;action=show-download-screen"><span>Stiahnuť ako PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Determinant_(matematika)&amp;printable=yes" title="Verzia tejto stránky pre tlač [p]" accesskey="p"><span>Verzia pre tlač</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> V iných projektoch </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Determinant" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q178546" title="Odkaz na prepojenú položku dátového úložiska [g]" accesskey="g"><span>Položka Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Nástroje stránky"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Vzhľad"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Vzhľad</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">presunúť do postranného panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">skryť</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">z Wikipédie, slobodnej encyklopédie</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="sk" dir="ltr"><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/S%C3%BAbor:Sarrus_rule.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Sarrus_rule.png/220px-Sarrus_rule.png" decoding="async" width="220" height="105" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Sarrus_rule.png/330px-Sarrus_rule.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Sarrus_rule.png/440px-Sarrus_rule.png 2x" data-file-width="864" data-file-height="414" /></a><figcaption>Grafické znázornenie Sarrusovho pravidla</figcaption></figure> <p><b>Determinant</b> je multilineárne <a href="/wiki/Zobrazenie" class="mw-disambig" title="Zobrazenie">zobrazenie</a>, ktoré každej <a href="/wiki/Re%C3%A1lne_%C4%8D%C3%ADslo" title="Reálne číslo">reálnej</a> (resp. <a href="/wiki/Komplexn%C3%A9_%C4%8D%C3%ADslo" title="Komplexné číslo">komplexnej</a>) štvorcovej <a href="/wiki/Matica_(matematika)" title="Matica (matematika)">matici</a> priraďuje jedno reálne (resp. komplexné) číslo. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Značenie"><span id="Zna.C4.8Denie"></span>Značenie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=1" title="Upraviť sekciu: Značenie" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=1" title="Editovat zdrojový kód sekce Značenie"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Determinant matice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }"></span> značíme v skrátenej forme, ktorá nešpecifikuje jej jednotlivé prvky <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} _{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} _{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ea143a1d4f77fdfa822b5770b9db8124c03ca48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.777ex; height:2.343ex;" alt="{\displaystyle \mathbf {a} _{ij}}"></span> nasledovným spôsobom: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det \mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e89a488fd84c5ffb99b30a2af16bfb38c6242f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.636ex; height:2.176ex;" alt="{\displaystyle \det \mathbf {A} }"></span></dd></dl> <p>V prípade explicitného vyjadrenia jednotlivých prvkov <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} _{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} _{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ea143a1d4f77fdfa822b5770b9db8124c03ca48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.777ex; height:2.343ex;" alt="{\displaystyle \mathbf {a} _{ij}}"></span> matice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }"></span> používame nasledujúce značenie: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{vmatrix}a_{11}&amp;a_{12}&amp;\cdots &amp;a_{1n}\\a_{21}&amp;a_{22}&amp;\cdots &amp;a_{2n}\\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\a_{n1}&amp;a_{n2}&amp;\cdots &amp;a_{nn}\end{vmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22F1;<!-- ⋱ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{vmatrix}a_{11}&amp;a_{12}&amp;\cdots &amp;a_{1n}\\a_{21}&amp;a_{22}&amp;\cdots &amp;a_{2n}\\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\a_{n1}&amp;a_{n2}&amp;\cdots &amp;a_{nn}\end{vmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea9c4a2034d6b63bd9a7160a91d553c2d6f04df2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:21.967ex; height:14.176ex;" alt="{\displaystyle {\begin{vmatrix}a_{11}&amp;a_{12}&amp;\cdots &amp;a_{1n}\\a_{21}&amp;a_{22}&amp;\cdots &amp;a_{2n}\\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\a_{n1}&amp;a_{n2}&amp;\cdots &amp;a_{nn}\end{vmatrix}}}"></span>,</dd></dl> <p>Ďalším zaužívaným spôsobom je nasledujúce označenie: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{vmatrix}a_{ij}\end{vmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{vmatrix}a_{ij}\end{vmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ff6928ac8cefce6a40404d6db12f141388bde7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.691ex; margin-bottom: -0.314ex; width:4.752ex; height:3.176ex;" alt="{\displaystyle {\begin{vmatrix}a_{ij}\end{vmatrix}}}"></span>.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Definícia_determinantu"><span id="Defin.C3.ADcia_determinantu"></span>Definícia determinantu</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=2" title="Upraviť sekciu: Definícia determinantu" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=2" title="Editovat zdrojový kód sekce Definícia determinantu"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Všeobecná_definícia"><span id="V.C5.A1eobecn.C3.A1_defin.C3.ADcia"></span>Všeobecná definícia</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=3" title="Upraviť sekciu: Všeobecná definícia" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=3" title="Editovat zdrojový kód sekce Všeobecná definícia"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pre ľubovoľnú reálnu alebo komplexnú maticu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} =({a_{i}}_{j})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} =({a_{i}}_{j})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8e15f71bf9166ef084491609f9cb409559cfa40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.254ex; height:3.009ex;" alt="{\displaystyle \mathbf {A} =({a_{i}}_{j})\,}"></span> rozmeru <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> definujeme determinant nasledujúcim predpisom (nazývaným tiež <i>Leibnizova formula</i>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det \mathbf {A} =\sum _{\sigma \in S_{n}}\operatorname {sgn}(\sigma )\prod _{i=1}^{n}{a}_{i,\sigma (i)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </munder> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det \mathbf {A} =\sum _{\sigma \in S_{n}}\operatorname {sgn}(\sigma )\prod _{i=1}^{n}{a}_{i,\sigma (i)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edc20c08f97c405e42bc02caadb362ffb95f3ab7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:28.658ex; height:7.176ex;" alt="{\displaystyle \det \mathbf {A} =\sum _{\sigma \in S_{n}}\operatorname {sgn}(\sigma )\prod _{i=1}^{n}{a}_{i,\sigma (i)}}"></span></dd></dl> <p>Znak <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{\sigma \in S_{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </munder> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{\sigma \in S_{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8117206d3d2a0f4ad79e434d3f18bfc2ad95b28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:4.009ex; height:5.843ex;" alt="{\displaystyle \sum _{\sigma \in S_{n}}}"></span> znamená sumu cez všetky <a href="/wiki/Permut%C3%A1cia" class="mw-disambig" title="Permutácia">permutácie</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> čísel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {1,2,\cdots ,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mi>n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {1,2,\cdots ,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b41dec9bc882fbf7289c856593dac15b35fe419" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.932ex; height:2.509ex;" alt="{\displaystyle {1,2,\cdots ,n}}"></span>. Znakom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sgn}(\sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sgn}(\sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/716472e58beb0c37a9bdfbf33851309a7aae45f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.51ex; height:2.843ex;" alt="{\displaystyle \operatorname {sgn}(\sigma )}"></span> označujeme <a href="/w/index.php?title=Znamienko_permut%C3%A1cie&amp;action=edit&amp;redlink=1" class="new" title="Znamienko permutácie (stránka neexistuje)">znamienko permutácie</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>. Znamienko permutácie nadobúda hodnotu +1 pre <a href="/w/index.php?title=P%C3%A1rna_permut%C3%A1cia&amp;action=edit&amp;redlink=1" class="new" title="Párna permutácia (stránka neexistuje)">párne permutácie</a> a −1 pre <a href="/w/index.php?title=Nep%C3%A1rna_permut%C3%A1cia&amp;action=edit&amp;redlink=1" class="new" title="Nepárna permutácia (stránka neexistuje)">nepárne permutácie</a>. Z dôvodu sčítania cez všetky permutácie čísel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {1,2,\cdots ,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mi>n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {1,2,\cdots ,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b41dec9bc882fbf7289c856593dac15b35fe419" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.932ex; height:2.509ex;" alt="{\displaystyle {1,2,\cdots ,n}}"></span> sa v Leibnitzovej formule vyskytuje <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span> sčítancov (každý zodpovedá práve jednej permutácii). V praxi sa preto pre matice vyšších rádov používajú rôzne výpočetné <a href="/wiki/Algoritmus" title="Algoritmus">algoritmy</a>. </p><p>Hore uvedená definícia sa veľakrát prepisuje pomocou všeobecného <a href="/w/index.php?title=Levi-Civitov_symbol&amp;action=edit&amp;redlink=1" class="new" title="Levi-Civitov symbol (stránka neexistuje)">Levi-Civitovho symbolu</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{j_{1}j_{2}\cdots j_{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{j_{1}j_{2}\cdots j_{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d8eb6dd7129b5d1c81f52cdcfb7e2f4b26d515f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.902ex; height:2.343ex;" alt="{\displaystyle \varepsilon _{j_{1}j_{2}\cdots j_{n}}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det \mathbf {A} =\sum _{j_{1},j_{2},...,j_{n}}\varepsilon _{j_{1}j_{2}\cdots j_{n}}a_{1j_{1}}a_{2j_{2}}\cdots a_{nj_{n}}=\sum _{j_{1},j_{2},...,j_{n}}\varepsilon _{j_{1}j_{2}\cdots j_{n}}a_{j_{1}1}a_{j_{2}2}\cdots a_{j_{n}n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det \mathbf {A} =\sum _{j_{1},j_{2},...,j_{n}}\varepsilon _{j_{1}j_{2}\cdots j_{n}}a_{1j_{1}}a_{2j_{2}}\cdots a_{nj_{n}}=\sum _{j_{1},j_{2},...,j_{n}}\varepsilon _{j_{1}j_{2}\cdots j_{n}}a_{j_{1}1}a_{j_{2}2}\cdots a_{j_{n}n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b5a65256bfbb0c6288a0ab92b95caf9935fb40b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:73.569ex; height:6.009ex;" alt="{\displaystyle \det \mathbf {A} =\sum _{j_{1},j_{2},...,j_{n}}\varepsilon _{j_{1}j_{2}\cdots j_{n}}a_{1j_{1}}a_{2j_{2}}\cdots a_{nj_{n}}=\sum _{j_{1},j_{2},...,j_{n}}\varepsilon _{j_{1}j_{2}\cdots j_{n}}a_{j_{1}1}a_{j_{2}2}\cdots a_{j_{n}n}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Špeciálny_prípad"><span id=".C5.A0peci.C3.A1lny_pr.C3.ADpad"></span>Špeciálny prípad</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=4" title="Upraviť sekciu: Špeciálny prípad" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=4" title="Editovat zdrojový kód sekce Špeciálny prípad"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Matica_rádu_1"><span id="Matica_r.C3.A1du_1"></span>Matica rádu 1</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=5" title="Upraviť sekciu: Matica rádu 1" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=5" title="Editovat zdrojový kód sekce Matica rádu 1"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Matica rádu jedna (teda rozmeru 1×1) pozostáva z jediného čísla <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {{a_{1}}_{1}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {{a_{1}}_{1}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/271524f5733f7d90da58b3e62c8f20eff7af66eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.654ex; height:2.009ex;" alt="{\displaystyle \mathbf {{a_{1}}_{1}} }"></span>. Determinant matice prvého rádu je preto rovný práve tomuto prvku: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det \mathbf {A} ={a_{1}}_{1}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det \mathbf {A} ={a_{1}}_{1}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad667357d7f91b33d35f6ad10104be43f820f17d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.46ex; height:2.509ex;" alt="{\displaystyle \det \mathbf {A} ={a_{1}}_{1}\,}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Matica_rádu_2"><span id="Matica_r.C3.A1du_2"></span>Matica rádu 2</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=6" title="Upraviť sekciu: Matica rádu 2" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=6" title="Editovat zdrojový kód sekce Matica rádu 2"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pre maticu rádu dva (teda rozmeru 2×2) vedie obecná definícia k nasledujúcemu vzorcu: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det \mathbf {A} ={a_{1}}_{1}{a_{2}}_{2}-{a_{2}}_{1}{a_{1}}_{2}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det \mathbf {A} ={a_{1}}_{1}{a_{2}}_{2}-{a_{2}}_{1}{a_{1}}_{2}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b97c1de4a53c2d1939c4eb77d31772a3a7803e10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.315ex; height:2.509ex;" alt="{\displaystyle \det \mathbf {A} ={a_{1}}_{1}{a_{2}}_{2}-{a_{2}}_{1}{a_{1}}_{2}\,}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Matica_rádu_3"><span id="Matica_r.C3.A1du_3"></span>Matica rádu 3</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=7" title="Upraviť sekciu: Matica rádu 3" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=7" title="Editovat zdrojový kód sekce Matica rádu 3"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Maticu rádu tri (teda rozmeru 3×3) je možné indexovať troma číslami: 1, 2 a 3. Výsledný vzorec bude preto obsahovať šesť sčítancov, pretože podľa definície sumujeme cez všetky permutácie takýchto