CINXE.COM

Уравнения на Максуел – Уикипедия

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="bg" dir="ltr"> <head> <meta charset="UTF-8"> <title>Уравнения на Максуел – Уикипедия</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )bgwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","януари","февруари","март","април","май","юни","юли","август","септември","октомври","ноември","декември"],"wgRequestId":"e9374b51-17f9-4be5-963c-a8471d2ca909","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Уравнения_на_Максуел","wgTitle":"Уравнения на Максуел","wgCurRevisionId":12045491,"wgRevisionId":12045491,"wgArticleId":59086,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Страници, използващи вълшебни препратки ISBN","Електродинамика"],"wgPageViewLanguage":"bg","wgPageContentLanguage":"bg","wgPageContentModel":"wikitext","wgRelevantPageName":"Уравнения_на_Максуел","wgRelevantArticleId":59086,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"bg","pageLanguageDir":"ltr","pageVariantFallbacks":"bg"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q51501","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.WatchlistTopSectionWidgetFix":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.QRpediaFix","ext.gadget.EditToolbar","ext.gadget.EditToolbar-menu-page_elements", "ext.gadget.EditToolbar-menu-thematic_templates","ext.gadget.EditToolbar-menu-article_templates","ext.gadget.EditToolbar-menu-talk_templates","ext.gadget.EditToolbar-menu-other_templates","ext.gadget.OpenStreetMap","ext.gadget.Switcher","ext.gadget.ParsePhabLinks","ext.gadget.Mwbot","ext.gadget.UploadRedirectToCommons","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=bg&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=bg&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=bg&amp;modules=ext.gadget.WatchlistTopSectionWidgetFix&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=bg&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/1200px-CoulombsLaw.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="961"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/800px-CoulombsLaw.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="641"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/640px-CoulombsLaw.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="513"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Уравнения на Максуел – Уикипедия"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//bg.m.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB"> <link rel="alternate" type="application/x-wiki" title="Редактиране" href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Уикипедия (bg)"> <link rel="EditURI" type="application/rsd+xml" href="//bg.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://bg.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.bg"> <link rel="alternate" type="application/atom+xml" title="Емисия на Atom за Уикипедия" href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BD%D0%B8_%D0%BF%D1%80%D0%BE%D0%BC%D0%B5%D0%BD%D0%B8&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Уравнения_на_Максуел rootpage-Уравнения_на_Максуел skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Направо към съдържанието</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Сайт"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Главно меню" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Главно меню</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Главно меню</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">преместване към страничната лента</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">скриване</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Навигация </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/%D0%9D%D0%B0%D1%87%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Началната страница [z]" accesskey="z"><span>Начална страница</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Зареждане на случайна страница [x]" accesskey="x"><span>Случайна статия</span></a></li> </ul> </div> </div> <div id="p-Полезно" class="vector-menu mw-portlet mw-portlet-Полезно" > <div class="vector-menu-heading"> Полезно </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BD%D0%B8_%D0%BF%D1%80%D0%BE%D0%BC%D0%B5%D0%BD%D0%B8" title="Списък на последните промени в уикито [r]" accesskey="r"><span>Последни промени</span></a></li><li id="n-Общи-разговори" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A0%D0%B0%D0%B7%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%B8"><span>Общи разговори</span></a></li><li id="n-Обсъждани-статии" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%90%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%B8_%D0%B1%D0%B5%D1%81%D0%B5%D0%B4%D0%B8"><span>Обсъждани статии</span></a></li><li id="n-Администратори" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%97%D0%B0%D1%8F%D0%B2%D0%BA%D0%B8_%D0%BA%D1%8A%D0%BC_%D0%B0%D0%B4%D0%BC%D0%B8%D0%BD%D0%B8%D1%81%D1%82%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D1%82%D0%B5"><span>Администратори</span></a></li><li id="n-Изтривания" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B8_%D0%B7%D0%B0_%D0%B8%D0%B7%D1%82%D1%80%D0%B8%D0%B2%D0%B0%D0%BD%D0%B5"><span>Изтривания</span></a></li><li id="n-За-контакти" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%97%D0%B0_%D0%BA%D0%BE%D0%BD%D1%82%D0%B0%D0%BA%D1%82%D0%B8"><span>За контакти</span></a></li> </ul> </div> </div> <div id="p-Включете_се!" class="vector-menu mw-portlet mw-portlet-Включете_се" > <div class="vector-menu-heading"> Включете се! </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Защо?" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9A%D0%BE%D0%B9_%D1%81%D1%8A%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0_%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F"><span>Защо?</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%8A%D1%80%D0%B2%D0%B8_%D1%81%D1%82%D1%8A%D0%BF%D0%BA%D0%B8" title="Място, където може да се информирате"><span>Помощ</span></a></li><li id="n-Картинки" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:10_%D0%BD%D0%B5%D1%89%D0%B0,_%D0%BA%D0%BE%D0%B8%D1%82%D0%BE_%D1%82%D1%80%D1%8F%D0%B1%D0%B2%D0%B0_%D0%B4%D0%B0_%D1%81%D0%B5_%D0%B7%D0%BD%D0%B0%D1%8F%D1%82_%D0%B7%D0%B0_%D0%BA%D0%B0%D1%80%D1%82%D0%B8%D0%BD%D0%BA%D0%B8%D1%82%D0%B5_%D0%B2_%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F"><span>Картинки</span></a></li><li id="n-Поведение" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D0%BE%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5"><span>Поведение</span></a></li><li id="n-Изпробване" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%8F%D1%81%D1%8A%D1%87%D0%BD%D0%B8%D0%BA"><span>Изпробване</span></a></li><li id="n-Нова-статия" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%92%D1%8A%D0%BB%D1%88%D0%B5%D0%B1%D0%BD%D0%B8%D0%BA"><span>Нова статия</span></a></li> </ul> </div> </div> <div id="p-Общувайте" class="vector-menu mw-portlet mw-portlet-Общувайте" > <div class="vector-menu-heading"> Общувайте </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Блог-на-общността" class="mw-list-item"><a href="https://blog.wikimedia.bg/" rel="nofollow"><span>Блог на общността</span></a></li><li id="n-Фейсбук-страница" class="mw-list-item"><a href="https://www.facebook.com/WikipediaBG" rel="nofollow"><span>Фейсбук страница</span></a></li><li id="n-Фейсбук-група" class="mw-list-item"><a href="https://www.facebook.com/groups/WikipediaBG" rel="nofollow"><span>Фейсбук група</span></a></li><li id="n-🎮-Дискорд" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%94%D0%B8%D1%81%D0%BA%D0%BE%D1%80%D0%B4"><span>🎮 Дискорд</span></a></li><li id="n-Телеграм" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A2%D0%B5%D0%BB%D0%B5%D0%B3%D1%80%D0%B0%D0%BC"><span>Телеграм</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:IRC"><span>IRC</span></a></li><li id="n-GitHub" class="mw-list-item"><a href="https://github.com/wikimedia-bg" rel="nofollow"><span>GitHub</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%D0%9D%D0%B0%D1%87%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Уикипедия" src="/static/images/mobile/copyright/wikipedia-wordmark-bg.svg" style="width: 7.5em; height: 1.3125em;"> <img class="mw-logo-tagline" alt="Свободната енциклопедия" src="/static/images/mobile/copyright/wikipedia-tagline-bg.svg" width="120" height="12" style="width: 7.5em; height: 0.75em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A2%D1%8A%D1%80%D1%81%D0%B5%D0%BD%D0%B5" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Претърсване на Уикипедия [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Търсене</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Търсене в Уикипедия" aria-label="Търсене в Уикипедия" autocapitalize="sentences" title="Претърсване на Уикипедия [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Специални:Търсене"> </div> <button class="cdx-button cdx-search-input__end-button">Търсене</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Лични инструменти"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Облик"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Облик" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Облик</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_bg.wikipedia.org&amp;uselang=bg" class=""><span>Направете дарение</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D1%8A%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D0%BD%D0%B5_%D0%BD%D0%B0_%D1%81%D0%BC%D0%B5%D1%82%D0%BA%D0%B0&amp;returnto=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F+%D0%BD%D0%B0+%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Насърчаваме Ви да си създадете сметка и да влезете, въпреки че не е задължително." class=""><span>Създаване на сметка</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A0%D0%B5%D0%B3%D0%B8%D1%81%D1%82%D1%80%D0%B8%D1%80%D0%B0%D0%BD%D0%B5_%D0%B8%D0%BB%D0%B8_%D0%B2%D0%BB%D0%B8%D0%B7%D0%B0%D0%BD%D0%B5&amp;returnto=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F+%D0%BD%D0%B0+%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Препоръчваме Ви да влезете, въпреки, че не е задължително. [o]" accesskey="o" class=""><span>Влизане</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Допълнителни опции" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Лични инструменти" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Лични инструменти</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Потребителско меню" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_bg.wikipedia.org&amp;uselang=bg"><span>Направете дарение</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D1%8A%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D0%BD%D0%B5_%D0%BD%D0%B0_%D1%81%D0%BC%D0%B5%D1%82%D0%BA%D0%B0&amp;returnto=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F+%D0%BD%D0%B0+%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Насърчаваме Ви да си създадете сметка и да влезете, въпреки че не е задължително."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Създаване на сметка</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A0%D0%B5%D0%B3%D0%B8%D1%81%D1%82%D1%80%D0%B8%D1%80%D0%B0%D0%BD%D0%B5_%D0%B8%D0%BB%D0%B8_%D0%B2%D0%BB%D0%B8%D0%B7%D0%B0%D0%BD%D0%B5&amp;returnto=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F+%D0%BD%D0%B0+%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Препоръчваме Ви да влезете, въпреки, че не е задължително. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Влизане</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Страници за излезли от системата редактори <a href="/wiki/%D0%9F%D0%BE%D0%BC%D0%BE%D1%89:%D0%92%D1%8A%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" aria-label="Научете повече за редактирането"><span>научете повече</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9C%D0%BE%D0%B8%D1%82%D0%B5_%D0%BF%D1%80%D0%B8%D0%BD%D0%BE%D1%81%D0%B8" title="Списък на промените, направени от този IP адрес [y]" accesskey="y"><span>Приноси</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9C%D0%BE%D1%8F%D1%82%D0%B0_%D0%B1%D0%B5%D1%81%D0%B5%D0%B4%D0%B0" title="Дискусия относно редакциите от този адрес [n]" accesskey="n"><span>Беседа</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Сайт"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Съдържание" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Съдържание</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">преместване към страничната лента</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">скриване</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Начало</div> </a> </li> <li id="toc-Въведение" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Въведение"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Въведение</span> </div> </a> <ul id="toc-Въведение-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-История_на_уравненията_на_Максуел_и_относителността" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#История_на_уравненията_на_Максуел_и_относителността"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>История на уравненията на Максуел и относителността</span> </div> </a> <ul id="toc-История_на_уравненията_на_Максуел_и_относителността-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Общи_сведения" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Общи_сведения"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Общи сведения</span> </div> </a> <ul id="toc-Общи_сведения-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Линейни_среди" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Линейни_среди"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Линейни среди</span> </div> </a> <button aria-controls="toc-Линейни_среди-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Превключване на подраздел Линейни среди</span> </button> <ul id="toc-Линейни_среди-sublist" class="vector-toc-list"> <li id="toc-Линейни_веществени_среди" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Линейни_веществени_среди"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Линейни веществени среди</span> </div> </a> <ul id="toc-Линейни_веществени_среди-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Вакуум,_без_заряди_и_токове" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Вакуум,_без_заряди_и_токове"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Вакуум, без заряди и токове</span> </div> </a> <ul id="toc-Вакуум,_без_заряди_и_токове-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Теорема_на_Гаус" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Теорема_на_Гаус"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Теорема на Гаус</span> </div> </a> <ul id="toc-Теорема_на_Гаус-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Структура_на_магнитното_поле" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Структура_на_магнитното_поле"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Структура на магнитното поле</span> </div> </a> <ul id="toc-Структура_на_магнитното_поле-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Общ_вид_на_уравненията" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Общ_вид_на_уравненията"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Общ вид на уравненията</span> </div> </a> <ul