CINXE.COM
Search results for: nanofluid
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nanofluid</title> <meta name="description" content="Search results for: nanofluid"> <meta name="keywords" content="nanofluid"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nanofluid" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nanofluid"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 70</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nanofluid</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Bachok">N. Bachok</a>, <a href="https://publications.waset.org/search?q=N.%20L.%20Aleng"> N. L. Aleng</a>, <a href="https://publications.waset.org/search?q=N.%20M.%20Arifin"> N. M. Arifin</a>, <a href="https://publications.waset.org/search?q=A.%20Ishak"> A. Ishak</a>, <a href="https://publications.waset.org/search?q=N.%20Senu"> N. Senu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter <em>S</em>, Prandtl number <em>Pr</em>, Lewis number <em>Le</em>, Brownian motion number <em>Nb</em> and thermophoresis number <em>Nt</em>. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Boundary%20layer" title="Boundary layer">Boundary layer</a>, <a href="https://publications.waset.org/search?q=Nanofluid" title=" Nanofluid"> Nanofluid</a>, <a href="https://publications.waset.org/search?q=Shrinking%20sheet" title=" Shrinking sheet"> Shrinking sheet</a>, <a href="https://publications.waset.org/search?q=Brownian%20motion" title=" Brownian motion"> Brownian motion</a>, <a href="https://publications.waset.org/search?q=Thermophoresis" title=" Thermophoresis"> Thermophoresis</a>, <a href="https://publications.waset.org/search?q=Similarity%20solution." title=" Similarity solution."> Similarity solution.</a> </p> <a href="https://publications.waset.org/9999424/flow-and-heat-transfer-of-a-nanofluid-over-a-shrinking-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999424/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999424/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999424/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999424/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999424/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999424/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999424/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999424/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999424/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999424/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2806</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Prediction of Unsteady Forced Convection over Square Cylinder in the Presence of Nanofluid by Using ANN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ajoy%20Kumar%20Das">Ajoy Kumar Das</a>, <a href="https://publications.waset.org/search?q=Prasenjit%20Dey"> Prasenjit Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nanoparticles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Forced%20convection" title="Forced convection">Forced convection</a>, <a href="https://publications.waset.org/search?q=Square%20cylinder" title=" Square cylinder"> Square cylinder</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=neural%20network." title=" neural network."> neural network.</a> </p> <a href="https://publications.waset.org/10001575/prediction-of-unsteady-forced-convection-over-square-cylinder-in-the-presence-of-nanofluid-by-using-ann" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001575/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001575/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001575/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001575/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001575/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001575/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001575/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001575/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001575/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001575/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2362</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Mahdy">A. Mahdy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Tangent%20hyperbolic%20nanofluid" title="Tangent hyperbolic nanofluid">Tangent hyperbolic nanofluid</a>, <a href="https://publications.waset.org/search?q=finite%20difference" title=" finite difference"> finite difference</a>, <a href="https://publications.waset.org/search?q=non-similarity" title=" non-similarity"> non-similarity</a>, <a href="https://publications.waset.org/search?q=isothermal%20cone." title=" isothermal cone."> isothermal cone.</a> </p> <a href="https://publications.waset.org/10010737/mhd-natural-convection-flow-of-tangent-hyperbolic-nanofluid-past-a-vertical-permeable-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010737/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010737/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010737/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010737/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010737/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010737/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010737/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010737/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010737/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010737/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">784</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ishak%20Hashim">Ishak Hashim</a>, <a href="https://publications.waset.org/search?q=Ammar%20Alsabery"> Ammar Alsabery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conjugate%20free%20convection" title="Conjugate free convection">Conjugate free convection</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=spatial%0D%0Atemperature." title=" spatial temperature."> spatial temperature.</a> </p> <a href="https://publications.waset.org/10004211/conjugate-free-convection-in-a-square-cavity-filled-with-nanofluid-and-heated-from-below-by-spatial-wall-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004211/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004211/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004211/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004211/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004211/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004211/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004211/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004211/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004211/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004211/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1648</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Mahdy">A. Mahdy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The main objective of the present article is to explore the state of mixed convection nanofluid flow of gyrotactic microorganisms from an isothermal vertical wedge in porous medium. In our pioneering investigation, the easiest possible boundary conditions have been employed, in other words when the temperature, the nanofluid and motile microorganisms’ density have been considered to be constant on the wedge wall. Adding motile microorganisms to the nanofluid tends to enhance microscale mixing, mass transfer, and improve the nanofluid stability. Upon the Oberbeck–Boussinesq approximation and non-similarity transmutation, the paradigm of nonlinear equations are obtained and tackled numerically by using the R.K. Gill and shooting methods to obtain the dimensionless velocity, temperature, nanoparticle concentration and motile microorganisms density together with the reduced Sherwood, Nusselt, and numbers. Bioconvection parameters have strong effect upon the motile microorganism, heat, and volume fraction of nanoparticle transport rates. In the case when bioconvection is neglected, the obtained computations were found in very good agreement with the previous published data.