CINXE.COM

Boltzmann machine - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Boltzmann machine - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"43faa726-048a-4e1f-8980-7ec4eae73564","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Boltzmann_machine","wgTitle":"Boltzmann machine","wgCurRevisionId":1256713281,"wgRevisionId":1256713281,"wgArticleId":1166059,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with dead external links","Articles with dead external links from June 2024","Articles with permanently dead external links","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from January 2013","Articles with unsourced statements from August 2015","Neural network architectures","Ludwig Boltzmann","Mathematical physics"],"wgPageViewLanguage":"en", "wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Boltzmann_machine","wgRelevantArticleId":1166059,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q194706", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc", "skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/7a/Boltzmannexamplev1.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1139"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/7a/Boltzmannexamplev1.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="759"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="607"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Boltzmann machine - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Boltzmann_machine"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Boltzmann_machine&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Boltzmann_machine"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Boltzmann_machine rootpage-Boltzmann_machine skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Boltzmann+machine" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Boltzmann+machine" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Boltzmann+machine" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Boltzmann+machine" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Structure" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Structure</span> </div> </a> <ul id="toc-Structure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unit_state_probability" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Unit_state_probability"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Unit state probability</span> </div> </a> <ul id="toc-Unit_state_probability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Equilibrium_state" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Equilibrium_state"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Equilibrium state</span> </div> </a> <ul id="toc-Equilibrium_state-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Training" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Training"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Training</span> </div> </a> <ul id="toc-Training-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Problems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Problems</span> </div> </a> <ul id="toc-Problems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Types" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Types"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Types</span> </div> </a> <button aria-controls="toc-Types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Types subsection</span> </button> <ul id="toc-Types-sublist" class="vector-toc-list"> <li id="toc-Restricted_Boltzmann_machine" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Restricted_Boltzmann_machine"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Restricted Boltzmann machine</span> </div> </a> <ul id="toc-Restricted_Boltzmann_machine-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Deep_Boltzmann_machine" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Deep_Boltzmann_machine"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Deep Boltzmann machine</span> </div> </a> <ul id="toc-Deep_Boltzmann_machine-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spike-and-slab_RBMs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spike-and-slab_RBMs"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Spike-and-slab RBMs</span> </div> </a> <ul id="toc-Spike-and-slab_RBMs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_mathematics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>In mathematics</span> </div> </a> <ul id="toc-In_mathematics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Boltzmann machine</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 15 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-15" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">15 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/M%C3%A0quina_de_Boltzmann" title="Màquina de Boltzmann – Catalan" lang="ca" hreflang="ca" data-title="Màquina de Boltzmann" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Boltzmann-Maschine" title="Boltzmann-Maschine – German" lang="de" hreflang="de" data-title="Boltzmann-Maschine" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/M%C3%A1quina_de_Boltzmann" title="Máquina de Boltzmann – Spanish" lang="es" hreflang="es" data-title="Máquina de Boltzmann" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D8%B4%DB%8C%D9%86_%D8%A8%D9%88%D9%84%D8%AA%D8%B3%D9%85%D8%A7%D9%86" title="ماشین بولتسمان – Persian" lang="fa" hreflang="fa" data-title="ماشین بولتسمان" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B3%BC%EC%B8%A0%EB%A7%8C_%EB%A8%B8%EC%8B%A0" title="볼츠만 머신 – Korean" lang="ko" hreflang="ko" data-title="볼츠만 머신" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%9B%D7%95%D7%A0%D7%AA_%D7%91%D7%95%D7%9C%D7%A6%D7%9E%D7%9F" title="מכונת בולצמן – Hebrew" lang="he" hreflang="he" data-title="מכונת בולצמן" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AC%E0%B5%8B%E0%B5%BE%E0%B4%B8%E0%B5%8D%E0%B4%AE%E0%B4%BE%E0%B5%BB_%E0%B4%AF%E0%B4%A8%E0%B5%8D%E0%B4%A4%E0%B5%8D%E0%B4%B0%E0%B4%82" title="ബോൾസ്മാൻ യന്ത്രം – Malayalam" lang="ml" hreflang="ml" data-title="ബോൾസ്മാൻ യന്ത്രം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9C%E3%83%AB%E3%83%84%E3%83%9E%E3%83%B3%E3%83%9E%E3%82%B7%E3%83%B3" title="ボルツマンマシン – Japanese" lang="ja" hreflang="ja" data-title="ボルツマンマシン" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%B0_%D0%91%D0%BE%D0%BB%D1%8C%D1%86%D0%BC%D0%B0%D0%BD%D0%B0" title="Машина Больцмана – Russian" lang="ru" hreflang="ru" data-title="Машина Больцмана" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Makina_Boltzmann" title="Makina Boltzmann – Albanian" lang="sq" hreflang="sq" data-title="Makina Boltzmann" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Boltzmannin_kone" title="Boltzmannin kone – Finnish" lang="fi" hreflang="fi" data-title="Boltzmannin kone" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%B0_%D0%91%D0%BE%D0%BB%D1%8C%D1%86%D0%BC%D0%B0%D0%BD%D0%B0" title="Машина Больцмана – Ukrainian" lang="uk" hreflang="uk" data-title="Машина Больцмана" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/M%C3%A1y_Boltzmann" title="Máy Boltzmann – Vietnamese" lang="vi" hreflang="vi" data-title="Máy Boltzmann" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%8E%BB%E8%8C%B2%E6%9B%BC%E6%A9%9F" title="玻茲曼機 – Cantonese" lang="yue" hreflang="yue" data-title="玻茲曼機" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%8E%BB%E5%B0%94%E5%85%B9%E6%9B%BC%E6%9C%BA" title="玻尔兹曼机 – Chinese" lang="zh" hreflang="zh" data-title="玻尔兹曼机" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q194706#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Boltzmann_machine" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Boltzmann_machine" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Boltzmann_machine"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Boltzmann_machine&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Boltzmann_machine"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Boltzmann_machine&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Boltzmann_machine" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Boltzmann_machine" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Boltzmann_machine&amp;oldid=1256713281" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Boltzmann_machine&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Boltzmann_machine&amp;id=1256713281&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBoltzmann_machine"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBoltzmann_machine"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Boltzmann_machine&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Boltzmann_machine&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Boltzmann_machines" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q194706" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Type of stochastic recurrent neural network</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Boltzmannexamplev1.png" class="mw-file-description"><img alt="A graphical representation of an example Boltzmann machine." src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Boltzmannexamplev1.png/220px-Boltzmannexamplev1.png" decoding="async" width="220" height="209" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Boltzmannexamplev1.png/330px-Boltzmannexamplev1.png 1.5x, //upload.wikimedia.org/wikipedia/commons/7/7a/Boltzmannexamplev1.png 2x" data-file-width="433" data-file-height="411" /></a><figcaption> A graphical representation of an example Boltzmann machine. Each undirected edge represents dependency. In this example there are 3 hidden units and 4 visible units. This is not a restricted Boltzmann machine.</figcaption></figure> <p>A <b>Boltzmann machine</b> (also called <b>Sherrington–Kirkpatrick model with external field</b> or <b>stochastic Ising model</b>), named after <a href="/wiki/Ludwig_Boltzmann" title="Ludwig Boltzmann">Ludwig Boltzmann</a> is a <a href="/wiki/Spin_glass" title="Spin glass">spin-glass</a> model with an external field, i.e., a <a href="/wiki/Spin_glass#Sherrington–Kirkpatrick_model" title="Spin glass">Sherrington–Kirkpatrick model</a>,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> that is a stochastic <a href="/wiki/Ising_model" title="Ising model">Ising model</a>. It is a <a href="/wiki/Statistical_physics" class="mw-redirect" title="Statistical physics">statistical physics</a> technique applied in the context of <a href="/wiki/Cognitive_science" title="Cognitive science">cognitive science</a>.<sup id="cite_ref-:0_2-0" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> It is also classified as a <a href="/wiki/Markov_random_field" title="Markov random field">Markov random field</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Boltzmann machines are theoretically intriguing because of the locality and <a href="/wiki/Hebbian" class="mw-redirect" title="Hebbian">Hebbian</a> nature of their training algorithm (being trained by Hebb's rule), and because of their <a href="/wiki/Parallelism_(computing)" class="mw-redirect" title="Parallelism (computing)">parallelism</a> and the resemblance of their dynamics to simple <a href="/wiki/Physical_process" class="mw-redirect" title="Physical process">physical processes</a>. Boltzmann machines with unconstrained connectivity have not been proven useful for practical problems in <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> or <a href="/wiki/Inference" title="Inference">inference</a>, but if the connectivity is properly constrained, the learning can be made efficient enough to be useful for practical problems.