id="toc-Общ_вид_на_уравненията-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Означения_и_измервателни_единици_на_използваните_величини" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Означения_и_измервателни_единици_на_използваните_величини"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Означения и измервателни единици на използваните величини</span> </div> </a> <ul id="toc-Означения_и_измервателни_единици_на_използваните_величини-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Литература" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Литература"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Литература</span> </div> </a> <ul id="toc-Литература-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Източници" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Източници"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Източници</span> </div> </a> <ul id="toc-Източници-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Съдържание" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Скриване/показване на съдържанието" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Скриване/показване на съдържанието</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Уравнения на Максуел</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Към статията на друг език. Налична на 77 езика" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-77" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">77 езика</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Maxwell_se_vergelykings" title="Maxwell se vergelykings – африканс" lang="af" hreflang="af" data-title="Maxwell se vergelykings" data-language-autonym="Afrikaans" data-language-local-name="африканс" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Maxwell-Gleichungen" title="Maxwell-Gleichungen – швейцарски немски" lang="gsw" hreflang="gsw" data-title="Maxwell-Gleichungen" data-language-autonym="Alemannisch" data-language-local-name="швейцарски немски" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A7%D8%AA_%D9%85%D8%A7%D9%83%D8%B3%D9%88%D9%8A%D9%84" title="معادلات ماكسويل – арабски" lang="ar" hreflang="ar" data-title="معادلات ماكسويل" data-language-autonym="العربية" data-language-local-name="арабски" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Ecuaciones_de_Maxwell" title="Ecuaciones de Maxwell – астурски" lang="ast" hreflang="ast" data-title="Ecuaciones de Maxwell" data-language-autonym="Asturianu" data-language-local-name="астурски" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Maksvell_t%C9%99nlikl%C9%99ri" title="Maksvell tənlikləri – азербайджански" lang="az" hreflang="az" data-title="Maksvell tənlikləri" data-language-autonym="Azərbaycanca" data-language-local-name="азербайджански" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D9%85%D8%A7%DA%A9%D8%B3%D9%88%D9%84_%D9%85%D9%88%D8%B9%D8%A7%D8%AF%DB%8C%D9%84%D9%87%E2%80%8C%D9%84%D8%B1%DB%8C" title="ماکسول موعادیله‌لری – South Azerbaijani" lang="azb" hreflang="azb" data-title="ماکسول موعادیله‌لری" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-be badge-Q17437796 badge-featuredarticle mw-list-item" title="Избрана статия"><a href="https://be.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D1%9E%D0%BD%D0%B5%D0%BD%D0%BD%D1%96_%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%B0" title="Ураўненні Максвела – беларуски" lang="be" hreflang="be" data-title="Ураўненні Максвела" data-language-autonym="Беларуская" data-language-local-name="беларуски" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A0%D0%B0%D1%9E%D0%BD%D0%B0%D0%BD%D1%8C%D0%BD%D1%96_%D0%9C%D0%B0%D0%BA%D1%81%D1%9E%D1%8D%D0%BB%D0%B0" title="Раўнаньні Максўэла – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Раўнаньні Максўэла" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%95%E0%A7%8D%E0%A6%B8%E0%A6%93%E0%A6%AF%E0%A6%BC%E0%A7%87%E0%A6%B2%E0%A7%87%E0%A6%B0_%E0%A6%B8%E0%A6%AE%E0%A7%80%E0%A6%95%E0%A6%B0%E0%A6%A3%E0%A6%B8%E0%A6%AE%E0%A7%82%E0%A6%B9" title="ম্যাক্সওয়েলের সমীকরণসমূহ – бенгалски" lang="bn" hreflang="bn" data-title="ম্যাক্সওয়েলের সমীকরণসমূহ" data-language-autonym="বাংলা" data-language-local-name="бенгалски" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Maxwellove_jedna%C4%8Dine" title="Maxwellove jednačine – босненски" lang="bs" hreflang="bs" data-title="Maxwellove jednačine" data-language-autonym="Bosanski" data-language-local-name="босненски" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Equacions_de_Maxwell" title="Equacions de Maxwell – каталонски" lang="ca" hreflang="ca" data-title="Equacions de Maxwell" data-language-autonym="Català" data-language-local-name="каталонски" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Maxwellovy_rovnice" title="Maxwellovy rovnice – чешки" lang="cs" hreflang="cs" data-title="Maxwellovy rovnice" data-language-autonym="Čeština" data-language-local-name="чешки" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9Ca%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BB_%D1%82%D0%B0%D0%BD%D0%BB%C4%83%D1%85%C4%95%D1%81%D0%B5%D0%BC" title="Мaксвелл танлăхĕсем – чувашки" lang="cv" hreflang="cv" data-title="Мaксвелл танлăхĕсем" data-language-autonym="Чӑвашла" data-language-local-name="чувашки" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Maxwells_ligninger" title="Maxwells ligninger – датски" lang="da" hreflang="da" data-title="Maxwells ligninger" data-language-autonym="Dansk" data-language-local-name="датски" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Maxwell-Gleichungen" title="Maxwell-Gleichungen – немски" lang="de" hreflang="de" data-title="Maxwell-Gleichungen" data-language-autonym="Deutsch" data-language-local-name="немски" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%BE%CE%B9%CF%83%CF%8E%CF%83%CE%B5%CE%B9%CF%82_%CE%9C%CE%AC%CE%BE%CE%B3%CE%BF%CF%85%CE%B5%CE%BB" title="Εξισώσεις Μάξγουελ – гръцки" lang="el" hreflang="el" data-title="Εξισώσεις Μάξγουελ" data-language-autonym="Ελληνικά" data-language-local-name="гръцки" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Maxwell%27s_equations" title="Maxwell&#039;s equations – английски" lang="en" hreflang="en" data-title="Maxwell&#039;s equations" data-language-autonym="English" data-language-local-name="английски" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Ekvacioj_de_Maxwell" title="Ekvacioj de Maxwell – есперанто" lang="eo" hreflang="eo" data-title="Ekvacioj de Maxwell" data-language-autonym="Esperanto" data-language-local-name="есперанто" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es badge-Q17437798 badge-goodarticle mw-list-item" title="Добра статия"><a href="https://es.wikipedia.org/wiki/Ecuaciones_de_Maxwell" title="Ecuaciones de Maxwell – испански" lang="es" hreflang="es" data-title="Ecuaciones de Maxwell" data-language-autonym="Español" data-language-local-name="испански" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Maxwelli_v%C3%B5rrandid" title="Maxwelli võrrandid – естонски" lang="et" hreflang="et" data-title="Maxwelli võrrandid" data-language-autonym="Eesti" data-language-local-name="естонски" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Maxwellen_ekuazioak" title="Maxwellen ekuazioak – баски" lang="eu" hreflang="eu" data-title="Maxwellen ekuazioak" data-language-autonym="Euskara" data-language-local-name="баски" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A7%D8%AA_%D9%85%D8%A7%DA%A9%D8%B3%D9%88%D9%84" title="معادلات ماکسول – персийски" lang="fa" hreflang="fa" data-title="معادلات ماکسول" data-language-autonym="فارسی" data-language-local-name="персийски" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Maxwellin_yht%C3%A4l%C3%B6t" title="Maxwellin yhtälöt – фински" lang="fi" hreflang="fi" data-title="Maxwellin yhtälöt" data-language-autonym="Suomi" data-language-local-name="фински" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/%C3%89quations_de_Maxwell" title="Équations de Maxwell – френски" lang="fr" hreflang="fr" data-title="Équations de Maxwell" data-language-autonym="Français" data-language-local-name="френски" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ecuaci%C3%B3ns_de_Maxwell" title="Ecuacións de Maxwell – галисийски" lang="gl" hreflang="gl" data-title="Ecuacións de Maxwell" data-language-autonym="Galego" data-language-local-name="галисийски" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%95%D7%95%D7%90%D7%95%D7%AA_%D7%9E%D7%A7%D7%A1%D7%95%D7%95%D7%9C" title="משוואות מקסוול – иврит" lang="he" hreflang="he" data-title="משוואות מקסוול" data-language-autonym="עברית" data-language-local-name="иврит" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AE%E0%A5%88%E0%A4%95%E0%A5%8D%E0%A4%B8%E0%A4%B5%E0%A5%87%E0%A4%B2_%E0%A4%95%E0%A5%87_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="मैक्सवेल के समीकरण – хинди" lang="hi" hreflang="hi" data-title="मैक्सवेल के समीकरण" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Maxwellove_jednad%C5%BEbe" title="Maxwellove jednadžbe – хърватски" lang="hr" hreflang="hr" data-title="Maxwellove jednadžbe" data-language-autonym="Hrvatski" data-language-local-name="хърватски" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Ekwasyon_Maxwell" title="Ekwasyon Maxwell – хаитянски креолски" lang="ht" hreflang="ht" data-title="Ekwasyon Maxwell" data-language-autonym="Kreyòl ayisyen" data-language-local-name="хаитянски креолски" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Maxwell-egyenletek" title="Maxwell-egyenletek – унгарски" lang="hu" hreflang="hu" data-title="Maxwell-egyenletek" data-language-autonym="Magyar" data-language-local-name="унгарски" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A1%D6%84%D5%BD%D5%BE%D5%A5%D5%AC%D5%AB_%D5%B0%D5%A1%D5%BE%D5%A1%D5%BD%D5%A1%D6%80%D5%B8%D6%82%D5%B4%D5%B6%D5%A5%D6%80" title="Մաքսվելի հավասարումներ – арменски" lang="hy" hreflang="hy" data-title="Մաքսվելի հավասարումներ" data-language-autonym="Հայերեն" data-language-local-name="арменски" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Equationes_de_Maxwell" title="Equationes de Maxwell – интерлингва" lang="ia" hreflang="ia" data-title="Equationes de Maxwell" data-language-autonym="Interlingua" data-language-local-name="интерлингва" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Persamaan_Maxwell" title="Persamaan Maxwell – индонезийски" lang="id" hreflang="id" data-title="Persamaan Maxwell" data-language-autonym="Bahasa Indonesia" data-language-local-name="индонезийски" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/J%C3%B6fnur_Maxwells" title="Jöfnur Maxwells – исландски" lang="is" hreflang="is" data-title="Jöfnur Maxwells" data-language-autonym="Íslenska" data-language-local-name="исландски" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Equazioni_di_Maxwell" title="Equazioni di Maxwell – италиански" lang="it" hreflang="it" data-title="Equazioni di Maxwell" data-language-autonym="Italiano" data-language-local-name="италиански" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9E%E3%82%AF%E3%82%B9%E3%82%A6%E3%82%A7%E3%83%AB%E3%81%AE%E6%96%B9%E7%A8%8B%E5%BC%8F" title="マクスウェルの方程式 – японски" lang="ja" hreflang="ja" data-title="マクスウェルの方程式" data-language-autonym="日本語" data-language-local-name="японски" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%A5%E1%83%A1%E1%83%95%E1%83%94%E1%83%9A%E1%83%98%E1%83%A1_%E1%83%92%E1%83%90%E1%83%9C%E1%83%A2%E1%83%9D%E1%83%9A%E1%83%94%E1%83%91%E1%83%94%E1%83%91%E1%83%98" title="მაქსველის განტოლებები – грузински" lang="ka" hreflang="ka" data-title="მაქსველის განტოლებები" data-language-autonym="ქართული" data-language-local-name="грузински" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BB_%D1%82%D0%B5%D2%A3%D0%B4%D0%B5%D1%83%D1%96" title="Максвелл теңдеуі – казахски" lang="kk" hreflang="kk" data-title="Максвелл теңдеуі" data-language-autonym="Қазақша" data-language-local-name="казахски" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AE%E0%B3%8D%E0%B2%AF%E0%B2%BE%E0%B2%95%E0%B3%8D%E0%B2%B8%E0%B3%8D%E2%80%8C%E0%B2%B5%E0%B3%86%E0%B2%B2%E0%B3%8D%E2%80%8C%E0%B2%A8_%E0%B2%B8%E0%B2%AE%E0%B3%80%E0%B2%95%E0%B2%B0%E0%B2%A3%E0%B2%97%E0%B2%B3%E0%B3%81" title="ಮ್ಯಾಕ್ಸ್‌ವೆಲ್‌ನ ಸಮೀಕರಣಗಳು – каннада" lang="kn" hreflang="kn" data-title="ಮ್ಯಾಕ್ಸ್‌ವೆಲ್‌ನ ಸಮೀಕರಣಗಳು" data-language-autonym="ಕನ್ನಡ" data-language-local-name="каннада" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A7%A5%EC%8A%A4%EC%9B%B0_%EB%B0%A9%EC%A0%95%EC%8B%9D" title="맥스웰 방정식 – корейски" lang="ko" hreflang="ko" data-title="맥스웰 방정식" data-language-autonym="한국어" data-language-local-name="корейски" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Aequationes_Maxwellianae" title="Aequationes Maxwellianae – латински" lang="la" hreflang="la" data-title="Aequationes Maxwellianae" data-language-autonym="Latina" data-language-local-name="латински" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/W%C3%A8tte_van_Maxwell" title="Wètte van Maxwell – лимбургски" lang="li" hreflang="li" data-title="Wètte van Maxwell" data-language-autonym="Limburgs" data-language-local-name="лимбургски" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Maksvelo_lygtys" title="Maksvelo lygtys – литовски" lang="lt" hreflang="lt" data-title="Maksvelo lygtys" data-language-autonym="Lietuvių" data-language-local-name="литовски" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Maksvela_vien%C4%81dojumi" title="Maksvela vienādojumi – латвийски" lang="lv" hreflang="lv" data-title="Maksvela vienādojumi" data-language-autonym="Latviešu" data-language-local-name="латвийски" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437798 badge-goodarticle mw-list-item" title="Добра статия"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BE%D0%B2%D0%B8_%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D0%BA%D0%B8" title="Максвелови равенки – македонски" lang="mk" hreflang="mk" data-title="Максвелови равенки" data-language-autonym="Македонски" data-language-local-name="македонски" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AE%E0%A5%85%E0%A4%95%E0%A5%8D%E0%A4%B8%E0%A4%B5%E0%A5%87%E0%A4%B2%E0%A4%9A%E0%A5%80_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3%E0%A5%87" title="मॅक्सवेलची समीकरणे – марати" lang="mr" hreflang="mr" data-title="मॅक्सवेलची समीकरणे" data-language-autonym="मराठी" data-language-local-name="марати" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Persamaan_Maxwell" title="Persamaan Maxwell – малайски" lang="ms" hreflang="ms" data-title="Persamaan Maxwell" data-language-autonym="Bahasa Melayu" data-language-local-name="малайски" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%AE%E0%A4%BE%E0%A4%95%E0%A5%8D%E0%A4%B8%E0%A4%B5%E0%A5%87%E0%A4%B2_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="माक्सवेल समीकरण – непалски" lang="ne" hreflang="ne" data-title="माक्सवेल समीकरण" data-language-autonym="नेपाली" data-language-local-name="непалски" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Wetten_van_Maxwell" title="Wetten van Maxwell – нидерландски" lang="nl" hreflang="nl" data-title="Wetten van Maxwell" data-language-autonym="Nederlands" data-language-local-name="нидерландски" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Maxwells_likningar" title="Maxwells likningar – норвежки (нюношк)" lang="nn" hreflang="nn" data-title="Maxwells likningar" data-language-autonym="Norsk nynorsk" data-language-local-name="норвежки (нюношк)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Maxwells_likninger" title="Maxwells likninger – норвежки (букмол)" lang="nb" hreflang="nb" data-title="Maxwells likninger" data-language-autonym="Norsk