indexov: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det \mathbf {A} ={a_{1}}_{1}{a_{2}}_{2}{a_{3}}_{3}+{a_{1}}_{3}{a_{2}}_{1}{a_{3}}_{2}+{a_{1}}_{2}{a_{2}}_{3}{a_{3}}_{1}-{a_{1}}_{3}{a_{2}}_{2}{a_{3}}_{1}-{a_{1}}_{1}{a_{2}}_{3}{a_{3}}_{2}-{a_{1}}_{2}{a_{2}}_{1}{a_{3}}_{3}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det \mathbf {A} ={a_{1}}_{1}{a_{2}}_{2}{a_{3}}_{3}+{a_{1}}_{3}{a_{2}}_{1}{a_{3}}_{2}+{a_{1}}_{2}{a_{2}}_{3}{a_{3}}_{1}-{a_{1}}_{3}{a_{2}}_{2}{a_{3}}_{1}-{a_{1}}_{1}{a_{2}}_{3}{a_{3}}_{2}-{a_{1}}_{2}{a_{2}}_{1}{a_{3}}_{3}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e091663ba6e51dcb47a621297527fdeaf4098b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:83.413ex; height:2.676ex;" alt="{\displaystyle \det \mathbf {A} ={a_{1}}_{1}{a_{2}}_{2}{a_{3}}_{3}+{a_{1}}_{3}{a_{2}}_{1}{a_{3}}_{2}+{a_{1}}_{2}{a_{2}}_{3}{a_{3}}_{1}-{a_{1}}_{3}{a_{2}}_{2}{a_{3}}_{1}-{a_{1}}_{1}{a_{2}}_{3}{a_{3}}_{2}-{a_{1}}_{2}{a_{2}}_{1}{a_{3}}_{3}\,}"></span></dd></dl> <p>Vhodnou <a href="/w/index.php?title=Mnemotechnick%C3%A1_pom%C3%B4cka&amp;action=edit&amp;redlink=1" class="new" title="Mnemotechnická pomôcka (stránka neexistuje)">mnemotechnickou pomôckou</a> pre výpočty podľa vyššie uvedeného vzorca sa ukazuje byť takzvané <a href="/w/index.php?title=Sarrusovo_pravidlo&amp;action=edit&amp;redlink=1" class="new" title="Sarrusovo pravidlo (stránka neexistuje)">Sarrusovo pravidlo</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Výpočet_determinantu"><span id="V.C3.BDpo.C4.8Det_determinantu"></span>Výpočet determinantu</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=8" title="Upraviť sekciu: Výpočet determinantu" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=8" title="Editovat zdrojový kód sekce Výpočet determinantu"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Determinant" class="mw-disambig" title="Determinant">Determinant</a> môžeme vypočítať viacerými spôsobmi. </p> <div class="mw-heading mw-heading3"><h3 id="Sarrusovo_pravidlo">Sarrusovo pravidlo</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=9" title="Upraviť sekciu: Sarrusovo pravidlo" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=9" title="Editovat zdrojový kód sekce Sarrusovo pravidlo"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/w/index.php?title=Sarrus&amp;action=edit&amp;redlink=1" class="new" title="Sarrus (stránka neexistuje)">Sarrusovo pravidlo</a> má viacero podôb. Všeobecne (a najčastejšie) sa využíva pre počítanie determinantu <a href="/wiki/Matica" class="mw-disambig" title="Matica">matíc</a> typu 3 x 3. </p><p><b>Postup:</b> K <a href="/wiki/Matica" class="mw-disambig" title="Matica">matici</a> pripíšeme na pravú stranu ešte raz jej prvý a druhý stĺpec v tomto poradí. Potom vyrátame všetky <i>diagonálne súčiny</i>, ktoré majú po tri <a href="/wiki/%C4%8Cinite%C4%BE" class="mw-redirect mw-disambig" title="Činiteľ">činitele</a>. Spolu je takýchto súčinov šesť. Výslednú sumu tvorí súčet týchto šiestich súčinov, pričom zo znamienkom "+" sú tie tri z nich, ktoré sú <i><a href="/w/index.php?title=Rovnobe%C5%BEn%C3%A9&amp;action=edit&amp;redlink=1" class="new" title="Rovnobežné (stránka neexistuje)">rovnobežné</a></i> s hlavnou <a href="/wiki/Diagon%C3%A1la" class="mw-disambig" title="Diagonála">diagonálou</a>, so znamienkom "-" sú zvyšné tri z nich, tj. tie, ktoré sú <a href="/w/index.php?title=Rovnobe%C5%BEn%C3%A9&amp;action=edit&amp;redlink=1" class="new" title="Rovnobežné (stránka neexistuje)">rovnobežné</a> s vedľajšou <a href="/wiki/Diagon%C3%A1la" class="mw-disambig" title="Diagonála">diagonálou</a>. </p><p><b>Názorná schéma:</b> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}a_{11}&amp;a_{12}&amp;a_{13}&amp;a_{11}&amp;a_{12}\\a_{21}&amp;a_{22}&amp;a_{23}&amp;a_{21}&amp;a_{22}\\a_{31}&amp;a_{32}&amp;a_{33}&amp;a_{31}&amp;a_{32}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}a_{11}&amp;a_{12}&amp;a_{13}&amp;a_{11}&amp;a_{12}\\a_{21}&amp;a_{22}&amp;a_{23}&amp;a_{21}&amp;a_{22}\\a_{31}&amp;a_{32}&amp;a_{33}&amp;a_{31}&amp;a_{32}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37a755374575e1998d2aa12b220bc6cdd9fa3df6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:25.572ex; height:9.176ex;" alt="{\displaystyle {\begin{matrix}a_{11}&amp;a_{12}&amp;a_{13}&amp;a_{11}&amp;a_{12}\\a_{21}&amp;a_{22}&amp;a_{23}&amp;a_{21}&amp;a_{22}\\a_{31}&amp;a_{32}&amp;a_{33}&amp;a_{31}&amp;a_{32}\end{matrix}}}"></span><br /><br /> Teda:<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08d200e769a42d5e6c5904f9c1c78a61c85c5885" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:70.111ex; height:2.343ex;" alt="{\displaystyle a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Laplaceova_veta_o_rozvoji_determinantu_podľa_jedného_riadka,_resp._stĺpca"><span id="Laplaceova_veta_o_rozvoji_determinantu_pod.C4.BEa_jedn.C3.A9ho_riadka.2C_resp._st.C4.BApca"></span>Laplaceova veta o rozvoji determinantu podľa jedného riadka, resp. stĺpca</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=10" title="Upraviť sekciu: Laplaceova veta o rozvoji determinantu podľa jedného riadka, resp. stĺpca" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=10" title="Editovat zdrojový kód sekce Laplaceova veta o rozvoji determinantu podľa jedného riadka, resp. stĺpca"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Majme štvorcovú <a href="/wiki/Matica" class="mw-disambig" title="Matica">maticu</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{ij})\in M_{n,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad8fc710b30b6ba3fd248ea0af7ca6367857d051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.688ex; height:3.009ex;" alt="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"></span>. Potom pre každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in {1,...,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in {1,...,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84b1c77812bfa5100be303541a7658bb0a784374" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.407ex; height:2.509ex;" alt="{\displaystyle t\in {1,...,n}}"></span> existuje nasledujúce vyjadrenie rozvoja determinantu matice A podľa <i>t-teho</i> riadka: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(A)=\sum _{k=1}^{n}a_{tk}(-1)^{t+k}\det(M_{tk})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>+</mo> <mi>k</mi> </mrow> </msup> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(A)=\sum _{k=1}^{n}a_{tk}(-1)^{t+k}\det(M_{tk})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376646f86a45e852fc48986272308b335816f3ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.638ex; height:6.843ex;" alt="{\displaystyle \det(A)=\sum _{k=1}^{n}a_{tk}(-1)^{t+k}\det(M_{tk})}"></span></dd></dl> <p>pričom matica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{tk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{tk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb9dc5a610c131a3ee832261a5596a1ca567be35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.936ex; height:2.509ex;" alt="{\displaystyle M_{tk}}"></span> je <a href="/wiki/Matica" class="mw-disambig" title="Matica">matica</a>, ktorá vznikne z matice A vynechaním <i>t-teho</i> riadka a <i>k-teho</i> stĺpca. Analogicky sa dá odvodiť vzorec pre rozvoj determinantu