CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–20 of 20 results for author: <span class="mathjax">Jadoon, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Jadoon%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jadoon, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jadoon%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jadoon, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00575">arXiv:2503.00575</a> <span> [<a href="https://arxiv.org/pdf/2503.00575">pdf</a>, <a href="https://arxiv.org/format/2503.00575">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Polyconvex Physics-Augmented Neural Network Constitutive Models in Principal Stretches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tepole%2C+A+B">Adrian Buganza Tepole</a>, <a href="/search/cs?searchtype=author&query=Jadoon%2C+A">Asghar Jadoon</a>, <a href="/search/cs?searchtype=author&query=Rausch%2C+M">Manuel Rausch</a>, <a href="/search/cs?searchtype=author&query=Fuhg%2C+J+N">Jan N. Fuhg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00575v1-abstract-short" style="display: inline;"> Accurate constitutive models of soft materials are crucial for understanding their mechanical behavior and ensuring reliable predictions in the design process. To this end, scientific machine learning research has produced flexible and general material model architectures that can capture the behavior of a wide range of materials, reducing the need for expert-constructed closed-form models. The fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00575v1-abstract-full').style.display = 'inline'; document.getElementById('2503.00575v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00575v1-abstract-full" style="display: none;"> Accurate constitutive models of soft materials are crucial for understanding their mechanical behavior and ensuring reliable predictions in the design process. To this end, scientific machine learning research has produced flexible and general material model architectures that can capture the behavior of a wide range of materials, reducing the need for expert-constructed closed-form models. The focus has gradually shifted towards embedding physical constraints in the network architecture to regularize these over-parameterized models. Two popular approaches are input convex neural networks (ICNN) and neural ordinary differential equations (NODE). A related alternative has been the generalization of closed-form models, such as sparse regression from a large library. Remarkably, all prior work using ICNN or NODE uses the invariants of the Cauchy-Green tensor and none uses the principal stretches. In this work, we construct general polyconvex functions of the principal stretches in a physics-aware deep-learning framework and offer insights and comparisons to invariant-based formulations. The framework is based on recent developments to characterize polyconvex functions in terms of convex functions of the right stretch tensor $\mathbf{U}$, its cofactor $\text{cof}\mathbf{U}$, and its determinant $J$. Any convex function of a symmetric second-order tensor can be described with a convex and symmetric function of its eigenvalues. Thus, we first describe convex functions of $\mathbf{U}$ and $\text{cof}\mathbf{U}$ in terms of their respective eigenvalues using deep Holder sets composed with ICNN functions. A third ICNN takes as input $J$ and the two convex functions of $\mathbf{U}$ and $\text{cof}\mathbf{U}$, and returns the strain energy as output. The ability of the model to capture arbitrary materials is demonstrated using synthetic and experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00575v1-abstract-full').style.display = 'none'; document.getElementById('2503.00575v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 74-02 (Primary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00268">arXiv:2503.00268</a> <span> [<a href="https://arxiv.org/pdf/2503.00268">pdf</a>, <a href="https://arxiv.org/format/2503.00268">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Input Specific Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadoon%2C+A+A">Asghar A. Jadoon</a>, <a href="/search/cs?searchtype=author&query=Seidl%2C+D+T">D. Thomas Seidl</a>, <a href="/search/cs?searchtype=author&query=Jones%2C+R+E">Reese E. Jones</a>, <a href="/search/cs?searchtype=author&query=Fuhg%2C+J+N">Jan N. Fuhg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00268v1-abstract-short" style="display: inline;"> The black-box nature of neural networks limits the ability to encode or impose specific structural relationships between inputs and outputs. While various studies have introduced architectures that ensure the network's output adheres to a particular form in relation to certain inputs, the majority of these approaches impose constraints on only a single set of inputs. This paper introduces a novel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00268v1-abstract-full').style.display = 'inline'; document.getElementById('2503.00268v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00268v1-abstract-full" style="display: none;"> The black-box nature of neural networks limits the ability to encode or impose specific structural relationships between inputs and outputs. While various studies have introduced architectures that ensure the network's output adheres to a particular form in relation to certain inputs, the majority of these approaches impose constraints on only a single set of inputs. This paper introduces a novel neural network architecture, termed the Input Specific Neural Network (ISNN), which extends this concept by allowing scalar-valued outputs to be subject to multiple constraints. Specifically, the ISNN can enforce convexity in some inputs, non-decreasing monotonicity combined with convexity with respect to others, and simple non-decreasing monotonicity or arbitrary relationships with additional inputs. The paper presents two distinct ISNN architectures, along with equations for the first and second derivatives of the output with respect to the inputs. These networks are broadly applicable. In this work, we restrict their usage to solving problems in computational mechanics. In particular, we show how they can be effectively applied to fitting data-driven constitutive models. We then embed our trained data-driven constitutive laws into a finite element solver where significant time savings can be achieved by using explicit manual differentiation using the derived equations as opposed to automatic differentiation. We also show how ISNNs can be used to learn structural relationships between inputs and outputs via a binary gating mechanism. Particularly, ISNNs are employed to model an anisotropic free energy potential to get the