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bioconvection" title="Bioconvection">Bioconvection</a>, <a href="https://publications.waset.org/search?q=wedge" title=" wedge"> wedge</a>, <a href="https://publications.waset.org/search?q=gyrotactic%20microorganisms" title=" gyrotactic microorganisms"> gyrotactic microorganisms</a>, <a href="https://publications.waset.org/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=mixed." title=" mixed. "> mixed. </a> </p> <a href="https://publications.waset.org/10007292/gyrotactic-microorganisms-mixed-convection-nanofluid-flow-along-an-isothermal-vertical-wedge-in-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007292/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007292/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007292/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007292/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007292/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007292/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007292/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007292/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007292/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007292/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1538</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Investigation on Nanoparticle Velocity in Two Phase Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=E.%20Mat%20Tokit">E. Mat Tokit</a>, <a href="https://publications.waset.org/search?q=Yusoff%20M.%20Z"> Yusoff M. Z</a>, <a href="https://publications.waset.org/search?q=Mohammed%20H."> Mohammed H.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Numerical investigation on the generality of nanoparticle velocity equation had been done on the previous published work. The three dimensional governing equations (continuity, momentum and energy) were solved using finite volume method (FVM). Parametric study of thermal performance between pure water-cooled and nanofluid-cooled are evaluated for volume fraction in the range of 1% to 4%, and nanofluid type of gamma-Al<sub>2</sub>O<sub>3 </sub>at Reynolds number range of 67.41 to 286.77. The nanofluid is modeled using single and two phase approach. Three different existing Brownian motion velocities are applied in comparing the generality of the equation for a wide parametric condition. Deviation in between the Brownian motion velocity is identified to be due to the different means of mean free path and constant value used in diffusion equation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Brownian%20nanoparticle%20velocity" title="Brownian nanoparticle velocity">Brownian nanoparticle velocity</a>, <a href="https://publications.waset.org/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=two%20phase%20model." title=" two phase model. "> two phase model. </a> </p> <a href="https://publications.waset.org/17175/investigation-on-nanoparticle-velocity-in-two-phase-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17175/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17175/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17175/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17175/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17175/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17175/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17175/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17175/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17175/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17175/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2513</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Periodic Mixed Convection of a Nanofluid in a Cavity with Top Lid Sinusoidal Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Arash%20Karimipour">Arash Karimipour</a>, <a href="https://publications.waset.org/search?q=M.%20Afrand"> M. Afrand</a>, <a href="https://publications.waset.org/search?q=M.%20M.%20Bazofti"> M. M. Bazofti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The periodic mixed convection of a water-copper nanofluid inside a rectangular cavity with aspect ratio of 3 is investigated numerically. The temperature of the bottom wall of the cavity is assumed greater than the temperature of the top lid which oscillates horizontally with the velocity defined as u = u0 sin (ω t). The effects of Richardson number, Ri, and volume fraction of nanoparticles on the flow and thermal behavior of the nanofluid are investigated. Velocity and temperature profiles, streamlines and isotherms are presented. It is observed that when Ri < 1, heat transfer rate is much greater than when Ri > 1. The higher value of Ri corresponds to a lower value of the amplitude of the oscillation of Num in the steady periodic state. Moreover, increasing the volume fraction of the nanoparticles increases the heat transfer rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofluid" title="Nanofluid">Nanofluid</a>, <a href="https://publications.waset.org/search?q=Top%20lid%20oscillation" title=" Top lid oscillation"> Top lid oscillation</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection" title=" Mixed convection"> Mixed convection</a>, <a href="https://publications.waset.org/search?q=Volume%20fraction" title=" Volume fraction"> Volume fraction</a> </p> <a href="https://publications.waset.org/15506/periodic-mixed-convection-of-a-nanofluid-in-a-cavity-with-top-lid-sinusoidal-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15506/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15506/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15506/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15506/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15506/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15506/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15506/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15506/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15506/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15506/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1729</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Effect of Time-Periodic Boundary Temperature on the Onset of Nanofluid Convection in a Layer of a Saturated Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.C.%20Umavathi">J.C. Umavathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The linear stability of nanofluid convection in a horizontal porous layer is examined theoretically when the walls of the porous layer are subjected to time-periodic temperature modulation. The model used for the nanofluid incorporates the effects of Brownian motion and thermopherosis, while the Darcy model is used for the porous medium. The analysis revels that for a typical nanofluid (with large Lewis number) the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles. The contribution of nanoparticles to the thermal energy equation being a second-order effect. It is found that the critical thermal Rayleigh number can be found reduced or decreased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution, phase angle and frequency of modulation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Brownian%20motion%20and%20thermophoresis" title="Brownian motion and thermophoresis">Brownian motion and thermophoresis</a>, <a href="https://publications.waset.org/search?q=Porous%20medium" title=" Porous medium"> Porous medium</a>, <a href="https://publications.waset.org/search?q=Nanofluid" title=" Nanofluid"> Nanofluid</a>, <a href="https://publications.waset.org/search?q=Natural%20convection" title=" Natural convection"> Natural convection</a>, <a href="https://publications.waset.org/search?q=Thermal%20modulation." title=" Thermal modulation."