CINXE.COM
Search results for: A. Tall Dia
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: A. Tall Dia</title> <meta name="description" content="Search results for: A. Tall Dia"> <meta name="keywords" content="A. Tall Dia"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="A. Tall Dia" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="A. Tall Dia"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 119</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: A. Tall Dia</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Wind Comfort and Safety of People in the Vicinity of Tall Buildings </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohan%20Kotamrazu">Mohan Kotamrazu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tall buildings block and divert strong upper level winds to the ground. These high velocity winds many a time create adverse wind effects at ground level which can be uncomfortable and even compromise the safety of pedestrians and people who frequent the spaces in the vicinity of tall buildings. Discomfort can be experienced around the entrances and corners of tall buildings. Activities such as strolling or sitting in a park, waiting for a bus near a tall building can become highly unpleasant. For the elderly unpleasant conditions can also become dangerous leading to accidents and injuries. Today there is a growing concern among architects, planners and urban designers about the wind environment in the vicinity of tall building. Regulating authorities insist on wind tunnel testing of tall buildings in cities such as Wellington, Auckland, Boston, San Francisco, etc. prior to granting permission for their construction The present paper examines the different ways that tall buildings can induce strong winds at pedestrian level and their impact on people who frequent the spaces around tall buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title="tall buildings">tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20effects" title=" wind effects"> wind effects</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20comfort" title=" wind comfort"> wind comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20safety" title=" wind safety"> wind safety</a> </p> <a href="https://publications.waset.org/abstracts/45360/wind-comfort-and-safety-of-people-in-the-vicinity-of-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Derivation of Technology Element for Automation in Table Formwork in a Tall Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junehyuck%20Lee">Junehyuck Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongmin%20Lee"> Dongmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunhee%20Cho"> Hunhee Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-In%20Kang"> Kyung-In Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A table formwork method has recently been widely applied in reinforced concrete structures in a tall building construction to improve safety and productivity. However, this method still depended mainly on manpower. Therefore, this study aimed at derivation of technology element to apply the automation in table formwork in a tall building construction. These results will contribute to improve productivity and labor saving in table formwork in tall building construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20form" title="table form">table form</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/61287/derivation-of-technology-element-for-automation-in-table-formwork-in-a-tall-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Wind Interference Effect on Tall Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atul%20K.%20Desai">Atul K. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jigar%20K.%20Sevalia"> Jigar K. Sevalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20A.%20Vasanwala"> Sandip A. Vasanwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a building is located in an urban area, it is exposed to a wind of different characteristics then wind over an open terrain. This is development of turbulent wake region behind an upstream building. The interaction with upstream building can produce significant changes in the response of the tall building. Here, in this paper, an attempt has been made to study wind induced interference effects on tall building. In order to study wind induced interference effect (IF) on Tall Building, initially a tall building (which is termed as Principal Building now on wards) with square plan shape has been considered with different Height to Width Ratio and total drag force is obtained considering different terrain conditions as well as different incident wind direction. Then total drag force on Principal Building is obtained by considering adjacent building which is termed as Interfering Building now on wards with different terrain conditions and incident wind angle. To execute study, Computational Fluid Dynamics (CFD) Code namely Fluent and Gambit have been used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent" title=" turbulent"> turbulent</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20region" title=" wake region"> wake region</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/6233/wind-interference-effect-on-tall-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Natural Ventilation for the Sustainable Tall Office Buildings of the Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fin%20Sev">Ayşin Sev</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6rkem%20Aslan"> Görkem Aslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable tall buildings that provide comfortable, healthy and efficient indoor environments are clearly desirable as the densification of living and working space for the world’s increasing population proceeds. For environmental concerns, these buildings must also be energy efficient. One component of these tasks is the provision of indoor air quality and thermal comfort, which can be enhanced with natural ventilation by the supply of fresh air. Working spaces can only be naturally ventilated with connections to the outdoors utilizing operable windows, double facades, ventilation stacks, balconies, patios, terraces and skygardens. Large amounts of fresh air can be provided to the indoor spaces without mechanical air-conditioning systems, which are widely employed in contemporary tall buildings. This paper tends to present the concept of natural ventilation for sustainable tall office buildings in order to achieve healthy and comfortable working spaces, as well as energy efficient environments. Initially the historical evolution of ventilation strategies for tall buildings is presented, beginning with natural ventilation and continuing with the introduction of mechanical air-conditioning systems. Then the emergence of natural ventilation due to the health and environmental concerns in tall buildings is handled, and the strategies for implementing this strategy are revealed. In the next section, a number of case studies that utilize this strategy are investigated. Finally, how tall office buildings can benefit from this strategy is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tall%20office%20building" title="tall office building">tall office building</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=double-skin%20fa%C3%A7ade" title=" double-skin façade"> double-skin façade</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20ventilation" title=" stack ventilation"> stack ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title=" air conditioning"> air conditioning</a> </p> <a