homogenized macroscopic response in a decoupled multiscale setting, where the network learns whether or not the potential should be modeled as polyconvex, and retains only the relevant layers while using the minimum number of inputs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00268v1-abstract-full').style.display = 'none'; document.getElementById('2503.00268v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16401">arXiv:2502.16401</a> <span> [<a href="https://arxiv.org/pdf/2502.16401">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Quadruped Robot Simulation Using Deep Reinforcement Learning -- A step towards locomotion policy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadoon%2C+N+A+K">Nabeel Ahmad Khan Jadoon</a>, <a href="/search/cs?searchtype=author&query=Ekpanyapong%2C+M">Mongkol Ekpanyapong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16401v1-abstract-short" style="display: inline;"> We present a novel reinforcement learning method to train the quadruped robot in a simulated environment. The idea of controlling quadruped robots in a dynamic environment is quite challenging and my method presents the optimum policy and training scheme with limited resources and shows considerable performance. The report uses the raisimGymTorch open-source library and proprietary software RaiSim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16401v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16401v1-abstract-full" style="display: none;"> We present a novel reinforcement learning method to train the quadruped robot in a simulated environment. The idea of controlling quadruped robots in a dynamic environment is quite challenging and my method presents the optimum policy and training scheme with limited resources and shows considerable performance. The report uses the raisimGymTorch open-source library and proprietary software RaiSim for the simulation of ANYmal robot. My approach is centered on formulating Markov decision processes using the evaluation of the robot walking scheme while training. Resulting MDPs are solved using a proximal policy optimization algorithm used in actor-critic mode and collected thousands of state transitions with a single desktop machine. This work also presents a controller scheme trained over thousands of time steps shown in a simulated environment. This work also sets the base for early-stage researchers to deploy their favorite algorithms and configurations. Keywords: Legged robots, deep reinforcement learning, quadruped robot simulation, optimal control <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16401v1-abstract-full').style.display = 'none'; document.getElementById('2502.16401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16166">arXiv:2502.16166</a> <span> [<a href="https://arxiv.org/pdf/2502.16166">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Teardown Analysis of Samsung S20 Exynos 990 SoC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadoon%2C+N+A+K">Nabeel Ahmad Khan Jadoon</a>, <a href="/search/cs?searchtype=author&query=Saleem%2C+U">Umama Saleem</a>, <a href="/search/cs?searchtype=author&query=Ylanen%2C+J">Joanna Ylanen</a>, <a href="/search/cs?searchtype=author&query=Ihnatiuk%2C+D">Daryana Ihnatiuk</a>, <a href="/search/cs?searchtype=author&query=Perez%2C+P+G">Paulina Gallego Perez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16166v1-abstract-short" style="display: inline;"> The mobile phone has evolved from a simple communication device to a complex and highly integrated system with heterogeneous devices, thanks to the rapid technological developments in the semiconductor industry. Understanding the new technology is indeed a time-consuming and challenging task. Therefore, this study performs a teardown analysis of the Samsung Exynos S20 990 System-on-Chip (SoC), a f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16166v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16166v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16166v1-abstract-full" style="display: none;"> The mobile phone has evolved from a simple communication device to a complex and highly integrated system with heterogeneous devices, thanks to the rapid technological developments in the semiconductor industry. Understanding the new technology is indeed a time-consuming and challenging task. Therefore, this study performs a teardown analysis of the Samsung Exynos S20 990 System-on-Chip (SoC), a flagship mobile processor that features a three-dimensional (3D) package on-package (PoP) solution with flip chip interconnect (fcPoP). The fcPoP design integrates the SoC and the memory devices in a single package, reducing the interconnection length and improving signal integrity and power efficiency. The study reveals the complex integration of various components and the advanced features of the SoC. The study also examines the microstructure of the chip and the package using X-ray, SEM, and optical microscopy techniques. Moreover, it demonstrates how the fcPoP design enables the SoC to meet the demands of higher performance, higher bandwidth, lower power consumption, and smaller form factor, especially in 5G mobile applications. The study contributes to understanding advanced packaging methodologies and indicates potential directions for future semiconductor innovations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16166v1-abstract-full').style.display = 'none'; document.getElementById('2502.16166v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15854">arXiv:2502.15854</a> <span> [<a href="https://arxiv.org/pdf/2502.15854">pdf</a>, <a href="https://arxiv.org/ps/2502.15854">ps</a>, <a href="https://arxiv.org/format/2502.15854">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Aryan Jadon</a>, <a href="/search/cs?searchtype=author&query=Patil%2C+A">Avinash Patil</a>, <a href="/search/cs?searchtype=author&query=Kumar%2C+S">Shashank Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15854v1-abstract-short" style="display: inline;"> Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15854v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15854v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15854v1-abstract-full" style="display: none;"> Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision $惟$ and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision $惟= 0.28$ at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15854v1-abstract-full').style.display = 'none'; document.getElementById('2502.15854v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14338">arXiv:2502.14338</a> <span> [<a href="https://arxiv.org/pdf/2502.14338">pdf</a>, <a href="https://arxiv.org/format/2502.14338">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> English