> Thermal modulation.</a> </p> <a href="https://publications.waset.org/9996909/effect-of-time-periodic-boundary-temperature-on-the-onset-of-nanofluid-convection-in-a-layer-of-a-saturated-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996909/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996909/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996909/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996909/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996909/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996909/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996909/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996909/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996909/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996909/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2170</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Linear Stability of Convection in a Viscoelastic Nanofluid Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Long%20Jye%20Sheu">Long Jye Sheu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a linear stability analysis of natural convection in a horizontal layer of a viscoelastic nanofluid. The Oldroyd B model was utilized to describe the rheological behavior of a viscoelastic nanofluid. The model used for the nanofluid incorporated the effects of Brownian motion and thermophoresis. The onset criterion for stationary and oscillatory convection was derived analytically. The effects of the Deborah number, retardation parameters, concentration Rayleigh number, Prandtl number, and Lewis number on the stability of the system were investigated. Results indicated that there was competition among the processes of thermophoresis, Brownian diffusion, and viscoelasticity which caused oscillatory rather than stationary convection to occur. Oscillatory instability is possible with both bottom- and top-heavy nanoparticle distributions. Regimes of stationary and oscillatory convection for various parameters were derived and are discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=instability" title="instability">instability</a>, <a href="https://publications.waset.org/search?q=viscoelastic" title=" viscoelastic"> viscoelastic</a>, <a href="https://publications.waset.org/search?q=nanofluids" title=" nanofluids"> nanofluids</a>, <a href="https://publications.waset.org/search?q=oscillatory" title=" oscillatory"> oscillatory</a>, <a href="https://publications.waset.org/search?q=Brownian" title=" Brownian"> Brownian</a>, <a href="https://publications.waset.org/search?q=thermophoresis" title=" thermophoresis"> thermophoresis</a> </p> <a href="https://publications.waset.org/9295/linear-stability-of-convection-in-a-viscoelastic-nanofluid-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9295/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9295/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9295/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9295/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9295/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9295/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9295/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9295/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9295/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9295/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2803</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Numerical Evaluation of Nusselt Number on the Hot Wall in Square Enclosure Filled with Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Ghafouri">A. Ghafouri</a>, <a href="https://publications.waset.org/search?q=A.%20Falavand%20Jozaei"> A. Falavand Jozaei</a>, <a href="https://publications.waset.org/search?q=M.%20Salari"> M. Salari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, effects of using Alumina-water nanofluid on the rate of heat transfer have been investigated numerically. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the Richardson number 0.1 to 10 and the solid volume fraction 0 to 0.04. Results are presented by isotherms lines, average Nusselt number and normalized Nusselt number in different range of φ and Ri for forced, combined and natural convection dominated regime. It is found that higher heat transfer rate is predicted when the effects of nanoparticle is taken into account.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofluid" title="Nanofluid">Nanofluid</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer%20Enhancement" title=" Heat Transfer Enhancement"> Heat Transfer Enhancement</a>, <a href="https://publications.waset.org/search?q=Square%0D%0AEnclosure" title=" Square Enclosure"> Square Enclosure</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number." title=" Nusselt number."> Nusselt number.</a> </p> <a href="https://publications.waset.org/10000932/numerical-evaluation-of-nusselt-number-on-the-hot-wall-in-square-enclosure-filled-with-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000932/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000932/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000932/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000932/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000932/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000932/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000932/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000932/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000932/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000932/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2335</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Performance Analysis of Heat Pipe Using Copper Nanofluid with Aqueous Solution of n-Butanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Senthilkumar%20R">Senthilkumar R</a>, <a href="https://publications.waset.org/search?q=Vaidyanathan%20S"> Vaidyanathan S</a>, <a href="https://publications.waset.org/search?q=Sivaraman%20B"> Sivaraman B</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the improvement of thermal performance of heat pipe using copper nanofluid with aqueous solution of n-Butanol. The nanofluids kept in the suspension of conventional fluids have the potential of superior heat transfer capability than the conventional fluids due to their improved thermal conductivity. In this work, the copper nanofluid which has a 40 nm size with a concentration of 100 mg/lit is kept in the suspension of the de-ionized (DI) water and an aqueous solution of n-Butanol and these fluids are used as a working medium in the heat pipe. The study discusses about the effect of heat pipe inclination, type of working fluid and heat input on the thermal efficiency and thermal resistance. The experimental results are evaluated in terms of its performance metrics and are compared with that of DI water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=copper%20nanofluid%20with%20aqueous%20solution%20of%20n-Butanol" title="copper nanofluid with aqueous solution of n-Butanol">copper nanofluid with aqueous solution of n-Butanol</a>, <a href="https://publications.waset.org/search?q=heat%20pipe" title=" heat pipe"> heat pipe</a>, <a href="https://publications.waset.org/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a>, <a