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>They are named after the <a href="/wiki/Boltzmann_distribution" title="Boltzmann distribution">Boltzmann distribution</a> in <a href="/wiki/Statistical_mechanics" title="Statistical mechanics">statistical mechanics</a>, which is used in their <a href="/wiki/Sampling_function" class="mw-redirect" title="Sampling function">sampling function</a>. They were heavily popularized and promoted by <a href="/wiki/Geoffrey_Hinton" title="Geoffrey Hinton">Geoffrey Hinton</a>, <a href="/wiki/Terry_Sejnowski" title="Terry Sejnowski">Terry Sejnowski</a> and <a href="/wiki/Yann_LeCun" title="Yann LeCun">Yann LeCun</a> in cognitive sciences communities, particularly in <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a>,<sup id="cite_ref-:0_2-1" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> as part of "<a href="/wiki/Energy-based_model" title="Energy-based model">energy-based models</a>" (EBM), because <a href="/wiki/Hamiltonian_function" class="mw-redirect" title="Hamiltonian function">Hamiltonians</a> of <a href="/wiki/Spin_glasses" class="mw-redirect" title="Spin glasses">spin glasses</a> as energy are used as a starting point to define the learning task.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Structure">Structure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=1" title="Edit section: Structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Boltzmannexamplev2.png" class="mw-file-description"><img alt="A graphical representation of an example Boltzmann machine with weight labels." src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Boltzmannexamplev2.png/220px-Boltzmannexamplev2.png" decoding="async" width="220" height="209" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Boltzmannexamplev2.png/330px-Boltzmannexamplev2.png 1.5x, //upload.wikimedia.org/wikipedia/commons/f/fd/Boltzmannexamplev2.png 2x" data-file-width="433" data-file-height="411" /></a><figcaption> A graphical representation of a Boltzmann machine with a few weights labeled. Each undirected edge represents dependency and is weighted with weight <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3302ff355269436b43bc2fbe180303881c09321" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.141ex; height:2.343ex;" alt="{\displaystyle w_{ij}}"></span>. In this example there are 3 hidden units (blue) and 4 visible units (white). This is not a restricted Boltzmann machine.</figcaption></figure> <p>A Boltzmann machine, like a <a href="/wiki/Spin_glass#Sherrington–Kirkpatrick_model" title="Spin glass">Sherrington–Kirkpatrick model</a>, is a network of units with a total "energy" (<a href="/wiki/Hamiltonian_function" class="mw-redirect" title="Hamiltonian function">Hamiltonian</a>) defined for the overall network. Its units produce <a href="/wiki/Binary_number" title="Binary number">binary</a> results. Boltzmann machine weights are <a href="/wiki/Stochastic" title="Stochastic">stochastic</a>. The global energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> in a Boltzmann machine is identical in form to that of <a href="/wiki/Hopfield_network" title="Hopfield network">Hopfield networks</a> and <a href="/wiki/Ising_model" title="Ising model">Ising models</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=-\left(\sum _{i&lt;j}w_{ij}\,s_{i}\,s_{j}+\sum _{i}\theta _{i}\,s_{i}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&lt;</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=-\left(\sum _{i&lt;j}w_{ij}\,s_{i}\,s_{j}+\sum _{i}\theta _{i}\,s_{i}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/419a4966dae86dfb786dbeb6aadd3c38d9ec30d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.048ex; height:7.676ex;" alt="{\displaystyle E=-\left(\sum _{i&lt;j}w_{ij}\,s_{i}\,s_{j}+\sum _{i}\theta _{i}\,s_{i}\right)}"></span></dd></dl> <p>Where: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3302ff355269436b43bc2fbe180303881c09321" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.141ex; height:2.343ex;" alt="{\displaystyle w_{ij}}"></span> is the connection strength between unit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> and unit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfda82668232cbdc0874ed28ab8b6079420d1ffe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.89ex; height:2.009ex;" alt="{\displaystyle s_{i}}"></span> is the state, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{i}\in \{0,1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{i}\in \{0,1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9da1e0bc5f6f9d7f021287963bbb8b3ada491df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.415ex; height:2.843ex;" alt="{\displaystyle s_{i}\in \{0,1\}}"></span>, of unit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/302b19204ed378e99ff4575341a67eebdbe5a555" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.89ex; height:2.509ex;" alt="{\displaystyle \theta _{i}}"></span> is the bias of unit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> in the global energy function. (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\theta _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\theta _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/183e14708810963ae88dbef1ab84f12367bc8574" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.698ex; height:2.509ex;" alt="{\displaystyle -\theta _{i}}"></span> is the activation threshold for the unit.)</li></ul> <p>Often the weights <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3302ff355269436b43bc2fbe180303881c09321" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.141ex; height:2.343ex;" alt="{\displaystyle w_{ij}}"></span> are represented as a symmetric matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=[w_{ij}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=[w_{ij}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe9447624ebb1e3c8ba2dacefbb62681ea40590e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.969ex; height:3.009ex;" alt="{\displaystyle W=[w_{ij}]}"></span> with zeros along the diagonal. </p> <div class="mw-heading mw-heading2"><h2 id="Unit_state_probability">Unit state probability</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=2" title="Edit section: Unit state probability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The difference in the global energy that results from a single unit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> equaling 0 (off) versus 1 (on), written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta E_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta E_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa40fa108e21d148e5a39c6202cf9a2ee69cb1cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.451ex; height:2.509ex;" alt="{\displaystyle \Delta E_{i}}"></span>, assuming a symmetric matrix of weights, is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta E_{i}=\sum _{j&gt;i}w_{ij}\,s_{j}+\sum _{j&lt;i}w_{ji}\,s_{j}+\theta _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&gt;</mo> <mi>i</mi> </mrow> </munder> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&lt;</mo> <mi>i</mi> </mrow> </munder> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta E_{i}=\sum _{j&gt;i}w_{ij}\,s_{j}+\sum _{j&lt;i}w_{ji}\,s_{j}+\theta _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cad4ed8631921945d7056276eaeb5e0246e7ce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.661ex; height:5.843ex;" alt="{\displaystyle \Delta E_{i}=\sum _{j&gt;i}w_{ij}\,s_{j}+\sum _{j&lt;i}w_{ji}\,s_{j}+\theta _{i}}"></span></dd></dl> <p>This can be expressed as the difference of energies of two states: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta E_{i}=E_{\text{i=off}}-E_{\text{i=on}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i=off</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i=on</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta E_{i}=E_{\text{i=off}}-E_{\text{i=on}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7de089322fde630248e5e9f0d4beac2a10374385" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.321ex; height:2.509ex;" alt="{\displaystyle \Delta E_{i}=E_{\text{i=off}}-E_{\text{i=on}}}"></span></dd></dl> <p>Substituting the energy of each state with its relative probability according to the <a href="/wiki/Boltzmann_factor" class="mw-redirect" title="Boltzmann factor">Boltzmann factor</a> (the property of a <a href="/wiki/Boltzmann_distribution" title="Boltzmann distribution">Boltzmann distribution</a> that the energy of a state is proportional to the negative log probability of that state) yields: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta E_{i}=-k_{B}T\ln(p_{\text{i=off}})-(-k_{B}T\ln(p_{\text{i=on}})),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>T</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i=off</mtext> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>T</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i=on</mtext> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta E_{i}=-k_{B}T\ln(p_{\text{i=off}})-(-k_{B}T\ln(p_{\text{i=on}})),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a659c1ebd238cac1d461f4d59c9f8f58c877db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.228ex; height:2.843ex;" alt="{\displaystyle \Delta E_{i}=-k_{B}T\ln(p_{\text{i=off}})-(-k_{B}T\ln(p_{\text{i=on}})),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70f38f7b73e53fd7b5d9ca64bec3a1438cc0eade" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.691ex; height:2.509ex;" alt="{\displaystyle k_{B}}"></span> is the <a href="/wiki/Boltzmann_constant" title="Boltzmann constant">Boltzmann constant</a> and is absorbed into the artificial notion of temperature <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>. Noting that the probabilities of the unit being <i>on</i> or <i>off</i> sum to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> allows for the simplification: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\Delta E_{i}}{k_{B}T}}=-\ln(p_{i={\text{on}}})+\ln(p_{i={\text{off}}})=\ln {\Big (}{\frac {1-p_{i={\text{on}}}}{p_{i={\text{on}}}}}{\Big )}=\ln(p_{i={\text{on}}}^{-1}-1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>T</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>on</mtext> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>off</mtext> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>on</mtext> </mrow> </mrow> </msub> </mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>on</mtext> </mrow> </mrow> </msub> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>on</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\Delta E_{i}}{k_{B}T}}=-\ln(p_{i={\text{on}}})+\ln(p_{i={\text{off}}})=\ln {\Big (}{\frac {1-p_{i={\text{on}}}}{p_{i={\text{on}}}}}{\Big )}=\ln(p_{i={\text{on}}}^{-1}-1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7355672491b6d4939c8d254e94fff9987705e089" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:67.29ex; height:5.843ex;" alt="{\displaystyle -{\frac {\Delta E_{i}}{k_{B}T}}=-\ln(p_{i={\text{on}}})+\ln(p_{i={\text{off}}})=\ln {\Big (}{\frac {1-p_{i={\text{on}}}}{p_{i={\text{on}}}}}{\Big )}=\ln(p_{i={\text{on}}}^{-1}-1),}"></span></dd></dl> <p>whence