CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,886 results for author: <span class="mathjax">Chen, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Chen%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17334">arXiv:2502.17334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17334">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical Propulsion and Levitation of Metajets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kudtarkar%2C+K">Kaushik Kudtarkar</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yixin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Z">Ziqiang Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cunha%2C+P">Preston Cunha</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+S">Sam Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+Z+J">Zi Jing Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yongmin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+S">Shoufeng Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17334v1-abstract-short" style="display: inline;"> The quintessential hallmark distinguishing metasurfaces from traditional optical components is the engineering of subwavelength meta-atoms to manipulate light at will. Enabling this freedom, in a reverse manner, to control objects constituted by metasurfaces could expand our capability of optical manipulation to go beyond the predominant microscopic and sub-microscopic scales. Here, we introduce a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17334v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17334v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17334v1-abstract-full" style="display: none;"> The quintessential hallmark distinguishing metasurfaces from traditional optical components is the engineering of subwavelength meta-atoms to manipulate light at will. Enabling this freedom, in a reverse manner, to control objects constituted by metasurfaces could expand our capability of optical manipulation to go beyond the predominant microscopic and sub-microscopic scales. Here, we introduce a driving metaphotonic force fully controllable by meta-atoms to manipulate structured objects named metajets. Upon Newton&#39;s law of motion that can apply to classical and relativistic mechanics, we develop a first-principles theory to analyze optical forces generated by refraction and reflection at an interface. We find that three-dimensional motions of metajets would be possible if one could introduce an extra wavevector component. We achieve that by creating a spatially distributed phase gradient with deliberately arranged silicon nanopillars. Our experiments and simulations reveal an in-plane propulsion and, very importantly, out-of-plane levitation of the metajets, aligning well with the theory. We also find that the metaphotonic force augments with increased light power but is not limited by the size of metajets, which could unleash new opportunities for metaphotonic control in large settings, such as interstellar light sails. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17334v1-abstract-full').style.display = 'none'; document.getElementById('2502.17334v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17251">arXiv:2502.17251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17251">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> On measure problems in allometric analysis of cities -- How to correctly understand the law of allometric growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yanguang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17251v1-abstract-short" style="display: inline;"> The law of allometric growth originated from biology has been widely used in urban research for a long time. Some conditional research conclusions based on biological phenomena have been erroneously transmitted in the field of urban geography, leading to some misunderstandings. One of the misunderstandings is that allometric analysis must be based on average measure. The aim of this paper is at ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17251v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17251v1-abstract-full" style="display: none;"> The law of allometric growth originated from biology has been widely used in urban research for a long time. Some conditional research conclusions based on biological phenomena have been erroneously transmitted in the field of urban geography, leading to some misunderstandings. One of the misunderstandings is that allometric analysis must be based on average measure. The aim of this paper is at explaining how to correctly understand the law of urban allometric growth by means of the methods of literature analysis and mathematical analysis. The results show the average measures cannot be applied to all types of allometric relationships, and the allometric relationships based on average measures cannot be derived from a general principle. Whether it is an empirical model or a theoretical model of allometric growth, its generation and derivation are independent of the average measures. Conclusions can be reached that the essence of allometric growth lies in that the ratio of two related general relative growth rates is a constant, and this constant represents the allometric scaling exponent and fractal dimension ratio. The average measures are helpful to estimate the allometric scaling exponent value which accords with certain theoretical expectations more effectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17251v1-abstract-full').style.display = 'none'; document.getElementById('2502.17251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 2 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14542">arXiv:2502.14542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.14542">pdf</a>, <a href="https://arxiv.org/format/2502.14542">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice distortion tuning resistivity invar effect in high entropy alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yuanji Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Lihua Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yue Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wr%C3%B3bel%2C+J">Jan Wr贸bel</a>, <a href="/search/physics?searchtype=author&amp;query=Cong%2C+D">Daoyong Cong</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+F">Fuyang Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14542v1-abstract-short" style="display: inline;"> Materials with an ultra-low temperature coefficient of resistivity are desired for the temperature and flow sensors in high-precision electronic measuring systems. In this work, the Kubo-Greenwood formula, implemented in ab initio molecular dynamics simulations, is employed to predict the finite-temperature resistivity of multi-component alloys with severe lattice distortion. We observe a tiny cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14542v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14542v1-abstract-full" style="display: none;"> Materials with an ultra-low temperature coefficient of resistivity are desired for the temperature and flow sensors in high-precision electronic measuring systems. In this work, the Kubo-Greenwood formula, implemented in ab initio molecular dynamics simulations, is