podľa <i>t-teho</i> stĺpca: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(A)=\sum _{k=1}^{n}a_{kt}(-1)^{k+t}\det(M_{kt})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mi>t</mi> </mrow> </msup> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>t</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(A)=\sum _{k=1}^{n}a_{kt}(-1)^{k+t}\det(M_{kt})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d15736819b1003a07be11fe3447930245fb2e86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.638ex; height:6.843ex;" alt="{\displaystyle \det(A)=\sum _{k=1}^{n}a_{kt}(-1)^{k+t}\det(M_{kt})}"></span></dd></dl> <p>pričom matica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{kt}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{kt}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c80379ca1eb6d0c8baa28219d51af8085d22573" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.936ex; height:2.509ex;" alt="{\displaystyle M_{kt}}"></span> je <a href="/wiki/Matica" class="mw-disambig" title="Matica">matica</a>, ktorá vznikne z matice A vynechaním <i>k-teho</i> riadka a <i>t-teho</i> stĺpca. </p> <div class="mw-heading mw-heading3"><h3 id="Všeobecná_Laplaceova_veta_o_rozvoji_determinantu"><span id="V.C5.A1eobecn.C3.A1_Laplaceova_veta_o_rozvoji_determinantu"></span>Všeobecná Laplaceova veta o rozvoji determinantu</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=11" title="Upraviť sekciu: Všeobecná Laplaceova veta o rozvoji determinantu" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=11" title="Editovat zdrojový kód sekce Všeobecná Laplaceova veta o rozvoji determinantu"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nech je daná <a href="/wiki/Matica" class="mw-disambig" title="Matica">matica</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{ij})\in M_{n,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad8fc710b30b6ba3fd248ea0af7ca6367857d051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.688ex; height:3.009ex;" alt="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"></span>. Pevne zvoľme čísla <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{1},...,i_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{1},...,i_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbda0ca7517e928eb22c61bb69b26bbf1c12e46f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.918ex; height:2.509ex;" alt="{\displaystyle i_{1},...,i_{k}}"></span> (kde <i>k</i> je ľubovoľné, pevne zvolené číslo z <a href="/wiki/Mno%C5%BEina" title="Množina">množiny</a> {1, ..., n - 1}) také, že: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{1}&lt;i_{2}&lt;...&lt;i_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&lt;</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{1}&lt;i_{2}&lt;...&lt;i_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c4842f569bbd0212c0462245fa2e8c33d113cce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.711ex; height:2.509ex;" alt="{\displaystyle i_{1}&lt;i_{2}&lt;...&lt;i_{k}}"></span>. </p><p>Potom: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(A)=\sum _{1\leq {j}_{1}&lt;...&lt;j_{k}\leq n}\det(A_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})\cdot (-1)^{i_{1}+...+i_{k}+j_{1}+...+j_{k}}\cdot \det(M_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>&lt;</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(A)=\sum _{1\leq {j}_{1}&lt;...&lt;j_{k}\leq n}\det(A_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})\cdot (-1)^{i_{1}+...+i_{k}+j_{1}+...+j_{k}}\cdot \det(M_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7328808d4adc7878c47c6aeb1cc53c7f4e12b1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:70.217ex; height:6.009ex;" alt="{\displaystyle \det(A)=\sum _{1\leq {j}_{1}&lt;...&lt;j_{k}\leq n}\det(A_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})\cdot (-1)^{i_{1}+...+i_{k}+j_{1}+...+j_{k}}\cdot \det(M_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})}"></span></dd></dl> <p>kde: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{j_{1},...,j_{k}}^{i_{1},...,i_{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{j_{1},...,j_{k}}^{i_{1},...,i_{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f2eda3bdef4a1d5fb4642132ffc62bf4130ef4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.308ex; height:3.843ex;" alt="{\displaystyle A_{j_{1},...,j_{k}}^{i_{1},...,i_{k}}}"></span> je <a href="/wiki/Matica" class="mw-disambig" title="Matica">podmatica</a> matice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{ij}\in M_{n,n}(R))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{ij}\in M_{n,n}(R))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5dc7985a8134cd9615d0cdc34bb42c9703501a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.688ex; height:3.009ex;" alt="{\displaystyle A=(a_{ij}\in M_{n,n}(R))}"></span> typu <i>k x k</i>, ktorá je tvorená prvkami ležiacimi na priesečníkoch riadkov s indexami <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{1},...,i_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{1},...,i_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbda0ca7517e928eb22c61bb69b26bbf1c12e46f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.918ex; height:2.509ex;" alt="{\displaystyle i_{1},...,i_{k}}"></span> a stĺpcov s indexami <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j_{1},...,j_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j_{1},...,j_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0f36c8db34ce1abd59ccd4ba13bc3c2fb0bba2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:9.256ex; height:2.509ex;" alt="{\displaystyle j_{1},...,j_{k}}"></span> (pričom platí: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j_{1}&lt;j_{2}&lt;...&lt;j_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&lt;</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>&lt;</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j_{1}&lt;j_{2}&lt;...&lt;j_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deef10fefe7117fbdf42ccf11ce7bcf8bb4834d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:17.205ex; height:2.509ex;" alt="{\displaystyle j_{1}&lt;j_{2}&lt;...&lt;j_{k}}"></span>).</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{j_{1},...,j_{k}}^{i_{1},...,i_{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{j_{1},...,j_{k}}^{i_{1},...,i_{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d7570ec76fd4bec32ae237cb5309153f0f8a497" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.844ex; height:3.843ex;" alt="{\displaystyle M_{j_{1},...,j_{k}}^{i_{1},...,i_{k}}}"></span> je <a href="/wiki/Matica" class="mw-disambig" title="Matica">matica</a> typu <i>(n-k) x (n-k)</i>, ktorá je vytvorená z matice A vynechaním riadkov s indexami <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{1},...,i_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{1},...,i_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbda0ca7517e928eb22c61bb69b26bbf1c12e46f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.918ex; height:2.509ex;" alt="{\displaystyle i_{1},...,i_{k}}"></span> a stĺpcov s indexami <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j_{1},...,j_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j_{1},...,j_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0f36c8db34ce1abd59ccd4ba13bc3c2fb0bba2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:9.256ex; height:2.509ex;" alt="{\displaystyle j_{1},...,j_{k}}"></span></li> <li><a href="/w/index.php?title=Algebrick%C3%BD_doplnok_determinantu&amp;action=edit&amp;redlink=1" class="new" title="Algebrický doplnok determinantu (stránka neexistuje)">Algebrický doplnok determinantu</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(A_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(A_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf188f99aaf74dbaa440257a6d484d2c16039787" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:12.347ex; height:3.843ex;" alt="{\displaystyle \det(A_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})}"></span> je prvok takéhoto tvaru: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{i_{1}+...