Please: Evaluating Machine Translation for Multilingual Bug Reports </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Patil%2C+A">Avinash Patil</a>, <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Aryan Jadon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14338v2-abstract-short" style="display: inline;"> Accurate translation of bug reports is critical for efficient collaboration in global software development. In this study, we conduct the first comprehensive evaluation of machine translation (MT) performance on bug reports, analyzing the capabilities of DeepL, AWS Translate, and ChatGPT using data from the Visual Studio Code GitHub repository, specifically focusing on reports labeled with the eng… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14338v2-abstract-full').style.display = 'inline'; document.getElementById('2502.14338v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14338v2-abstract-full" style="display: none;"> Accurate translation of bug reports is critical for efficient collaboration in global software development. In this study, we conduct the first comprehensive evaluation of machine translation (MT) performance on bug reports, analyzing the capabilities of DeepL, AWS Translate, and ChatGPT using data from the Visual Studio Code GitHub repository, specifically focusing on reports labeled with the english-please tag. To thoroughly assess the accuracy and effectiveness of each system, we employ multiple machine translation metrics, including BLEU, BERTScore, COMET, METEOR, and ROUGE. Our findings indicate that DeepL consistently outperforms the other systems across most automatic metrics, demonstrating strong lexical and semantic alignment. AWS Translate performs competitively, particularly in METEOR, while ChatGPT lags in key metrics. This study underscores the importance of domain adaptation for translating technical texts and offers guidance for integrating automated translation into bug-triaging workflows. Moreover, our results establish a foundation for future research to refine machine translation solutions for specialized engineering contexts. The code and dataset for this paper are available at GitHub: https://github.com/av9ash/gitbugs/tree/main/multilingual. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14338v2-abstract-full').style.display = 'none'; document.getElementById('2502.14338v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages, 4 Figures, 3 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13370">arXiv:2412.13370</a> <span> [<a href="https://arxiv.org/pdf/2412.13370">pdf</a>, <a href="https://arxiv.org/format/2412.13370">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> Inverse design of anisotropic microstructures using physics-augmented neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadoon%2C+A+A">Asghar A. Jadoon</a>, <a href="/search/cs?searchtype=author&query=Kalina%2C+K+A">Karl A. Kalina</a>, <a href="/search/cs?searchtype=author&query=Rausch%2C+M+K">Manuel K. Rausch</a>, <a href="/search/cs?searchtype=author&query=Jones%2C+R">Reese Jones</a>, <a href="/search/cs?searchtype=author&query=Fuhg%2C+J+N">Jan N. Fuhg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13370v1-abstract-short" style="display: inline;"> Composite materials often exhibit mechanical anisotropy owing to the material properties or geometrical configurations of the microstructure. This makes their inverse design a two-fold problem. First, we must learn the type and orientation of anisotropy and then find the optimal design parameters to achieve the desired mechanical response. In our work, we solve this challenge by first training a f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13370v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13370v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13370v1-abstract-full" style="display: none;"> Composite materials often exhibit mechanical anisotropy owing to the material properties or geometrical configurations of the microstructure. This makes their inverse design a two-fold problem. First, we must learn the type and orientation of anisotropy and then find the optimal design parameters to achieve the desired mechanical response. In our work, we solve this challenge by first training a forward surrogate model based on the macroscopic stress-strain data obtained via computational homogenization for a given multiscale material. To this end, we use partially Input Convex Neural Networks (pICNNs) to obtain a polyconvex representation of the strain energy in terms of the invariants of the Cauchy-Green deformation tensor. The network architecture and the strain energy function are modified to incorporate, by construction, physics and mechanistic assumptions into the framework. While training the neural network, we find the type of anisotropy, if any, along with the preferred directions. Once the model is trained, we solve the inverse problem using an evolution strategy to obtain the design parameters that give a desired mechanical response. We test the framework against synthetic macroscale and also homogenized data. For cases where polyconvexity might be violated during the homogenization process, we present viable alternate formulations. The trained model is also integrated into a finite element framework to invert design parameters that result in a desired macroscopic response. We show that the invariant-based model is able to solve the inverse problem for a stress-strain dataset with a different preferred direction than the one it was trained on and is able to not only learn the polyconvex potentials of hyperelastic materials but also recover the correct parameters for the inverse design problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13370v1-abstract-full').style.display = 'none'; document.getElementById('2412.13370v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14615">arXiv:2408.14615</a> <span> [<a href="https://arxiv.org/pdf/2408.14615">pdf</a>, <a href="https://arxiv.org/format/2408.14615">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> Automated model discovery of finite strain elastoplasticity from uniaxial experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadoon%2C+A+A">Asghar A. Jadoon</a>, <a href="/search/cs?searchtype=author&query=Meyer%2C+K+A">Knut A. Meyer</a>, <a href="/search/cs?searchtype=author&query=Fuhg%2C+J+N">Jan N. Fuhg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14615v1-abstract-short" style="display: inline;"> Constitutive modeling lies at the core of mechanics, allowing us to map strains onto stresses for a material in a given mechanical setting. Historically, researchers relied on phenomenological modeling where simple mathematical relationships were