the probability that the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>-th unit is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{i={\text{on}}}={\frac {1}{1+\exp {\Big (}-{\frac {\Delta E_{i}}{k_{B}T}}{\Big )}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>on</mtext> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>T</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{i={\text{on}}}={\frac {1}{1+\exp {\Big (}-{\frac {\Delta E_{i}}{k_{B}T}}{\Big )}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab6a2114bd73162013561f5c136569c57bdf88fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; margin-left: -0.089ex; width:27.255ex; height:7.843ex;" alt="{\displaystyle p_{i={\text{on}}}={\frac {1}{1+\exp {\Big (}-{\frac {\Delta E_{i}}{k_{B}T}}{\Big )}}},}"></span></dd></dl> <p>where the <a href="/wiki/Scalar_(physics)" title="Scalar (physics)">scalar</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is referred to as the <a href="/wiki/Temperature" title="Temperature">temperature</a> of the system. This relation is the source of the <a href="/wiki/Logistic_function" title="Logistic function">logistic function</a> found in probability expressions in variants of the Boltzmann machine. </p> <div class="mw-heading mw-heading2"><h2 id="Equilibrium_state">Equilibrium state</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=3" title="Edit section: Equilibrium state"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The network runs by repeatedly choosing a unit and resetting its state. After running for long enough at a certain temperature, the probability of a global state of the network depends only upon that global state's energy, according to a <a href="/wiki/Boltzmann_distribution" title="Boltzmann distribution">Boltzmann distribution</a>, and not on the initial state from which the process was started. This means that log-probabilities of global states become linear in their energies. This relationship is true when the machine is "at <a href="/wiki/Thermal_equilibrium" title="Thermal equilibrium">thermal equilibrium</a>", meaning that the probability distribution of global states has converged. Running the network beginning from a high temperature, its temperature gradually decreases until reaching a <a href="/wiki/Thermal_equilibrium" title="Thermal equilibrium">thermal equilibrium</a> at a lower temperature. It then may converge to a distribution where the energy level fluctuates around the global minimum. This process is called <a href="/wiki/Simulated_annealing" title="Simulated annealing">simulated annealing</a>. </p><p>To train the network so that the chance it will converge to a global state according to an external distribution over these states, the weights must be set so that the global states with the highest probabilities get the lowest energies. This is done by training. </p> <div class="mw-heading mw-heading2"><h2 id="Training">Training</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=4" title="Edit section: Training"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The units in the Boltzmann machine are divided into 'visible' units, V, and 'hidden' units, H. The visible units are those that receive information from the 'environment', i.e. the <a href="/wiki/Training_set" class="mw-redirect" title="Training set">training set</a> is a set of binary vectors over the set V. The distribution over the training set is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{+}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{+}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f81e1d9ec5c805c37e88c74b74de6707bc7cefea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.929ex; height:3.009ex;" alt="{\displaystyle P^{+}(V)}"></span>. </p><p>The distribution over global states converges as the Boltzmann machine reaches <a href="/wiki/Thermal_equilibrium" title="Thermal equilibrium">thermal equilibrium</a>. We denote this distribution, after we <a href="/wiki/Marginal_distribution" title="Marginal distribution">marginalize</a> it over the hidden units, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{-}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{-}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4460af507ffbc4f4cae979715fc21e0ab247b224" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.929ex; height:3.009ex;" alt="{\displaystyle P^{-}(V)}"></span>. </p><p>Our goal is to approximate the "real" distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{+}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{+}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f81e1d9ec5c805c37e88c74b74de6707bc7cefea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.929ex; height:3.009ex;" alt="{\displaystyle P^{+}(V)}"></span> using the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{-}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{-}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4460af507ffbc4f4cae979715fc21e0ab247b224" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.929ex; height:3.009ex;" alt="{\displaystyle P^{-}(V)}"></span> produced by the machine. The similarity of the two distributions is measured by the <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="Kullback–Leibler divergence">Kullback–Leibler divergence</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=\sum _{v}{P^{+}(v)\ln \left({\frac {P^{+}(v)}{P^{-}(v)}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=\sum _{v}{P^{+}(v)\ln \left({\frac {P^{+}(v)}{P^{-}(v)}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9f7443db38ab124fe9ba987dedd47b3c8ece817" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.789ex; height:6.843ex;" alt="{\displaystyle G=\sum _{v}{P^{+}(v)\ln \left({\frac {P^{+}(v)}{P^{-}(v)}}\right)}}"></span></dd></dl> <p>where the sum is over all the possible states of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> is a function of the weights, since they determine the energy of a state, and the energy determines <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{-}(v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{-}(v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93a26be27335709582cbbf27e2ebbce24c49ae32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.269ex; height:3.009ex;" alt="{\displaystyle P^{-}(v)}"></span>, as promised by the Boltzmann distribution. A <a href="/wiki/Gradient_descent" title="Gradient descent">gradient descent</a> algorithm over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> changes a given weight, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3302ff355269436b43bc2fbe180303881c09321" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.141ex; height:2.343ex;" alt="{\displaystyle w_{ij}}"></span>, by subtracting the <a href="/wiki/Partial_derivative" title="Partial derivative">partial derivative</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> with respect to the weight. </p><p>Boltzmann machine training involves two alternating phases. One is the "positive" phase where the visible units' states are clamped to a particular binary state vector sampled from the training set (according to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7161b1309d204da1254c6fdeeec8f54d5e8c71c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.332ex; height:2.509ex;" alt="{\displaystyle P^{+}}"></span>). The other is the "negative" phase where the network is allowed to run freely, i.e. only the input nodes have their state determined by external data, but the output nodes are allowed to float. The gradient with respect to a given weight, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3302ff355269436b43bc2fbe180303881c09321" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.141ex; height:2.343ex;" alt="{\displaystyle w_{ij}}"></span>, is given by the equation:<sup id="cite_ref-:0_2-2" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial {G}}{\partial {w_{ij}}}}=-{\frac {1}{R}}[p_{ij}^{+}-p_{ij}^{-}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>R</mi> </mfrac> </mrow> <mo stretchy="false">[</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msubsup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial {G}}{\partial {w_{ij}}}}=-{\frac {1}{R}}[p_{ij}^{+}-p_{ij}^{-}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0c83d95b86d28bcede06faaa1df7de1e8553c31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.297ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial {G}}{\partial {w_{ij}}}}=-{\frac {1}{R}}[p_{ij}^{+}-p_{ij}^{-}]}"></span></dd></dl> <p>where: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{ij}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{ij}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36c5a00aaf2b5672976a1638e5c99fc4cece6db8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; margin-left: -0.089ex; width:2.77ex; height:3.509ex;" alt="{\displaystyle p_{ij}^{+}}"></span> is the probability that units <i>i</i> and <i>j</i> are both on when the machine is at equilibrium on the positive phase.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{ij}^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{ij}^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c799b8085080db94e362f3fc1671c5ce13c91daa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; margin-left: -0.089ex; width:2.77ex; height:3.509ex;" alt="{\displaystyle p_{ij}^{-}}"></span> is the probability that units <i>i</i> and <i>j</i> are both on when the machine is at equilibrium on the negative phase.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> denotes the <a href="/wiki/Learning_rate" title="Learning rate">learning rate</a></li></ul> <p>This result follows from the fact that at <a href="/wiki/Thermal_equilibrium" title="Thermal equilibrium">thermal equilibrium</a> the probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{-}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{-}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deff9b67b67a1dccd06581b640f82f0643c29de1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.232ex; height:3.009ex;" alt="{\displaystyle P^{-}(s)}"></span> of any global state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> when the network is free-running is given by the Boltzmann distribution. </p><p>This learning rule is biologically plausible because the only information needed to change the weights is provided by "local" information. That is, the connection (<a href="/wiki/Synapse" title="Synapse">synapse</a>, biologically) does not need information about anything other than the two neurons it connects. This is more biologically realistic than the information needed by a connection in many other neural network training algorithms, such as <a href="/wiki/Backpropagation" title="Backpropagation">backpropagation</a>. </p><p>The training of a Boltzmann machine does not use the <a href="/wiki/Expectation%E2%80%93maximization_algorithm" title="Expectation–maximization algorithm">EM algorithm</a>, which is heavily used in <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a>. By minimizing the <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="Kullback–Leibler divergence">KL-divergence</a>, it is equivalent to maximizing the log-likelihood of the data. Therefore, the training procedure performs gradient ascent on the log-likelihood of the observed data. This is in contrast to the EM algorithm, where the posterior distribution of the hidden nodes must be calculated before the maximization of the expected value of the complete data likelihood during the M-step. </p><p>Training the biases is similar, but uses only single node activity: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial {G}}{\partial {\theta _{i}}}}=-{\frac {1}{R}}[p_{i}^{+}-p_{i}^{-}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>R</mi> </mfrac> </mrow> <mo stretchy="false">[</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msubsup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial {G}}{\partial {\theta _{i}}}}=-{\frac {1}{R}}[p_{i}^{+}-p_{i}^{-}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d432e59f276d5ade2f2d2a4b95071eadb57711b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:21.046ex; height:5.843ex;" alt="{\displaystyle {\frac {\partial {G}}{\partial {\theta _{i}}}}=-{\frac {1}{R}}[p_{i}^{+}-p_{i}^{-}]}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Problems">Problems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=5" title="Edit section: Problems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Theoretically the Boltzmann machine is a rather general computational medium. For instance, if trained on photographs, the machine would theoretically model the distribution of photographs, and could use that model to, for example, <a href="/wiki/Inpainting" title="Inpainting">complete</a> a partial photograph. </p><p>Unfortunately, Boltzmann machines experience a serious practical problem, namely that it seems to stop learning correctly when the machine is scaled up to anything larger than a trivial size.