+i_{k}+j_{1}+...+j_{k}}\cdot \det(M_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{i_{1}+...+i_{k}+j_{1}+...+j_{k}}\cdot \det(M_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52290d7dd1399da9c5b52771847e582c40bacd9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:34.583ex; height:3.843ex;" alt="{\displaystyle (-1)^{i_{1}+...+i_{k}+j_{1}+...+j_{k}}\cdot \det(M_{j_{1},...,j_{k}}^{i_{1},...,i_{k}})}"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Základné_vlastnosti_determinantov"><span id="Z.C3.A1kladn.C3.A9_vlastnosti_determinantov"></span>Základné vlastnosti determinantov</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=12" title="Upraviť sekciu: Základné vlastnosti determinantov" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=12" title="Editovat zdrojový kód sekce Základné vlastnosti determinantov"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Pre každú štvorcovú <a href="/wiki/Matica" class="mw-disambig" title="Matica">maticu</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=M_{n,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=M_{n,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1af47530fca5d76d64dd7fcd0a4972edcb2a6a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.331ex; height:3.009ex;" alt="{\displaystyle A=M_{n,n}(R)}"></span> platí, že determinant matice sa rovná determinantu transponovanej <a href="/wiki/Matica" class="mw-disambig" title="Matica">matici</a>, teda <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(A)=\det(A^{T})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(A)=\det(A^{T})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f030f3d2fde633e416e69692dc196cb3567a7d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.052ex; height:3.176ex;" alt="{\displaystyle \det(A)=\det(A^{T})}"></span></li></ul> <ul><li>Ak <a href="/wiki/Matica" class="mw-disambig" title="Matica">matica</a> B vznikne z matice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=M_{n,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=M_{n,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1af47530fca5d76d64dd7fcd0a4972edcb2a6a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.331ex; height:3.009ex;" alt="{\displaystyle A=M_{n,n}(R)}"></span> vzájomnou výmenou dvoch riadkov (resp. vzájomnou výmenou dvoch stĺpcov), potom determinant výslednej matice B sa rovná zápornej hodnote determinantu matice A, teda</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(B)=-\det(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(B)=-\det(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4d5aed0b4a4880997b985421420ab016dfec38d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.879ex; height:2.843ex;" alt="{\displaystyle \det(B)=-\det(A)}"></span></dd></dl> <ul><li>Nech <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{ij})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{ij})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296ad42d9541f8285979ce822ccb661da56111ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.358ex; height:3.009ex;" alt="{\displaystyle A=(a_{ij})}"></span> je štvorcová matica stupňa <i>n</i> nad daným poľom R. Potom pre každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r,s\in {1,...,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r,s\in {1,...,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/039573c8516066d0b288d625a23a2add9a4c3807" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.741ex; height:2.509ex;" alt="{\displaystyle r,s\in {1,...,n}}"></span> existuje algebrický doplnok <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{rs}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{rs}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/495ec9fd2f3245f68bd0d3810d863051921eef58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.488ex; height:2.509ex;" alt="{\displaystyle A_{rs}}"></span> a má tvar:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{rs}=(-1)^{r+s}\det(M_{rs})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>+</mo> <mi>s</mi> </mrow> </msup> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>s</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{rs}=(-1)^{r+s}\det(M_{rs})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fba1aa50a0099ad02e29bdc79d48a1dd8114a4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.815ex; height:3.009ex;" alt="{\displaystyle A_{rs}=(-1)^{r+s}\det(M_{rs})}"></span></dd></dl> <p>pričom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{rs}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{rs}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0e289660be37e77c95d6c01ac46e2b5bba56ca9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.999ex; height:2.509ex;" alt="{\displaystyle M_{rs}}"></span> je štvorcová matica typu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)\times (n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)\times (n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db79e223b655326d530528bb7efbc40128589985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.254ex; height:2.843ex;" alt="{\displaystyle (n-1)\times (n-1)}"></span>, ktorá vznikne z matice A vynechaním <i>r</i>-tého riadka a <i>s</i>-tého stĺpca. </p> <ul><li>Ak matica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{ij})\in M_{n,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad8fc710b30b6ba3fd248ea0af7ca6367857d051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.688ex; height:3.009ex;" alt="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6bf67f9d06ca3af619657f8d20ee1322da77174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geq 2}"></span>) má dva riadky (resp. dva stĺpce) rovnaké, tak:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(A)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(A)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fae2c323c223539e3e2bba4e4e3730a0a1bb00e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.043ex; height:2.843ex;" alt="{\displaystyle \det(A)=0}"></span></dd></dl> <ul><li>Ak matica B vznikne z matice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{ij})\in M_{n,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad8fc710b30b6ba3fd248ea0af7ca6367857d051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.688ex; height:3.009ex;" alt="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"></span> tak, že jeden riadok (resp. jeden stĺpec) v A vynásobíme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fde5e5a17420ec1cea25fa8611637e5b84af84d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.653ex; height:2.343ex;" alt="{\displaystyle \delta \in R}"></span>, tak:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(B)=\delta \det(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B4;<!