href="https://publications.waset.org/search?q=thermal%20resistance" title=" thermal resistance"> thermal resistance</a> </p> <a href="https://publications.waset.org/9844/performance-analysis-of-heat-pipe-using-copper-nanofluid-with-aqueous-solution-of-n-butanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9844/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9844/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9844/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9844/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9844/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9844/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9844/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9844/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9844/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9844/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3414</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Lattice Boltzmann Simulation of MHD Natural Convection Heat Transfer of Cu-Water Nanofluid in a Linearly/Sinusoidally Heated Cavity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bouchmel%20Mliki">Bouchmel Mliki</a>, <a href="https://publications.waset.org/search?q=Chaouki%20Ali"> Chaouki Ali</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Ammar%20Abbassi"> Mohamed Ammar Abbassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this numerical study, natural convection of Cu–water nanofluid in a cavity submitted to different heating modes on its vertical walls is analyzed. Maxwell-Garnetts (MG) and Brinkman models have been utilized for calculating the effective thermal conductivity and dynamic viscosity of nanofluid, respectively. Influences of Rayleigh number (<em>Ra</em> = 10<sup>3</sup>−10<sup>6</sup>), nanoparticle volume concentration (<em>f</em> = 0-0.04) and Hartmann number (<em>Ha</em> = 0-90) on the flow and heat transfer characteristics have been examined. The results indicate that the Hartmann number influences the heat transfer at <em>Ra</em> = 10<sup>6</sup> more than other Raleigh numbers, as the least effect is observed at <em>Ra</em> = 10<sup>3</sup>. Moreover, the results show that the solid volume fraction has a significant influence on heat transfer, depending on the value of Hartmann, heat generation or absorption coefficient and Rayleigh numbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer" title="Heat transfer">Heat transfer</a>, <a href="https://publications.waset.org/search?q=linearly%2Fsinusoidally%20heated" title=" linearly/sinusoidally heated"> linearly/sinusoidally heated</a>, <a href="https://publications.waset.org/search?q=Lattice%20Boltzmann%20Method" title=" Lattice Boltzmann Method"> Lattice Boltzmann Method</a>, <a href="https://publications.waset.org/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/search?q=nanofluid." title=" nanofluid."> nanofluid.</a> </p> <a href="https://publications.waset.org/10011004/lattice-boltzmann-simulation-of-mhd-natural-convection-heat-transfer-of-cu-water-nanofluid-in-a-linearlysinusoidally-heated-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011004/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011004/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011004/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011004/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011004/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011004/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011004/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011004/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011004/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011004/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">776</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Abbaspoursani">K. Abbaspoursani</a>, <a href="https://publications.waset.org/search?q=M.%20Allahyari"> M. Allahyari</a>, <a href="https://publications.waset.org/search?q=M.%20Rahmani"> M. Rahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal conductivity is an important characteristic of a nanofluid in laminar flow heat transfer. This paper presents an improved model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions and particle size. The proposed model includes a parameter which accounts for the interfacial shell, brownian motion, and aggregation of particle. The validation of the model is verified by applying the results obtained by the experiments of Tio2-water and Al2o3-water nanofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Critical%20particle%20size" title="Critical particle size">Critical particle size</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/search?q=and%20thermal%0Aconductivity." title=" and thermal conductivity."> and thermal conductivity.</a> </p> <a href="https://publications.waset.org/13123/an-improved-model-for-prediction-of-the-effective-thermal-conductivity-of-nanofluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13123/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13123/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13123/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13123/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13123/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13123/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13123/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13123/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13123/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13123/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2049</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> A CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.Kumar">P.Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluids are used for heat transfer in many engineering equipments. Water, ethylene glycol and propylene glycol are some of the common heat transfer fluids. Over the years, in an attempt to reduce the size of the equipment and/or efficiency of the process, various techniques have been employed to improve the heat transfer rate of these fluids. Surface modification, use of inserts and increased fluid velocity are some examples of heat transfer enhancement techniques. Addition of milli or micro sized particles to the heat transfer fluid is another way of improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. In this work, the heat transfer enhancement using aluminium oxide nanofluid has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer%20intensification" title="Heat transfer intensification">Heat transfer intensification</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=friction%20factor" title="friction factor">friction factor</a> </p> <a href="https://publications.waset.org/7518/a-cfd-study-of-heat-transfer-enhancement-in-pipe-flow-with-al2o3-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7518/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7518/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7518/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7518/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7518/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7518/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7518/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7518/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7518/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7518/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3796</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.%20Hekmatipour">F. Hekmatipour</a>, <a href="https://publications.waset.org/search?q=M.%20A.%20Akhavan-Behabadi"> M. A. Akhavan-Behabadi</a>, <a href="https://publications.waset.org/search?q=B.