href="https://publications.waset.org/abstracts/12589/natural-ventilation-for-the-sustainable-tall-office-buildings-of-the-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Al-Sehail">Osama Al-Sehail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimicry" title="biomimicry">biomimicry</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20in%20nature" title=" design in nature"> design in nature</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20buildings" title=" high-rise buildings"> high-rise buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20form" title=" structural form"> structural form</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20architecture" title=" tall architecture"> tall architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=vital%20sustainability" title=" vital sustainability"> vital sustainability</a> </p> <a href="https://publications.waset.org/abstracts/64968/a-biomimetic-structural-form-developing-a-paradigm-to-attain-vital-sustainability-in-tall-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Compilation of Tall Building with Green Architecture Case Study: Babolsar City (North of Iran) at 2014-2015</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Hossein%20Alavi">Seyyed Hossein Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soudabeh%20Mehri%20Talarposhti"> Soudabeh Mehri Talarposhti </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quick development of urban population need for housing on the one hand and prevention of irregular urban extension for optimum usage of urban land, resolving problems of urban physiognomy, land using, and environmental issues and urban transport, on the other hand, proposed tall building as urban area extension requirement in developing and advanced countries. Beside the tall building, protection, and creation of green architecture is one the most important issues of today's architecture world. This research is about attending tall building with green architecture in Babolsar city 2015. For this, the issues that can make favorite conditions for green architecture has been discussed. The purpose of this discussion is skeleton extension and accessing interactions between architecture and related technologies. This discussion with using of qualitative research methods (Analytical Description) tried to studying designed performance models and also studying and analyzing the inside and foreign articles and books. Hope this research is useful in solving the existing problems in this issue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title="tall building">tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20architecture" title=" green architecture"> green architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=skeleton%20extension" title=" skeleton extension"> skeleton extension</a>, <a href="https://publications.waset.org/abstracts/search?q=Babolsar%20city" title=" Babolsar city"> Babolsar city</a> </p> <a href="https://publications.waset.org/abstracts/26282/compilation-of-tall-building-with-green-architecture-case-study-babolsar-city-north-of-iran-at-2014-2015" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Reduction of Differential Column Shortening in Tall Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hansoo%20Kim">Hansoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghak%20Shin"> Seunghak Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The differential column shortening in tall buildings can be reduced by improving material and structural characteristics of the structural systems. This paper proposes structural methods to reduce differential column shortening in reinforced concrete tall buildings; connecting columns with rigidly jointed horizontal members, using outriggers, and placing additional reinforcement at the columns. The rigidly connected horizontal members including outriggers reduce the differential shortening between adjacent vertical members. The axial stiffness of columns with greater shortening can be effectively increased by placing additional reinforcement at the columns, thus the differential column shortening can be reduced in the design stage. The optimum distribution of additional reinforcement can be determined by applying a gradient based optimization technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column%20shortening" title="column shortening">column shortening</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20behavior" title=" long-term behavior"> long-term behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/4789/reduction-of-differential-column-shortening-in-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Using Recyclable Steel Material in Tall Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Eren">O. Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Zakar"> L. Zakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling steel building components is key to the sustainability of a structure’s end-of-life, as it is the most economical solution. In this paper the effects of usage of recycled steel material in tall buildings aspects are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20material" title=" recycled material"> recycled material</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/2796/using-recyclable-steel-material-in-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Investigation of Aerodynamic and Design Features of Twisting Tall Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Bilgen">Sinan Bilgen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20Ozer%20Ay"> Bekir Ozer Ay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Sezer%20Uzol"> Nilay Sezer Uzol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After decades of conventional shapes, irregular forms with complex geometries are getting more popular for form generation of tall buildings all over the world. This trend has recently brought out diverse building forms such as twisting tall buildings. This study investigates both the aerodynamic and design features of twisting tall buildings through comparative analyses. Since twisting a tall building give rise to additional complexities related with the form and structural system, lateral load effects become of greater importance on these buildings. The aim of this study is to analyze the inherent characteristics of these iconic forms by comparing the wind loads on twisting tall buildings with those on their prismatic twins. Through a case study research, aerodynamic analyses of an existing twisting tall building and its prismatic counterpart were performed and the results have been compared. The prismatic twin of the original building were generated by removing the progressive rotation of its floors with the same plan area and story height. Performance-based measures under investigation have been evaluated in conjunction with the architectural design. Aerodynamic effects have been analyzed by both wind tunnel tests and computational methods. High frequency base balance tests and pressure measurements on 3D models were performed to evaluate wind load effects on a global and local scale. Comparisons of flat and real surface models were conducted to further evaluate the effects of the twisting form without façade texture contribution. Comparisons highlighted that, the twisting form under investigation shows better aerodynamic behavior both for along wind but particularly for across wind direction. Compared to the prismatic counterpart; twisting model is superior on reducing vortex-shedding dynamic response by disorganizing the wind vortices. Consequently, despite the difficulties arisen from inherent complexity of twisted forms, they could still be