-- δ --></mi> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(B)=\delta \det(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1e3ca66a1db4e1e1551ddca7a90d1628578ad48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.119ex; height:2.843ex;" alt="{\displaystyle \det(B)=\delta \det(A)}"></span></dd></dl> <ul><li>Nech sú dané dve matice: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{ij})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{ij})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296ad42d9541f8285979ce822ccb661da56111ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.358ex; height:3.009ex;" alt="{\displaystyle A=(a_{ij})}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=(B_{ij})\in M_{n,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=(B_{ij})\in M_{n,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/312efe336e256a35f63006a75f704f3c06f5f5b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.243ex; height:3.009ex;" alt="{\displaystyle B=(B_{ij})\in M_{n,n}(R)}"></span>. Ak sa tieto dve matice líšia len v niektorom <i>k</i>-tom riadku, pre niektoré <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in {1,...,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in {1,...,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26e34d062b03cfd9e93a74da19124a251e325f66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.779ex; height:2.509ex;" alt="{\displaystyle k\in {1,...,n}}"></span>, tak potom platí:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(A)+\det(B)=\det {\begin{pmatrix}a_{11}&amp;...&amp;a_{1n}\\...&amp;...&amp;...\\a_{k-1,1}&amp;...&amp;a_{k-1,n}\\a_{k1}+b_{k1}&amp;...&amp;a_{kn}+b_{kn}\\a_{k+1,1}&amp;...&amp;a_{k+1,n}\\...&amp;...&amp;...\\a_{n1}&amp;...&amp;a_{nn}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(A)+\det(B)=\det {\begin{pmatrix}a_{11}&amp;...&amp;a_{1n}\\...&amp;...&amp;...\\a_{k-1,1}&amp;...&amp;a_{k-1,n}\\a_{k1}+b_{k1}&amp;...&amp;a_{kn}+b_{kn}\\a_{k+1,1}&amp;...&amp;a_{k+1,n}\\...&amp;...&amp;...\\a_{n1}&amp;...&amp;a_{nn}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5bd19de8c575a5727ab01f86265dbb1223abf9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.838ex; width:53.425ex; height:22.843ex;" alt="{\displaystyle \det(A)+\det(B)=\det {\begin{pmatrix}a_{11}&amp;...&amp;a_{1n}\\...&amp;...&amp;...\\a_{k-1,1}&amp;...&amp;a_{k-1,n}\\a_{k1}+b_{k1}&amp;...&amp;a_{kn}+b_{kn}\\a_{k+1,1}&amp;...&amp;a_{k+1,n}\\...&amp;...&amp;...\\a_{n1}&amp;...&amp;a_{nn}\end{pmatrix}}}"></span></dd></dl> <ul><li>Ak je v matici <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in M_{n,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in M_{n,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0551bd322bffd3c53ebdf6bf4d1093f197cc7caf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.073ex; height:3.009ex;" alt="{\displaystyle A\in M_{n,n}(R)}"></span> aspoň jeden riadok (resp. stĺpec) nulový tak platí:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(A)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(A)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fae2c323c223539e3e2bba4e4e3730a0a1bb00e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.043ex; height:2.843ex;" alt="{\displaystyle \det(A)=0}"></span></dd></dl> <ul><li>Majme maticu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{ij})\in M_{n,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad8fc710b30b6ba3fd248ea0af7ca6367857d051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.688ex; height:3.009ex;" alt="{\displaystyle A=(a_{ij})\in M_{n,n}(R)}"></span>, (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6bf67f9d06ca3af619657f8d20ee1322da77174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geq 2}"></span>). Ak matica <i>B</i> vznikne z matice <i>A</i> prirátaním <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>-násobku (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b09907bd4a5d9f895bddca8cc8d829c3e214b5e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.092ex; height:2.176ex;" alt="{\displaystyle \alpha \in R}"></span>) hociktorého riadka (resp. stĺpca) k inému riadku (resp. stĺpcu) v <i>A</i>. Potom platí:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(B)=\det(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(B)=\det(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0eca4328194c3aef3a41a1e67023bae92f26c4f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.683ex; height:2.843ex;" alt="{\displaystyle \det(B)=\det(A)}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Pozri_aj">Pozri aj</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=13" title="Upraviť sekciu: Pozri aj" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=13" title="Editovat zdrojový kód sekce Pozri aj"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Matica_(matematika)" title="Matica (matematika)">Matica (matematika)</a></li> <li><a href="/wiki/Line%C3%A1rny_priestor" class="mw-redirect" title="Lineárny priestor">Lineárny priestor</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Iné_projekty"><span id="In.C3.A9_projekty"></span>Iné projekty</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=14" title="Upraviť sekciu: Iné projekty" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=14" title="Editovat zdrojový kód sekce Iné projekty"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="interProject commons" style="display:none;"><a href="https://commons.wikimedia.org/wiki/Category:Determinant" class="extiw" title="commons:Category:Determinant">Commons</a></div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Spolupracuj na&#160;Commons"><img alt="Spolupracuj na&#160;Commons" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png" decoding="async" width="18" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/27px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/36px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> Commons ponúka multimediálne súbory na&#160;tému <b><a href="https://commons.wikimedia.org/wiki/Category:Determinant" class="extiw" title="commons:Category:Determinant">Determinant (matematika)</a></b></li></ul> <div class="mw-heading mw-heading2"><h2 id="Literatúra"><span id="Literat.C3.BAra"></span>Literatúra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=15" title="Upraviť sekciu: Literatúra" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=15" title="Editovat zdrojový kód sekce Literatúra"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite style="font-style:normal">KORBAŠ, Július. <i>Lineárna algebra a geometria I</i>. [s.l.]