%20Sajadi"> B. Sajadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofluid%3B%20heat%20transfer%20oil%3B%20mixed%20convection%3B%20inclined%20tube%3B%20laminar%20flow." title="Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.">Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.</a> </p> <a href="https://publications.waset.org/10009511/experimental-on-free-and-forced-heat-transfer-and-pressure-drop-of-copper-oxide-heat-transfer-oil-nanofluid-in-horizontal-and-inclined-microfin-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009511/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009511/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009511/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009511/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009511/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009511/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009511/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009511/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009511/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009511/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hamed%20K.%20Arzani">Hamed K. Arzani</a>, <a href="https://publications.waset.org/search?q=Hamid%20K.%20Arzani"> Hamid K. Arzani</a>, <a href="https://publications.waset.org/search?q=S.N.%20Kazi"> S.N. Kazi</a>, <a href="https://publications.waset.org/search?q=A.%20Badarudin"> A. Badarudin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Laminar%20forced%20convection" title="Laminar forced convection">Laminar forced convection</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=curve" title=" curve"> curve</a>, <a href="https://publications.waset.org/search?q=return%20bend" title=" return bend"> return bend</a>, <a href="https://publications.waset.org/search?q=CFD." title=" CFD."> CFD.</a> </p> <a href="https://publications.waset.org/10004941/numerical-study-of-developing-laminar-forced-convection-flow-of-watercuo-nanofluid-in-a-circular-tube-with-a-180-degrees-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004941/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004941/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004941/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004941/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004941/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004941/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004941/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004941/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004941/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004941/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1285</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Farhad%20Hekmatipour">Farhad Hekmatipour</a>, <a href="https://publications.waset.org/search?q=M.%20A.%20Akhavan-Behabadi"> M. A. Akhavan-Behabadi</a>, <a href="https://publications.waset.org/search?q=Farzad%20Hekmatipour"> Farzad Hekmatipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofluid" title="Nanofluid">Nanofluid</a>, <a href="https://publications.waset.org/search?q=heat%20transfer%20oil" title=" heat transfer oil"> heat transfer oil</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=vertical%20tube" title=" vertical tube"> vertical tube</a>, <a href="https://publications.waset.org/search?q=laminar%20flow." title=" laminar flow."> laminar flow.</a> </p> <a href="https://publications.waset.org/10009946/mixed-convection-heat-transfer-of-copper-oxide-heat-transfer-oil-nanofluid-in-vertical-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009946/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009946/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009946/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009946/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009946/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009946/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009946/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009946/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009946/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009946/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">961</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sujoy%20Das">Sujoy Das</a>, <a href="https://publications.waset.org/search?q=M.%20M.%20Ghosh"> M. M. Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solidsolid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulselike pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Brownian%20dynamics" title="Brownian dynamics">Brownian dynamics</a>, <a href="https://publications.waset.org/search?q=Molecular%20dynamics" title=" Molecular dynamics"> Molecular dynamics</a>, <a href="https://publications.waset.org/search?q=Nanofluid" title=" Nanofluid"> Nanofluid</a>, <a href="https://publications.waset.org/search?q=Thermal%20conductivity." title=" Thermal conductivity."> Thermal conductivity.</a> </p> <a href="https://publications.waset.org/10000294/estimation-of-thermal-conductivity-of-nanofluids-using-md-stochastic-simulation-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000294/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000294/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000294/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000294/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000294/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000294/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000294/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000294/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000294/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000294/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2263</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Barzin%20Gavtash">Barzin Gavtash</a>, <a href="https://publications.waset.org/search?q=Khalid%20Hussain"> Khalid Hussain</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Layeghi"> Mohammad Layeghi</a>, <a href="https://publications.waset.org/search?q=Saeed%20Sadeghi%20Lafmejani"> Saeed Sadeghi Lafmejani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=Heat%20Pipe" title=" Heat Pipe"> Heat Pipe</a>, <a href="https://publications.waset.org/search?q=Nanofluid" title=" Nanofluid"> Nanofluid</a>, <a href="https://publications.waset.org/search?q=Thermal%20resistance" title=" Thermal resistance"> Thermal resistance</a> </p> <a href="https://publications.waset.org/5086/numerical-simulation-of-the-effects-of-nanofluid-on-a-heat-pipe-thermal-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5086/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5086/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5086/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5086/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5086/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5086/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5086/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5086/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5086/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5086/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44855</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Mixed Convection Boundary Layer Flow from a Vertical Cone in a Porous Medium Filled with a Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ezzah%20Liana%20Ahmad%20Fauzi">Ezzah Liana Ahmad Fauzi</a>, <a href="https://publications.waset.org/search?q=Syakila%20Ahmad"> Syakila Ahmad</a>, <a href="https://publications.waset.org/search?q=Ioan%20Pop"> Ioan Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steady mixed convection boundary layer flow from a vertical cone in a porous medium filled with a nanofluid is numerically investigated using different types of nanoparticles as Cu (copper), Al2O3 (alumina) and TiO2 (titania). The boundary value problem is solved by using the shooting technique by reducing it into an ordinary differential equation. Results of interest for the local Nusselt number with various values of the constant mixed convection parameter and nanoparticle volume fraction parameter are evaluated. It is found that dual solutions exist for a certain range of mixed convection parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=porous%0Amedium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/search?q=vertical%20cone." title=" vertical cone."