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2013)">citation needed</span></a></i>&#93;</sup> This is due to important effects, specifically: </p> <ul><li>the required time order to collect equilibrium statistics grows exponentially with the machine's size, and with the magnitude of the connection strengths<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2015)">citation needed</span></a></i>&#93;</sup></li> <li>connection strengths are more plastic when the connected units have activation probabilities intermediate between zero and one, leading to a so-called variance trap. The net effect is that noise causes the connection strengths to follow a <a href="/wiki/Random_walk" title="Random walk">random walk</a> until the activities saturate.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Types">Types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=6" title="Edit section: Types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Restricted_Boltzmann_machine">Restricted Boltzmann machine</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=7" title="Edit section: Restricted Boltzmann machine"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Restricted_Boltzmann_machine.svg" class="mw-file-description"><img alt="Graphical representation of an example restricted Boltzmann machine" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Restricted_Boltzmann_machine.svg/220px-Restricted_Boltzmann_machine.svg.png" decoding="async" width="220" height="234" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Restricted_Boltzmann_machine.svg/330px-Restricted_Boltzmann_machine.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Restricted_Boltzmann_machine.svg/440px-Restricted_Boltzmann_machine.svg.png 2x" data-file-width="331" data-file-height="352" /></a><figcaption>Graphical representation of a restricted Boltzmann machine. The four blue units represent hidden units, and the three red units represent visible states. In restricted Boltzmann machines there are only connections (dependencies) between hidden and visible units, and none between units of the same type (no hidden-hidden, nor visible-visible connections).</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">Restricted Boltzmann machine</a></div> <p>Although learning is impractical in general Boltzmann machines, it can be made quite efficient in a restricted Boltzmann machine (RBM) which does not allow intralayer connections between hidden units and visible units, i.e. there is no connection between visible to visible and hidden to hidden units. After training one RBM, the activities of its hidden units can be treated as data for training a higher-level RBM. This method of stacking RBMs makes it possible to train many layers of hidden units efficiently and is one of the most common <a href="/wiki/Deep_learning" title="Deep learning">deep learning</a> strategies. As each new layer is added the generative model improves. </p><p>An extension to the restricted Boltzmann machine allows using real valued data rather than binary data.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>One example of a practical RBM application is in speech recognition.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Deep_Boltzmann_machine">Deep Boltzmann machine</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=8" title="Edit section: Deep Boltzmann machine"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A deep Boltzmann machine (DBM) is a type of binary pairwise <a href="/wiki/Markov_random_field" title="Markov random field">Markov random field</a> (<a href="/wiki/Graph_(discrete_mathematics)#Undirected_graph" title="Graph (discrete mathematics)">undirected</a> probabilistic <a href="/wiki/Graphical_model" title="Graphical model">graphical model</a>) with multiple layers of <a href="/wiki/Latent_variable" class="mw-redirect" title="Latent variable">hidden</a> <a href="/wiki/Random_variables" class="mw-redirect" title="Random variables">random variables</a>. It is a network of symmetrically coupled stochastic <a href="/wiki/Binary_variable" class="mw-redirect" title="Binary variable">binary units</a>. It comprises a set of visible units <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\nu }}\in \{0,1\}^{D}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BD;<!-- ν --></mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\nu }}\in \{0,1\}^{D}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bc1e1173a24999ee667aabd24123b15a6230ca0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.531ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {\nu }}\in \{0,1\}^{D}}"></span> and layers of hidden units <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {h}}^{(1)}\in \{0,1\}^{F_{1}},{\boldsymbol {h}}^{(2)}\in \{0,1\}^{F_{2}},\ldots ,{\boldsymbol {h}}^{(L)}\in \{0,1\}^{F_{L}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>L</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {h}}^{(1)}\in \{0,1\}^{F_{1}},{\boldsymbol {h}}^{(2)}\in \{0,1\}^{F_{2}},\ldots ,{\boldsymbol {h}}^{(L)}\in \{0,1\}^{F_{L}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef6c9c277d415b9192f0c2d0eb291c3e1c1dbead" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.345ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {h}}^{(1)}\in \{0,1\}^{F_{1}},{\boldsymbol {h}}^{(2)}\in \{0,1\}^{F_{2}},\ldots ,{\boldsymbol {h}}^{(L)}\in \{0,1\}^{F_{L}}}"></span>. No connection links units of the same layer (like <a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">RBM</a>). For the <style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><span class="rt-commentedText tooltip tooltip-dotted" title="Deep Boltzmann machine">DBM</span>, the probability assigned to vector <span class="texhtml mvar" style="font-style:italic;"><b>&#957;</b></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p({\boldsymbol {\nu }})={\frac {1}{Z}}\sum _{h}e^{\sum _{ij}W_{ij}^{(1)}\nu _{i}h_{j}^{(1)}+\sum _{jl}W_{jl}^{(2)}h_{j}^{(1)}h_{l}^{(2)}+\sum _{lm}W_{lm}^{(3)}h_{l}^{(2)}h_{m}^{(3)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BD;<!-- ν --></mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </munder> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </munder> <msubsup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>+</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>l</mi> </mrow> </munder> <msubsup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>l</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>+</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mi>m</mi> </mrow> </munder> <msubsup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p({\boldsymbol {\nu }})={\frac {1}{Z}}\sum _{h}e^{\sum _{ij}W_{ij}^{(1)}\nu _{i}h_{j}^{(1)}+\sum _{jl}W_{jl}^{(2)}h_{j}^{(1)}h_{l}^{(2)}+\sum _{lm}W_{lm}^{(3)}h_{l}^{(2)}h_{m}^{(3)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1119755948127041b7d6c5514472673c31bb9fe5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; margin-left: -0.089ex; width:55.585ex; height:6.343ex;" alt="{\displaystyle p({\boldsymbol {\nu }})={\frac {1}{Z}}\sum _{h}e^{\sum _{ij}W_{ij}^{(1)}\nu _{i}h_{j}^{(1)}+\sum _{jl}W_{jl}^{(2)}h_{j}^{(1)}h_{l}^{(2)}+\sum _{lm}W_{lm}^{(3)}h_{l}^{(2)}h_{m}^{(3)}},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {h}}=\{{\boldsymbol {h}}^{(1)},{\boldsymbol {h}}^{(2)},{\boldsymbol {h}}^{(3)}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">h</mi> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {h}}=\{{\boldsymbol {h}}^{(1)},{\boldsymbol {h}}^{(2)},{\boldsymbol {h}}^{(3)}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a17868581179807cb175255547b771f20577c9fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.703ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {h}}=\{{\boldsymbol {h}}^{(1)},{\boldsymbol {h}}^{(2)},{\boldsymbol {h}}^{(3)}\}}"></span> are the set of hidden units, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta =\{{\boldsymbol {W}}^{(1)},{\boldsymbol {W}}^{(2)},{\boldsymbol {W}}^{(3)}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta =\{{\boldsymbol {W}}^{(1)},{\boldsymbol {W}}^{(2)},{\boldsymbol {W}}^{(3)}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61b678595c79032e3630c1f5fd2e2d6da51eaa8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.235ex; height:3.343ex;" alt="{\displaystyle \theta =\{{\boldsymbol {W}}^{(1)},{\boldsymbol {W}}^{(2)},{\boldsymbol {W}}^{(3)}\}}"></span> are the model parameters, representing visible-hidden and hidden-hidden interactions.<sup id="cite_ref-ref12_8-0" class="reference"><a href="#cite_note-ref12-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> In a <a href="/wiki/Deep_belief_network" title="Deep belief network">DBN</a> only the top two layers form a restricted Boltzmann machine (which is an undirected <a href="/wiki/Graphical_model" title="Graphical model">graphical model</a>), while lower layers form a directed generative model. In a DBM all layers are symmetric and undirected. </p><p>Like <a href="/wiki/Deep_belief_network" title="Deep belief network">DBNs</a>, DBMs can learn complex and abstract internal representations of the input in tasks such as <a href="/wiki/Object_recognition" class="mw-redirect" title="Object recognition">object</a> or <a href="/wiki/Speech_recognition" title="Speech recognition">speech recognition</a>, using limited, labeled data to fine-tune the representations built using a large set of unlabeled sensory input data. However, unlike DBNs and deep <a href="/wiki/Convolutional_neural_networks" class="mw-redirect" title="Convolutional neural networks">convolutional neural networks</a>, they pursue the inference and training procedure in both directions, bottom-up and top-down, which allow the DBM to better unveil the representations of the input structures.