&#160;: Vydavateľstvo U, <a href="/wiki/Univerzita_Komensk%C3%A9ho_v_Bratislave" title="Univerzita Komenského v Bratislave">Univerzita Komenského v Bratislave</a>, Prvé vydanie, 2003. </cite></li></ul> <div class="mw-heading mw-heading2"><h2 id="Externé_odkazy"><span id="Extern.C3.A9_odkazy"></span>Externé odkazy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Determinant_(matematika)&amp;veaction=edit&amp;section=16" title="Upraviť sekciu: Externé odkazy" class="mw-editsection-visualeditor"><span>upraviť</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Determinant_(matematika)&amp;action=edit&amp;section=16" title="Editovat zdrojový kód sekce Externé odkazy"><span>upraviť zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.elektro-energetika.cz/calculations/matreg.php">Operace s maticemi v R (determinant, stopa, inverzní, adjungovaná, transponovaná)</a> Aplikácia, ktorá vypočíta determinant z matice rádu 2-8</li> <li><a rel="nofollow" class="external text" href="http://thales.doa.fmph.uniba.sk/zlatos/la/LAG_A4.pdf">Determinant (matematika)</a></li></ul> <p><br /> </p> <div role="navigation" class="navbox" aria-labelledby="Lineárna_algebra" style="padding:3px"><table class="nowraplinks collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><div class="plainlinks hlist navbar mini"><ul><li class="nv-view"><a href="/wiki/%C5%A0abl%C3%B3na:Line%C3%A1rna_algebra" title="Šablóna:Lineárna algebra"><span title="Zobraz túto šablónu" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">z</span></a></li><li class="nv-talk"><a href="/w/index.php?title=Diskusia_k_%C5%A1abl%C3%B3ne:Line%C3%A1rna_algebra&amp;action=edit&amp;redlink=1" class="new" title="Diskusia k šablóne:Lineárna algebra (stránka neexistuje)"><span title="Diskusia o tejto šablóne" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">d</span></a></li><li class="nv-edit"><a class="external text" href="https://sk.wikipedia.org/w/index.php?title=%C5%A0abl%C3%B3na:Line%C3%A1rna_algebra&amp;action=edit"><span title="Upraviť túto šablónu" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">u</span></a></li></ul></div><div id="Lineárna_algebra" style="font-size:114%;margin:0 4em"><a href="/wiki/Line%C3%A1rna_algebra" title="Lineárna algebra">Lineárna algebra</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Základné pojmy</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Skal%C3%A1r" title="Skalár">skalár</a></li> <li><a href="/wiki/Vektor_(matematika)" title="Vektor (matematika)">vektor</a></li> <li><a href="/wiki/Vektorov%C3%BD_priestor" title="Vektorový priestor">vektorový priestor</a></li> <li><a href="/wiki/Vektorov%C3%BD_podpriestor" title="Vektorový podpriestor">podpriestor</a></li> <li><a href="/w/index.php?title=N%C3%A1sobenie_skal%C3%A1rom&amp;action=edit&amp;redlink=1" class="new" title="Násobenie skalárom (stránka neexistuje)">násobenie skalárom</a></li> <li><a href="/w/index.php?title=Line%C3%A1rny_obal&amp;action=edit&amp;redlink=1" class="new" title="Lineárny obal (stránka neexistuje)">lineárny obal</a></li> <li><a href="/wiki/Line%C3%A1rne_zobrazenie" title="Lineárne zobrazenie">lineárne zobrazenie</a></li> <li><a href="/wiki/Projek%C4%8Dn%C3%A1_matica_(matematika)" title="Projekčná matica (matematika)">projekčná matica</a></li> <li><a href="/w/index.php?title=Line%C3%A1rna_nez%C3%A1vislos%C5%A5&amp;action=edit&amp;redlink=1" class="new" title="Lineárna nezávislosť (stránka neexistuje)">lineárna nezávislosť</a></li> <li><a href="/wiki/Line%C3%A1rna_kombin%C3%A1cia" title="Lineárna kombinácia">lineárna kombinácia</a></li> <li><a href="/wiki/B%C3%A1za_(vektorov%C3%BD_priestor)" title="Báza (vektorový priestor)">báza</a></li> <li><a href="/w/index.php?title=Jadro_(line%C3%A1rna_algebra)&amp;action=edit&amp;redlink=1" class="new" title="Jadro (lineárna algebra) (stránka neexistuje)">jadro</a></li> <li><a href="/w/index.php?title=Vlastn%C3%BD_vektor&amp;action=edit&amp;redlink=1" class="new" title="Vlastný vektor (stránka neexistuje)">vlastný vektor</a></li> <li><a href="/wiki/S%C3%BAstava_line%C3%A1rnych_rovn%C3%ADc" title="Sústava lineárnych rovníc">sústava lineárnych rovníc</a></li></ul> </div></td><td class="navbox-image" rowspan="5" style="width:1px;padding:0px 0px 0px 2px"><div><span typeof="mw:File"><a href="/wiki/S%C3%BAbor:Linear_subspaces_with_shading.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/80px-Linear_subspaces_with_shading.svg.png" decoding="async" width="80" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/120px-Linear_subspaces_with_shading.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/160px-Linear_subspaces_with_shading.svg.png 2x" data-file-width="325" data-file-height="236" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matica_(matematika)" title="Matica (matematika)">Matice</a></th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/w/index.php?title=Blokov%C3%A1_matica&amp;action=edit&amp;redlink=1" class="new" title="Bloková matica (stránka neexistuje)">bloková matica</a></li> <li><a href="/w/index.php?title=Regul%C3%A1rna_matica&amp;action=edit&amp;redlink=1" class="new" title="Regulárna matica (stránka neexistuje)">regulárna matica</a></li> <li><a href="/w/index.php?title=Rozklad_matice&amp;action=edit&amp;redlink=1" class="new" title="Rozklad matice (stránka neexistuje)">rozklad matice</a></li> <li><a href="/w/index.php?title=Subdeterminant&amp;action=edit&amp;redlink=1" class="new" title="Subdeterminant (stránka neexistuje)">subdeterminant</a></li> <li><a href="/w/index.php?title=Transpoz%C3%ADcia_matice&amp;action=edit&amp;redlink=1" class="new" title="Transpozícia matice (stránka neexistuje)">transpozícia matice</a></li> <li><a href="/w/index.php?title=N%C3%A1sobenie_mat%C3%ADc&amp;action=edit&amp;redlink=1" class="new" title="Násobenie matíc (stránka neexistuje)">násobenie matíc</a></li> <li><a href="/w/index.php?title=Inverzn%C3%A1_matica&amp;action=edit&amp;redlink=1" class="new" title="Inverzná matica (stránka neexistuje)">inverzná matica</a></li> <li><a href="/wiki/Hodnos%C5%A5_matice" class="mw-redirect" title="Hodnosť matice">hodnosť matice</a></li> <li><a href="/w/index.php?title=Matica_line%C3%A1rneho_zobrazenia&amp;action=edit&amp;redlink=1" class="new" title="Matica lineárneho zobrazenia (stránka neexistuje)">matica lineárneho zobrazenia</a></li> <li><a href="/w/index.php?title=Cramerovo_pravidlo&amp;action=edit&amp;redlink=1" class="new" title="Cramerovo pravidlo (stránka neexistuje)">Cramerovo pravidlo</a></li> <li><a href="/w/index.php?title=Gaussova_elimina%C4%8Dn%C3%A1_met%C3%B3da&amp;action=edit&amp;redlink=1" class="new" title="Gaussova eliminačná metóda (stránka neexistuje)">Gaussova eliminačná metóda</a></li> <li><a href="/wiki/Frobeniova_veta_(matice)" title="Frobeniova veta (matice)">Frobeniova veta</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/w/index.php?title=Biline%C3%A1rne_zobrazenie&amp;action=edit&amp;redlink=1" class="new" title="Bilineárne zobrazenie (stránka neexistuje)">Bilineárne zobrazenia</a></th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/w/index.php?title=Ortogonalita&amp;action=edit&amp;redlink=1" class="new" title="Ortogonalita (stránka neexistuje)">ortogonalita</a></li> <li><a href="/wiki/Skal%C3%A1rny_s%C3%BA%C4%8Din" title="Skalárny súčin">skalárny súčin</a></li> <li><a href="/wiki/Unit%C3%A1rny_priestor" title="Unitárny priestor">unitárny priestor</a></li> <li><a href="/wiki/Ortonorm%C3%A1lna_b%C3%A1za" title="Ortonormálna báza">ortonormálna báza</a></li> <li><a