feasible and viable with their attractive images in the realm of tall buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20tests" title="aerodynamic tests">aerodynamic tests</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation%20for%20twisting" title=" motivation for twisting"> motivation for twisting</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20forms" title=" twisted forms"> twisted forms</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20excitation" title=" wind excitation"> wind excitation</a> </p> <a href="https://publications.waset.org/abstracts/55996/investigation-of-aerodynamic-and-design-features-of-twisting-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Self-Weight Reduction of Tall Structures by Taper Cladding System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Dharshini%20Omprakash">Divya Dharshini Omprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjali%20Subramani"> Anjali Subramani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the tall structures are constructed using shear walls and tube systems in the recent decades. This makes the structure heavy and less resistant to lateral effects as the height of the structure goes up. This paper aims in the reduction of self-weight in tall structures by the use of Taper Cladding System (TCS) and also enumerates the construction techniques used in TCS. TCS has a tapering clad either fixed at the top or bottom of the structural core at the tapered end. This system eliminates the use of RC structural elements on the exterior of the structure and uses fewer columns only on the interior part to take up the gravity loads in order to reduce the self-weight of the structure. The self-weight reduction by TCS is 50% more compared to the present structural systems. The lateral loads on the hull will be taken care of by the tapered steel frame. Analysis were done to study the structural behaviour of taper cladded buildings subjected to lateral loads. TCS has a great impact in the construction of tall structures in seismic and dense urban areas. An effective construction management can be done by the use of Taper Cladding System. In this paper, sustainability, design considerations and implications of the system has also been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lateral%20Loads%20Resistance" title="Lateral Loads Resistance">Lateral Loads Resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20of%20self-weight" title=" reduction of self-weight"> reduction of self-weight</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=taper%20clads" title=" taper clads"> taper clads</a> </p> <a href="https://publications.waset.org/abstracts/50301/self-weight-reduction-of-tall-structures-by-taper-cladding-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Optimum Design of Dual-Purpose Outriggers in Tall Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwon%20Park">Jiwon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihae%20Hur"> Jihae Hur</a>, <a href="https://publications.waset.org/abstracts/search?q=Kukjae%20Kim"> Kukjae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hansoo%20Kim"> Hansoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, outriggers, which are horizontal structures connecting a building core to distant columns to increase the lateral stiffness of a tall building, are used to reduce differential axial shortening in a tall building. Therefore, the outriggers in tall buildings are used to serve the dual purposes of reducing the lateral displacement and reducing the differential axial shortening. Since the location of the outrigger greatly affects the effectiveness of the outrigger in terms of the lateral displacement at the top of the tall building and the maximum differential axial shortening, the optimum locations of the dual-purpose outriggers can be determined by an optimization method. Because the floors where the outriggers are installed are given as integer numbers, the conventional gradient-based optimization methods cannot be directly used. In this study, a piecewise quadratic interpolation method is used to resolve the integrality requirement posed by the optimum locations of the dual-purpose outriggers. The optimal solutions for the dual-purpose outriggers are searched by linear scalarization which is a popular method for multi-objective optimization problems. It was found that increasing the number of outriggers reduced the maximum lateral displacement and the maximum differential axial shortening. It was also noted that the optimum locations for reducing the lateral displacement and reducing the differential axial shortening were different. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2B4010043) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title="concrete structure">concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=outrigger" title=" outrigger"> outrigger</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/80067/optimum-design-of-dual-purpose-outriggers-in-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Seismic Retrofit of Tall Building Structure with Viscous, Visco-Elastic, Visco-Plastic Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Bae">Nicolas Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodore%20L.%20Karavasilis"> Theodore L. Karavasilis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasingly, a large number of new and existing tall buildings are required to improve their resilient performance against strong winds and earthquakes to minimize direct, as well as indirect damages to society. Those advent stationary functions of tall building structures in metropolitan regions can be severely hazardous, in socio-economic terms, which also increase the requirement of advanced seismic performance. To achieve these progressive requirements, the seismic reinforcement for some old, conventional buildings have become enormously costly. The methods of increasing the buildings’ resilience against wind or earthquake loads have also become more advanced. Up to now, vibration control devices, such as the passive damper system, is still regarded as an effective and an easy-to-install option, in improving the seismic resilience of buildings at affordable prices. The main purpose of this paper is to examine 1) the optimization of the shape of visco plastic brace damper (VPBD) system which is one of hybrid damper system so that it can maximize its energy dissipation capacity in tall buildings against wind and earthquake. 2) the verification of the seismic performance of the visco plastic brace damper system in tall buildings; up to forty-storey high steel frame buildings, by comparing the results of Non-Linear Response History Analysis (NLRHA), with and without a damper system. The most significant contribution of this research is to introduce the optimized hybrid damper system that is adequate for high rise buildings. The efficiency of this visco plastic brace damper system and the advantages of its use in tall buildings can be verified since tall buildings tend to be affected by wind load at its normal state and also by earthquake load after yielding of steel plates. The modeling of the prototype tall building will be conducted using the Opensees software. Three types of modeling were used to verify the performance of the damper (MRF, MRF with visco-elastic, MRF with visco-plastic model) 22-set seismic records used and the scaling procedure was followed according to the FEMA code. It is shown that MRF with viscous, visco-elastic damper, it is superior effective to reduce inelastic deformation such as roof displacement, maximum story drift, roof velocity compared to the MRF only. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tall%20steel%20building" title="tall steel building">tall steel building</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous" title=" viscous"> viscous</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20damper" title=" viscoelastic damper"> viscoelastic damper</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20based%20design" title=" performance based design"> performance based design</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20based%20design" title=" resilience based design"> resilience based design</a> </p> <a href="https://publications.waset.org/abstracts/72375/seismic-retrofit-of-tall-building-structure-with-viscous-visco-elastic-visco-plastic-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Diagrid Structural System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Raghu">K. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sree%20Harsha"> Sree Harsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagrid" title="diagrid">diagrid</a>, <a href="https://publications.waset.org/abstracts/search?q=bracings" title=" bracings"> bracings</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a> </p> <a href="https://publications.waset.org/abstracts/17351/diagrid-structural-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> On the Stability Exact Analysis of Tall Buildings with Outrigger System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahrooz%20Abed">Mahrooz Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20R.%20Masoodi"> Amir R. Masoodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many structural lateral systems are used in tall buildings such as rigid frames, braced frames, shear walls, tubular structures and core structures. Some efficient structures for drift control and base moment reduction in tall buildings is outrigger and belt truss systems. When adopting outrigger beams in building design, their location should be in an optimum position for an economical design. A range of different strategies has been employed to identify the optimum locations of these outrigger beams under wind load. However, there is an absence of scientific research or case studies dealing with optimum outrigger location using buckling analysis. In this paper, one outrigger system is considered at the middle of height of structure. The optimum location of outrigger will be found based on the buckling load limitation. The core of structure is modeled by a clamped tapered beam. The exact stiffness matrix of tapered beam is formulated based on the Euler-Bernoulli theory. Finally, based on the buckling load of structure, the optimal location of outrigger will be found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title="tall buildings">tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=outrigger%20system" title=" outrigger system"> outrigger system</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling%20load" title=" buckling load"> buckling load</a>, <a href="https://publications.waset.org/abstracts/search?q=second-order%20effects" title=" second-order effects"> second-order effects</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler-Bernoulli%20beam%20theory" title=" Euler-Bernoulli beam theory"> Euler-Bernoulli beam theory</a> </p> <a href="https://publications.waset.org/abstracts/34858/on-the-stability-exact-analysis-of-tall-buildings-with-outrigger-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Alirezaei">Amir Alirezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Vahdani"> Shahram Vahdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformation%20demand" title="deformation demand">deformation demand</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a>, <a href="https://publications.waset.org/abstracts/search?q=setback" title=" setback"> setback</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/22134/estimation-of-seismic-deformation-demands-of-tall-buildings-with-symmetric-setbacks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Assessing Effectiveness of Outrigger and Belt Truss System for Tall Buildings under Wind Loadings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirand%20Anunthanakul">Nirand Anunthanakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is to investigate a 54-story reinforced concrete residential tall building structures—238.8 meters high. Shear walls, core walls, and columns are the primary vertical components. Other special lateral components—core-outrigger and belt trusses—are studied and combined with the structural system in order to increase the structural stability during severe lateral load events, particularly, wind loads. The wind tunnel tests are conducted using the force balance technique. The overall wind loads and dynamics response of the building are also measured for 360 degrees of azimuth—basis for 10-degree intervals. The results from numerical analysis indicate that an outrigger and belt truss system clearly engages perimeter columns to efficiently reduce acceleration index and lateral deformations at the top level so that the building structures achieve lateral stability, and meet standard provision values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outrigger" title="outrigger">outrigger</a>, <a href="https://publications.waset.org/abstracts/search?q=belt%20truss" title=" belt truss"> belt truss</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20loadings" title=" wind loadings"> wind loadings</a> </p> <a href="https://publications.waset.org/abstracts/20826/assessing-effectiveness-of-outrigger-and-belt-truss-system-for-tall-buildings-under-wind-loadings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Simplified Analysis Procedure for Seismic Evaluation of Tall Building at Structure and Component Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Mehmood">Tahir Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Pennung%20Warnitchai"> Pennung Warnitchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simplified static analysis procedures such Nonlinear Static Procedure (NSP) are gaining popularity for the seismic evaluation of buildings. However, these simplified procedures accounts only for the seismic responses of the fundamental vibration mode of the structure. Some other procedures which can take into account the higher modes of vibration, lack in accuracy to determine the component responses. Hence, such procedures are not suitable for evaluating the structures where many vibration modes may participate significantly or where component responses are needed to be evaluated. Moreover, these procedures were found to either computationally expensive or tedious to obtain individual component responses. In this paper, a simplified but accurate procedure is studied. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. In this procedure, the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The responses of four tall buildings are computed by this simplified UMRHA procedure and compared with those obtained from the NLRHA procedure. The comparison shows that the UMRHA procedure is able to accurately compute the global responses, i.e., story shears and story overturning moments, floor accelerations and inter-story drifts as well as the component level responses of these tall buildings with heights varying from 20 to 44 stories. The required computational effort is also extremely low compared to that of the Nonlinear Response History Analysis (NLRHA) procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=higher%20mode%20effects" title="higher mode effects">higher mode effects</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20evaluation%20procedure" title=" seismic evaluation procedure"> seismic evaluation procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=component%20responses" title=" component responses"> component responses</a> </p> <a href="https://publications.waset.org/abstracts/38192/simplified-analysis-procedure-for-seismic-evaluation-of-tall-building-at-structure-and-component-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Architectural Identity in Manifestation of Tall-buildings' Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huda%20Arshadlamphon">Huda Arshadlamphon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advancing frontiers of technology and industry is moving rapidly fast influenced by the economic and political phenomena. One vital phenomenon,which has had consolidated the world to a one single village, is Globalization. In response, architecture and the built-environment have faced numerous changes, adjustments, and developments. Tall-buildings, as a product of globalization, represent prestigious icons, symbols, and landmarks for highly economics and advanced countries. Despite the fact, this trend has been encountering several design challenges incorporating architectural identity, traditions, and characteristics that enhance the built-environments' sociocultural values and traditions. The necessity of these values and traditionsform self-solitarily, leading to visual and spatial creativity, independency, and individuality. In other words, they maintain the inherited identity and avoid replications in all means and aspects. This paper, firstly, defines globalization phenomenon, architectural identity, and the concerns of sociocultural values in relation to the traditional characteristics of the built-environment. Secondly, through three case-studies of tall-buildings located in Jeddah city, Saudi Arabia, the Queen's Building, the National Commercial Bank Building (NCB), and the Islamic Development Bank Building; design strategies and methodologies in acclimating architectural identity and characteristics in tall-buildings are discussed. The case-studies highlight buildings' sites and surroundings, concepts and inspirations, design elements, architectural forms and compositions, characteristics, issues, barriers, and trammels facing the designs' decisions, representation of facades, and selection of materials and colors. Furthermore, the research will elucidate briefs of the dominant factors that shape the architectural identity of Jeddah city. In conclusion, the study manifests four tall-buildings' design standards guideline in preserving and developing architectural identity in Jeddah city; the scale of urban and natural environment, the scale of architectural design elements, the integration of visual images, and the creation of spatial scenes and scenarios. The prosed guideline will encourage the development of architectural identity aligned with zeitgeist demands and requirements, supports the contemporary architectural movement toward tall-buildings, and shoresself-solitarily in representing sociocultural values and traditions of the built-environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20identity" title="architectural identity">architectural identity</a>, <a href="https://publications.waset.org/abstracts/search?q=built-environment" title=" built-environment"> built-environment</a>, <a href="https://publications.waset.org/abstracts/search?q=globalization" title=" globalization"> globalization</a>, <a href="https://publications.waset.org/abstracts/search?q=sociocultural%20values%20and%20traditions" title=" sociocultural values and traditions"> sociocultural values and traditions</a>, <a href="https://publications.waset.org/abstracts/search?q=tall-buildings" title=" tall-buildings"> tall-buildings</a> </p> <a href="https://publications.waset.org/abstracts/147184/architectural-identity-in-manifestation-of-tall-buildings-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Sustainable Design Solutions for Tall Residential Buildings to Improve Quality of Life: A Case of Developing Community: Karachi, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahnoor%20Shoaib">Mahnoor Shoaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable development involves meeting present needs without compromising future generations’ capacity to meet their own while enhancing the quality of life through a healthy and safe environment. In the context of rapid urbanization and globalization, architects and planners bear the responsibility of designing residential buildings that are sustainable and conducive to quality living. Residential buildings serve as multifunctional spaces for personal and family life, making them essential for fostering healthy communities. Therefore, sustainable housing must address not only economic and environmental factors but also social, historical, and cultural dimensions to enhance residents' social lives. This research investigates the socio-cultural aspects of tall residential buildings in Karachi, Pakistan, a developing community characterized by rapid population growth and urbanization. A mixed-methods approach, including qualitative interviews and surveys, was employed to assess residents' perceptions of sustainability in tall buildings, focusing on socio-cultural design constraints and their impact on residential satisfaction. The study finds that socio-cultural elements, such as liveability, social cohesion, and spatial agency, significantly influence residents’ satisfaction with high-rise developments. Moreover, it highlights the need for contextual design solutions that integrate local cultural values into the architecture of tall buildings rather than imposing Western design principles. In conclusion, this research provides valuable insights for architects, designers, and urban planners, emphasizing the importance of understanding community needs and preferences in developing sustainable residential environments. By prioritizing socio-cultural sustainability, we can enhance the overall quality of life for residents in tall buildings, contributing to healthier and more vibrant communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-rise%20residential%20buildings" title="high-rise residential buildings">high-rise residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20cohesion" title=" social cohesion"> social cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-cultural%20sustainability" title=" socio-cultural sustainability"> socio-cultural sustainability</a> </p> <a href="https://publications.waset.org/abstracts/191840/sustainable-design-solutions-for-tall-residential-buildings-to-improve-quality-of-life-a-case-of-developing-community-karachi-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Optimization of the Structural Design for an Irregular Building in High Seismicity Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arias%20Fernando">Arias Fernando</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Boj%C3%B3rquez"> Juan Bojórquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ed%C3%A9n%20Boj%C3%B3rquez"> Edén Bojórquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Reyes-Salazar"> Alfredo Reyes-Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20de%20J.