> vertical cone.</a> </p> <a href="https://publications.waset.org/13549/mixed-convection-boundary-layer-flow-from-a-vertical-cone-in-a-porous-medium-filled-with-a-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13549/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13549/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13549/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13549/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13549/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13549/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13549/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13549/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13549/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13549/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2291</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Houda%20Jalali">Houda Jalali</a>, <a href="https://publications.waset.org/search?q=Hassan%20Abbassi"> Hassan Abbassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this numerical work, natural convection and entropy generation of Al<sub>2</sub>O<sub>3</sub>–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, T<sub>h </sub>and cold temperature, T<sub>c</sub>. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 10<sup>3</sup> ≤ Ra ≤ 10<sup>6</sup>, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al<sub>2</sub>O<sub>3</sub> into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Entropy%20generation" title="Entropy generation">Entropy generation</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=natural%20convection." title=" natural convection."> natural convection.</a> </p> <a href="https://publications.waset.org/10006066/evaluation-of-heat-transfer-and-entropy-generation-by-al2o3-water-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006066/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006066/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006066/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006066/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006066/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006066/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006066/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006066/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006066/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006066/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1257</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Streamwise Conduction of Nanofluidic Flow in Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yew%20Mun%20Hung">Yew Mun Hung</a>, <a href="https://publications.waset.org/search?q=Ching%20Sze%20Lim"> Ching Sze Lim</a>, <a href="https://publications.waset.org/search?q=Tiew%20Wei%20Ting"> Tiew Wei Ting</a>, <a href="https://publications.waset.org/search?q=Ningqun%20Guo"> Ningqun Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of streamwise conduction on the thermal characteristics of forced convection for nanofluidic flow in rectangular microchannel heat sinks under isothermal wall has been investigated. By applying the fin approach, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow. These two models were solved to obtain closed form analytical solutions for the nanofluid and solid wall temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the nanofluid heat transport characteristics. The effects of the Peclet number, nanoparticle volume fraction, thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks are analyzed. Due to the anomalous increase in the effective thermal conductivity of nanofluid compared to its base fluid, the effect of streamwise conduction is expected to be more significant. This study reveals the significance of the effect of streamwise conduction under certain conditions of which the streamwise conduction should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=fin%20approach" title="fin approach">fin approach</a>, <a href="https://publications.waset.org/search?q=microchannel%20heat%20sink" title=" microchannel heat sink"> microchannel heat sink</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=streamwise%20conduction" title=" streamwise conduction"> streamwise conduction</a> </p> <a href="https://publications.waset.org/1215/streamwise-conduction-of-nanofluidic-flow-in-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1215/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1215/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1215/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1215/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1215/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1215/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1215/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1215/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1215/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1215/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1740</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Roslinda%20Nazar">Roslinda Nazar</a>, <a href="https://publications.waset.org/search?q=Amin%20Noor"> Amin Noor</a>, <a href="https://publications.waset.org/search?q=Khamisah%20Jafar"> Khamisah Jafar</a>, <a href="https://publications.waset.org/search?q=Ioan%20Pop"> Ioan Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20Transfer" title="Heat Transfer">Heat Transfer</a>, <a href="https://publications.waset.org/search?q=Nanofluid" title=" Nanofluid"> Nanofluid</a>, <a href="https://publications.waset.org/search?q=Shrinking%20Surface" title=" Shrinking Surface"> Shrinking Surface</a>, <a href="https://publications.waset.org/search?q=Stability%20Analysis" title=" Stability Analysis"> Stability Analysis</a>, <a href="https://publications.waset.org/search?q=Three-Dimensional%20Flow." title=" Three-Dimensional Flow."> Three-Dimensional Flow.</a> </p> <a href="https://publications.waset.org/9998253/stability-analysis-of-three-dimensional-flow-and-heat-transfer-over-a-permeable-shrinking-surface-in-a-cu-water-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998253/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998253/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998253/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998253/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998253/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998253/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998253/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998253/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998253/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998253/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2194</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zeeshan%20Ahmed">Zeeshan Ahmed</a>, <a href="https://publications.waset.org/search?q=Ajinkya%20Sarode"> Ajinkya Sarode</a>, <a href="https://publications.waset.org/search?q=Pratik%20Basarkar"> Pratik Basarkar</a>, <a href="https://publications.waset.org/search?q=Atul%20Bhargav"> Atul Bhargav</a>, <a href="https://publications.waset.org/search?q=Debjyoti%20Banerjee"> Debjyoti Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The use of CO<sub>2</sub> in oil recovery and in CO<sub>2</sub> capture and storage is gaining traction in recent years. These applications involve heat transfer between CO<sub>2</sub> and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO<sub>2</sub> to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO<sub>2</sub> as a base fluid. No experimental data are available on thermal conductivity of CO<sub>2</sub> based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO<sub>2</sub> will lead to enhanced oil recovery and thermal energy storage.