href="/w/index.php?title=Vonkaj%C5%A1%C3%AD_produkt&amp;action=edit&amp;redlink=1" class="new" title="Vonkajší produkt (stránka neexistuje)">vonkajší produkt</a></li> <li><a href="/w/index.php?title=Kroneckerov_s%C3%BA%C4%8Din_mat%C3%ADc&amp;action=edit&amp;redlink=1" class="new" title="Kroneckerov súčin matíc (stránka neexistuje)">Kroneckerov súčin matíc</a></li> <li><a href="/wiki/Gramov-Schmidtov_ortogonaliza%C4%8Dn%C3%BD_proces" title="Gramov-Schmidtov ortogonalizačný proces">Gramov-Schmidtov ortogonalizačný proces</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/w/index.php?title=Multiline%C3%A1rna_algebra&amp;action=edit&amp;redlink=1" class="new" title="Multilineárna algebra (stránka neexistuje)">Multilineárna algebra</a></th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a class="mw-selflink selflink">determinant</a></li> <li><a href="/wiki/Vektorov%C3%BD_s%C3%BA%C4%8Din" title="Vektorový súčin">vektorový súčin</a></li> <li><a href="/w/index.php?title=Zmie%C5%A1an%C3%BD_s%C3%BA%C4%8Din&amp;action=edit&amp;redlink=1" class="new" title="Zmiešaný súčin (stránka neexistuje)">zmiešaný súčin</a></li> <li><a href="/w/index.php?title=Geometrick%C3%A1_algebra&amp;action=edit&amp;redlink=1" class="new" title="Geometrická algebra (stránka neexistuje)">geometrická algebra</a></li> <li><a href="/w/index.php?title=Vonkaj%C5%A1ia_algebra&amp;action=edit&amp;redlink=1" class="new" title="Vonkajšia algebra (stránka neexistuje)">vonkajšia algebra</a></li> <li><a href="/w/index.php?title=Bivektor&amp;action=edit&amp;redlink=1" class="new" title="Bivektor (stránka neexistuje)">bivektor</a></li> <li><a href="/w/index.php?title=Multivektor&amp;action=edit&amp;redlink=1" class="new" title="Multivektor (stránka neexistuje)">multivektor</a></li> <li><a href="/wiki/Tenzor" title="Tenzor">tenzor</a></li> <li><a href="/w/index.php?title=Vonkaj%C5%A1%C3%AD_morfizmus&amp;action=edit&amp;redlink=1" class="new" title="Vonkajší morfizmus (stránka neexistuje)">vonkajší morfizmus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/w/index.php?title=Numerick%C3%A1_line%C3%A1rna_algebra&amp;action=edit&amp;redlink=1" class="new" title="Numerická lineárna algebra (stránka neexistuje)">Numerická lineárna algebra</a></th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Pohybliv%C3%A1_r%C3%A1dov%C3%A1_%C4%8Diarka" title="Pohyblivá rádová čiarka">pohyblivá rádová čiarka</a></li> <li><a href="/wiki/Stabilita_numerickej_met%C3%B3dy" title="Stabilita numerickej metódy">stabilita numerickej metódy</a></li> <li><a href="/w/index.php?title=Basic_Linear_Algebra_Subprograms&amp;action=edit&amp;redlink=1" class="new" title="Basic Linear Algebra Subprograms (stránka neexistuje)">Basic Linear Algebra Subprograms</a> (BLAS)</li> <li><a href="/w/index.php?title=Riedka_matica&amp;action=edit&amp;redlink=1" class="new" title="Riedka matica (stránka neexistuje)">riedka matica</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7f58d5dcf5‐6dwr8 Cached time: 20241109074608 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.144 seconds Real time usage: 0.296 seconds Preprocessor visited node count: 2178/1000000 Post‐expand include size: 17960/2097152 bytes Template argument size: 2171/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 2592/5000000 bytes Lua time usage: 0.024/10.000 seconds Lua memory usage: 1143289/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 87.169 1 -total 69.95% 60.973 1 Šablóna:Projekt 23.24% 20.258 1 Šablóna:Lineárna_algebra 19.47% 16.973 1 Šablóna:Navigačná_lišta 16.57% 14.443 1 Šablóna:Navbox 7.13% 6.217 21 Šablóna:Projekt/box 6.56% 5.722 1 Šablóna:Citácia_knihy 6.20% 5.406 20 Šablóna:Projekt/param 3.44% 2.995 1 Šablóna:Projekt/odkaz --> <!-- Saved in parser cache with key skwiki:pcache:idhash:272073-0!canonical and timestamp 20241109074608 and revision id 7391046. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Zdroj: „<a dir="ltr" href="https://sk.wikipedia.org/w/index.php?title=Determinant_(matematika)&amp;oldid=7391046">https://sk.wikipedia.org/w/index.php?title=Determinant_(matematika)&amp;oldid=7391046</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%C5%A0peci%C3%A1lne:Kateg%C3%B3rie" title="Špeciálne:Kategórie">Kategórie</a>: <ul><li><a href="/wiki/Kateg%C3%B3ria:Matematika" title="Kategória:Matematika">Matematika</a></li><li><a href="/wiki/Kateg%C3%B3ria:Te%C3%B3ria_mat%C3%ADc" title="Kategória:Teória matíc">Teória matíc</a></li><li><a href="/wiki/Kateg%C3%B3ria:Line%C3%A1rna_algebra" title="Kategória:Lineárna algebra">Lineárna algebra</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Dátum a čas poslednej úpravy tejto stránky: 29. máj 2022, 19:56.</li> <li id="footer-info-copyright">Text je dostupný za podmienok <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution/Share-Alike License 4.0 Unported</a>; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Podmienky použitia</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Ochrana osobných údajov</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:O">O Wikipédii</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Zrieknutie_sa_zodpovednosti">Zrieknutie sa zodpovednosti</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Pravidlá správania</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Vývojári</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/sk.wikipedia.org">Štatistiky</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Vyhlásenie o cookies</a></li> <li id="footer-places-mobileview"><a href="//sk.m.wikipedia.org/w/index.php?title=Determinant_(matematika)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilné zobrazenie</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b7f745dd4-6j62d","wgBackendResponseTime":177,"wgPageParseReport":{"limitreport":{"cputime":"0.144","walltime":"0.296","ppvisitednodes":{"value":2178,"limit":1000000},"postexpandincludesize":{"value":17960,"limit":2097152},"templateargumentsize":{"value":2171,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":2592,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 87.169 1 -total"," 69.95% 60.973 1 Šablóna:Projekt"," 23.24% 20.258 1 Šablóna:Lineárna_algebra"," 19.47% 16.973 1 Šablóna:Navigačná_lišta"," 16.57% 14.443 1 Šablóna:Navbox"," 7.13% 6.217 21 Šablóna:Projekt/box"," 6.56% 5.722 1 Šablóna:Citácia_knihy"," 6.20% 5.406 20 Šablóna:Projekt/param"," 3.44% 2.995 1 Šablóna:Projekt/odkaz"]},"scribunto":{"limitreport-timeusage":{"value":"0.024","limit":"10.000"},"limitreport-memusage":{"value":1143289,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7f58d5dcf5-6dwr8","timestamp":"20241109074608","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Determinant (matematika)","url":"https:\/\/sk.wikipedia.org\/wiki\/Determinant_(matematika)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q178546","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q178546","author":{"@type":"Organization","name":"P\u0159isp\u011bvatel\u00e9 projekt\u016f Wikimedia"},"publisher":{"@type":"Organization","name":"nadace Wikimedia","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2009-04-14T09:53:31Z","dateModified":"2022-05-29T19:56:45Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/0f\/Sarrus_rule.png"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10