bokmål" data-language-local-name="норвежки (букмол)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AE%E0%A9%88%E0%A8%95%E0%A8%B8%E0%A8%B5%E0%A9%88%E0%A9%B1%E0%A8%B2_%E0%A8%A6%E0%A9%80%E0%A8%86%E0%A8%82_%E0%A8%B8%E0%A8%AE%E0%A9%80%E0%A8%95%E0%A8%B0%E0%A8%A8%E0%A8%BE%E0%A8%82" title="ਮੈਕਸਵੈੱਲ ਦੀਆਂ ਸਮੀਕਰਨਾਂ – пенджабски" lang="pa" hreflang="pa" data-title="ਮੈਕਸਵੈੱਲ ਦੀਆਂ ਸਮੀਕਰਨਾਂ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="пенджабски" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/R%C3%B3wnania_Maxwella" title="Równania Maxwella – полски" lang="pl" hreflang="pl" data-title="Równania Maxwella" data-language-autonym="Polski" data-language-local-name="полски" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Equa%C3%A7%C3%B5es_de_Maxwell" title="Equações de Maxwell – португалски" lang="pt" hreflang="pt" data-title="Equações de Maxwell" data-language-autonym="Português" data-language-local-name="португалски" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Ecua%C8%9Biile_lui_Maxwell" title="Ecuațiile lui Maxwell – румънски" lang="ro" hreflang="ro" data-title="Ecuațiile lui Maxwell" data-language-autonym="Română" data-language-local-name="румънски" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437796 badge-featuredarticle mw-list-item" title="Избрана статия"><a href="https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BB%D0%B0" title="Уравнения Максвелла – руски" lang="ru" hreflang="ru" data-title="Уравнения Максвелла" data-language-autonym="Русский" data-language-local-name="руски" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Maxwellove_jednad%C5%BEbe" title="Maxwellove jednadžbe – сърбохърватски" lang="sh" hreflang="sh" data-title="Maxwellove jednadžbe" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="сърбохърватски" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Maxwell%27s_equations" title="Maxwell&#039;s equations – Simple English" lang="en-simple" hreflang="en-simple" data-title="Maxwell&#039;s equations" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Maxwellove_rovnice" title="Maxwellove rovnice – словашки" lang="sk" hreflang="sk" data-title="Maxwellove rovnice" data-language-autonym="Slovenčina" data-language-local-name="словашки" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Maxwellove_ena%C4%8Dbe" title="Maxwellove enačbe – словенски" lang="sl" hreflang="sl" data-title="Maxwellove enačbe" data-language-autonym="Slovenščina" data-language-local-name="словенски" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Ekuacionet_e_Maksuellit" title="Ekuacionet e Maksuellit – албански" lang="sq" hreflang="sq" data-title="Ekuacionet e Maksuellit" data-language-autonym="Shqip" data-language-local-name="албански" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B5" title="Максвелове једначине – сръбски" lang="sr" hreflang="sr" data-title="Максвелове једначине" data-language-autonym="Српски / srpski" data-language-local-name="сръбски" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Maxwells_ekvationer" title="Maxwells ekvationer – шведски" lang="sv" hreflang="sv" data-title="Maxwells ekvationer" data-language-autonym="Svenska" data-language-local-name="шведски" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AE%BE%E0%AE%95%E0%AF%8D%E0%AE%9A%E0%AF%81%E0%AE%B5%E0%AF%86%E0%AE%B2%E0%AF%8D%E0%AE%B2%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%9A%E0%AE%AE%E0%AE%A9%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81%E0%AE%95%E0%AE%B3%E0%AF%8D" title="மாக்சுவெல்லின் சமன்பாடுகள் – тамилски" lang="ta" hreflang="ta" data-title="மாக்சுவெல்லின் சமன்பாடுகள்" data-language-autonym="தமிழ்" data-language-local-name="тамилски" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%AE%E0%B0%BE%E0%B0%95%E0%B1%8D%E0%B0%B8%E0%B1%8D%E0%B0%B5%E0%B1%86%E0%B0%B2%E0%B1%8D_%E0%B0%B8%E0%B0%AE%E0%B1%80%E0%B0%95%E0%B0%B0%E0%B0%A3%E0%B0%BE%E0%B0%B2%E0%B1%81" title="మాక్స్వెల్ సమీకరణాలు – телугу" lang="te" hreflang="te" data-title="మాక్స్వెల్ సమీకరణాలు" data-language-autonym="తెలుగు" data-language-local-name="телугу" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%A1%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%81%E0%B8%A1%E0%B8%81%E0%B8%8B%E0%B9%8C%E0%B9%80%E0%B8%A7%E0%B8%A5%E0%B8%A5%E0%B9%8C" title="สมการของแมกซ์เวลล์ – тайски" lang="th" hreflang="th" data-title="สมการของแมกซ์เวลล์" data-language-autonym="ไทย" data-language-local-name="тайски" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Mga_ekwasyon_ni_Maxwell" title="Mga ekwasyon ni Maxwell – тагалог" lang="tl" hreflang="tl" data-title="Mga ekwasyon ni Maxwell" data-language-autonym="Tagalog" data-language-local-name="тагалог" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Maxwell_denklemleri" title="Maxwell denklemleri – турски" lang="tr" hreflang="tr" data-title="Maxwell denklemleri" data-language-autonym="Türkçe" data-language-local-name="турски" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/Makswell_tigezl%C3%A4m%C3%A4l%C3%A4re" title="Makswell tigezlämäläre – татарски" lang="tt" hreflang="tt" data-title="Makswell tigezlämäläre" data-language-autonym="Татарча / tatarça" data-language-local-name="татарски" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F_%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BB%D0%B0" title="Рівняння Максвелла – украински" lang="uk" hreflang="uk" data-title="Рівняння Максвелла" data-language-autonym="Українська" data-language-local-name="украински" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%DB%8C%DA%A9%D8%B3%D9%88%DB%8C%D9%84_%D9%85%D8%B3%D8%A7%D9%88%D8%A7%D8%AA" title="میکسویل مساوات – урду" lang="ur" hreflang="ur" data-title="میکسویل مساوات" data-language-autonym="اردو" data-language-local-name="урду" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Maxwell_tenglamalari" title="Maxwell tenglamalari – узбекски" lang="uz" hreflang="uz" data-title="Maxwell tenglamalari" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="узбекски" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C6%B0%C6%A1ng_tr%C3%ACnh_Maxwell" title="Phương trình Maxwell – виетнамски" lang="vi" hreflang="vi" data-title="Phương trình Maxwell" data-language-autonym="Tiếng Việt" data-language-local-name="виетнамски" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E9%BA%A6%E5%85%8B%E6%96%AF%E9%9F%A6%E6%96%B9%E7%A8%8B%E7%BB%84" title="麦克斯韦方程组 – ву китайски" lang="wuu" hreflang="wuu" data-title="麦克斯韦方程组" data-language-autonym="吴语" data-language-local-name="ву китайски" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%9E%D7%90%D7%A7%D7%A1%D7%95%D7%95%D7%A2%D7%9C%D7%A1_%D7%92%D7%9C%D7%B2%D7%9B%D7%95%D7%A0%D7%92%D7%A2%D7%9F" title="מאקסוועלס גלײכונגען – идиш" lang="yi" hreflang="yi" data-title="מאקסוועלס גלײכונגען" data-language-autonym="ייִדיש" data-language-local-name="идиш" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="Добра статия"><a href="https://zh.wikipedia.org/wiki/%E9%A6%AC%E5%85%8B%E5%A3%AB%E5%A8%81%E6%96%B9%E7%A8%8B%E7%B5%84" title="馬克士威方程組 – китайски" lang="zh" hreflang="zh" data-title="馬克士威方程組" data-language-autonym="中文" data-language-local-name="китайски" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%BA%A5%E5%A3%AB%E7%B6%AD%E6%96%B9%E7%A8%8B%E7%B5%84" title="麥士維方程組 – кантонски" lang="yue" hreflang="yue" data-title="麥士維方程組" data-language-autonym="粵語" data-language-local-name="кантонски" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q51501#sitelinks-wikipedia" title="Редактиране на междуезиковите препратки" class="wbc-editpage">Редактиране</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Именни пространства"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Преглед на основната страница [c]" accesskey="c"><span>Статия</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%D0%91%D0%B5%D1%81%D0%B5%D0%B4%D0%B0:%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" rel="discussion" title="Беседа за страницата [t]" accesskey="t"><span>Беседа</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Промяна на езиковия вариант" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">български</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Прегледи"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB"><span>Преглед</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit" title="Редактиране на страницата [v]" accesskey="v"><span>Редактиране</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit" title="Редактиране на изходния код на страницата [e]" accesskey="e"><span>Редактиране на кода</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=history" title="Предишни версии на страницата [h]" accesskey="h"><span>История</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Инструменти" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Инструменти</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Инструменти</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">преместване към страничната лента</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">скриване</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Допълнителни опции" > <div class="vector-menu-heading"> Действия </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB"><span>Преглед</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit" title="Редактиране на страницата [v]" accesskey="v"><span>Редактиране</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit" title="Редактиране на изходния код на страницата [e]" accesskey="e"><span>Редактиране на кода</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=history"><span>История</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Основни </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9A%D0%B0%D0%BA%D0%B2%D0%BE_%D1%81%D0%BE%D1%87%D0%B8_%D0%BD%D0%B0%D1%81%D0%B0%D0%BC/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Списък на всички страници, сочещи насам [j]" accesskey="j"><span>Какво сочи насам</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D0%B2%D1%8A%D1%80%D0%B7%D0%B0%D0%BD%D0%B8_%D0%BF%D1%80%D0%BE%D0%BC%D0%B5%D0%BD%D0%B8/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" rel="nofollow" title="Последните промени на страници, сочени от тази страница [k]" accesskey="k"><span>Свързани промени</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/MediaWiki:Uploadtext" title="Качи файлове [u]" accesskey="u"><span>Качване на файл</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B8" title="Списък на всички специални страници [q]" accesskey="q"><span>Специални страници</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;oldid=12045491" title="Постоянна препратка към тази версия на страницата"><span>Постоянна препратка</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=info" title="Повече за тази страница"><span>Информация за страницата</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A6%D0%B8%D1%82%D0%B8%D1%80%D0%B0%D0%BD%D0%B5&amp;page=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;id=12045491&amp;wpFormIdentifier=titleform" title="Информация за начините за цитиране на тази страница"><span>Цитиране на статията</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:UrlShortener&amp;url=https%3A%2F%2Fbg.wikipedia.org%2Fwiki%2F%25D0%25A3%25D1%2580%25D0%25B0%25D0%25B2%25D0%25BD%25D0%25B5%25D0%25BD%25D0%25B8%25D1%258F_%25D0%25BD%25D0%25B0_%25D0%259C%25D0%25B0%25D0%25BA%25D1%2581%25D1%2583%25D0%25B5%25D0%25BB"><span>Кратък URL адрес</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:QrCode&amp;url=https%3A%2F%2Fbg.wikipedia.org%2Fwiki%2F%25D0%25A3%25D1%2580%25D0%25B0%25D0%25B2%25D0%25BD%25D0%25B5%25D0%25BD%25D0%25B8%25D1%258F_%25D0%25BD%25D0%25B0_%25D0%259C%25D0%25B0%25D0%25BA%25D1%2581%25D1%2583%25D0%25B5%25D0%25BB"><span>Изтегляне на QR код</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Отпечатване/изнасяне </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:Book&amp;bookcmd=book_creator&amp;referer=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F+%D0%BD%D0%B0+%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB"><span>Създаване на книга</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:DownloadAsPdf&amp;page=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=show-download-screen"><span>Изтегляне като PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;printable=yes" title="Версия за печат на страницата [p]" accesskey="p"><span>Версия за печат</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> В други проекти </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Maxwell%27s_equations" hreflang="en"><span>Общомедия</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q51501" title="Препратка към свързания обект от хранилището за данни [g]" accesskey="g"><span>Обект в Уикиданни</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Облик"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Облик</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">преместване към страничната лента</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">скриване</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">от Уикипедия, свободната енциклопедия</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="bg" dir="ltr"><table class="vertical-navbox nowraplinks" style="float:right;clear:right;width:22.0em;margin:0 0 1.0em 1.0em;background:#f9f9f9;border:1px solid #aaa;padding:0.2em;border-spacing:0.4em 0;text-align:center;line-height:1.4em;font-size:88%"><tbody><tr><td style="padding-top:0.4em;line-height:1.2em">Серия статии на тема</td></tr><tr><th class="title physic" style="padding:0.2em 0.4em 0.2em;padding-top:0;font-size:145%;line-height:1.2em;background-color:#D4D4FF; padding: 0.7em"><a href="/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" class="mw-redirect" title="Класическа електродинамика">Класическа електродинамика</a></th></tr><tr><td style="padding:0.2em 0 0.4em"><span typeof="mw:File/Frameless"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:CoulombsLaw.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/190px-CoulombsLaw.svg.png" decoding="async" width="190" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/285px-CoulombsLaw.