<sup id="cite_ref-ref32_9-0" class="reference"><a href="#cite_note-ref32-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ref42_10-0" class="reference"><a href="#cite_note-ref42-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ref22_11-0" class="reference"><a href="#cite_note-ref22-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>However, the slow speed of DBMs limits their performance and functionality. Because exact maximum likelihood learning is intractable for DBMs, only approximate maximum likelihood learning is possible. Another option is to use mean-field inference to estimate data-dependent expectations and approximate the expected sufficient statistics by using <a href="/wiki/Markov_chain_Monte_Carlo" title="Markov chain Monte Carlo">Markov chain Monte Carlo</a> (MCMC).<sup id="cite_ref-ref12_8-1" class="reference"><a href="#cite_note-ref12-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> This approximate inference, which must be done for each test input, is about 25 to 50 times slower than a single bottom-up pass in DBMs. This makes joint optimization impractical for large data sets, and restricts the use of DBMs for tasks such as feature representation. </p> <div class="mw-heading mw-heading3"><h3 id="Spike-and-slab_RBMs">Spike-and-slab RBMs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=9" title="Edit section: Spike-and-slab RBMs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The need for deep learning with <a href="/wiki/Real_number" title="Real number">real-valued</a> inputs, as in <a href="/wiki/Gaussian" class="mw-redirect" title="Gaussian">Gaussian</a> RBMs, led to the spike-and-slab <a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">RBM</a> (<i>ss</i><a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">RBM</a>), which models continuous-valued inputs with <a href="/wiki/Binary_variable" class="mw-redirect" title="Binary variable">binary</a> <a href="/wiki/Latent_variable" class="mw-redirect" title="Latent variable">latent variables</a>.<sup id="cite_ref-ref30_12-0" class="reference"><a href="#cite_note-ref30-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> Similar to basic <a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">RBMs</a> and its variants, a spike-and-slab RBM is a <a href="/wiki/Bipartite_graph" title="Bipartite graph">bipartite graph</a>, while like G<a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">RBMs</a>, the visible units (input) are real-valued. The difference is in the hidden layer, where each hidden unit has a binary spike variable and a real-valued slab variable. A spike is a discrete <a href="/wiki/Probability_mass" class="mw-redirect" title="Probability mass">probability mass</a> at zero, while a slab is a <a href="/wiki/Probability_density" class="mw-redirect" title="Probability density">density</a> over continuous domain;<sup id="cite_ref-ref322_13-0" class="reference"><a href="#cite_note-ref322-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> their mixture forms a <a href="/wiki/Prior_probability" title="Prior probability">prior</a>.<sup id="cite_ref-ref31_14-0" class="reference"><a href="#cite_note-ref31-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>An extension of ss<a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">RBM</a> called μ-ss<a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">RBM</a> provides extra modeling capacity using additional terms in the <a href="/wiki/Energy_function" class="mw-redirect" title="Energy function">energy function</a>. One of these terms enables the model to form a <a href="/wiki/Conditional_probability_distribution" title="Conditional probability distribution">conditional distribution</a> of the spike variables by <a href="/wiki/Marginalizing_out" class="mw-redirect" title="Marginalizing out">marginalizing out</a> the slab variables given an observation. </p> <div class="mw-heading mw-heading3"><h3 id="In_mathematics">In mathematics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=10" title="Edit section: In mathematics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Gibbs_measure" title="Gibbs measure">Gibbs measure</a> and <a href="/wiki/Log-linear_model" title="Log-linear model">Log-linear model</a></div> <p>In more general mathematical setting, the Boltzmann distribution is also known as the <a href="/wiki/Gibbs_measure" title="Gibbs measure">Gibbs measure</a>. In <a href="/wiki/Statistics" title="Statistics">statistics</a> and <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> it is called a <a href="/wiki/Log-linear_model" title="Log-linear model">log-linear model</a>. In <a href="/wiki/Deep_learning" title="Deep learning">deep learning</a> the Boltzmann distribution is used in the sampling distribution of <a href="/wiki/Stochastic_neural_network" class="mw-redirect" title="Stochastic neural network">stochastic neural networks</a> such as the Boltzmann machine. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=11" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Boltzmann machine is based on the Sherrington–Kirkpatrick <a href="/wiki/Spin_glass" title="Spin glass">spin glass</a> model by <a href="/wiki/David_Sherrington_(physicist)" title="David Sherrington (physicist)">David Sherrington</a> and <a href="/wiki/Scott_Kirkpatrick" title="Scott Kirkpatrick">Scott Kirkpatrick</a>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> The seminal publication by <a href="/wiki/John_Hopfield" title="John Hopfield">John Hopfield</a> (1982) applied methods of statistical mechanics, mainly the recently developed (1970s) theory of spin glasses, to study <a href="/wiki/Hopfield_network" title="Hopfield network">associative memory</a> (later named the "Hopfield network").<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>The original contribution in applying such energy-based models in cognitive science appeared in papers by <a href="/wiki/Geoffrey_Hinton" title="Geoffrey Hinton">Geoffrey Hinton</a> and <a href="/wiki/Terry_Sejnowski" title="Terry Sejnowski">Terry Sejnowski</a>.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> In a 1995 interview, Hinton stated that in 1983 February or March, he was going to give a talk on <a href="/wiki/Simulated_annealing" title="Simulated annealing">simulated annealing</a> in Hopfield networks, so he had to design a learning algorithm for the talk, resulting in the Boltzmann machine learning algorithm.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>The idea of applying the Ising model with annealed <a href="/wiki/Gibbs_sampling" title="Gibbs sampling">Gibbs sampling</a> was used in <a href="/wiki/Douglas_Hofstadter" title="Douglas Hofstadter">Douglas Hofstadter</a>'s <a href="/wiki/Copycat_(software)" title="Copycat (software)">Copycat</a> project (1984).<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>The explicit analogy drawn with statistical mechanics in the Boltzmann machine formulation led to the use of terminology borrowed from physics (e.g., "energy"), which became standard in the field. The widespread adoption of this terminology may have been encouraged by the fact that its use led to the adoption of a variety of concepts and methods from statistical mechanics. The various proposals to use simulated annealing for inference were apparently independent. </p><p>Similar ideas (with a change of sign in the energy function) are found in <a href="/wiki/Paul_Smolensky" title="Paul Smolensky">Paul Smolensky</a>'s "Harmony Theory".<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Ising models can be generalized to <a href="/wiki/Markov_random_field" title="Markov random field">Markov random fields</a>, which find widespread application in <a href="/wiki/Linguistics" title="Linguistics">linguistics</a>, <a href="/wiki/Robotics" title="Robotics">robotics</a>, <a href="/wiki/Computer_vision" title="Computer vision">computer vision</a> and <a href="/wiki/Artificial_intelligence" title="Artificial intelligence">artificial intelligence</a>. </p><p>In 2024, Hopfield and Hinton were awarded <a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel Prize in Physics</a> for their foundational contributions to <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a>, such as the Boltzmann machine.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=12" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">Restricted Boltzmann machine</a></li> <li><a href="/wiki/Helmholtz_machine" title="Helmholtz machine">Helmholtz machine</a></li> <li><a href="/wiki/Markov_random_field" title="Markov random field">Markov random field</a> (MRF)</li> <li><a href="/wiki/Ising_model" title="Ising model">Ising model</a> (Lenz–Ising model)</li> <li><a href="/wiki/Hopfield_network" title="Hopfield network">Hopfield network</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=13" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSherrington,_DavidKirkpatrick,_Scott1975" class="citation cs2">Sherrington, David; Kirkpatrick, Scott (1975), "Solvable Model of a Spin-Glass", <i>Physical Review Letters</i>, <b>35</b> (35): 1792–1796, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1975PhRvL..35.1792S">1975PhRvL..35.1792S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.35.1792">10.1103/PhysRevLett.35.1792</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Solvable+Model+of+a+Spin-Glass&amp;rft.volume=35&amp;rft.issue=35&amp;rft.pages=1792-1796&amp;rft.date=1975&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.35.1792&amp;rft_id=info%3Abibcode%2F1975PhRvL..35.1792S&amp;rft.au=Sherrington%2C+David&amp;rft.au=Kirkpatrick%2C+Scott&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-:0-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_2-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAckleyHinton,_Geoffrey_E.Sejnowski,_Terrence_J.1985" class="citation journal cs1">Ackley, David H.; Hinton, Geoffrey E.; Sejnowski, Terrence J. (1985). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110718022336/http://learning.cs.toronto.edu/~hinton/absps/cogscibm.pdf">"A Learning Algorithm for Boltzmann Machines"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Cognitive_Science_(journal)" title="Cognitive Science (journal)">Cognitive Science</a></i>. <b>9</b> (1): 147–169. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1207%2Fs15516709cog0901_7">10.1207/s15516709cog0901_7</a></span>. Archived from <a rel="nofollow" class="external text" href="http://learning.cs.toronto.edu/~hinton/absps/cogscibm.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 18 July 2011.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cognitive+Science&amp;rft.atitle=A+Learning+Algorithm+for+Boltzmann+Machines&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=147-169&amp;rft.date=1985&amp;rft_id=info%3Adoi%2F10.1207%2Fs15516709cog0901_7&amp;rft.aulast=Ackley&amp;rft.aufirst=David+H.&amp;rft.au=Hinton%2C+Geoffrey+E.&amp;rft.au=Sejnowski%2C+Terrence+J.&amp;rft_id=http%3A%2F%2Flearning.cs.toronto.edu%2F~hinton%2Fabsps%2Fcogscibm.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHinton2007" class="citation journal cs1">Hinton, Geoffrey E. (2007-05-24). <a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.1668">"Boltzmann machine"</a>. <i>Scholarpedia</i>. <b>2</b> (5): 1668. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007SchpJ...2.1668H">2007SchpJ...2.1668H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.1668">10.4249/scholarpedia.1668</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1941-6016">1941-6016</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scholarpedia&amp;rft.atitle=Boltzmann+machine&amp;rft.volume=2&amp;rft.issue=5&amp;rft.pages=1668&amp;rft.date=2007-05-24&amp;rft.issn=1941-6016&amp;rft_id=info%3Adoi%2F10.4249%2Fscholarpedia.1668&amp;rft_id=info%3Abibcode%2F2007SchpJ...2.1668H&amp;rft.aulast=Hinton&amp;rft.aufirst=Geoffrey+E.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4249%252Fscholarpedia.1668&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOsborn1990" class="citation book cs1">Osborn, Thomas R. (1 January 1990). <a rel="nofollow" class="external text" href="https://archive.org/details/innc90parisinter0001inte/page/785">"Fast Teaching of Boltzmann Machines with Local Inhibition"</a>. <i>International Neural Network Conference</i>. Springer Netherlands. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/innc90parisinter0001inte/page/785">785</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-94-009-0643-3_76">10.1007/978-94-009-0643-3_76</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7923-0831-7" title="Special:BookSources/978-0-7923-0831-7"><bdi>978-0-7923-0831-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Fast+Teaching+of+Boltzmann+Machines+with+Local+Inhibition&amp;rft.btitle=International+Neural+Network+Conference&amp;rft.pages=785&amp;rft.pub=Springer+Netherlands&amp;rft.date=1990-01-01&amp;rft_id=info%3Adoi%2F10.1007%2F978-94-009-0643-3_76&amp;rft.isbn=978-0-7923-0831-7&amp;rft.aulast=Osborn&amp;rft.aufirst=Thomas+R.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Finnc90parisinter0001inte%2Fpage%2F785&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNijkamp,_E.Hill,_M._EHan,_T.2020" class="citation cs2">Nijkamp, E.; Hill, M. E; Han, T. (2020), <a rel="nofollow" class="external text" href="https://ojs.aaai.org/index.php/AAAI/article/view/5973">"On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"</a>, <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, <b>4</b> (34): 5272–5280, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1903.12370">1903.12370</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1609%2Faaai.v34i04.5973">10.1609/aaai.v34i04.5973</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+AAAI+Conference+on+Artificial+Intelligence&amp;rft.atitle=On+the+Anatomy+of+MCMC-Based+Maximum+Likelihood+Learning+of+Energy-Based+Models&amp;rft.volume=4&amp;rft.issue=34&amp;rft.pages=5272-5280&amp;rft.date=2020&amp;rft_id=info%3Aarxiv%2F1903.12370&amp;rft_id=info%3Adoi%2F10.1609%2Faaai.v34i04.5973&amp;rft.au=Nijkamp%2C+E.&amp;rft.au=Hill%2C+M.+E&amp;rft.au=Han%2C+T.&amp;rft_id=https%3A%2F%2Fojs.aaai.org%2Findex.php%2FAAAI%2Farticle%2Fview%2F5973&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=VdIURAu1-aU"><i>Recent Developments in Deep Learning</i></a>, 22 March 2010, <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211222/VdIURAu1-aU">archived</a> from the original on 2021-12-22<span class="reference-accessdate">, retrieved <span class="nowrap">2020-02-17</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Recent+Developments+in+Deep+Learning&amp;rft.date=2010-03-22&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVdIURAu1-aU&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuDahlAceroDeng2011" class="citation journal cs1">Yu, Dong; Dahl, George; Acero, Alex; Deng, Li (2011). <a rel="nofollow" class="external text" href="http://research.microsoft.com/pubs/144412/DBN4LVCSR-TransASLP.pdf">"Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition"</a> <span class="cs1-format">(PDF)</span>. <i>Microsoft Research</i>. <b>20</b>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Microsoft+Research&amp;rft.atitle=Context-Dependent+Pre-trained+Deep+Neural+Networks+for+Large+Vocabulary+Speech+Recognition&amp;rft.volume=20&amp;rft.date=2011&amp;rft.aulast=Yu&amp;rft.aufirst=Dong&amp;rft.au=Dahl%2C+George&amp;rft.au=Acero%2C+Alex&amp;rft.au=Deng%2C+Li&amp;rft_id=http%3A%2F%2Fresearch.microsoft.com%2Fpubs%2F144412%2FDBN4LVCSR-TransASLP.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-ref12-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-ref12_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ref12_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHintonSalakhutdinov2012" class="citation journal cs1">Hinton, Geoffrey; Salakhutdinov, Ruslan (2012). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170813152400/http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2012_1178.pdf">"A better way to pretrain deep Boltzmann machines"</a> <span class="cs1-format">(PDF)</span>. <i>Advances in Neural</i>. <b>3</b>: 1–9. Archived from <a rel="nofollow" class="external text" href="http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2012_1178.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2017-08-13<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-08-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Neural&amp;rft.atitle=A+better+way+to+pretrain+deep+Boltzmann+machines&amp;rft.volume=3&amp;rft.pages=1-9&amp;rft.date=2012&amp;rft.aulast=Hinton&amp;rft.aufirst=Geoffrey&amp;rft.au=Salakhutdinov%2C+Ruslan&amp;rft_id=http%3A%2F%2Fmachinelearning.wustl.edu%2Fmlpapers%2Fpaper_files%2FNIPS2012_1178.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-ref32-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-ref32_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHintonSalakhutdinov2009" class="citation conference cs1">Hinton, Geoffrey; Salakhutdinov, Ruslan (2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151106235714/http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS09_SalakhutdinovH.pdf">"Efficient Learning of Deep Boltzmann Machines"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics</i>. Vol.&#160;3. pp.&#160;448–455. Archived from <a rel="nofollow" class="external text" href="http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS09_SalakhutdinovH.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2015-11-06<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-08-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Efficient+Learning+of+Deep+Boltzmann+Machines&amp;rft.btitle=Proceedings+of+the+Twelfth+International+Conference+on+Artificial+Intelligence+and+Statistics&amp;rft.pages=448-455&amp;rft.date=2009&amp;rft.aulast=Hinton&amp;rft.aufirst=Geoffrey&amp;rft.au=Salakhutdinov%2C+Ruslan&amp;rft_id=http%3A%2F%2Fmachinelearning.wustl.edu%2Fmlpapers%2Fpaper_files%2FAISTATS09_SalakhutdinovH.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-ref42-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-ref42_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBengioLeCun2007" class="citation web cs1">Bengio, Yoshua; LeCun, Yann (2007). <a rel="nofollow" class="external text" href="http://www.iro.umontreal.ca/~lisa/bib/pub_subject/language/pointeurs/bengio+lecun-chapter2007.pdf">"Scaling Learning Algorithms towards AI"</a> <span class="cs1-format">(PDF)</span>. <i>Université de Montréal</i> (Preprint).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Universit%C3%A9+de+Montr%C3%A9al&amp;rft.atitle=Scaling+Learning+Algorithms+towards+AI&amp;rft.date=2007&amp;rft.aulast=Bengio&amp;rft.aufirst=Yoshua&amp;rft.au=LeCun%2C+Yann&amp;rft_id=http%3A%2F%2Fwww.iro.umontreal.ca%2F~lisa%2Fbib%2Fpub_subject%2Flanguage%2Fpointeurs%2Fbengio%2Blecun-chapter2007.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-ref22-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-ref22_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarochelleSalakhutdinov2010" class="citation conference cs1">Larochelle, Hugo; Salakhutdinov, Ruslan (2010). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170814001329/http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_SalakhutdinovL10.pdf">"Efficient Learning of Deep Boltzmann Machines"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics</i>. pp.&#160;693–700. Archived from <a rel="nofollow" class="external text" href="http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_SalakhutdinovL10.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2017-08-14<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-08-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Efficient+Learning+of+Deep+Boltzmann+Machines&amp;rft.btitle=Proceedings+of+the+Thirteenth+International+Conference+on+Artificial+Intelligence+and+Statistics&amp;rft.pages=693-700&amp;rft.date=2010&amp;rft.aulast=Larochelle&amp;rft.aufirst=Hugo&amp;rft.au=Salakhutdinov%2C+Ruslan&amp;rft_id=http%3A%2F%2Fmachinelearning.wustl.edu%2Fmlpapers%2Fpaper_files%2FAISTATS2010_SalakhutdinovL10.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-ref30-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-ref30_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCourvilleBergstraBengio2011" class="citation journal cs1">Courville, Aaron; Bergstra, James; Bengio, Yoshua (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304112418/http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CourvilleBB11.pdf">"A Spike and Slab Restricted Boltzmann Machine"</a> <span class="cs1-format">(PDF)</span>. <i>JMLR: Workshop and Conference Proceeding</i>. <b>15</b>: 233–241. Archived from <a rel="nofollow" class="external text" href="http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CourvilleBB11.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-03-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=JMLR%3A+Workshop+and+Conference+Proceeding&amp;rft.atitle=A+Spike+and+Slab+Restricted+Boltzmann+Machine&amp;rft.volume=15&amp;rft.pages=233-241&amp;rft.date=2011&amp;rft.aulast=Courville&amp;rft.aufirst=Aaron&amp;rft.au=Bergstra%2C+James&amp;rft.au=Bengio%2C+Yoshua&amp;rft_id=http%3A%2F%2Fmachinelearning.wustl.edu%2Fmlpapers%2Fpaper_files%2FAISTATS2011_CourvilleBB11.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-ref322-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-ref322_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCourvilleBergstraBengio2011" class="citation conference cs1">Courville, Aaron; Bergstra, James; Bengio, Yoshua (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304054551/http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Courville_591.pdf">"Unsupervised Models of Images by Spike-and-Slab RBMs"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the 28th International Conference on Machine Learning</i>. Vol.&#160;10. pp.&#160;1–8. Archived from <a rel="nofollow" class="external text" href="http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Courville_591.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-03-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Unsupervised+Models+of+Images+by+Spike-and-Slab+RBMs&amp;rft.btitle=Proceedings+of+the+28th+International+Conference+on+Machine+Learning&amp;rft.pages=1-8&amp;rft.date=2011&amp;rft.aulast=Courville&amp;rft.aufirst=Aaron&amp;rft.au=Bergstra%2C+James&amp;rft.au=Bengio%2C+Yoshua&amp;rft_id=http%3A%2F%2Fmachinelearning.wustl.edu%2Fmlpapers%2Fpaper_files%2FICML2011Courville_591.