%20Velarde"> Fernando de J. Velarde</a>, <a href="https://publications.waset.org/abstracts/search?q=Robespierre%20Ch%C3%A1vez"> Robespierre Chávez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Martin%20Leal"> J. Martin Leal</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Baca"> Victor Baca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focuses on the optimization of different structural systems employed in tall steel buildings, with a specific focus on the city of Acapulco, Guerrero, a region known for its high seismic activity. Using the spectral modal method, analyses were conducted to assess the ability of these buildings to withstand seismic forces and other external loads. After performing a detailed analysis of various models, the results were compared based on various engineering parameters, including maximum interstory drift, base shear, displacements, and the total weight of the structures, the latter being considered as an estimate of the cost of the proposed systems. The findings of this study indicate that steel frames stand out as a viable option for tall buildings in question. However, areas of potential improvement were identified, suggesting opportunities for further optimization of the design and seismic resistance of these structures. This study provides a deep and insightful perspective on the optimization of structural systems in tall steel buildings, offering valuable information for engineers and professionals in the field involved in similar projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20seismic%20zone" title="high seismic zone">high seismic zone</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20buildings" title=" irregular buildings"> irregular buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20design" title=" optimization design"> optimization design</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20buildings" title=" steel buildings"> steel buildings</a> </p> <a href="https://publications.waset.org/abstracts/192081/optimization-of-the-structural-design-for-an-irregular-building-in-high-seismicity-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Influences of High Rise Buildings on Local Air Flow Characteristics on External Surfaces of Neighboring Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meral%20Yucel">Meral Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vildan%20Ok"> Vildan Ok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study indicates the wind effects of 49-storey height four towers on a high-density urban area-consisting of 10-12 storey height buildings called Goztepe in Istanbul, Turkey. For this purpose, four towers and close environments are modeled in 1/500 scale for wind tunnel test. Three neighboring buildings are chosen to find out the pressure coefficient changes on the surfaces of the buildings according to the construction order of these four towers and wind directions. Results were compared with the 'TS 498 Wind Standard of Tall Buildings in Istanbul' which is prepared by Istanbul Metropolitan Municipality in 2009. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20rise%20buildings" title="high rise buildings">high rise buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20coefficients" title=" pressure coefficients"> pressure coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20experiments" title=" wind tunnel experiments"> wind tunnel experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20standard%20of%20tall%20buildings" title=" wind standard of tall buildings"> wind standard of tall buildings</a> </p> <a href="https://publications.waset.org/abstracts/9456/influences-of-high-rise-buildings-on-local-air-flow-characteristics-on-external-surfaces-of-neighboring-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Lara-Valencia">Luis Lara-Valencia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateo%20Ramirez-Acevedo"> Mateo Ramirez-Acevedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Caicedo"> Daniel Caicedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Brito"> Jose Brito</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosef%20Farbiarz"> Yosef Farbiarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20cultural%20algorithm" title="evolutionary cultural algorithm">evolutionary cultural algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20inerter%20damper" title=" tuned inerter damper"> tuned inerter damper</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-induced%20vibrations" title=" wind-induced vibrations"> wind-induced vibrations</a> </p> <a href="https://publications.waset.org/abstracts/131091/optimal-design-of-tuned-inerter-damper-based-system-for-the-control-of-wind-induced-vibration-in-tall-buildings-through-cultural-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Improving the Dimensional Stability of Medium-Density Fiberboard with Bio-Based Additives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hosseinpourpia">Reza Hosseinpourpia</a>, <a href="https://publications.waset.org/abstracts/search?q=Stergios%20Adamopoulos"> Stergios Adamopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Carsten%20Mai"> Carsten Mai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medium density fiberboard (MDF) is a common category of wood-based panels that are widely used in the furniture industry. Fine lignocellulosic fibres are combined with a synthetic resin, mostly urea formaldehyde (UF), and joined together under heat and pressure to form panels. Like solid wood, MDF is a hygroscopic material; therefore, its moisture content depends on the surrounding relative humidity and temperature. In addition, UF is a hydrophilic resin and susceptible to hydrolysis under certain conditions of elevated temperatures and humidity, which cause dimensional instability of the panels. The latter directly affect the performance of final products such as furniture, when they are used in situations of high relative humidity. Existing water-repellent formulations, such as paraffin, present limitations related to their non-renewable nature, cost and highest allowed added amount. Therefore, the aim of the present study was to test the suitability of renewable water repellents as alternative chemicals for enhancing the dimensional stability of MDF panels. A small amount of tall oil based formulations were used as water-repellent agents in the manufacturing of laboratory scale MDF. The effects on dimensional stability, internal bond strength and formaldehyde release of MDF were tested. The results indicated a good potential of tall oil as a bio-based substance of water repellent formulations for improving the dimensional stability of MDF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimensional%20stability" title="dimensional stability">dimensional stability</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20density%20fiberboard" title=" medium density fiberboard"> medium density fiberboard</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20oil" title=" tall oil"> tall oil</a>, <a href="https://publications.waset.org/abstracts/search?q=urea%20formaldehyde" title=" urea formaldehyde"> urea formaldehyde</a> </p> <a href="https://publications.waset.org/abstracts/58107/improving-the-dimensional-stability-of-medium-density-fiberboard-with-bio-based-additives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Tall Building Transit-Oriented Development (TB-TOD) and Energy Efficiency in Suburbia: Case Studies, Sydney, Toronto, and Washington D.C. </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narjes%20Abbasabadi">Narjes Abbasabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world continues to urbanize and suburbanize, where suburbanization associated with mass sprawl has been the dominant form of this expansion, sustainable development challenges will be more concerned. Sprawling, characterized by low density and automobile dependency, presents significant environmental issues regarding energy consumption and Co2 emissions. This paper examines the vertical expansion of suburbs integrated into mass transit nodes as a planning strategy for boosting density, intensification of land use, conversion of single family homes to multifamily dwellings or mixed use buildings and development of viable alternative transportation choices. It analyzes the spatial patterns of tall building transit-oriented development (TB-TOD) of suburban regions in Sydney (Australia), Toronto (Canada), and Washington D.C. (United States). The main objectives of this research seek to understand the effect of the new morphology of suburban tall, the physical dimensions of individual buildings and their arrangement at a larger scale with energy efficiency. This study aims to answer these questions: 1) why and how can the potential phenomenon of vertical expansion or high-rise development be integrated into suburb settings? 