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/380px-CoulombsLaw.svg.png 2x" data-file-width="512" data-file-height="410" /></a></span></td></tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <ul><li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Електричество">Електричество</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Магнетизъм">Магнетизъм</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5" title="Електромагнитно взаимодействие">Електромагнетизъм</a></li></ul></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold"><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Електростатика">Електростатика</a></div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%9A%D1%83%D0%BB%D0%BE%D0%BD" title="Закон на Кулон">Закон на Кулон</a></li> <li><a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BD%D0%B0_%D0%93%D0%B0%D1%83%D1%81" title="Теорема на Гаус">Теорема на Гаус</a></li> <li><a href="/wiki/%D0%94%D0%B8%D0%BF%D0%BE%D0%BB" title="Дипол">Електрически дипол</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D0%B7%D0%B0%D1%80%D1%8F%D0%B4" title="Електрически заряд">Електрически заряд</a></li> <li><a href="/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%BD%D0%B7%D0%B8%D1%82%D0%B5%D1%82_%D0%BD%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D1%82%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Интензитет на електрическото поле">Интензитет на електрическото поле</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" class="mw-redirect" title="Електрично поле">Електрично поле</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Електричен потенциал">Електричен потенциал</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B5%D1%82" title="Електрет">Електрет</a></li></ul></div></div></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold"><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Магнитостатика">Магнитостатика</a></div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82" title="Магнит">Магнит</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Магнитно поле">Магнитно поле</a></li> <li><a href="/wiki/%D0%94%D0%B8%D0%BF%D0%BE%D0%BB" title="Дипол">Дипол</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%BE%D0%BA" title="Магнитен поток">Магнитен поток</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Магнитна индукция">Магнитна индукция</a></li> <li><a href="/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%BD%D0%B7%D0%B8%D1%82%D0%B5%D1%82_%D0%BD%D0%B0_%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D1%82%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Интензитет на магнитното поле">Интензитет на магнитното поле</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D0%BD%D0%B8%D1%86%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82" title="Магнитна проницаемост">Магнитна проницаемост</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%B2%D1%8A%D0%B7%D0%BF%D1%80%D0%B8%D0%B5%D0%BC%D1%87%D0%B8%D0%B2%D0%BE%D1%81%D1%82" title="Магнитна възприемчивост">Магнитна възприемчивост</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B5%D0%BD_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82" title="Магнитен момент">Магнитен момент</a></li> <li><a href="/wiki/%D0%9D%D0%B0%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B2%D0%B0%D0%BD%D0%B5" title="Намагнитване">Намагнитване</a></li> <li><a href="/wiki/%D0%A4%D0%B5%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Феромагнетизъм">Феромагнетизъм</a></li> <li><a href="/wiki/%D0%94%D0%B8%D0%B0%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Диамагнетизъм">Диамагнетизъм</a></li> <li><a href="/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Парамагнетизъм">Парамагнетизъм</a></li> <li><a href="/wiki/%D0%A1%D1%83%D0%BF%D0%B5%D1%80%D0%BF%D0%B0%D1%80%D0%B0%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Суперпарамагнетизъм">Суперпарамагнетизъм</a></li> <li><a href="/wiki/%D0%90%D0%BD%D1%82%D0%B8%D1%84%D0%B5%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Антиферомагнетизъм">Антиферомагнетизъм</a></li> <li><a href="/wiki/%D0%A4%D0%B5%D1%80%D0%B8%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Феримагнетизъм">Феримагнетизъм</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%BB%D0%B5%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D1%8F" title="Магнитна левитация">Магнитна левитация</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%91%D0%B8%D0%BE-%D0%A1%D0%B0%D0%B2%D0%B0%D1%80" title="Закон на Био-Савар">Закон на Био-Савар</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%90%D0%BC%D0%BF%D0%B5%D1%80" title="Закон на Ампер">Закон на Ампер</a></li></ul></div></div></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold"><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Електродинамика">Електродинамика</a></div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Електромагнитно поле">Електромагнитно поле</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Електромагнитна индукция">Електромагнитна индукция</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%B8%D0%B7%D0%BB%D1%8A%D1%87%D0%B2%D0%B0%D0%BD%D0%B5" title="Електромагнитно излъчване">Електромагнитно излъчване</a></li> <li><a href="/wiki/%D0%94%D0%B8%D0%BF%D0%BE%D0%BB" title="Дипол">Дипол</a></li> <li><a href="/wiki/%D0%A1%D0%B8%D0%BB%D0%B0_%D0%BD%D0%B0_%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86" title="Сила на Лоренц">Сила на Лоренц</a></li> <li><a class="mw-selflink selflink">Уравнения на Максуел</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B5%D0%BD_4-%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Електромагнитен 4-потенциал">Електромагнитен 4-потенциал</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Електричен потенциал">Електричен потенциал</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B5%D0%BD_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Магнитен векторен потенциал">Магнитен векторен потенциал</a></li> <li><a href="/wiki/%D0%92%D1%8A%D0%BB%D0%BD%D0%BE%D0%B2%D0%BE_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5" title="Вълново уравнение">Вълново уравнение</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D1%8A%D1%81%D0%BD%D1%8F%D0%B2%D0%B0%D1%89_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Закъсняващ потенциал">Закъсняващ потенциал</a></li> <li><a href="/wiki/%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BD%D0%B0_%D0%94%27%D0%90%D0%BB%D0%B0%D0%BC%D0%B1%D0%B5%D1%80" title="Оператор на Д&#39;Аламбер">Оператор на Д'Аламбер</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D0%B4%D0%B8%D0%BF%D0%BE%D0%BB%D0%B5%D0%BD_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82" title="Електрически диполен момент">Електрически диполен момент</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82" title="Електромагнит">Електромагнит</a></li> <li><a href="/wiki/%D0%95%D1%84%D0%B5%D0%BA%D1%82_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%B9%D1%81%D0%BD%D0%B5%D1%80" title="Ефект на Майснер">Ефект на Майснер</a></li></ul></div></div></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold"><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B2%D0%B5%D1%80%D0%B8%D0%B3%D0%B0" title="Електрическа верига">Електрическа верига</a></div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D1%82%D0%BE%D0%BA" title="Електрически ток">Електрически ток</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE_%D0%BD%D0%B0%D0%BF%D1%80%D0%B5%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5" title="Електрическо напрежение">Електрическо напрежение</a></li> <li><a href="/wiki/%D0%92%D0%BE%D0%BB%D1%82-%D0%B0%D0%BC%D0%BF%D0%B5%D1%80%D0%BD%D0%B0_%D1%85%D0%B0%D1%80%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0" title="Волт-амперна характеристика">Волт-амперна характеристика</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE_%D1%81%D1%8A%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5" title="Електрическо съпротивление">Електрическо съпротивление</a></li> <li><a href="/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82" title="Индуктивност">Индуктивност</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D0%BA%D0%B0%D0%BF%D0%B0%D1%86%D0%B8%D1%82%D0%B5%D1%82" title="Електрически капацитет">Електрически капацитет</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%B8%D0%BC%D0%BE%D1%81%D1%82" title="Електрическа проводимост">Електрическа проводимост</a></li> <li><a href="/wiki/%D0%98%D0%BC%D0%BF%D0%B5%D0%B4%D0%B0%D0%BD%D1%81" title="Импеданс">Електрически импеданс</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%9E%D0%BC" title="Закон на Ом">Закон на Ом</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8_%D0%BD%D0%B0_%D0%9A%D0%B8%D1%80%D1%85%D0%BE%D1%84" title="Закони на Кирхоф">Закони на Кирхоф</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%94%D0%B6%D0%B0%D1%83%D0%BB-%D0%9B%D0%B5%D0%BD%D1%86" class="mw-redirect" title="Закон на Джаул-Ленц">Закон на Джаул-Ленц</a></li></ul></div></div></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold">Известни учени</div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%A5%D0%B5%D0%BD%D1%80%D0%B8_%D0%9A%D0%B0%D0%B2%D0%B5%D0%BD%D0%B4%D0%B8%D1%88" title="Хенри Кавендиш">Хенри Кавендиш</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B9%D0%BA%D1%8A%D0%BB_%D0%A4%D0%B0%D1%80%D0%B0%D0%B4%D0%B5%D0%B9" title="Майкъл Фарадей">Майкъл Фарадей</a></li> <li><a href="/wiki/%D0%90%D0%BD%D0%B4%D1%80%D0%B5-%D0%9C%D0%B0%D1%80%D0%B8_%D0%90%D0%BC%D0%BF%D0%B5%D1%80" title="Андре-Мари Ампер">Андре-Мари Ампер</a></li> <li><a href="/wiki/%D0%93%D1%83%D1%81%D1%82%D0%B0%D0%B2_%D0%9A%D0%B8%D1%80%D1%85%D0%BE%D1%84" title="Густав Кирхоф">Густав Кирхоф</a></li> <li><a href="/wiki/%D0%94%D0%B6%D0%B5%D0%B9%D0%BC%D1%81_%D0%9A%D0%BB%D0%B0%D1%80%D0%BA_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Джеймс Кларк Максуел">Джеймс Кларк Максуел</a></li> <li><a href="/wiki/%D0%A5%D0%B0%D0%B9%D0%BD%D1%80%D0%B8%D1%85_%D0%A5%D0%B5%D1%80%D1%86" title="Хайнрих Херц">Хайнрих Херц</a></li> <li><a href="/wiki/%D0%90%D0%BB%D0%B1%D0%B5%D1%80%D1%82_%D0%90%D0%B1%D1%80%D0%B0%D1%85%D0%B0%D0%BC_%D0%9C%D0%B0%D0%B9%D0%BA%D0%B5%D0%BB%D1%81%D1%8A%D0%BD" class="mw-redirect" title="Алберт Абрахам Майкелсън">Алберт Абрахам Майкелсън</a></li> <li><a href="/wiki/%D0%A0%D0%BE%D0%B1%D1%8A%D1%80%D1%82_%D0%9C%D0%B8%D0%BB%D0%B8%D0%BA%D0%B0%D0%BD" title="Робърт Миликан">Робърт Миликан</a></li> <li><a href="/wiki/%D0%93%D0%B5%D0%BE%D1%80%D0%B3_%D0%9E%D0%BC" title="Георг Ом">Георг Ом</a></li> <li><a href="/wiki/%D0%9B%D1%83%D0%B8_%D0%9D%D0%B5%D0%B5%D0%BB" title="Луи Неел">Луи Неел</a></li></ul></div></div></td> </tr><tr><td style="text-align:right;font-size:115%;padding-top: 0.6em;"><div class="plainlinks hlist navbar mini"><ul><li class="nv-view"><a href="/wiki/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Шаблон:Класическа електродинамика"><abbr title="Преглед на шаблона">п</abbr></a></li><li class="nv-talk"><a class="external text" href="https://bg.wikipedia.org/w/index.php?title=%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD_%D0%B1%D0%B5%D1%81%D0%B5%D0%B4%D0%B0%3A%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1"><abbr title="Беседа на шаблона (страницата не съществува)" style="color:#ba0000">б</abbr></a></li><li class="nv-edit"><a class="external text" href="https://bg.wikipedia.org/w/index.php?title=%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit"><abbr title="Редактиране на шаблона">р</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Уравненията на Максуел</b> или <b>уравнения на Максуел-<a href="/wiki/%D0%A5%D0%B0%D0%B9%D0%BD%D1%80%D0%B8%D1%85_%D0%A5%D0%B5%D1%80%D1%86" title="Хайнрих Херц">Херц</a></b> са система от 4 уравнения, обобщени от <a href="/wiki/%D0%94%D0%B6%D0%B5%D0%B9%D0%BC%D1%81_%D0%9A%D0%BB%D0%B0%D1%80%D0%BA_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Джеймс Кларк Максуел">Джеймс Кларк Максуел</a>, които описват поведението на <a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Електрическо поле">електрическото</a>, <a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Магнитно поле">магнитното</a> и <a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Електромагнитно поле">електромагнитното</a> поле, както и взаимодействието им с веществени среди. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Въведение"><span id=".D0.92.D1.8A.D0.B2.D0.B5.D0.B4.D0.B5.D0.BD.D0.B8.D0.B5"></span>Въведение</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=1" title="Редактиране на раздел: Въведение" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=1" title="Edit section&#039;s source code: Въведение"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Четирите уравнения на Максуел показват: </p> <ul><li>взаимната зависимост на електрическото и магнитно полета;</li> <li>съществуването на електромагнитни вълни;</li> <li>крайната скорост на разпространение на електромагнитните вълни;</li> <li>разпространението на електромагнитното поле със скоростта на светлината, както и природата на светлината като електромагнитна вълна.</li></ul> <p>През <a href="/wiki/1864" title="1864">1864</a> г. Максуел е първият, който обединява четирите основни уравнения на електромагнетизма в обща система. Той е и първият, който обръща внимание, че е необходима корекция на <a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%90%D0%BC%D0%BF%D0%B5%D1%80" title="Закон на Ампер">закона на Ампер</a>, а именно: променливото електрическо поле създава магнитно поле, както и че последното се създава и от токове на електрична индукция. </p><p>Освен това Максуел показва, че вълните, създадени от колебаещи се електрически и магнитни полета, се разпространяват във вакуум със скорост, която може да бъде предсказана с прости експерименти. Използвайки тогавашните данни, Максуел получил скорост от 310 740 000 m/s. </p><p>През <a href="/wiki/1865" title="1865">1865</a> г. Максуел пише: </p><p><i>„Тази скорост е толкова близка до тази на светлината, че изглежда имаме сериозна причина да заключим, че самата светлина е електромагнитно смущение във формата на вълни, разпространявано посредством електромагнитно поле и според законите за електромагнетизма.“</i> </p><p>Максуел се оказва прав в това предположение, въпреки че не доживява неговото потвърждение (от <a href="/wiki/%D0%A5%D0%B0%D0%B9%D0%BD%D1%80%D0%B8%D1%85_%D0%A5%D0%B5%D1%80%D1%86" title="Хайнрих Херц">Хайнрих Херц</a> през <a href="/wiki/1888" title="1888">1888</a> г., който между другото е отричал наличието на електромагнитни вълни). Качественото характеризиране на светлината като електромагнитна вълна се счита за един от най-големите триумфи на физиката на <a href="/wiki/XIX_%D0%B2%D0%B5%D0%BA" class="mw-redirect" title="XIX век">XIX век</a>. Всъщност <a href="/wiki/%D0%9C%D0%B0%D0%B9%D0%BA%D1%8A%D0%BB_%D0%A4%D0%B0%D1%80%D0%B0%D0%B4%D0%B5%D0%B9" title="Майкъл Фарадей">Майкъл Фарадей</a> постулира същата представа за светлината през <a href="/wiki/1846" title="1846">1846</a> г., но не успява да даде качествено обяснение или да предскаже светлинната скорост. Това откритие полага основите на много бъдещи развои във физиката, като специалната <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0" title="Теория на относителността">теория на относителността</a>. </p> <div class="mw-heading mw-heading2"><h2 id="История_на_уравненията_на_Максуел_и_относителността"><span id=".D0.98.D1.81.D1.82.D0.BE.D1.80.D0.B8.D1.8F_.D0.BD.D0.B0_.D1.83.D1.80.D0.B0.D0.B2.D0.BD.D0.B5.D0.BD.D0.B8.D1.8F.D1.82.D0.B0_.D0.BD.D0.B0_.D0.9C.D0.B0.D0.BA.D1.81.D1.83.D0.B5.D0.BB_.D0.B8_.D0.BE.D1.82.D0.BD.D0.BE.D1.81.D0.B8.D1.82.D0.B5.D0.BB.D0.BD.D0.BE.D1.81.D1.82.D1.82.D0.B0"></span>История на уравненията на Максуел и относителността</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=2" title="Редактиране на раздел: История на уравненията на Максуел и относителността" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=2" title="Edit section&#039;s source code: История на уравненията на Максуел и относителността"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Оригиналната формулировка на Максуел от <a href="/wiki/1865" title="1865">1865</a> г. включва 20 уравнения и 20 променливи, но днес няколко от уравненията се считат за помощни. </p><p>Модерната математическа формулировка на уравненията на Максуел е дело на <a href="/wiki/%D0%9E%D0%BB%D0%B8%D0%B2%D1%8A%D1%80_%D0%A5%D0%B5%D0%B2%D0%B8%D1%81%D0%B0%D0%B9%D0%B4" title="Оливър Хевисайд">Оливър Хевисайд</a> и <a href="/wiki/%D0%A3%D0%B8%D0%BB%D0%B0%D1%80%D0%B4_%D0%93%D0%B8%D0%B1%D1%81" title="Уилард Гибс">Уилард Гибс</a>, които през <a href="/wiki/1884" title="1884">1884</a> г. преформулират оригиналната система уравнения на Максуел до много по-опростено