derived through experimentation and curve fitting. Recently, to automate the constitutive modeling process, data-driven approaches based on neural networ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14615v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14615v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14615v1-abstract-full" style="display: none;"> Constitutive modeling lies at the core of mechanics, allowing us to map strains onto stresses for a material in a given mechanical setting. Historically, researchers relied on phenomenological modeling where simple mathematical relationships were derived through experimentation and curve fitting. Recently, to automate the constitutive modeling process, data-driven approaches based on neural networks have been explored. While initial naive approaches violated established mechanical principles, recent efforts concentrate on designing neural network architectures that incorporate physics and mechanistic assumptions into machine-learning-based constitutive models. For history-dependent materials, these models have so far predominantly been restricted to small-strain formulations. In this work, we develop a finite strain plasticity formulation based on thermodynamic potentials to model mixed isotropic and kinematic hardening. We then leverage physics-augmented neural networks to automate the discovery of thermodynamically consistent constitutive models of finite strain elastoplasticity from uniaxial experiments. We apply the framework to both synthetic and experimental data, demonstrating its ability to capture complex material behavior under cyclic uniaxial loading. Furthermore, we show that the neural network enhanced model trains easier than traditional phenomenological models as it is less sensitive to varying initial seeds. our model's ability to generalize beyond the training set underscores its robustness and predictive power. By automating the discovery of hardening models, our approach eliminates user bias and ensures that the resulting constitutive model complies with thermodynamic principles, thus offering a more systematic and physics-informed framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14615v1-abstract-full').style.display = 'none'; document.getElementById('2408.14615v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16015">arXiv:2312.16015</a> <span> [<a href="https://arxiv.org/pdf/2312.16015">pdf</a>, <a href="https://arxiv.org/ps/2312.16015">ps</a>, <a href="https://arxiv.org/format/2312.16015">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Comprehensive Survey of Evaluation Techniques for Recommendation Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Aryan Jadon</a>, <a href="/search/cs?searchtype=author&query=Patil%2C+A">Avinash Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16015v2-abstract-short" style="display: inline;"> The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16015v2-abstract-full').style.display = 'inline'; document.getElementById('2312.16015v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16015v2-abstract-full" style="display: none;"> The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance. We discuss * Similarity Metrics: to quantify the precision of content-based filtering mechanisms and assess the accuracy of collaborative filtering techniques. * Candidate Generation Metrics: to evaluate how effectively the system identifies a broad yet relevant range of items. * Predictive Metrics: to assess the accuracy of forecasted user preferences. * Ranking Metrics: to evaluate the effectiveness of the order in which recommendations are presented. * Business Metrics: to align the performance of the recommendation system with economic objectives. Our approach emphasizes the contextual application of these metrics and their interdependencies. In this paper, we identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics. The paper concludes by proposing a framework for selecting and interpreting these metrics to not only improve system performance but also to advance business goals. This work is to aid researchers and practitioners in critically assessing recommendation systems and fosters the development of more nuanced, effective, and economically viable personalization strategies. Our code is available at GitHub - https://github.com/aryan-jadon/Evaluation-Metrics-for-Recommendation-Systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16015v2-abstract-full').style.display = 'none'; document.getElementById('2312.16015v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 Pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04918">arXiv:2309.04918</a> <span> [<a href="https://arxiv.org/pdf/2309.04918">pdf</a>, <a href="https://arxiv.org/format/2309.04918">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> Global Message Ordering using Distributed Kafka Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kumar%2C+S">Shashank Kumar</a>, <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Aryan Jadon</a>, <a href="/search/cs?searchtype=author&query=Sharma%2C+S">Sachin Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04918v2-abstract-short" style="display: inline;"> In contemporary distributed systems, logs are produced at an astounding rate, generating terabytes of data within mere seconds. These logs, containing pivotal details like system metrics, user actions, and diverse events, are foundational to the system's consistent and accurate operations. Precise log ordering becomes indispensable to avert potential ambiguities and discordances in system function… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04918v2-abstract-full').style.display = 'inline'; document.getElementById('2309.04918v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04918v2-abstract-full" style="display: none;"> In contemporary distributed systems, logs are produced at an astounding rate, generating terabytes of data within mere seconds. These logs, containing pivotal details like system metrics, user actions, and diverse events, are foundational to the system's consistent and accurate operations. Precise log ordering becomes indispensable to avert potential ambiguities and discordances in system functionalities. Apache Kafka, a prevalent distributed message queue, offers significant solutions to various distributed log processing challenges. However, it presents an inherent limitation while Kafka ensures the in-order delivery of messages within a single partition to the consumer, it falls short in guaranteeing a global order for messages spanning multiple partitions. This research delves into innovative methodologies to achieve global ordering of messages within a Kafka topic, aiming to bolster the integrity and consistency of log processing in distributed systems. Our code is available on GitHub. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04918v2-abstract-full').style.display = 'none'; document.getElementById('2309.04918v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper Accepted - The 2023 International Conference on Innovations in Information Technology (IIT'23)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09193">arXiv:2308.09193</a> <span> [<a href="https://arxiv.org/pdf/2308.09193">pdf</a>, <a href="https://arxiv.org/format/2308.09193">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Comparative Study of Text Embedding Models for Semantic Text Similarity in Bug Reports </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Patil%2C+A">Avinash Patil</a>, <a href="/search/cs?searchtype=author&query=Han%2C+K">Kihwan Han</a>, <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Aryan Jadon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09193v2-abstract-short" style="display: inline;"> Bug reports are an essential aspect of software development, and it is crucial to identify and resolve them quickly to ensure the consistent functioning of software systems. Retrieving similar bug reports from an existing database can help reduce the time and effort required to resolve bugs. In this paper, we compared the effectiveness of semantic textual similarity methods for retrieving similar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09193v2-abstract-full').style.display = 'inline'; document.getElementById('2308.09193v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09193v2-abstract-full" style="display: none;"> Bug reports are an essential aspect of software development, and it is crucial to identify and resolve them quickly to ensure the consistent functioning of software systems. Retrieving similar bug reports from an existing database can help reduce the time and effort required to resolve bugs. In this paper, we compared the effectiveness of semantic textual similarity methods for retrieving similar bug reports based on a similarity score. We explored several embedding models such as TF-IDF (Baseline), FastText, Gensim, BERT, and ADA. We used the Software Defects Data containing bug reports for various software projects to evaluate the performance of these models. Our experimental results showed that BERT generally outperformed the rest of the models regarding recall, followed by ADA, Gensim, FastText, and TFIDF. Our study provides insights into the effectiveness of different embedding methods for retrieving similar bug reports and highlights the impact of selecting the appropriate one for this task. Our code is available on GitHub. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09193v2-abstract-full').style.display = 'none'; document.getElementById('2308.09193v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05247">arXiv:2305.05247</a> <span> [<a href="https://arxiv.org/pdf/2305.05247">pdf</a>, <a href="https://arxiv.org/format/2305.05247">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/SmartNets58706.2023.10215825">10.1109/SmartNets58706.2023.10215825 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leveraging Generative AI Models for Synthetic Data Generation in Healthcare: Balancing Research and Privacy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Aryan Jadon</a>, <a href="/search/cs?searchtype=author&query=Kumar%2C+S">Shashank Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05247v1-abstract-short" style="display: inline;"> The widespread adoption of electronic health records and digital healthcare data has created a demand for data-driven insights to enhance patient outcomes, diagnostics, and treatments. However, using real patient data presents privacy and regulatory challenges, including compliance with HIPAA and GDPR. Synthetic data generation, using generative AI models like GANs and VAEs offers a promising solu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05247v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05247v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05247v1-abstract-full" style="display: none;"> The widespread adoption of electronic health records and digital healthcare data has created a demand for data-driven insights to enhance patient outcomes, diagnostics, and treatments. However, using real patient data presents privacy and regulatory challenges, including compliance with HIPAA and GDPR. Synthetic data generation, using generative AI models like GANs and VAEs offers a promising solution to balance valuable data access and patient privacy protection. In this paper, we examine generative AI models for creating realistic, anonymized patient data for research and training, explore synthetic data applications in healthcare, and discuss its benefits, challenges, and future research directions. Synthetic data has the potential to revolutionize healthcare by providing anonymized patient data while preserving privacy and enabling versatile applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05247v1-abstract-full').style.display = 'none'; document.getElementById('2305.05247v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 International Conference on Smart Applications, Communications and Networking (SmartNets) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07837">arXiv:2302.07837</a> <span> [<a href="https://arxiv.org/pdf/2302.07837">pdf</a>, <a href="https://arxiv.org/format/2302.07837">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Learning Random Access Schemes for Massive Machine-Type Communication with MARL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadoon%2C+M+A">Muhammad Awais Jadoon</a>, <a href="/search/cs?searchtype=author&query=Pastore%2C+A">Adriano Pastore</a>, <a href="/search/cs?searchtype=author&query=Navarro%2C+M">Monica Navarro</a>, <a href="/search/cs?searchtype=author&query=Valcarce%2C+A">Alvaro Valcarce</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07837v1-abstract-short" style="display: inline;"> In this paper, we explore various multi-agent reinforcement learning (MARL) techniques to design grant-free random access (RA) schemes for low-complexity, low-power battery operated devices in massive machine-type communication (mMTC) wireless networks. We use value decomposition networks (VDN) and QMIX algorithms with parameter sharing (PS) with centralized training and decentralized execution (C… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07837v1-abstract-full').style.display = 'inline'; document.getElementById('2302.07837v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07837v1-abstract-full" style="display: none;"> In this paper, we explore various multi-agent reinforcement