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-ref31-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-ref31_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMitchellBeauchamp1988" class="citation journal cs1">Mitchell, T; Beauchamp, J (1988). "Bayesian Variable Selection in Linear Regression". <i>Journal of the American Statistical Association</i>. <b>83</b> (404): 1023–1032. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01621459.1988.10478694">10.1080/01621459.1988.10478694</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Statistical+Association&amp;rft.atitle=Bayesian+Variable+Selection+in+Linear+Regression&amp;rft.volume=83&amp;rft.issue=404&amp;rft.pages=1023-1032&amp;rft.date=1988&amp;rft_id=info%3Adoi%2F10.1080%2F01621459.1988.10478694&amp;rft.aulast=Mitchell&amp;rft.aufirst=T&amp;rft.au=Beauchamp%2C+J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSherringtonKirkpatrick1975" class="citation journal cs1">Sherrington, David; Kirkpatrick, Scott (1975-12-29). "Solvable Model of a Spin-Glass". <i>Physical Review Letters</i>. <b>35</b> (26): 1792–1796. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1975PhRvL..35.1792S">1975PhRvL..35.1792S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrevlett.35.1792">10.1103/physrevlett.35.1792</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Solvable+Model+of+a+Spin-Glass&amp;rft.volume=35&amp;rft.issue=26&amp;rft.pages=1792-1796&amp;rft.date=1975-12-29&amp;rft.issn=0031-9007&amp;rft_id=info%3Adoi%2F10.1103%2Fphysrevlett.35.1792&amp;rft_id=info%3Abibcode%2F1975PhRvL..35.1792S&amp;rft.aulast=Sherrington&amp;rft.aufirst=David&amp;rft.au=Kirkpatrick%2C+Scott&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHopfield,_J._J.1982" class="citation journal cs1">Hopfield, J. J. (1982). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238">"Neural networks and physical systems with emergent collective computational abilities"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>79</b> (8). [s.n.]: 2554–8. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982PNAS...79.2554H">1982PNAS...79.2554H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.79.8.2554">10.1073/pnas.79.8.2554</a></span>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/848771572">848771572</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238">346238</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/6953413">6953413</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&amp;rft.atitle=Neural+networks+and+physical+systems+with+emergent+collective+computational+abilities&amp;rft.volume=79&amp;rft.issue=8&amp;rft.pages=2554-8&amp;rft.date=1982&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC346238%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F1982PNAS...79.2554H&amp;rft_id=info%3Aoclcnum%2F848771572&amp;rft_id=info%3Apmid%2F6953413&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.79.8.2554&amp;rft.au=Hopfield%2C+J.+J.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC346238&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHintonSejnowski1983" class="citation conference cs1">Hinton, Geoffery; Sejnowski, Terrence J. (May 1983). <a rel="nofollow" class="external text" href="http://digitalcollections.library.cmu.edu/awweb/awarchive?type=file&amp;item=360445"><i>Analyzing Cooperative Computation</i></a>. 5th Annual Congress of the Cognitive Science Society. Rochester, New York<span class="reference-accessdate">. Retrieved <span class="nowrap">17 February</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Analyzing+Cooperative+Computation&amp;rft.place=Rochester%2C+New+York&amp;rft.date=1983-05&amp;rft.aulast=Hinton&amp;rft.aufirst=Geoffery&amp;rft.au=Sejnowski%2C+Terrence+J.&amp;rft_id=http%3A%2F%2Fdigitalcollections.library.cmu.edu%2Fawweb%2Fawarchive%3Ftype%3Dfile%26item%3D360445&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged June 2024">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHintonSejnowski1983" class="citation conference cs1">Hinton, Geoffrey E.; Sejnowski, Terrence J. (June 1983). <i>Optimal Perceptual Inference</i>. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, D.C.: IEEE Computer Society. pp.&#160;448–453.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Optimal+Perceptual+Inference&amp;rft.place=Washington%2C+D.C.&amp;rft.pages=448-453&amp;rft.pub=IEEE+Computer+Society&amp;rft.date=1983-06&amp;rft.aulast=Hinton&amp;rft.aufirst=Geoffrey+E.&amp;rft.au=Sejnowski%2C+Terrence+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Fahlman SE, Hinton GE, Sejnowski TJ. <i><a rel="nofollow" class="external text" href="https://www.cs.toronto.edu/~fritz/absps/fahlmanBM.pdf">Massively parallel architectures for Al: NETL, Thistle, and Boltzmann machines.</a></i> In: Genesereth MR, editor. <i>AAAI-83.</i> Washington, DC: AAAI; 1983. pp. 109–113</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">Chapter 16. Rosenfeld, Edward, and James A. Anderson, eds. 2000. <i>Talking Nets: An Oral History of Neural Networks</i>. Reprint edition. The MIT Press.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHofstadter,_D._R.1984" class="citation book cs1">Hofstadter, D. R. (January 1984). <i>The Copycat Project: An Experiment in Nondeterminism and Creative Analogies</i>. Defense Technical Information Center. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/227617764">227617764</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Copycat+Project%3A+An+Experiment+in+Nondeterminism+and+Creative+Analogies.&amp;rft.pub=Defense+Technical+Information+Center&amp;rft.date=1984-01&amp;rft_id=info%3Aoclcnum%2F227617764&amp;rft.au=Hofstadter%2C+D.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHofstadter1988" class="citation book cs1">Hofstadter, Douglas R. (1988). "A Non-Deterministic Approach to Analogy, Involving the Ising Model of Ferromagnetism". In Caianiello, Eduardo R. (ed.). <i>Physics of cognitive processes</i>. Teaneck, New Jersey: World Scientific. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9971-5-0255-0" title="Special:BookSources/9971-5-0255-0"><bdi>9971-5-0255-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/750950619">750950619</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+Non-Deterministic+Approach+to+Analogy%2C+Involving+the+Ising+Model+of+Ferromagnetism&amp;rft.btitle=Physics+of+cognitive+processes&amp;rft.place=Teaneck%2C+New+Jersey&amp;rft.pub=World+Scientific&amp;rft.date=1988&amp;rft_id=info%3Aoclcnum%2F750950619&amp;rft.isbn=9971-5-0255-0&amp;rft.aulast=Hofstadter&amp;rft.aufirst=Douglas+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">Smolensky, Paul. "Information processing in dynamical systems: Foundations of harmony theory." (1986): 194-281.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnston2024" class="citation web cs1">Johnston, Hamish (2024-10-08). <a rel="nofollow" class="external text" href="https://physicsworld.com/a/john-hopfield-and-geoffrey-hinton-share-the-2024-nobel-prize-for-physics/">"John Hopfield and Geoffrey Hinton share the 2024 Nobel Prize for Physics"</a>. <i>Physics World</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-10-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Physics+World&amp;rft.atitle=John+Hopfield+and+Geoffrey+Hinton+share+the+2024+Nobel+Prize+for+Physics&amp;rft.date=2024-10-08&amp;rft.aulast=Johnston&amp;rft.aufirst=Hamish&amp;rft_id=https%3A%2F%2Fphysicsworld.com%2Fa%2Fjohn-hopfield-and-geoffrey-hinton-share-the-2024-nobel-prize-for-physics%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=14" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHintonSejnowski1986" class="citation journal cs1"><a href="/wiki/Geoffrey_Hinton" title="Geoffrey Hinton">Hinton, G. E.</a>; <a href="/wiki/Terry_Sejnowski" title="Terry Sejnowski">Sejnowski, T. J.</a> (1986). D. E. Rumelhart; J. L. McClelland (eds.). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100705230134/http://learning.cs.toronto.edu/~hinton/absps/pdp7.pdf">"Learning and Relearning in Boltzmann Machines"</a> <span class="cs1-format">(PDF)</span>. <i>Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations</i>: 282–317. Archived from <a rel="nofollow" class="external text" href="http://www.cs.toronto.edu/~hinton/absps/pdp7.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2010-07-05.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Parallel+Distributed+Processing%3A+Explorations+in+the+Microstructure+of+Cognition.+Volume+1%3A+Foundations&amp;rft.atitle=Learning+and+Relearning+in+Boltzmann+Machines&amp;rft.pages=282-317&amp;rft.date=1986&amp;rft.aulast=Hinton&amp;rft.aufirst=G.+E.&amp;rft.au=Sejnowski%2C+T.+J.&amp;rft_id=http%3A%2F%2Fwww.cs.toronto.edu%2F~hinton%2Fabsps%2Fpdp7.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHinton2002" class="citation journal cs1"><a href="/wiki/Geoffrey_Hinton" title="Geoffrey Hinton">Hinton, G. E.</a> (2002). <a rel="nofollow" class="external text" href="http://www.cs.toronto.edu/~hinton/absps/nccd.pdf">"Training Products of Experts by Minimizing Contrastive Divergence"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Neural_Computation_(journal)" title="Neural Computation (journal)">Neural Computation</a></i>. <b>14</b> (8): 1771–1800. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.8613">10.1.1.35.8613</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1162%2F089976602760128018">10.1162/089976602760128018</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12180402">12180402</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:207596505">207596505</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neural+Computation&amp;rft.atitle=Training+Products+of+Experts+by+Minimizing+Contrastive+Divergence&amp;rft.volume=14&amp;rft.issue=8&amp;rft.pages=1771-1800&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.35.8613%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A207596505%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F12180402&amp;rft_id=info%3Adoi%2F10.1162%2F089976602760128018&amp;rft.aulast=Hinton&amp;rft.aufirst=G.+E.&amp;rft_id=http%3A%2F%2Fwww.cs.toronto.edu%2F~hinton%2Fabsps%2Fnccd.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHintonOsinderoTeh2006" class="citation journal cs1"><a href="/wiki/Geoffrey_Hinton" title="Geoffrey Hinton">Hinton, G. E.</a>; Osindero, S.; Teh, Y. (2006). <a rel="nofollow" class="external text" href="http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf">"A fast learning algorithm for deep belief nets"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Neural_Computation_(journal)" title="Neural Computation (journal)">Neural Computation</a></i>. <b>18</b> (7): 1527–1554. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.1541">10.1.1.76.1541</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1162%2Fneco.2006.18.7.1527">10.1162/neco.2006.18.7.1527</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16764513">16764513</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2309950">2309950</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neural+Computation&amp;rft.atitle=A+fast+learning+algorithm+for+deep+belief+nets&amp;rft.volume=18&amp;rft.issue=7&amp;rft.pages=1527-1554&amp;rft.date=2006&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.76.1541%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2309950%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16764513&amp;rft_id=info%3Adoi%2F10.1162%2Fneco.2006.18.7.1527&amp;rft.aulast=Hinton&amp;rft.aufirst=G.+E.&amp;rft.au=Osindero%2C+S.&amp;rft.au=Teh%2C+Y.