представяне, използвайки <a href="/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B5%D0%BD_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7" title="Векторен анализ">векторен анализ</a>. Преминаването към векторни изрази създава симетрично математическо представяне, което подсилва възприятието за физическа <a href="/wiki/%D0%A1%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Симетрия">симетрия</a> между различните полета. </p><p>Тази силно симетрична формулировка може да бъде пряко свързана с бъдещи фундаментални открития във физиката. </p><p>Към края на <a href="/wiki/XIX_%D0%B2%D0%B5%D0%BA" class="mw-redirect" title="XIX век">XIX век</a> физиците предполагат, че според <a href="/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Класическа физика">класическата физика</a> <a href="/wiki/%D0%A1%D0%B2%D0%B5%D1%82%D0%BB%D0%B8%D0%BD%D0%B0" title="Светлина">светлината</a> се разпространява в хипотетична неподвижна среда, която наричат <a href="/wiki/%D0%95%D1%82%D0%B5%D1%80_(%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0)" title="Етер (физика)">светлинен етер</a>. Според уравненията на Максуел <a href="/wiki/%D0%A1%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82_%D0%BD%D0%B0_%D1%81%D0%B2%D0%B5%D1%82%D0%BB%D0%B8%D0%BD%D0%B0%D1%82%D0%B0" title="Скорост на светлината">скоростта на светлината</a> като електромагнитна вълна<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> във вакуум е </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\frac {1}{\sqrt {\varepsilon _{0}\mu _{0}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\frac {1}{\sqrt {\varepsilon _{0}\mu _{0}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3720d3b0fb9800ba7ec863ab79267629463b8da4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:11.471ex; height:6.176ex;" alt="{\displaystyle c={\frac {1}{\sqrt {\varepsilon _{0}\mu _{0}}}}}"></span>, <br />където <i>ε</i><sub>0</sub> е <a href="/wiki/%D0%94%D0%B8%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D0%BD%D0%B8%D1%86%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82" title="Диелектрична проницаемост">диелектричната константа</a> и <i>μ</i><sub>0</sub> е <a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D0%BD%D0%B8%D1%86%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82" title="Магнитна проницаемост">магнитната константа</a>.</dd></dl> <p>Когато етерът е отречен чрез <a href="/wiki/%D0%9E%D0%BF%D0%B8%D1%82_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%B9%D0%BA%D0%B5%D0%BB%D1%81%D1%8A%D0%BD-%D0%9C%D0%BE%D1%80%D0%BB%D0%B8" title="Опит на Майкелсън-Морли">експеримента на Майкелсън-Морли</a>, <a href="/wiki/%D0%A5%D0%B5%D0%BD%D0%B4%D1%80%D0%B8%D0%BA_%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86" title="Хендрик Лоренц">Лоренц</a> и други търсят алтернативни решения, които кулминират със създаването на <a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B0%D1%82%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0" class="mw-redirect" title="Специалната теория на относителността">специалната теория на относителността</a> от <a href="/wiki/%D0%90%D0%B9%D0%BD%D1%89%D0%B0%D0%B9%D0%BD" class="mw-redirect" title="Айнщайн">Айнщайн</a>, която предполага отсъствието на абсолютна координатна система в покой (или етер). Теорията постулира също така и инвариантност на уравненията на Максуел във всички относителни (инерциални) координатни системи. </p><p>Уравненията за електромагнитното поле имат вътрешна връзка със специалната теория на относителността: уравненията за магнитното поле могат да бъдат изведени от преобразуването на уравненията за електрическото поле при релативистки трансформации при ниски скорости. (При относителността, уравненията са написани дори в по-компактна, „ковариантна“ форма, изразени като полеви <a href="/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80" title="Тензор">тензор</a>-4 от ранг-2, който обединява в едно магнитното и електрическото полета). </p><p><a href="/w/index.php?title=%D0%9A%D0%B0%D0%BB%D1%83%D1%86%D0%B0&amp;action=edit&amp;redlink=1" class="new" title="Калуца (страницата не съществува)">Калуца</a> и <a href="/wiki/%D0%9A%D0%BB%D0%B0%D0%B9%D0%BD" class="mw-redirect" title="Клайн">Клайн</a> показват (1920), че уравненията на Максуел могат да се изведат чрез разширяване на общата теория на относителността така, че да обхване пет измерения. Тази стратегия за използване на повече <a href="/wiki/%D0%98%D0%B7%D0%BC%D0%B5%D1%80%D0%B5%D0%BD%D0%B8%D0%B5" class="mw-redirect" title="Измерение">измерения</a> за обединяване на различни сили се прилага във <a href="/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_%D0%BD%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D0%B8%D1%82%D0%B5_%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86%D0%B8" title="Физика на елементарните частици">физиката на елементарните частици</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Общи_сведения"><span id=".D0.9E.D0.B1.D1.89.D0.B8_.D1.81.D0.B2.D0.B5.D0.B4.D0.B5.D0.BD.D0.B8.D1.8F"></span>Общи сведения</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=3" title="Редактиране на раздел: Общи сведения" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=3" title="Edit section&#039;s source code: Общи сведения"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Електрическото и магнитно полета се характеризират с аналогични <a href="/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор">векторни</a> величини: <sup id="cite_ref-ПЛ_2-0" class="reference"><a href="#cite_note-ПЛ-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-МАМ_3-0" class="reference"><a href="#cite_note-МАМ-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:ETH-BIB-Maxwell,_James_Clerk_(1831-1879)-Portrait-Portr_01333.tif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/ETH-BIB-Maxwell%2C_James_Clerk_%281831-1879%29-Portrait-Portr_01333.tif/lossy-page1-200px-ETH-BIB-Maxwell%2C_James_Clerk_%281831-1879%29-Portrait-Portr_01333.tif.jpg" decoding="async" width="200" height="267" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/ETH-BIB-Maxwell%2C_James_Clerk_%281831-1879%29-Portrait-Portr_01333.tif/lossy-page1-300px-ETH-BIB-Maxwell%2C_James_Clerk_%281831-1879%29-Portrait-Portr_01333.tif.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6a/ETH-BIB-Maxwell%2C_James_Clerk_%281831-1879%29-Portrait-Portr_01333.tif/lossy-page1-400px-ETH-BIB-Maxwell%2C_James_Clerk_%281831-1879%29-Portrait-Portr_01333.tif.jpg 2x" data-file-width="2684" data-file-height="3577" /></a><figcaption>Джеймс Кларк Максуел</figcaption></figure> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7f22b39d51f780fc02859059c1757c606b9de2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.757ex; height:2.176ex;" alt="{\displaystyle \mathbf {E} }"></span> – вектор на интензитета на електрическото поле,<br /></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f017b876ed763037d8818ec5dfbbdc6703e0f683" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.091ex; height:2.176ex;" alt="{\displaystyle \mathbf {H} }"></span> – вектор на интензитета на магнитното поле,<br /></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {D} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {D} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2345293072878db24e119c580def49ad582e3ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.05ex; height:2.176ex;" alt="{\displaystyle \mathbf {D} }"></span> – вектор на <a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Електрична индукция">електричната индукция</a> или електричeското сместване,<br /></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cafb0ef39b0f5ffa23c170aa7f7b4e718327c4d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.901ex; height:2.176ex;" alt="{\displaystyle \mathbf {B} }"></span> – вектор на <a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Магнитна индукция">магнитната индукция</a>.</dd></dl> <p>Те са свързани с равенствата </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {D} =\varepsilon \mathbf {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {D} =\varepsilon \mathbf {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a9223a64cdd0d289d8864389aa20b5b318f65b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.989ex; height:2.176ex;" alt="{\displaystyle \mathbf {D} =\varepsilon \mathbf {E} }"></span> и</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} =\mu \mathbf {H} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} =\mu \mathbf {H} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a575e79a4a2ae086cb8e2db0b14d3ddbd466df2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.14ex; height:2.676ex;" alt="{\displaystyle \mathbf {B} =\mu \mathbf {H} ,}"></span></dd></dl> <p>чрез <a href="/wiki/%D0%A1%D0%BA%D0%B0%D0%BB%D0%B0%D1%80" title="Скалар">скаларните</a> параметри на средата: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span> – диелектрична проницаемост и</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> – магнитна проницаемост.</dd></dl> <p>Други скаларни параметри на средата са:<br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> – специфична проводимост и</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> – обемна плътност на електрическите заряди.</dd></dl> <p>Всички променливи с <b>удебелен</b> шрифт представляват векторни величини. </p><p>Силата, упражнена върху заредена частица от електрическото и магнитно полета, се получава от <i>уравнението на Лоренц</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =q(\mathbf {E} +\mathbf {v} \times \mathbf {B} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =q(\mathbf {E} +\mathbf {v} \times \mathbf {B} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d179abe43021d3c2f80b5f1af5c74a8161601dc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.057ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} =q(\mathbf {E} +\mathbf {v} \times \mathbf {B} ),}"></span></dd></dl> <p>където </p> <dl><dd><i>q</i> e зарядът на частицата,</dd> <dd><b>v </b>e векторът скорост на движение на частицата.</dd></dl> <p>В най-общия случай векторните и скаларни параметри на средата се изменят във времето и пространството. </p><p>Уравненията на Максуел са приложими главно за макроскопично усреднени полета, които могат да се променят динамично в микромащаб (в околността на отделните атоми, където са подложени и на квантово-механични ефекти). Само в този макроскопичен смисъл (на усреднени стойности на полето) може да се дефинират величини като диелектричната и магнитна проницаемост на материалите. (В микроскопичен план, но игнорирайки квантовите ефекти, уравненията на Максуел са тези във вакуум, но по принцип трябва да се включат и всички заряди на <a href="/wiki/%D0%90%D1%82%D0%BE%D0%BC" title="Атом">атомно</a> ниво и т.н., което е трудно решим проблем). </p><p>Видът на уравненията зависи от <a href="/wiki/%D0%9F%D1%80%D0%B5%D0%BD%D0%BE%D1%81%D0%BD%D0%B0_%D1%81%D1%80%D0%B5%D0%B4%D0%B0" title="Преносна среда">преносната среда</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Линейни_среди"><span id=".D0.9B.D0.B8.D0.BD.D0.B5.D0.B9.D0.BD.D0.B8_.D1.81.D1.80.D0.B5.D0.B4.D0.B8"></span>Линейни среди</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=4" title="Редактиране на раздел: Линейни среди" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=4" title="Edit section&#039;s source code: Линейни среди"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Линейни са средите, в които параметрите на средата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> не зависят от интензитета на полето. Ако някой от параметрите на средата зависи от интензитета на полето, средата е нелинейна. Всеки материал може да бъде разглеждан като линеен, докато електрическото поле не е изключително силно. </p><p>Ако параметрите са постоянни във всички точки на средата, тя е еднородна или хомогенна; ако са различни, е нееднородна или нехомогенна. </p><p>Ако параметрите на средата са постоянни във всички посоки, средата е <a href="/wiki/%D0%98%D0%B7%D0%BE%D1%82%D1%80%D0%BE%D0%BF%D0%B8%D1%8F" title="Изотропия">изотропна</a>; в противен случай е анизотропна. </p> <div class="mw-heading mw-heading3"><h3 id="Линейни_веществени_среди"><span id=".D0.9B.D0.B8.D0.BD.D0.B5.D0.B9.D0.BD.D0.B8_.D0.B2.D0.B5.D1.89.D0.B5.D1.81.D1.82.D0.B2.D0.B5.D0.BD.D0.B8_.D1.81.D1.80.D0.B5.D0.B4.D0.B8"></span>Линейни веществени среди</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=5" title="Редактиране на раздел: Линейни веществени среди" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=5" title="Edit section&#039;s source code: Линейни веществени среди"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>В линейна изотропна среда <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> са <a href="/wiki/%D0%A1%D0%BA%D0%B0%D0%BB%D0%B0%D1%80" title="Скалар">скалари</a>, независими от времето, и уравненията на Максуел придобиват вида, записан най-често в следните две форми: <sup id="cite_ref-ПЛ_2-1" class="reference"><a href="#cite_note-ПЛ-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-МАМ_3-1" class="reference"><a href="#cite_note-МАМ-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ДДД_4-0" class="reference"><a href="#cite_note-ДДД-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="" style="border-collapse:collapse; padding:0; border:0; background:transparent; color:inherit; width:100%;"> <tbody><tr> <td style="text-align:left; vertical-align:top;width:50%;"> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{e}} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{e}} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ce0ba62fbabcb28a5658abe22f9c95b8025b806" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.281ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{e}} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb118e22c941e34f5537dbbdcaa3d7ba23603e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.495ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {D} =\rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {D} =\rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76835fc646d3912b71f4157618db7fdca02a174e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.965ex; height:2.676ex;" alt="{\displaystyle \nabla \cdot \mathbf {D} =\rho }"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {B} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {B} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.777ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {B} =0}"></span></dd></dl> <p>Тук <a href="/wiki/%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BD%D0%B0%D0%B1%D0%BB%D0%B0" class="mw-redirect" title="Оператор набла">набла</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \nabla }"></span> е векторният оператор на <a href="/wiki/%D0%A3%D0%B8%D0%BB%D1%8F%D0%BC_%D0%A0%D0%BE%D1%83%D1%8A%D0%BD_%D0%A5%D0%B0%D0%BC%D0%B8%D0%BB%D1%82%D1%8A%D0%BD" title="Уилям Роуън Хамилтън">Хамилтън</a> <a href="/wiki/%D0%93%D1%80%D0%B0%D0%B4%D0%B8%D0%B5%D0%BD%D1%82" title="Градиент">градиент</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {J_{e}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {J_{e}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f07e432263f29c8e15e69414392d2b8f0a74355f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle \mathbf {J_{e}} }"></span> е векторът плътност на електрическия ток на проводимост,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> е обемната плътност на електрическите заряди.