learning (MARL) techniques to design grant-free random access (RA) schemes for low-complexity, low-power battery operated devices in massive machine-type communication (mMTC) wireless networks. We use value decomposition networks (VDN) and QMIX algorithms with parameter sharing (PS) with centralized training and decentralized execution (CTDE) while maintaining scalability. We then compare the policies learned by VDN, QMIX, and deep recurrent Q-network (DRQN) and explore the impact of including the agent identifiers in the observation vector. We show that the MARL-based RA schemes can achieve a better throughput-fairness trade-off between agents without having to condition on the agent identifiers. We also present a novel correlated traffic model, which is more descriptive of mMTC scenarios, and show that the proposed algorithm can easily adapt to traffic non-stationarities <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07837v1-abstract-full').style.display = 'none'; document.getElementById('2302.07837v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06334">arXiv:2212.06334</a> <span> [<a href="https://arxiv.org/pdf/2212.06334">pdf</a>, <a href="https://arxiv.org/format/2212.06334">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/I2CT57861.2023.10126470">10.1109/I2CT57861.2023.10126470 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Auto-labelling of Bug Report using Natural Language Processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Patil%2C+A">Avinash Patil</a>, <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Aryan Jadon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06334v1-abstract-short" style="display: inline;"> The exercise of detecting similar bug reports in bug tracking systems is known as duplicate bug report detection. Having prior knowledge of a bug report's existence reduces efforts put into debugging problems and identifying the root cause. Rule and Query-based solutions recommend a long list of potential similar bug reports with no clear ranking. In addition, triage engineers are less motivated t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06334v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06334v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06334v1-abstract-full" style="display: none;"> The exercise of detecting similar bug reports in bug tracking systems is known as duplicate bug report detection. Having prior knowledge of a bug report's existence reduces efforts put into debugging problems and identifying the root cause. Rule and Query-based solutions recommend a long list of potential similar bug reports with no clear ranking. In addition, triage engineers are less motivated to spend time going through an extensive list. Consequently, this deters the use of duplicate bug report retrieval solutions. In this paper, we have proposed a solution using a combination of NLP techniques. Our approach considers unstructured and structured attributes of a bug report like summary, description and severity, impacted products, platforms, categories, etc. It uses a custom data transformer, a deep neural network, and a non-generalizing machine learning method to retrieve existing identical bug reports. We have performed numerous experiments with significant data sources containing thousands of bug reports and showcased that the proposed solution achieves a high retrieval accuracy of 70% for recall@5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06334v1-abstract-full').style.display = 'none'; document.getElementById('2212.06334v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 11 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 IEEE 8th International Conference for Convergence in Technology (I2CT) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02989">arXiv:2211.02989</a> <span> [<a href="https://arxiv.org/pdf/2211.02989">pdf</a>, <a href="https://arxiv.org/format/2211.02989">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A Comprehensive Survey of Regression Based Loss Functions for Time Series Forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Aryan Jadon</a>, <a href="/search/cs?searchtype=author&query=Patil%2C+A">Avinash Patil</a>, <a href="/search/cs?searchtype=author&query=Jadon%2C+S">Shruti Jadon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02989v1-abstract-short" style="display: inline;"> Time Series Forecasting has been an active area of research due to its many applications ranging from network usage prediction, resource allocation, anomaly detection, and predictive maintenance. Numerous publications published in the last five years have proposed diverse sets of objective loss functions to address cases such as biased data, long-term forecasting, multicollinear features, etc. In… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02989v1-abstract-full').style.display = 'inline'; document.getElementById('2211.02989v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02989v1-abstract-full" style="display: none;"> Time Series Forecasting has been an active area of research due to its many applications ranging from network usage prediction, resource allocation, anomaly detection, and predictive maintenance. Numerous publications published in the last five years have proposed diverse sets of objective loss functions to address cases such as biased data, long-term forecasting, multicollinear features, etc. In this paper, we have summarized 14 well-known regression loss functions commonly used for time series forecasting and listed out the circumstances where their application can aid in faster and better model convergence. We have also demonstrated how certain categories of loss functions perform well across all data sets and can be considered as a baseline objective function in circumstances where the distribution of the data is unknown. Our code is available at GitHub: https://github.com/aryan-jadon/Regression-Loss-Functions-in-Time-Series-Forecasting-Tensorflow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02989v1-abstract-full').style.display = 'none'; document.getElementById('2211.02989v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01977">arXiv:2205.01977</a> <span> [<a href="https://arxiv.org/pdf/2205.01977">pdf</a>, <a href="https://arxiv.org/ps/2205.01977">ps</a>, <a href="https://arxiv.org/format/2205.01977">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Collision Resolution with Deep Reinforcement Learning for Random Access in Machine-Type Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadoon%2C+M+A">Muhammad Awais Jadoon</a>, <a href="/search/cs?searchtype=author&query=Pastore%2C+A">Adriano Pastore</a>, <a href="/search/cs?searchtype=author&query=Navarro%2C+M">Monica