&amp;rft_id=http%3A%2F%2Fwww.cs.toronto.edu%2F~hinton%2Fabsps%2Ffastnc.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://www.forbes.com/sites/tomtaulli/2020/02/02/coronavirus-can-ai-artificial-intelligence-make-a-difference/?sh=1eca51e55817">Kothari P (2020): https://www.forbes.com/sites/tomtaulli/2020/02/02/coronavirus-can-ai-artificial-intelligence-make-a-difference/?sh=1eca51e55817</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMontufar2018" class="citation web cs1">Montufar, Guido (2018). <a rel="nofollow" class="external text" href="https://www.mis.mpg.de/preprints/2018/preprint2018_87.pdf">"Restricted Boltzmann Machines: Introduction and Review"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/MPI_MiS" class="mw-redirect" title="MPI MiS">MPI MiS</a></i> (Preprint)<span class="reference-accessdate">. Retrieved <span class="nowrap">1 August</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MPI+MiS&amp;rft.atitle=Restricted+Boltzmann+Machines%3A+Introduction+and+Review&amp;rft.date=2018&amp;rft.aulast=Montufar&amp;rft.aufirst=Guido&amp;rft_id=https%3A%2F%2Fwww.mis.mpg.de%2Fpreprints%2F2018%2Fpreprint2018_87.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoltzmann+machine" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boltzmann_machine&amp;action=edit&amp;section=15" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://www.scholarpedia.org/article/Boltzmann_Machine">Scholarpedia article by Hinton about Boltzmann machines</a></li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=AyzOUbkUf3M">Talk at Google by Geoffrey Hinton</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Statistical_mechanics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Statistical_mechanics_topics" title="Template:Statistical mechanics topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Statistical_mechanics_topics" title="Template talk:Statistical mechanics topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Statistical_mechanics_topics" title="Special:EditPage/Template:Statistical mechanics topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Statistical_mechanics" style="font-size:114%;margin:0 4em"><a href="/wiki/Statistical_mechanics" title="Statistical mechanics">Statistical mechanics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theory</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Principle_of_maximum_entropy" title="Principle of maximum entropy">Principle of maximum entropy</a></li> <li><a href="/wiki/Ergodic_theory" title="Ergodic theory">ergodic theory</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="7" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Increasing_disorder.svg/150px-Increasing_disorder.svg.png" decoding="async" width="150" height="42" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Increasing_disorder.svg/225px-Increasing_disorder.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Increasing_disorder.svg/300px-Increasing_disorder.svg.png 2x" data-file-width="464" data-file-height="131" /></span></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Statistical_thermodynamics" class="mw-redirect" title="Statistical thermodynamics">Statistical thermodynamics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Statistical_ensemble_(mathematical_physics)" class="mw-redirect" title="Statistical ensemble (mathematical physics)">Ensembles</a></li> <li><a href="/wiki/Partition_function_(statistical_mechanics)" title="Partition function (statistical mechanics)">partition functions</a></li> <li><a href="/wiki/Equation_of_state" title="Equation of state">equations of state</a></li> <li><a href="/wiki/Thermodynamic_potential" title="Thermodynamic potential">thermodynamic potential</a>: <ul><li><a href="/wiki/Internal_energy" title="Internal energy">U</a></li> <li><a href="/wiki/Enthalpy" title="Enthalpy">H</a></li> <li><a href="/wiki/Helmholtz_free_energy" title="Helmholtz free energy">F</a></li> <li><a href="/wiki/Gibbs_free_energy" title="Gibbs free energy">G</a></li></ul></li> <li><a href="/wiki/Maxwell_relations" title="Maxwell relations">Maxwell relations</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Statistical_model" title="Statistical model">Models</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Spin_model" title="Spin model">Ferromagnetism models</a> <ul><li><a href="/wiki/Ising_model" title="Ising model">Ising</a></li> <li><a href="/wiki/Potts_model" title="Potts model">Potts</a></li> <li><a href="/wiki/Heisenberg_model_(quantum)" class="mw-redirect" title="Heisenberg model (quantum)">Heisenberg</a></li> <li><a href="/wiki/Percolation_theory" title="Percolation theory">percolation</a></li></ul></li> <li>Particles with <a href="/wiki/Force_field_(chemistry)" title="Force field (chemistry)">force field</a> <ul><li><a href="/wiki/Depletion_force" title="Depletion force">depletion force</a></li> <li><a href="/wiki/Lennard-Jones_potential" title="Lennard-Jones potential">Lennard-Jones potential</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mathematical approaches</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Boltzmann_equation" title="Boltzmann equation">Boltzmann equation</a></li> <li><a href="/wiki/H-theorem" title="H-theorem">H-theorem</a></li> <li><a href="/wiki/Vlasov_equation" title="Vlasov equation">Vlasov equation</a></li> <li><a href="/wiki/BBGKY_hierarchy" title="BBGKY hierarchy">BBGKY hierarchy</a></li> <li><a href="/wiki/Stochastic_process" title="Stochastic process">stochastic process</a></li> <li><a href="/wiki/Mean-field_theory" title="Mean-field theory">mean-field theory</a> and <a href="/wiki/Conformal_field_theory" title="Conformal field theory">conformal field theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Critical_phenomena" title="Critical phenomena">Critical phenomena</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Phase_transition" title="Phase transition">Phase transition</a></li> <li><a href="/wiki/Critical_exponent" title="Critical exponent">Critical exponents</a> <ul><li><a href="/wiki/Correlation_function" title="Correlation function">correlation length</a></li> <li><a href="/wiki/Scaling_(geometry)" title="Scaling (geometry)">size scaling</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Entropy" title="Entropy">Entropy</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Boltzmann%27s_entropy_formula" title="Boltzmann&#39;s entropy formula">Boltzmann</a></li> <li><a href="/wiki/Shannon_entropy" class="mw-redirect" title="Shannon entropy">Shannon</a></li> <li><a href="/wiki/Tsallis_entropy" title="Tsallis entropy">Tsallis </a></li> <li><a href="/wiki/R%C3%A9nyi_entropy" title="Rényi entropy">Rényi</a></li> <li><a href="/wiki/Von_Neumann_entropy" title="Von Neumann entropy">von Neumann</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Statistical_field_theory" title="Statistical field theory">Statistical field theory</a> <ul><li><a href="/wiki/Elementary_particle" title="Elementary particle">elementary particle</a></li> <li><a href="/wiki/Superfluidity" title="Superfluidity">superfluidity</a></li></ul></li> <li><a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">Condensed matter physics</a></li> <li><a href="/wiki/Complex_system" title="Complex system">Complex system</a> <ul><li><a href="/wiki/Chaos_theory" title="Chaos theory">chaos</a></li> <li><a href="/wiki/Information_theory" title="Information theory">information theory</a></li> <li><a class="mw-selflink selflink">Boltzmann machine</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q194706#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4247316-0">Germany</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐8p8br Cached time: 20241122141455 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.589 seconds Real time usage: 0.765 seconds Preprocessor visited node count: 2738/1000000 Post‐expand include size: 79378/2097152 bytes Template argument size: 2824/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 106155/5000000 bytes Lua time usage: 0.345/10.000 seconds Lua memory usage: 5976788/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 548.210 1 -total 43.44% 238.150 1 Template:Reflist 15.09% 82.716 1 Template:Statistical_mechanics_topics 15.08% 82.676 3 Template:Citation 14.62% 80.124 1 Template:Navbox 14.33% 78.548 1 Template:Short_description 12.00% 65.810 11 Template:Cite_journal 8.99% 49.311 2 Template:Pagetype 7.33% 40.202 3 Template:Fix 7.00% 38.348 5 Template:Cite_conference --> <!-- Saved in parser cache with key enwiki:pcache:idhash:1166059-0!canonical and timestamp 20241122141455 and revision id 1256713281. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Boltzmann_machine&amp;oldid=1256713281">https://en.wikipedia.org/w/index.php?title=Boltzmann_machine&amp;oldid=1256713281</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Neural_network_architectures" title="Category:Neural network architectures">Neural network architectures</a></li><li><a href="/wiki/Category:Ludwig_Boltzmann" title="Category:Ludwig Boltzmann">Ludwig Boltzmann</a></li><li><a href="/wiki/Category:Mathematical_physics" title="Category:Mathematical physics">Mathematical physics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_June_2024" title="Category:Articles with dead external links from June 2024">Articles with dead external links from June 2024</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_January_2013" title="Category:Articles with unsourced statements from January 2013">Articles with unsourced statements from January 2013</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_August_2015" title="Category:Articles with unsourced statements from August 2015">Articles with unsourced statements from August 2015</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 06:27<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Boltzmann_machine&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-8p8br","wgBackendResponseTime":901,"wgPageParseReport":{"limitreport":{"cputime":"0.589","walltime":"0.765","ppvisitednodes":{"value":2738,"limit":1000000},"postexpandincludesize":{"value":79378,"limit":2097152},"templateargumentsize":{"value":2824,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":106155,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 548.210 1 -total"," 43.44% 238.150 1 Template:Reflist"," 15.09% 82.716 1 Template:Statistical_mechanics_topics"," 15.08% 82.676 3 Template:Citation"," 14.62% 80.124 1 Template:Navbox"," 14.33% 78.548 1 Template:Short_description"," 12.00% 65.810 11 Template:Cite_journal"," 8.99% 49.311 2 Template:Pagetype"," 7.33% 40.202 3 Template:Fix"," 7.00% 38.348 5 Template:Cite_conference"]},"scribunto":{"limitreport-timeusage":{"value":"0.345","limit":"10.000"},"limitreport-memusage":{"value":5976788,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-8p8br","timestamp":"20241122141455","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Boltzmann machine","url":"https:\/\/en.wikipedia.org\/wiki\/Boltzmann_machine","sameAs":"http:\/\/www.wikidata.org\/entity\/Q194706","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q194706","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-11-13T21:26:15Z","dateModified":"2024-11-11T06:27:56Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/7a\/Boltzmannexamplev1.png","headline":"type of stochastic neural network"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10