</dd></dl> </td> <td style="text-align:left; vertical-align:top;width:50%;"> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rot} \mathbf {H} =\sigma \mathbf {E} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rot} \mathbf {H} =\sigma \mathbf {E} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc9ecbcc01d7fdabaed021b22d13986529c8a664" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.478ex; height:5.509ex;" alt="{\displaystyle \operatorname {rot} \mathbf {H} =\sigma \mathbf {E} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rot} \mathbf {E} =-\mu {\frac {\partial \mathbf {H} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rot} \mathbf {E} =-\mu {\frac {\partial \mathbf {H} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a3c05ed97e69616311f32221fdfb3ffc4814f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.677ex; height:5.509ex;" alt="{\displaystyle \operatorname {rot} \mathbf {E} =-\mu {\frac {\partial \mathbf {H} }{\partial t}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {E} ={\frac {\rho }{\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03B5;<!-- ε --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {E} ={\frac {\rho }{\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95eabf667296fb2304afae99cbaf246dc4ded751" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.448ex; height:4.843ex;" alt="{\displaystyle \operatorname {div} \mathbf {E} ={\frac {\rho }{\varepsilon }}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {H} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {H} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c71dbb940d774bf587cd841a52376e0744cf6588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.906ex; height:2.176ex;" alt="{\displaystyle \operatorname {div} \mathbf {H} =0}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> е специфичната проводимост на средата,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span> е диелектрична проницаемост на средата,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> е магнитна проницаемост на средата.</dd></dl> </td></tr></tbody></table> <p>Четвъртото уравнение <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {H} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {H} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c71dbb940d774bf587cd841a52376e0744cf6588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.906ex; height:2.176ex;" alt="{\displaystyle \operatorname {div} \mathbf {H} =0}"></span> показва, че винаги магнитните силови линии са непрекъснати и е еквивалентно на твърдението, че не съществуват магнитни заряди (мóнополи). </p><p>В изотропни и хомогенни среди <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> са <a href="/wiki/%D0%9A%D0%BE%D0%BD%D1%81%D1%82%D0%B0%D0%BD%D1%82%D0%B0" title="Константа">константи</a>, независими от положението в пространството, и така могат да бъдат взаимозаменяеми в различните производни по посока. </p><p>В по-общ случай <b>ε</b> и <b>μ</b> могат да бъдат <a href="/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80" title="Тензор">тензори</a> от ранг-2 (матрици 3х3) описващи двойно пречупващи (анизотропни) материали. Също, въпреки че за много цели зависимостта време/честота за тези константи може да се пренебрегне, всеки веществен обект проявява материална дисперсия, при която <b>ε</b> и/или <b>μ</b> зависят от честотата. </p> <div class="mw-heading mw-heading3"><h3 id="Вакуум,_без_заряди_и_токове"><span id=".D0.92.D0.B0.D0.BA.D1.83.D1.83.D0.BC.2C_.D0.B1.D0.B5.D0.B7_.D0.B7.D0.B0.D1.80.D1.8F.D0.B4.D0.B8_.D0.B8_.D1.82.D0.BE.D0.BA.D0.BE.D0.B2.D0.B5"></span>Вакуум, без заряди и токове</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=6" title="Редактиране на раздел: Вакуум, без заряди и токове" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=6" title="Edit section&#039;s source code: Вакуум, без заряди и токове"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Вакуумът е линейна, хомогенна, изотропна, бездисперсионна среда и константите на пропорционалност във вакуум са означени с ε<sub>0</sub> и μ<sub>0</sub> (пренебрегвайки незначителни нелинейности от квантови ефекти). Във вакуум и при отсъствие на токове и електрически заряди (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {J_{e}} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {J_{e}} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61350e861e617e5426fba58da85e654322f10ea6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.74ex; height:2.509ex;" alt="{\displaystyle \mathbf {J_{e}} =0}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba6310b27df5f9c9b0b1732e08cce27b99d68cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.463ex; height:2.676ex;" alt="{\displaystyle \rho =0}"></span>) се получават уравненията на Максуел в пустота (абсолютен вакуум): </p> <figure typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Onde_electromagnetique.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/Onde_electromagnetique.svg/350px-Onde_electromagnetique.svg.png" decoding="async" width="350" height="86" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/Onde_electromagnetique.svg/525px-Onde_electromagnetique.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/35/Onde_electromagnetique.svg/700px-Onde_electromagnetique.svg.png 2x" data-file-width="714" data-file-height="176" /></a><figcaption>Елекромагнитна вълна</figcaption></figure> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\varepsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\varepsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d8d50a7ef7fccfcbe176104eb3ba26df7dd5930" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:18.281ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\varepsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb118e22c941e34f5537dbbdcaa3d7ba23603e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.495ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {E} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {E} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcbd9a4bd688b1331c2fd3c7fd1d50f0bf87fc28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.633ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {E} =0}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {B} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {B} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.777ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {B} =0}"></span></dd></dl> <p>Третото уравнение <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {E} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {E} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcbd9a4bd688b1331c2fd3c7fd1d50f0bf87fc28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.633ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {E} =0}"></span> показва, че в идеална диелектрична среда и електричните силови линии са непрекъснати – те са затворени линии. <sup id="cite_ref-ПЛ_2-2" class="reference"><a href="#cite_note-ПЛ-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-МАМ_3-2" class="reference"><a href="#cite_note-МАМ-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Тези уравнения имат просто решение в израз на бягащи синусоидални плоски вълни, с взаимно перпендикулярни посоки на електрическия и магнитен интензитет и перпендикулярни на посоката на разпространение. Двете полета са във фаза и се разпространяват със скорост: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\frac {1}{\sqrt {\varepsilon _{0}\mu _{0}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\frac {1}{\sqrt {\varepsilon _{0}\mu _{0}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3720d3b0fb9800ba7ec863ab79267629463b8da4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:11.471ex; height:6.176ex;" alt="{\displaystyle c={\frac {1}{\sqrt {\varepsilon _{0}\mu _{0}}}}}"></span></dd></dl> <p>Максуел открива, че тази величина <i>с</i> е просто скоростта на светлината във вакуум и така също, че светлината е форма на електромагнитно лъчение. Диелектричната и магнитна проницаемости на вакуума имат стойности </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{0}={\frac {1}{36\pi }}.10^{-9}{\frac {F}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>36</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msup> <mn>.10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>9</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>F</mi> <mi>m</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{0}={\frac {1}{36\pi }}.10^{-9}{\frac {F}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b6bf13927bfe5147ff847e6d89dc80ca978a1f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.91ex; height:5.176ex;" alt="{\displaystyle \varepsilon _{0}={\frac {1}{36\pi }}.10^{-9}{\frac {F}{m}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{0}=4\pi .10^{-7}{\frac {H}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mn>.10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>H</mi> <mi>m</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{0}=4\pi .10^{-7}{\frac {H}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b5a078b2bd74e943a17fd443bbaf959a47767d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.253ex; height:5.176ex;" alt="{\displaystyle \mu _{0}=4\pi .10^{-7}{\frac {H}{m}}}"></span></dd></dl> <p>Замествайки тези стойности във формулата за скоростта, се получава: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\frac {1}{\sqrt {{\frac {4\pi }{36\pi }}.10^{-9}.10^{-7}}}}={\frac {1}{\sqrt {{\frac {1}{9}}.10^{-16}}}}={\frac {1}{{\frac {1}{3}}.10^{-8}}}=3.10^{8}{\frac {m}{s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mrow> <mn>36</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msup> <mn>.10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>9</mn> </mrow> </msup> <msup> <mn>.10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>9</mn> </mfrac> </mrow> <msup> <mn>.10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>16</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <msup> <mn>.10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>8</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mn>3.10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mi>s</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\frac {1}{\sqrt {{\frac {4\pi }{36\pi }}.10^{-9}.10^{-7}}}}={\frac {1}{\sqrt {{\frac {1}{9}}.10^{-16}}}}={\frac {1}{{\frac {1}{3}}.10^{-8}}}=3.10^{8}{\frac {m}{s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d044bee112533812cb146bf3fa3c81db685da2e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:57.4ex; height:8.009ex;" alt="{\displaystyle c={\frac {1}{\sqrt {{\frac {4\pi }{36\pi }}.10^{-9}.10^{-7}}}}={\frac {1}{\sqrt {{\frac {1}{9}}.10^{-16}}}}={\frac {1}{{\frac {1}{3}}.10^{-8}}}=3.10^{8}{\frac {m}{s}}}"></span></dd></dl> <p>Тази стойност е скоростта на светлината във вакуум и показва, че във вакуум всяка електромагнитна вълна се разпространява със скоростта на светлината, независимо от честотата. </p> <div class="mw-heading mw-heading3"><h3 id="Теорема_на_Гаус"><span id=".D0.A2.D0.B5.D0.BE.D1.80.D0.B5.D0.BC.D0.B0_.D0.BD.D0.B0_.D0.93.D0.B0.D1.83.D1.81"></span>Теорема на Гаус</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=7" title="Редактиране на раздел: Теорема на Гаус" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=7" title="Edit section&#039;s source code: Теорема на Гаус"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Третото уравнение на Максуел е известно като <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BD%D0%B0_%D0%93%D0%B0%D1%83%D1%81" title="Теорема на Гаус">теорема на Гаус</a>: <sup id="cite_ref-ДДД_4-1" class="reference"><a href="#cite_note-ДДД-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {D} =\rho _{\text{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {D} =\rho _{\text{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205e4ce388b19846ad03e00a1425ff86f5371a63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.927ex; height:2.676ex;" alt="{\displaystyle \nabla \cdot \mathbf {D} =\rho _{\text{c}}}"></span> или</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {D} =\rho _{\text{c}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {D} =\rho _{\text{c}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d0fc895cac74f4a15ddb88db5e8cbea0c4e57eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.513ex; height:2.676ex;" alt="{\displaystyle \operatorname {div} \mathbf {D} =\rho _{\text{c}},}"></span></dd></dl> <p>където ρ<sub>c</sub> е плътността на <i>свободните</i> електрически заряди (в единици C/m<sup>3</sup>), която не включва свързаните диполни заряди във веществото. Това уравнение съответства на <a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%9A%D1%83%D0%BB%D0%BE%D0%BD" title="Закон на Кулон">закона на Кулон</a> за <i>стационарни</i> заряди във вакуум. </p><p>Еквивалентната интегрална форма, още известна като <a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%93%D0%B0%D1%83%D1%81" class="mw-redirect" title="Закон на Гаус">закон на Гаус</a>, е: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint \limits _{S}\mathbf {D} \cdot d\mathbf {S} =Q_{\text{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint \limits _{S}\mathbf {D} \cdot d\mathbf {S} =Q_{\text{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/336aaef6138e76bbe1470ef2162011adad45b1ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:14.91ex; height:7.343ex;" alt="{\displaystyle \oint \limits _{S}\mathbf {D} \cdot d\mathbf {S} =Q_{\text{c}}}"></span></dd></dl> <p>където <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85031f8c63b2820ef433af18cbfcc200825ea669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.701ex; height:2.176ex;" alt="{\displaystyle d\mathbf {S} }"></span> е диференциален вектор-площ върху затворената повърхнина <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac8a515de34f0af7d15de46f73bf674950d444a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {S} }"></span> с посока, определяна от <a href="/wiki/%D0%9D%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D0%B0" title="Нормала">нормалата</a>, насочена навън от повърхнината, а <i>Q<sub>c</sub></i> е свободният заряд, обхванат от повърхнината. </p><p>Ако се отчетат <i>всички</i> заряди <i>Q<sub>B</sub></i>, обхванати от повърхнината, включително свободните и свързаните диполни заряди, с пълна обемна плътност ρ<sub>в</sub>, теоремата на Гаус за линейни среди може да се запише във вида </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {D} =\rho _{\text{B}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {D} =\rho _{\text{B}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2147afaa50795b20ae0ebfa50f614d2578f575be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.008ex; height:2.676ex;" alt="{\displaystyle \nabla \cdot \mathbf {D} =\rho _{\text{B}},}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {D} =\rho _{\text{B}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {D} =\rho _{\text{B}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b8df48930e93a1e806d250f4813b69e65f32018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.947ex; height:2.676ex;" alt="{\displaystyle \operatorname {div} \mathbf {D} =\rho _{\text{B}},}"></span> или</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint \limits _{S}\mathbf {D} \cdot d\mathbf {S} =Q_{\text{B}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint \limits _{S}\mathbf {D} \cdot d\mathbf {S} =Q_{\text{B}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fc27acf6a4a8a2670f4e4b35621736a2982a126" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:15.99ex; height:7.343ex;" alt="{\displaystyle \oint \limits _{S}\mathbf {D} \cdot d\mathbf {S} =Q_{\text{B}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Структура_на_магнитното_поле"><span id=".D0.A1.D1.82.D1.80.D1.83.D0.BA.D1.82.D1.83.D1.80.D0.B0_.D0.BD.D0.B0_.D0.BC.D0.B0.D0.B3.D0.BD.D0.B8.D1.82.D0.BD.D0.BE.D1.82.D0.BE_.D0.BF.D0.BE.D0.BB.D0.B5"></span>Структура на магнитното поле</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=8" title="Редактиране на раздел: Структура на магнитното поле" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=8" title="Edit section&#039;s source code: Структура на магнитното поле"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Четвъртото уравнение на Максуел може да се запише във вида </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {B} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {B} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.777ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {B} =0}"></span> или</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {B} =0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {B} =0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5730d6427160be879b51abb86322db5e0b6ddb68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.363ex; height:2.509ex;" alt="{\displaystyle \operatorname {div} \mathbf {B} =0,}"></span></dd></dl> <p>където <b>В </b>е магнитната индукция [Т], също наричана плътност на магнитния поток.