Navarro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01977v1-abstract-short" style="display: inline;"> Grant-free random access (RA) techniques are suitable for machine-type communication (MTC) networks but they need to be adaptive to the MTC traffic, which is different from the human-type communication. Conventional RA protocols such as exponential backoff (EB) schemes for slotted-ALOHA suffer from a high number of collisions and they are not directly applicable to the MTC traffic models. In this… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01977v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01977v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01977v1-abstract-full" style="display: none;"> Grant-free random access (RA) techniques are suitable for machine-type communication (MTC) networks but they need to be adaptive to the MTC traffic, which is different from the human-type communication. Conventional RA protocols such as exponential backoff (EB) schemes for slotted-ALOHA suffer from a high number of collisions and they are not directly applicable to the MTC traffic models. In this work, we propose to use multi-agent deep Q-network (DQN) with parameter sharing to find a single policy applied to all machine-type devices (MTDs) in the network to resolve collisions. Moreover, we consider binary broadcast feedback common to all devices to reduce signalling overhead. We compare the performance of our proposed DQN-RA scheme with EB schemes for up to 500 MTDs and show that the proposed scheme outperforms EB policies and provides a better balance between throughput, delay and collision rate <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01977v1-abstract-full').style.display = 'none'; document.getElementById('2205.01977v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 7 Figure, accepted in the proceedings of IEEE VTC Spring-2022 Workshops</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09841">arXiv:2201.09841</a> <span> [<a href="https://arxiv.org/pdf/2201.09841">pdf</a>, <a href="https://arxiv.org/ps/2201.09841">ps</a>, <a href="https://arxiv.org/format/2201.09841">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Deep Reinforcement Learning for Random Access in Machine-Type Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadoon%2C+M+A">Muhammad Awais Jadoon</a>, <a href="/search/cs?searchtype=author&query=Pastore%2C+A">Adriano Pastore</a>, <a href="/search/cs?searchtype=author&query=Navarro%2C+M">Monica Navarro</a>, <a href="/search/cs?searchtype=author&query=Perez-Cruz%2C+F">Fernando Perez-Cruz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09841v1-abstract-short" style="display: inline;"> Random access (RA) schemes are a topic of high interest in machine-type communication (MTC). In RA protocols, backoff techniques such as exponential backoff (EB) are used to stabilize the system to avoid low throughput and excessive delays. However, these backoff techniques show varying performance for different underlying assumptions and analytical models. Therefore, finding a better transmission… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09841v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09841v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09841v1-abstract-full" style="display: none;"> Random access (RA) schemes are a topic of high interest in machine-type communication (MTC). In RA protocols, backoff techniques such as exponential backoff (EB) are used to stabilize the system to avoid low throughput and excessive delays. However, these backoff techniques show varying performance for different underlying assumptions and analytical models. Therefore, finding a better transmission policy for slotted ALOHA RA is still a challenge. In this paper, we show the potential of deep reinforcement learning (DRL) for RA. We learn a transmission policy that balances between throughput and fairness. The proposed algorithm learns transmission probabilities using previous action and binary feedback signal, and it is adaptive to different traffic arrival rates. Moreover, we propose average age of packet (AoP) as a metric to measure fairness among users. Our results show that the proposed policy outperforms the baseline EB transmission schemes in terms of throughput and fairness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09841v1-abstract-full').style.display = 'none'; document.getElementById('2201.09841v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 9 figures, conference paper accepted in IEEE WCNC'22</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13395">arXiv:2104.13395</a> <span> [<a href="https://arxiv.org/pdf/2104.13395">pdf</a>, <a href="https://arxiv.org/format/2104.13395">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ACDC: The Adverse Conditions Dataset with Correspondences for Robust Semantic Driving Scene Perception </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Sakaridis%2C+C">Christos Sakaridis</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+H">Haoran Wang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+K">Ke Li</a>, <a href="/search/cs?searchtype=author&query=Zurbr%C3%BCgg%2C+R">Ren茅 Zurbr眉gg</a>, <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Arpit Jadon</a>, <a href="/search/cs?searchtype=author&query=Abbeloos%2C+W">Wim Abbeloos</a>, <a href="/search/cs?searchtype=author&query=Reino%2C+D+O">Daniel Olmeda Reino</a>, <a href="/search/cs?searchtype=author&query=Van+Gool%2C+L">Luc Van Gool</a>, <a href="/search/cs?searchtype=author&query=Dai%2C+D">Dengxin Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13395v4-abstract-short" style="display: inline;"> Level-5 driving automation requires a robust visual perception system that can parse input images under any condition. However, existing driving datasets for dense semantic perception are either dominated by images captured under normal conditions or are small in scale. To address this, we introduce ACDC, the Adverse Conditions Dataset with Correspondences for training and testing methods for dive… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13395v4-abstract-full').style.display = 'inline'; document.getElementById('2104.13395v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13395v4-abstract-full" style="display: none;"> Level-5 driving automation requires a robust visual perception system that can parse input images under any condition. However, existing driving datasets for dense semantic perception are either dominated by images captured under normal conditions or are small in scale. To address this, we introduce ACDC, the Adverse Conditions Dataset with Correspondences for training and testing methods for diverse semantic perception tasks on adverse visual conditions. ACDC consists of a large set of 8012 images, half of which (4006) are equally distributed between four common adverse conditions: fog, nighttime, rain, and snow. Each adverse-condition image comes with a high-quality pixel-level panoptic annotation, a corresponding image of the same scene under normal conditions, and a binary mask that distinguishes between intra-image regions of clear and uncertain semantic content. 