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Copper-CO2%20nanofluid" title="Copper-CO2 nanofluid">Copper-CO2 nanofluid</a>, <a href="https://publications.waset.org/search?q=molecular%20interfacial%20layer" title=" molecular interfacial layer"> molecular interfacial layer</a>, <a href="https://publications.waset.org/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/search?q=molecular%20dynamic%20simulation." title=" molecular dynamic simulation."> molecular dynamic simulation.</a> </p> <a href="https://publications.waset.org/10007391/molecular-dynamics-simulation-of-the-effect-of-the-solid-gas-interface-nanolayer-on-enhanced-thermal-conductivity-of-copper-co2-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007391/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007391/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007391/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007391/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007391/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007391/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007391/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007391/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007391/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007391/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1110</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Bayat">H. Bayat</a>, <a href="https://publications.waset.org/search?q=M.%20Majidi"> M. Majidi</a>, <a href="https://publications.waset.org/search?q=M.%20Bolhasani"> M. Bolhasani</a>, <a href="https://publications.waset.org/search?q=A.%20Karbalaie%20Alilou"> A. Karbalaie Alilou</a>, <a href="https://publications.waset.org/search?q=A.%20Mirabdolah%20Lavasani"> A. Mirabdolah Lavasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofluid" title="Nanofluid">Nanofluid</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=unsteady%20flow" title=" unsteady flow"> unsteady flow</a>, <a href="https://publications.waset.org/search?q=forced%0D%0Aconvection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/search?q=cross-flow." title=" cross-flow."> cross-flow.</a> </p> <a href="https://publications.waset.org/10003030/unsteady-flow-and-heat-transfer-of-nanofluid-from-circular-tube-in-cross-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003030/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003030/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003030/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003030/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003030/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003030/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003030/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003030/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003030/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003030/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2522</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Experimental Investigation of Convective Heat Transfer and Pressure Drop of Al2O3/Water Nanofluid in Laminar Flow Regime inside a Circular Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Almohammadi">H. Almohammadi</a>, <a href="https://publications.waset.org/search?q=Sh.%20Nasiri%20Vatan"> Sh. Nasiri Vatan</a>, <a href="https://publications.waset.org/search?q=E.%20Esmaeilzadeh"> E. Esmaeilzadeh</a>, <a href="https://publications.waset.org/search?q=A.%20Motezaker"> A. Motezaker</a>, <a href="https://publications.waset.org/search?q=A.%20Nokhosteen"> A. Nokhosteen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, Convective heat transfer coefficient and pressure drop of Al2O3/water nanofluid in laminar flow regime under constant heat flux conditions inside a circular tube were experimentally investigated. Al2O3/water nanofluid with 0.5% and 1% volume concentrations with 15 nm diameter nanoparticles were used as working fluid. The effect of different volume concentrations on convective heat transfer coefficient and friction factor was studied. The results emphasize that increasing of particle volume concentration leads to enhance convective heat transfer coefficient. Measurements show the average heat transfer coefficient enhanced about 11-20% with 0.5% volume concentration and increased about 16-27% with 1% volume concentration compared to distilled water. In addition, the convective heat transfer coefficient of nanofluid enhances with increase in heat flux. From the results, the average ratio of (fnf/fbf) was about 1.10 for 0.5% volume concentration. Therefore, there is no significant increase in friction factor for nanofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Convective%20heat%20transfer" title="Convective heat transfer">Convective heat transfer</a>, <a href="https://publications.waset.org/search?q=Laminar%20flow%20regime" title=" Laminar flow regime"> Laminar flow regime</a>, <a href="https://publications.waset.org/search?q=Nanofluids" title=" Nanofluids"> Nanofluids</a>, <a href="https://publications.waset.org/search?q=Pressure%20drop" title=" Pressure drop"> Pressure drop</a> </p> <a href="https://publications.waset.org/5436/experimental-investigation-of-convective-heat-transfer-and-pressure-drop-of-al2o3water-nanofluid-in-laminar-flow-regime-inside-a-circular-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5436/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5436/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5436/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5436/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5436/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5436/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5436/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5436/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5436/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5436/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3767</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Entropy Generation and Heat Transfer of Cu–Water Nanofluid Mixed Convection in a Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mliki%20Bouchmel">Mliki Bouchmel</a>, <a href="https://publications.waset.org/search?q=Belgacem%20Nabil"> Belgacem Nabil</a>, <a href="https://publications.waset.org/search?q=Abbassi%20Mohamed%20Ammar"> Abbassi Mohamed Ammar</a>, <a href="https://publications.waset.org/search?q=Geudri%20Kamel"> Geudri Kamel</a>, <a href="https://publications.waset.org/search?q=Omri%20Ahmed"> Omri Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this numerical work, mixed convection and entropy generation of Cu–water nanofluid in a lid-driven square cavity have been investigated numerically using the Lattice Boltzmann Method. Horizontal walls of the cavity are adiabatic and vertical walls have constant temperature but different values. The top wall has been considered as moving from left to right at a constant speed, U0. The