2) How can this phenomenon contribute to an overall denser development of suburbs? 3) Which spatial pattern or typologies/ sub-typologies of the TB-TOD model do have the greatest energy efficiency? It addresses these questions by focusing on 1) energy, heat energy demand (excluding cooling and lighting) related to design issues at two levels: macro, urban scale and micro, individual buildings—physical dimension, height, morphology, spatial pattern of tall buildings and their relationship with each other and transport infrastructure; 2) Examining TB-TOD to provide more evidence of how the model works regarding ridership. The findings of the research show that the TB-TOD model can be identified as the most appropriate spatial patterns of tall buildings in suburban settings. And among the TB-TOD typologies/ sub-typologies, compact tall building blocks can be the most energy efficient one. This model is associated with much lower energy demands in buildings at the neighborhood level as well as lower transport needs in an urban scale while detached suburban high rise or low rise suburban housing will have the lowest energy efficiency. The research methodology is based on quantitative study through applying the available literature and static data as well as mapping and visual documentations of urban regions such as Google Earth, Microsoft Bing Bird View and Streetview. It will examine each suburb within each city through the satellite imagery and explore the typologies/ sub-typologies which are morphologically distinct. The study quantifies heat energy efficiency of different spatial patterns through simulation via GIS software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20pattern" title=" spatial pattern"> spatial pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=suburb" title=" suburb"> suburb</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building%20transit-oriented%20development%20%28TB-TOD%29" title=" tall building transit-oriented development (TB-TOD)"> tall building transit-oriented development (TB-TOD)</a> </p> <a href="https://publications.waset.org/abstracts/65894/tall-building-transit-oriented-development-tb-tod-and-energy-efficiency-in-suburbia-case-studies-sydney-toronto-and-washington-dc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Work Related Outcomes of Perceived Authentic Leadership: Moderating Role of Organizational Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Zubair">Aisha Zubair</a>, <a href="https://publications.waset.org/abstracts/search?q=Anila%20Kamal"> Anila Kamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leadership styles and practices greatly influence the organizational effectiveness and productivity. It also plays an important role in employees’ experiences of positive emotions at workplace and creative work behaviors. Authentic leadership as a newly emerging concept has been found as a significant predictor of various desirable work related outcomes. However, leadership practices and its work related outcomes, to a great extent, are determined by the very nature of the organizational structures (tall and flat). Tall organizations are characterized by multiple hierarchical layers with predominant vertical communication patterns, and narrow span of control; while flat organizations are featured by few layers of management employing both horizontal and vertical communication styles, and wide span of control. Therefore, the present study was undertaken to determine the work related outcomes of perceived authentic leadership; that is work related flow and creative work behavior among employees of flat and tall organizations. Moreover, it was also intended to determine the moderating role of organizational structure (flat and tall) in the relationship between perceived authentic leadership with work related flow and creative work behavior. In this regard, two types of companies have been considered; that is, banks as a form of tall organizational structure with multiple hierarchical structures while software companies have been considered as flat organizations with minimal layers of management. Respondents (N = 1180) were full time regular employees of marketing departments of banks (600) and software companies (580) including both men and women with age range of 22-52 years (M = 33.24; SD = 7.81). Confirmatory Factor Analysis yielded factor structures of measures of work related flow and creative work behavior in accordance to the theoretical models. However, model of authentic leadership exhibited variation in terms of two items which were not included in the final measure of the perceived authentic leadership. Results showed that perceived authentic leadership was positively associated with work related flow and creative work behavior. Likewise, work related flow was positively aligned with creative work behavior. Furthermore, type of organizational structure significantly moderated the relationship of perceived authentic leadership with work related flow and creative work behavior. Results of independent sample t-test showed that employees working in flat organization reflected better perceptions of authentic leadership; higher work related flow and elevated levels of creative work behavior as compared to those working in tall organizations. It was also found that employees with extended job experience and more job duration in the same organization displayed better perceptions of authentic leadership, reported more work related flow and augmented levels of creative work behavior. Findings of the present study distinctively highlighted the similarities as well as differences in the interactions of major constructs which function differentially in the context of tall (banks) and flat (software companies) organizations. Implications of the present study for employees and management as well as future recommendations were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creative%20work%20behavior" title="creative work behavior">creative work behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20structure" title=" organizational structure"> organizational structure</a>, <a href="https://publications.waset.org/abstracts/search?q=perceived%20authentic%20leadership" title=" perceived authentic leadership"> perceived authentic leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20related%20flow" title=" work related flow"> work related flow</a> </p> <a href="https://publications.waset.org/abstracts/42295/work-related-outcomes-of-perceived-authentic-leadership-moderating-role-of-organizational-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Architectural and Structural Analysis of Selected Tall Buildings in