1503 of the corresponding normal-condition images feature panoptic annotations, raising the total annotated images to 5509. ACDC supports the standard tasks of semantic segmentation, object detection, instance segmentation, and panoptic segmentation, as well as the newly introduced uncertainty-aware semantic segmentation. A detailed empirical study demonstrates the challenges that the adverse domains of ACDC pose to state-of-the-art supervised and unsupervised approaches and indicates the value of our dataset in steering future progress in the field. Our dataset and benchmark are publicly available at https://acdc.vision.ee.ethz.ch <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13395v4-abstract-full').style.display = 'none'; document.getElementById('2104.13395v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for review to IEEE T-PAMI. Extended version of original conference paper published in ICCV 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06365">arXiv:2008.06365</a> <span> [<a href="https://arxiv.org/pdf/2008.06365">pdf</a>, <a href="https://arxiv.org/format/2008.06365">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> An Overview of Deep Learning Architectures in Few-Shot Learning Domain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadon%2C+S">Shruti Jadon</a>, <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Aryan Jadon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06365v4-abstract-short" style="display: inline;"> Since 2012, Deep learning has revolutionized Artificial Intelligence and has achieved state-of-the-art outcomes in different domains, ranging from Image Classification to Speech Generation. Though it has many potentials, our current architectures come with the pre-requisite of large amounts of data. Few-Shot Learning (also known as one-shot learning) is a sub-field of machine learning that aims to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06365v4-abstract-full').style.display = 'inline'; document.getElementById('2008.06365v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06365v4-abstract-full" style="display: none;"> Since 2012, Deep learning has revolutionized Artificial Intelligence and has achieved state-of-the-art outcomes in different domains, ranging from Image Classification to Speech Generation. Though it has many potentials, our current architectures come with the pre-requisite of large amounts of data. Few-Shot Learning (also known as one-shot learning) is a sub-field of machine learning that aims to create such models that can learn the desired objective with less data, similar to how humans learn. In this paper, we have reviewed some of the well-known deep learning-based approaches towards few-shot learning. We have discussed the recent achievements, challenges, and possibilities of improvement of few-shot learning based deep learning architectures. Our aim for this paper is threefold: (i) Give a brief introduction to deep learning architectures for few-shot learning with pointers to core references. (ii) Indicate how deep learning has been applied to the low-data regime, from data preparation to model training. and, (iii) Provide a starting point for people interested in experimenting and perhaps contributing to the field of few-shot learning by pointing out some useful resources and open-source code. Our code is available at Github: https://github.com/shruti-jadon/Hands-on-One-Shot-Learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06365v4-abstract-full').style.display = 'none'; document.getElementById('2008.06365v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.11922">arXiv:1905.11922</a> <span> [<a href="https://arxiv.org/pdf/1905.11922">pdf</a>, <a href="https://arxiv.org/format/1905.11922">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> FireNet: A Specialized Lightweight Fire & Smoke Detection Model for Real-Time IoT Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jadon%2C+A">Arpit Jadon</a>, <a href="/search/cs?searchtype=author&query=Omama%2C+M">Mohd. Omama</a>, <a href="/search/cs?searchtype=author&query=Varshney%2C+A">Akshay Varshney</a>, <a href="/search/cs?searchtype=author&query=Ansari%2C+M+S">Mohammad Samar Ansari</a>, <a href="/search/cs?searchtype=author&query=Sharma%2C+R">Rishabh Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.11922v2-abstract-short" style="display: inline;"> Fire disasters typically result in lot of loss to life and property. It is therefore imperative that precise, fast, and possibly portable solutions to detect fire be made readily available to the masses at reasonable prices. There have been several research attempts to design effective and appropriately priced fire detection systems with varying degrees of success. However, most of them demonstrat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11922v2-abstract-full').style.display = 'inline'; document.getElementById('1905.11922v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.11922v2-abstract-full" style="display: none;"> Fire disasters typically result in lot of loss to life and property. It is therefore imperative that precise, fast, and possibly portable solutions to detect fire be made readily available to the masses at reasonable prices. There have been several research attempts to design effective and appropriately priced fire detection systems with varying degrees of success. However, most of them demonstrate a trade-off between performance and model size (which decides the model's ability to be installed on portable devices). The work presented in this paper is an attempt to deal with both the performance and model size issues in one design. Toward that end, a `designed-from-scratch' neural network, named FireNet, is proposed which is worthy on both the counts: (i) it has better performance than existing counterparts, and (ii) it is lightweight enough to be deploy-able on embedded platforms like Raspberry Pi. Performance evaluations on a standard dataset, as well as our own newly introduced custom-compiled fire dataset, are extremely encouraging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11922v2-abstract-full').style.display = 'none'; document.getElementById('1905.11922v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be submitted to a conference in the future</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>