effects of different parameters such as nanoparticle volume concentration (0–0.05), Rayleigh number (104–106) and Reynolds numbers (1, 10 and 100) on the entropy generation, flow and temperature fields are studied. The results have shown that addition of nanoparticles to the base fluid affects the entropy generation, flow pattern and thermal behavior especially at higher Rayleigh and low Reynolds numbers. For pure fluid as well as nanofluid, the increase of Reynolds number increases the average Nusselt number and the total entropy generation, linearly. The maximum entropy generation occurs in nanofluid at low Rayleigh number and at high Reynolds number. The minimum entropy generation occurs in pure fluid at low Rayleigh and Reynolds numbers. Also at higher Reynolds number, the effect of Cu nanoparticles on enhancement of heat transfer was decreased because the effect of lid-driven cavity was increased. The present results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical and tabular forms and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Entropy%20generation" title="Entropy generation">Entropy generation</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=lattice%20Boltzmann%20method." title=" lattice Boltzmann method."> lattice Boltzmann method.</a> </p> <a href="https://publications.waset.org/10002575/entropy-generation-and-heat-transfer-of-cu-water-nanofluid-mixed-convection-in-a-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002575/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002575/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002575/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002575/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002575/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002575/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002575/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002575/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002575/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002575/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1951</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Perumal%20Kumar">Perumal Kumar</a>, <a href="https://publications.waset.org/search?q=Rajamohan%20Ganesan"> Rajamohan Ganesan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Addition of milli or micro sized particles to the heat transfer fluid is one of the many techniques employed for improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. Nanoparticles also increase the viscosity of the basefluid resulting in higher pressure drop for the nanofluid compared to the base fluid. So it is imperative that the Reynolds number (Re) and the volume fraction have to be optimum for better thermal hydraulic effectiveness. In this work, the heat transfer enhancement using aluminium oxide nanofluid using low and high volume fraction nanofluids in turbulent pipe flow with constant wall temperature has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. Nanofluid, up till a volume fraction of 1% is found to be an effective heat transfer enhancement technique. The Nusselt number (Nu) and friction factor predictions for the low volume fractions (i.e. 0.02%, 0.1 and 0.5%) agree very well with the experimental values of Sundar and Sharma (2010). While, predictions for the high volume fraction nanofluids (i.e. 1%, 4% and 6%) are found to have reasonable agreement with both experimental and numerical results available in the literature. So the computationally inexpensive single phase approach can be used for heat transfer and pressure drop prediction of new nanofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer%20intensification" title="Heat transfer intensification">Heat transfer intensification</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=friction%0Afactor" title=" friction factor"> friction factor</a> </p> <a href="https://publications.waset.org/7410/a-cfd-study-of-turbulent-convective-heat-transfer-enhancement-in-circular-pipeflow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7410/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7410/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7410/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7410/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7410/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7410/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7410/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7410/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7410/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7410/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2875</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rangoli%20Goyal">Rangoli Goyal</a>, <a href="https://publications.waset.org/search?q=Rama%20Bhargava"> Rama Bhargava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/search?q=Thermophoresis" title=" Thermophoresis"> Thermophoresis</a>, <a href="https://publications.waset.org/search?q=Diffusiophoresis" title=" Diffusiophoresis"> Diffusiophoresis</a>, <a href="https://publications.waset.org/search?q=Brownian%20motion." title=" Brownian motion."> Brownian motion.</a> </p> <a href="https://publications.waset.org/10005285/fem-simulation-of-triple-diffusive-magnetohydrodynamics-effect-of-nanofluid-flow-over-a-nonlinear-stretching-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005285/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005285/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005285/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005285/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005285/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005285/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005285/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005285/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005285/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005285/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1451</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hassan%20Hajabdollahi">Hassan Hajabdollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Shell%20and%20tube%20heat%20exchanger" title="Shell and tube heat exchanger">Shell and tube heat exchanger</a>, <a href="https://publications.waset.org/search?q=nanoparticles%20additive" title=" nanoparticles additive"> nanoparticles additive</a>, <a href="https://publications.waset.org/search?q=total%20annual%20cost" title=" total annual cost"> total annual cost</a>, <a href="https://publications.waset.org/search?q=particle%20volumetric%20concentration." title=" particle volumetric concentration."> particle volumetric concentration.</a> </p> <a href="https://publications.waset.org/10007734/economic-optimization-of-shell-and-tube-heat-exchanger-using-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007734/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007734/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007734/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007734/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007734/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007734/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007734/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007734/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007734/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007734/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1119</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=nanofluid&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=nanofluid&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=nanofluid&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>