Warsaw, Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Szolomicki">J. Szolomicki</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Golasz-Szolomicka"> H. Golasz-Szolomicka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents elements of architectural and structural analysis of selected high-rise buildings in the Polish capital city of Warsaw. When analyzing the architecture of Warsaw, it can be concluded that it is currently a rapidly growing city with technologically advanced skyscrapers that belong to the category of intelligent buildings. The constructional boom over the last dozen years has seen the erection of postmodern skyscrapers for office and residential use. This article focuses on how Warsaw has recently joined the most architecturally interesting cities in Europe. Warsaw is currently in fifth place in Europe in terms of the number of skyscrapers and is considered the second most preferred city in Europe (after London) for investment related to them. However, the architectural development of the city could not take place without the participation of eminent Polish and foreign architects such as Stefan Kuryłowicz, Lary Oltmans, Helmut Jahn or Daniel Libeskind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20structure" title="core structure">core structure</a>, <a href="https://publications.waset.org/abstracts/search?q=curtain%20facade" title=" curtain facade"> curtain facade</a>, <a href="https://publications.waset.org/abstracts/search?q=raft%20foundation" title=" raft foundation"> raft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a> </p> <a href="https://publications.waset.org/abstracts/89391/architectural-and-structural-analysis-of-selected-tall-buildings-in-warsaw-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Increase the Ductility of Tall Buildings Using Green Material Bamboo for Earthquake Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shef%20Amir%20Arasy">Shef Amir Arasy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2023, the world's population will be 7.8 billion, which has increased significantly in the last 20 years. Every country in the world is experiencing the impacts of climate change directly and indirectly. However, the community still needs to build massive infrastructure and buildings. The massive CO2 emissions which lead to climate change come from cement usage in construction activity. Bamboo is one of the most sustainable materials for reducing carbon emissions and releasing more than 30% oxygen compared to the mass of trees. Besides, bamboo harvest time is faster than other sustainable materials, around 3-4 years. Furthermore, Bamboo has a high tensile strength, which can provide ductility effectively to prevent damage to buildings during an earthquake. By the finite element method, this research analyzes bamboo configuration and connection for tall building structures under different earthquake frequencies and fire. The aim of this research is to provide proper design and connection of bamboo buildings that can be more reliable than concrete structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake." title=" earthquake."> earthquake.</a> </p> <a href="https://publications.waset.org/abstracts/162511/increase-the-ductility-of-tall-buildings-using-green-material-bamboo-for-earthquake-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Hybrid Diagrid System for High-Rise Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Saeid%20Tabaee">Seyed Saeid Tabaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Afshari"> Mohammad Afshari</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahador%20Ziaeemehr"> Bahador Ziaeemehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Bahar"> Omid Bahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, using modern structural systems with specific capabilities, like Diagrid, is emerging around the world. In this paper, a new resisting system, a combination of both Diagrid axial behavior and proper seismic performance of regular moment frames in tall buildings, named 'Hybrid Diagrid' is presented. The scaled specimen of the suggested hybrid system was built and tested using IIEES shaking table. The natural frequency and structural response of the analytical model were updated with the real experimental results. In order to compare its performance with the traditional Diagrid and moment frame systems, time history analysis was carried out. Extensive analysis shows the efficient seismic responses and economical behavior of Hybrid Diagrid structure with respect to the other two systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20diagrid%20system" title="hybrid diagrid system">hybrid diagrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20frame" title=" moment frame"> moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a> </p> <a href="https://publications.waset.org/abstracts/83299/hybrid-diagrid-system-for-high-rise-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soltani%20Amir">Soltani Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xuan"> Wang Xuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20control" title="active control">active control</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dampers" title=" viscous dampers"> viscous dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20control" title=" structural control"> structural control</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/5867/vibration-control-of-two-adjacent-structures-using-a-non-linear-damping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Amini%20Motlagh">Peyman Amini Motlagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Pak"> Ali Pak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic retrofitting of important structures is essential in seismological active zones. The importance is doubled when it comes to some buildings like schools, hospitals, bridges etc. because they are required to continue their serviceability even after a major earthquake. Generally, seismic retrofitting codes have paid little attention to retrofitting of foundations due to its construction complexity. In this paper different methods for seismic retrofitting of tall buildings’ foundations will be discussed and evaluated. Foundations are considered in three different categories. First, foundations those are in danger of liquefaction of their underlying soil. Second, foundations located on slopes in seismological active regions. Third, foundations designed according to former design codes and may show structural defects under earthquake loads. After describing different methods used in different countries for retrofitting of the existing foundations in seismological active regions, comprehensive comparison between these methods with regard to the above mentioned categories is carried out. This paper gives some guidelines to choose the best method for seismic retrofitting of tall buildings’ foundations in retrofitting projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20foundation" title="existing foundation">existing foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofitting" title=" seismic retrofitting"> seismic retrofitting</a> </p> <a href="https://publications.waset.org/abstracts/8453/comparison-of-seismic-retrofitting-methods-for-existing-foundations-in-seismological-active-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=A.%20Tall%20Dia&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=A.%20Tall%20Dia&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=A.%20Tall%20Dia&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=A.%20Tall%20Dia&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>