<b> </b> </p><p>Интегрална форма: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint \limits _{S}\mathbf {B} \cdot d\mathbf {S} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint \limits _{S}\mathbf {B} \cdot d\mathbf {S} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdd32edf144426b53ab52628001e82f260948af6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:13.123ex; height:7.343ex;" alt="{\displaystyle \oint \limits _{S}\mathbf {B} \cdot d\mathbf {S} =0}"></span></dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85031f8c63b2820ef433af18cbfcc200825ea669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.701ex; height:2.176ex;" alt="{\displaystyle d\mathbf {S} }"></span> е диференциалната площ от повърхнината <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac8a515de34f0af7d15de46f73bf674950d444a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {S} }"></span> с посока, съвпадаща с тази на нормалата, насочена навън от повърхнината. </p><p>Както интегралът на електрическото поле, това уравнение е в сила, само ако се отнася за затворена повърхност. </p><p>Това уравнение се отнася за структурата на магнитното поле, защото то изразява, че за произволен обемен елемент нетната големина на векторните компоненти, които сочат вън от повърхнината, обхващаща обема, трябва да е равна на нетната големина на векторните компоненти, които сочат към повърхнината. Структурно това означава, че линиите на магнитното поле са затворени непрекъснати линии (контури). Казано по друг начин, магнитните линии не могат да водят началото си от някъде. Опитът да се проследят линиите до техния източник или крайна точка в края на краищата води до връщане до стартовата точка. Следователно това е математическа формулировка на допускането, че няма магнитни заряди (мòнополи). </p> <div class="mw-heading mw-heading2"><h2 id="Общ_вид_на_уравненията"><span id=".D0.9E.D0.B1.D1.89_.D0.B2.D0.B8.D0.B4_.D0.BD.D0.B0_.D1.83.D1.80.D0.B0.D0.B2.D0.BD.D0.B5.D0.BD.D0.B8.D1.8F.D1.82.D0.B0"></span>Общ вид на уравненията</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=9" title="Редактиране на раздел: Общ вид на уравненията" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=9" title="Edit section&#039;s source code: Общ вид на уравненията"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <table border="1" cellpadding="8" cellspacing="0"> <tbody><tr style="background-color: #aaeecc;"> <th>Наименование </th> <th><a href="/wiki/%D0%94%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Диференциал (математика)">Диференциална</a> форма </th> <th><a href="/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB" title="Интеграл">Интегрална</a> форма </th></tr> <tr> <td><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%90%D0%BC%D0%BF%D0%B5%D1%80" title="Закон на Ампер">Закон на Ампер</a> за пълния ток<br /> (в разширения от Максуел вариант): </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rot} \mathbf {H} =\sigma \mathbf {E} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rot} \mathbf {H} =\sigma \mathbf {E} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc9ecbcc01d7fdabaed021b22d13986529c8a664" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.478ex; height:5.509ex;" alt="{\displaystyle \operatorname {rot} \mathbf {H} =\sigma \mathbf {E} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}"></span> или<br /> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{e}} +{\frac {\partial \mathbf {D} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{e}} +{\frac {\partial \mathbf {D} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04376895a26d68a86dcb43ac2c8d4dccd22e353d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.49ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{e}} +{\frac {\partial \mathbf {D} }{\partial t}}}"></span> </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint \limits _{C}\mathbf {H} \cdot d\mathbf {l} =\int \limits _{S}\mathbf {J_{e}} \cdot d\mathbf {S} +{d \over dt}\int \limits _{S}\mathbf {D} \cdot d\mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">l</mi> </mrow> <mo>=</mo> <munder> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <munder> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint \limits _{C}\mathbf {H} \cdot d\mathbf {l} =\int \limits _{S}\mathbf {J_{e}} \cdot d\mathbf {S} +{d \over dt}\int \limits _{S}\mathbf {D} \cdot d\mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aed55c6cb809ce374728940680e6fc005f2e3e25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; margin-left: -0.031ex; width:36.009ex; height:7.509ex;" alt="{\displaystyle \oint \limits _{C}\mathbf {H} \cdot d\mathbf {l} =\int \limits _{S}\mathbf {J_{e}} \cdot d\mathbf {S} +{d \over dt}\int \limits _{S}\mathbf {D} \cdot d\mathbf {S} }"></span> </td></tr> <tr> <td><a href="/w/index.php?title=%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%A4%D0%B0%D1%80%D0%B0%D0%B4%D0%B5%D0%B9&amp;action=edit&amp;redlink=1" class="new" title="Закон на Фарадей (страницата не съществува)">Закон на Фарадей</a>: <br /> за промяна на магнитната индукция </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rot} \mathbf {E} =-\mu {\frac {\partial \mathbf {H} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rot} \mathbf {E} =-\mu {\frac {\partial \mathbf {H} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a3c05ed97e69616311f32221fdfb3ffc4814f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.677ex; height:5.509ex;" alt="{\displaystyle \operatorname {rot} \mathbf {E} =-\mu {\frac {\partial \mathbf {H} }{\partial t}}}"></span> или<br /> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb118e22c941e34f5537dbbdcaa3d7ba23603e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.495ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"></span> </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint \limits _{C}\mathbf {E} \cdot d\mathbf {l} =-\ {d \over dt}\int \limits _{S}\mathbf {B} \cdot d\mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">l</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <munder> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint \limits _{C}\mathbf {E} \cdot d\mathbf {l} =-\ {d \over dt}\int \limits _{S}\mathbf {B} \cdot d\mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c73bf7032c7a4b709d40af9d54b8a25775aa2ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; margin-left: -0.031ex; width:25.633ex; height:7.509ex;" alt="{\displaystyle \oint \limits _{C}\mathbf {E} \cdot d\mathbf {l} =-\ {d \over dt}\int \limits _{S}\mathbf {B} \cdot d\mathbf {S} }"></span> </td></tr> <tr> <td><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%93%D0%B0%D1%83%D1%81" class="mw-redirect" title="Закон на Гаус">Закон на Гаус</a> относно <br /> поток на електрическата индукция </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {E} ={\frac {\rho }{\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03B5;<!-- ε --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {E} ={\frac {\rho }{\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95eabf667296fb2304afae99cbaf246dc4ded751" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.448ex; height:4.843ex;" alt="{\displaystyle \operatorname {div} \mathbf {E} ={\frac {\rho }{\varepsilon }}}"></span> или<br /> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {D} =\rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {D} =\rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76835fc646d3912b71f4157618db7fdca02a174e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.965ex; height:2.676ex;" alt="{\displaystyle \nabla \cdot \mathbf {D} =\rho }"></span> </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint \limits _{S}\mathbf {D} \cdot d\mathbf {S} =\int \limits _{V}\rho \cdot dV}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <munder> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </munder> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint \limits _{S}\mathbf {D} \cdot d\mathbf {S} =\int \limits _{V}\rho \cdot dV}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b9482aaf07aae7946c20073f8aa8b9cc6449d6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:20.574ex; height:7.343ex;" alt="{\displaystyle \oint \limits _{S}\mathbf {D} \cdot d\mathbf {S} =\int \limits _{V}\rho \cdot dV}"></span> </td></tr> <tr> <td>Закон на Гаус относно <br /> поток на <a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%BE%D0%BA" title="Магнитен поток">магнитната индукция</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {H} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {H} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c71dbb940d774bf587cd841a52376e0744cf6588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.906ex; height:2.176ex;" alt="{\displaystyle \operatorname {div} \mathbf {H} =0}"></span> или<br /> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {B} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {B} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.777ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {B} =0}"></span> </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint \limits _{S}\mathbf {B} \cdot d\mathbf {S} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint \limits _{S}\mathbf {B} \cdot d\mathbf {S} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdd32edf144426b53ab52628001e82f260948af6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:13.123ex; height:7.343ex;" alt="{\displaystyle \oint \limits _{S}\mathbf {B} \cdot d\mathbf {S} =0}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Означения_и_измервателни_единици_на_използваните_величини"><span id=".D0.9E.D0.B7.D0.BD.D0.B0.D1.87.D0.B5.D0.BD.D0.B8.D1.8F_.D0.B8_.D0.B8.D0.B7.D0.BC.D0.B5.D1.80.D0.B2.D0.B0.D1.82.D0.B5.D0.BB.D0.BD.D0.B8_.D0.B5.D0.B4.D0.B8.D0.BD.D0.B8.D1.86.D0.B8_.D0.BD.D0.B0_.D0.B8.D0.B7.D0.BF.D0.BE.D0.BB.D0.B7.D0.B2.D0.B0.D0.BD.D0.B8.D1.82.D0.B5_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D0.B8"></span>Означения и измервателни единици на използваните величини</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=10" title="Редактиране на раздел: Означения и измервателни единици на използваните величини" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=10" title="Edit section&#039;s source code: Означения и измервателни единици на използваните величини"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>(съгласно международно приетата система <a href="/wiki/SI" class="mw-redirect" title="SI">SI</a>): <sup id="cite_ref-ПЛ_2-3" class="reference"><a href="#cite_note-ПЛ-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-МАМ_3-3" class="reference"><a href="#cite_note-МАМ-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ДДД_4-2" class="reference"><a href="#cite_note-ДДД-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <table border="1" cellpadding="8" cellspacing="0"> <tbody><tr style="background-color: #aaeecc;"> <th>Символ </th> <th>Значение </th> <th>Измервателна единица в SI </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7f22b39d51f780fc02859059c1757c606b9de2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.757ex; height:2.176ex;" alt="{\displaystyle \mathbf {E} }"></span> </td> <td>Интензитет на електрическото поле </td> <td>V/m <br />волт на метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f017b876ed763037d8818ec5dfbbdc6703e0f683" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.091ex; height:2.176ex;" alt="{\displaystyle \mathbf {H} }"></span> </td> <td>Интензитет на магнитното поле <br /> </td> <td>A/m <br />ампер на метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {D} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {D} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2345293072878db24e119c580def49ad582e3ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.05ex; height:2.176ex;" alt="{\displaystyle \mathbf {D} }"></span> </td> <td>Електрическа индукция <br /> (плътност на електрическия поток) </td> <td>C/m<sup>2</sup><br />кулон на кв. метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cafb0ef39b0f5ffa23c170aa7f7b4e718327c4d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.901ex; height:2.176ex;" alt="{\displaystyle \mathbf {B} }"></span> </td> <td>Магнитна индукция, <br />наричана също плътност на магнитния поток<br /> или магнитно поле </td> <td>T или Wb/m<sup>2</sup><br />тесла, или вебер на кв. метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\Phi } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A6;<!-- Φ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\Phi } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37cfff5df56d78e6da30d00326ba5dbda3cad202" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {\Phi } }"></span> </td> <td>Магнитeн поток<br /> </td> <td>Wb<br />вебер </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {J} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {J} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7686846b1a6b756cb514954000004ab5e7b2a5ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.381ex; height:2.176ex;" alt="{\displaystyle \mathbf {J} }"></span> </td> <td>Плътност на електрическия ток<br />не включва поляризационните токове и токовете на намагнитване в средата </td> <td>A/m<sup>2</sup><br /> ампер на кв. метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \rho \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \rho \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d7dff7ad612756660f48dc7d749cccd21947e34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.363ex; height:2.176ex;" alt="{\displaystyle \ \rho \ }"></span> </td> <td>Плътност на свободните електрически заряди <br /> не се включват свързаните диполни двойки </td> <td>C/m<sup>3</sup><br /><a href="/wiki/%D0%9A%D1%83%D0%BB%D0%BE%D0%BD" title="Кулон">кулон</a> на куб. <a href="/wiki/%D0%9C%D0%B5%D1%82%D1%8A%D1%80" title="Метър">метър</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \varepsilon \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03B5;<!-- ε --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \varepsilon \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b76aba4d424b4587c82db8ef4e2803870524f53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.245ex; height:1.676ex;" alt="{\displaystyle \ \varepsilon \ }"></span> </td> <td>Диелектрична проницаемост </td> <td>F/m<br />фарад на метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mu \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mu \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8260e0b7db3b377710a5275c1657f20ee1735f63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.563ex; height:2.176ex;" alt="{\displaystyle \ \mu \ }"></span> </td> <td>Магнитна проницаемост </td> <td>H/m<br />хенри на метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sigma \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03C3;<!-- σ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sigma \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3d274516c322ea3f474177f06739daf014816b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.491ex; height:1.676ex;" alt="{\displaystyle \ \sigma \ }"></span> </td> <td>Специфична проводимост </td> <td>S/m<br />сименс на метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85031f8c63b2820ef433af18cbfcc200825ea669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.701ex; height:2.176ex;" alt="{\displaystyle d\mathbf {S} }"></span> </td> <td>Диференциален вектор, равен по дължина на площта на пренебрежимо малка област, с посока по нормалата към повърхността на тази област </td> <td>m<sup>2</sup><br /> кв. метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dV\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>V</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dV\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e7717b132e47bb5a4652f38bc82a6c792f52a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.584ex; height:2.176ex;" alt="{\displaystyle dV\ }"></span> </td> <td>Диференциален елемент от обема <i>V</i>, заграден от повърхност <i>S</i> </td> <td>m<sup>3</sup><br />куб. метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {l} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">l</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {l} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58afb50a9576c617402bccd032d0a251f63b6abb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.958ex; height:2.176ex;" alt="{\displaystyle d\mathbf {l} }"></span> </td> <td>Диференциален вектор на елемента от пътя, с посока по <a href="/wiki/%D0%A2%D0%B0%D0%BD%D0%B3%D0%B5%D0%BD%D1%82%D0%B0" class="mw-redirect" title="Тангента">тангентата</a> към затворен контур <i>C</i>, заграждащ площ <i>S</i> </td> <td>m<br />метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6df6024211b717870f07844116e116b2eb314d12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.583ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot }"></span> </td> <td>Оператор дивергенция </td> <td>1/m<br />на метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8255aabfb5dba42ab97b2bf70d0dd19a9849a5eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.176ex;" alt="{\displaystyle \nabla \times }"></span> </td> <td>Ротация или завихряне </td> <td>1/m<br /> <p>на метър </p> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Литература"><span id=".D0.9B.D0.B8.D1.82.D0.B5.D1.80.D0.B0.D1.82.D1.83.D1.80.D0.B0"></span>Литература</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=11" title="Редактиране на раздел: Литература" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=11" title="Edit section&#039;s source code: Литература"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Maxwell, J. C., <i>A Treatise on Electricity and Magnetism</i>. Clarendon Press, Oxford, 1873.</li> <li>Джексон, Д., <i>Теория электромагнитного поля</i>. Мир, Москва, 1965.</li> <li>Ландау, Л., Е.М. Лифшиц, <i>Теория поля</i>. Наука, Москва.</li> <li>Поновский, В., М. Филипс, <i>Класическая электродинамика</i>. Москва, 1963.</li> <li>Попов, Хр., <i>Електродинамика</i>. Университетско издателство „Св. Кл. Охридски“, С., 1995.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Източници"><span id=".D0.98.D0.B7.D1.82.D0.BE.D1.87.D0.BD.D0.B8.D1.86.D0.B8"></span>Източници</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;veaction=edit&amp;section=12" title="Редактиране на раздел: Източници" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;action=edit&amp;section=12" title="Edit section&#039;s source code: Източници"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><cite id="CITEREFPanofsky1962" class="book" style="font-style:normal">Panofsky, WKH, Phillips, M. <a rel="nofollow" class="external text" href="https://archive.org/details/classicalelectri00pano_563">Classical Electricity and Magnetism</a>. &#32;Addison-Wesley,&#32;1962.&#32;<a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%98%D0%B7%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D1%86%D0%B8_%D0%BD%D0%B0_%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/9780201057027" class="internal mw-magiclink-isbn">ISBN 978-0-201-05702-7</a>.&#32;с.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/classicalelectri00pano_563/page/n192">182</a>.</cite></span> </li> <li id="cite_note-ПЛ-2"><span class="mw-cite-backlink">↑ <a href="#cite_ref-ПЛ_2-0"><sup><i><b>а</b></i></sup></a> <a href="#cite_ref-ПЛ_2-1"><sup><i><b>б</b></i></sup></a> <a href="#cite_ref-ПЛ_2-2"><sup><i><b>в</b></i></sup></a> <a href="#cite_ref-ПЛ_2-3"><sup><i><b>г</b></i></sup></a></span> <span class="reference-text">А. К. Андреев, А. Д. Лазаров, Предавателни линии и СВЧ устройства, ВТС, 1980 г.</span> </li> <li id="cite_note-МАМ-3"><span class="mw-cite-backlink">↑ <a href="#cite_ref-МАМ_3-0"><sup><i><b>а</b></i></sup></a> <a href="#cite_ref-МАМ_3-1"><sup><i><b>б</b></i></sup></a> <a href="#cite_ref-МАМ_3-2"><sup><i><b>в</b></i></sup></a> <a href="#cite_ref-МАМ_3-3"><sup><i><b>г</b></i></sup></a></span> <span class="reference-text">М. А. Михайлов – Специализирани антени, Шумен, 2001 г.</span> </li> <li id="cite_note-ДДД-4"><span class="mw-cite-backlink">↑ <a href="#cite_ref-ДДД_4-0"><sup><i><b>а</b></i></sup></a> <a href="#cite_ref-ДДД_4-1"><sup><i><b>б</b></i></sup></a> <a href="#cite_ref-ДДД_4-2"><sup><i><b>в</b></i></sup></a></span> <span class="reference-text">Д. Д. Дамянов, Разпространение на радиовълните, ВТС, 1975 г.</span> </li> </ol></div> <table cellspacing="2" style="clear:both; background:var(--background-color-base, #fff); color:inherit; border:1px dotted var(--border-color-base, #a2a9b1); padding:.3em; margin-top:.8em; margin-bottom:.5em; font-size:85%;"> <tbody><tr> <td width="90px"><span typeof="mw:File"><a href="/wiki/%D0%9A%D1%80%D0%B8%D0%B5%D0%B9%D1%82%D0%B8%D0%B2_%D0%9A%D0%BE%D0%BC%D1%8A%D0%BD%D1%81" title="Криейтив Комънс"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/CC_BY-SA_icon.svg/60px-CC_BY-SA_icon.svg.png" decoding="async" width="60" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/CC_BY-SA_icon.svg/90px-CC_BY-SA_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/CC_BY-SA_icon.svg/120px-CC_BY-SA_icon.svg.png 2x" data-file-width="88" data-file-height="31" /></a></span>&#160;<span typeof="mw:File"><a href="/wiki/%D0%9B%D0%B8%D1%86%D0%B5%D0%BD%D0%B7_%D0%B7%D0%B0_%D1%81%D0%B2%D0%BE%D0%B1%D0%BE%D0%B4%D0%BD%D0%B0_%D0%B4%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%86%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%93%D0%9D%D0%A3" title="Лиценз за свободна документация на ГНУ"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Heckert_GNU_white.svg/20px-Heckert_GNU_white.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Heckert_GNU_white.svg/30px-Heckert_GNU_white.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/22/Heckert_GNU_white.svg/40px-Heckert_GNU_white.svg.png 2x" data-file-width="535" data-file-height="523" /></a></span> </td> <td style="font-style:italic">Тази страница частично или изцяло представлява <a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%80%D0%B5%D0%B2%D0%BE%D0%B4" title="Уикипедия:Превод">превод</a> на страницата <a href="https://en.wikipedia.org/wiki/Special:Permalink/113517163" class="extiw" title="en:Special:Permalink/113517163">Maxwell's Equations</a> в Уикипедия на английски. Оригиналният текст, както и този превод, са защитени от <a href="/wiki/%D0%9A%D1%80%D0%B8%D0%B5%D0%B9%D1%82%D0%B8%D0%B2_%D0%9A%D0%BE%D0%BC%D1%8A%D0%BD%D1%81" title="Криейтив Комънс">Лиценза „Криейтив Комънс – Признание – Споделяне на споделеното“</a>, а за съдържание, създадено преди юни 2009 година – от <a href="/wiki/%D0%9B%D0%B8%D1%86%D0%B5%D0%BD%D0%B7_%D0%B7%D0%B0_%D1%81%D0%B2%D0%BE%D0%B1%D0%BE%D0%B4%D0%BD%D0%B0_%D0%B4%D0%BE%D0%BA%D1%83%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%86%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%93%D0%9D%D0%A3" title="Лиценз за свободна документация на ГНУ">Лиценза за свободна документация на ГНУ</a>. Прегледайте <a href="https://en.wikipedia.org/wiki/Special:PageHistory/Maxwell%27s_Equations" class="extiw" title="en:Special:PageHistory/Maxwell&#39;s Equations">историята на редакциите</a> на оригиналната страница, както и на <a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:PageHistory/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Специални:PageHistory/Уравнения на Максуел">преводната страница</a>, за да видите списъка на съавторите. &#8203; <p><b>ВАЖНО:</b> Този шаблон се отнася единствено до <a href="/wiki/%D0%A3:%D0%90%D0%9F" class="mw-redirect" title="У:АП">авторските права</a> върху съдържанието на статията. Добавянето му не отменя изискването да се посочват <a href="/wiki/%D0%A3:%D0%A6%D0%98" class="mw-redirect" title="У:ЦИ">конкретни източници на твърденията</a>, които да бъдат <a href="/wiki/%D0%A3:%D0%91%D0%98" class="mw-redirect" title="У:БИ">благонадеждни</a>.&#8203; </p> </td></tr></tbody></table> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐2f42h Cached time: 20241122031204 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.156 seconds Real time usage: 0.334 seconds Preprocessor visited node count: 1339/1000000 Post‐expand include size: 23762/2097152 bytes Template argument size: 1081/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 7347/5000000 bytes Lua time usage: 0.011/10.000 seconds Lua memory usage: 928848/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 93.155 1 -total 33.11% 30.842 1 Шаблон:Класическа_електродинамика 29.46% 27.444 1 Шаблон:Sidebar_with_collapsible_lists 29.43% 27.413 1 Шаблон:Cite_book 25.66% 23.906 1 Шаблон:Cite 13.87% 12.922 1 Шаблон:Източник_БДС_17377 10.19% 9.488 1 Шаблон:Превод_от 6.08% 5.663 2 Шаблон:Col-2 5.51% 5.130 1 Шаблон:Delink 4.67% 4.352 1 Шаблон:If_empty --> <!-- Saved in parser cache with key bgwiki:pcache:idhash:59086-0!canonical and timestamp 20241122031204 and revision id 12045491. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Взето от „<a dir="ltr" href="https://bg.wikipedia.org/w/index.php?title=Уравнения_на_Максуел&amp;oldid=12045491">https://bg.wikipedia.org/w/index.php?title=Уравнения_на_Максуел&amp;oldid=12045491</a>“.</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D0%B8" title="Специални:Категории">Категория</a>: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Категория:Електродинамика">Електродинамика</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Скрита категория: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A1%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B8,_%D0%B8%D0%B7%D0%BF%D0%BE%D0%BB%D0%B7%D0%B2%D0%B0%D1%89%D0%B8_%D0%B2%D1%8A%D0%BB%D1%88%D0%B5%D0%B1%D0%BD%D0%B8_%D0%BF%D1%80%D0%B5%D0%BF%D1%80%D0%B0%D1%82%D0%BA%D0%B8_ISBN" title="Категория:Страници, използващи вълшебни препратки ISBN">Страници, използващи вълшебни препратки ISBN</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Последната промяна на страницата е извършена на 20 ноември 2023 г. в 00:22 ч.</li> <li id="footer-info-copyright">Текстът е достъпен под лиценза <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.bg">Creative Commons Признание-Споделяне на споделеното</a>; може да са приложени допълнителни условия. За подробности вижте <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/bg">Условия за ползване</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Поверителност</a></li> <li id="footer-places-about"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%97%D0%B0_%D0%BA%D0%BE%D0%BD%D1%82%D0%B0%D0%BA%D1%82%D0%B8">За контакт с Уикипедия</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%80%D0%B5%D0%B4%D1%83%D0%BF%D1%80%D0%B5%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5">Предупреждение</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Кодекс на поведение</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">За разработчици</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/bg.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Използване на „бисквитки“</a></li> <li id="footer-places-mobileview"><a href="//bg.m.wikipedia.org/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Мобилен изглед</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-rzfvc","wgBackendResponseTime":166,"wgPageParseReport":{"limitreport":{"cputime":"0.156","walltime":"0.334","ppvisitednodes":{"value":1339,"limit":1000000},"postexpandincludesize":{"value":23762,"limit":2097152},"templateargumentsize":{"value":1081,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":7347,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 93.155 1 -total"," 33.11% 30.842 1 Шаблон:Класическа_електродинамика"," 29.46% 27.444 1 Шаблон:Sidebar_with_collapsible_lists"," 29.43% 27.413 1 Шаблон:Cite_book"," 25.66% 23.906 1 Шаблон:Cite"," 13.87% 12.922 1 Шаблон:Източник_БДС_17377"," 10.19% 9.488 1 Шаблон:Превод_от"," 6.08% 5.663 2 Шаблон:Col-2"," 5.51% 5.130 1 Шаблон:Delink"," 4.67% 4.352 1 Шаблон:If_empty"]},"scribunto":{"limitreport-timeusage":{"value":"0.011","limit":"10.000"},"limitreport-memusage":{"value":928848,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-2f42h","timestamp":"20241122031204","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u0423\u0440\u0430\u0432\u043d\u0435\u043d\u0438\u044f \u043d\u0430 \u041c\u0430\u043a\u0441\u0443\u0435\u043b","url":"https:\/\/bg.wikipedia.org\/wiki\/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB","sameAs":"http:\/\/www.wikidata.org\/entity\/Q51501","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q51501","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"\u0424\u043e\u043d\u0434\u0430\u0446\u0438\u044f \u0423\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u044f","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-08-10T23:36:01Z","dateModified":"2023-11-20T00:22:34Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/07\/CoulombsLaw.svg"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10