employed to predict the finite-temperature resistivity of multi-component alloys with severe lattice distortion. We observe a tiny change in resistivity over a wide temperature range in high-entropy alloys. The electronic resistivity invar effect in B2 Ni$_{25}$Co$_{25}$(HfTiZr)$_{50}$ Elinvar alloys results from a balance between intrinsic and residual resistivity. This effect is associated with atomic displacements from ideal lattice sites, which are caused by lattice thermal vibrations and chemical disorder-induced lattice distortions. It is further evidenced by a decrease in lattice distortion with temperature and changes in the electronic density of states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14542v1-abstract-full').style.display = 'none'; document.getElementById('2502.14542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13841">arXiv:2502.13841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13841">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Combined Light Excitation and Scanning Gate Microscopy on Heterostructure Nanowire Photovoltaic Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yen-Po Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Fast%2C+J">Jonatan Fast</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhe%2C+R">Ren Zhe</a>, <a href="/search/physics?searchtype=author&amp;query=Burke%2C+A">Adam Burke</a>, <a href="/search/physics?searchtype=author&amp;query=Timm%2C+R">Rainer Timm</a>, <a href="/search/physics?searchtype=author&amp;query=Linke%2C+H">Heiner Linke</a>, <a href="/search/physics?searchtype=author&amp;query=Mikkelsen%2C+A">Anders Mikkelsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13841v1-abstract-short" style="display: inline;"> Nanoscale optoelectronic components achieve functionality via spatial variation in electronic structure induced by composition, defects, and dopants. To dynamically change the local band alignment and influence defect states, a scanning gate electrode is highly useful. However, this technique is rarely combined with photoexcitation by a controlled external light source. We explore a setup that com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13841v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13841v1-abstract-full" style="display: none;"> Nanoscale optoelectronic components achieve functionality via spatial variation in electronic structure induced by composition, defects, and dopants. To dynamically change the local band alignment and influence defect states, a scanning gate electrode is highly useful. However, this technique is rarely combined with photoexcitation by a controlled external light source. We explore a setup that combines several types of light excitation with high resolution scanning gate and atomic force microscopy (SGM/AFM). We apply the technique to InAs nanowires with an atomic scale defined InP segment, that have attracted considerable attention for studies of hot carrier devices. Using AFM we image the topography of the nanowire device. SGM measurements without light excitation show how current profiles can be influenced by local gating near the InP segment. Modelling of the tip and nanowire can well predict the results based on the axial band structure variation and an asymmetric tip. SGM studies including light excitation are then performed using both a white light LED and laser diodes at 515 and 780nm. Both negative and positive photoconductance can be observed and the combined effect of light excitation and local gating is observed. SGM can then be used to discriminate between effects related to the wire axial compositional structure and surface states. The setup explored in the current work has significant advantages to study optoelectronics at realistic conditions and with rapid turnover. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13841v1-abstract-full').style.display = 'none'; document.getElementById('2502.13841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12987">arXiv:2502.12987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.12987">pdf</a>, <a href="https://arxiv.org/format/2502.12987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Ensemble Kalman filter in latent space using a variational autoencoder pair </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pasmans%2C+I">Ivo Pasmans</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yumeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Finn%2C+T+S">Tobias Sebastian Finn</a>, <a href="/search/physics?searchtype=author&amp;query=Bocquet%2C+M">Marc Bocquet</a>, <a href="/search/physics?searchtype=author&amp;query=Carrassi%2C+A">Alberto Carrassi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12987v1-abstract-short" style="display: inline;"> Popular (ensemble) Kalman filter data assimilation (DA) approaches assume that the errors in both the a priori estimate of the state and those in the observations are Gaussian. For constrained variables, e.g. sea ice concentration or stress, such an assumption does not hold. The variational autoencoder (VAE) is a machine learning (ML) technique that allows to map an arbitrary distribution to/from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12987v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12987v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12987v1-abstract-full" style="display: none;"> Popular (ensemble) Kalman filter data assimilation (DA) approaches assume that the errors in both the a priori estimate of the state and those in the observations are Gaussian. For constrained variables, e.g. sea ice concentration or stress, such an assumption does not hold. The variational autoencoder (VAE) is a machine learning (ML) technique that allows to map an arbitrary distribution to/from a latent space in which the distribution is supposedly closer to a Gaussian. We propose a novel hybrid DA-ML approach in which VAEs are incorporated in the DA procedure. Specifically, we introduce a variant of the popular ensemble transform Kalman filter (ETKF) in which the analysis is applied in the latent space of a single VAE or a pair of VAEs. In twin experiments with a simple circular model, whereby the circle represents an underlying submanifold to be respected, we find that the use of a VAE ensures that a posteri ensemble members lie close to the manifold containing the truth. Furthermore, online updating of the VAE is necessary and achievable when this manifold varies in time, i.e. when it is non-stationary. We demonstrate that introducing an additional second latent space for the observational innovations improves robustness against detrimental effects of non-Gaussianity and bias in the observational errors but it slightly lessens the performance if observational errors are strictly Gaussian. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12987v1-abstract-full').style.display = 'none'; document.getElementById('2502.12987v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10974">arXiv:2502.10974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10974">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous optical power delivery and distributed sensing through cross-band wavelength multiplexing over fiber link </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T">Tianye Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+L">Lu Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xinyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+M">Ming Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+M">Mingkong Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">Kaifu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+H">Hanlin Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+L">Liangming Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xiangyun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Shum%2C+P+P">Perry Ping Shum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10974v1-abstract-short" style="display: inline;"> Optical fibers offer significant advantages in both power delivery and distributed sensing. In remote areas where stable power supply is not easy to access, the distributed optical fiber sensing (DOFS) which offers long distance monitoring capability and the power-over-fiber (PoF) which can provide energy for connected electronics or other sensors are highly desired simultaneously. In this letter,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10974v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10974v1-abstract-full" style="display: none;"> Optical fibers offer significant advantages in both power delivery and distributed sensing. In remote areas where stable power supply is not easy to access, the distributed optical fiber sensing (DOFS) which offers long distance monitoring capability and the power-over-fiber (PoF) which can provide energy for connected electronics or other sensors are highly desired simultaneously. In this letter, the PoF-DOFS hybrid system is proposed and experimentally verified for the first time. By multiplexing the power channel and sensing channel with large wavelength separation, the cross-talk is greatly reduced. The results show that the Brillouin frequency shift under different temperature in the Brillouin optical time domain reflectometry remains unaffected by the high-power transmission background and the power delivery efficiency up to ~66% can be achieved over 1.3 km fiber link. This work paves the way for further research on PoF-DOFS hybrid system and gives a valuable solution for creating multi-parameter, multi-scale sensing network without the need for local power source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10974v1-abstract-full').style.display = 'none'; document.getElementById('2502.10974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10580">arXiv:2502.10580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10580">pdf</a>, <a href="https://arxiv.org/format/2502.10580">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Accelerating Quantitative MRI using Subspace Multiscale Energy Model (SS-MuSE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chand%2C+J+R">Jyothi Rikhab Chand</a>, <a href="/search/physics?searchtype=author&amp;query=Kecskemeti%2C+S+R">Steven R. Kecskemeti</a>, <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J+H">James H. Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Jacob%2C+M">Mathews Jacob</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10580v1-abstract-short" style="display: inline;"> Multi-contrast MRI methods acquire multiple images with different contrast weightings, which are used for the differentiation of the tissue types or quantitative mapping. However, the scan time needed to acquire multiple contrasts is prohibitively long for 3D acquisition schemes, which can offer isotropic image resolution. While deep learning-based methods have been extensively used to accelerate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10580v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10580v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10580v1-abstract-full" style="display: none;"> Multi-contrast MRI methods acquire multiple images with different contrast weightings, which are used for the differentiation of the tissue types or quantitative mapping. However, the scan time needed to acquire multiple contrasts is prohibitively long for 3D acquisition schemes, which can offer isotropic image resolution. While deep learning-based methods have been extensively used to accelerate 2D and 2D + time problems, the high memory demand, computation time, and need for large training data sets make them challenging for large-scale volumes. To address these challenges, we generalize the plug-and-play multi-scale energy-based model (MuSE) to a regularized subspace recovery setting, where we jointly regularize the 3D multi-contrast spatial factors in a subspace formulation. The explicit energy-based formulation allows us to use variable splitting optimization methods for computationally efficient recovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10580v1-abstract-full').style.display = 'none'; document.getElementById('2502.10580v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08409">arXiv:2502.08409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08409">pdf</a>, <a href="https://arxiv.org/format/2502.08409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Stable Soliton Microcomb Generation in X-cut Lithium Tantalate via Thermal-Assisted Photorefractive Suppression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">Jiachen Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+B">Bowen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xuqiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sui%2C+D">Dongchen Sui</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Piyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+Z">Zhenyu Qu</a>, <a href="/search/physics?searchtype=author&amp;query=Ke%2C+X">Xinjian Ke</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yifan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+W">WenHui Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+A">Ailun Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jiaxiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chengli Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chun-Hua Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Ou%2C+X">Xin Ou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08409v1-abstract-short" style="display: inline;"> Chip-based soliton frequency microcombs combine compact size, broad bandwidth, and high coherence, presenting a promising solution for integrated optical telecommunications, precision sensing, and spectroscopy. Recent progress in ferroelectric thin films, particularly thin-film Lithium niobate (LN) and thin-film Lithium tantalate (LT), has significantly advanced electro-optic (EO) modulation and s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08409v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08409v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08409v1-abstract-full" style="display: none;"> Chip-based soliton frequency microcombs combine compact size, broad bandwidth, and high coherence, presenting a promising solution for integrated optical telecommunications, precision sensing, and spectroscopy. Recent progress in ferroelectric thin films, particularly thin-film Lithium niobate (LN) and thin-film Lithium tantalate (LT), has significantly advanced electro-optic (EO) modulation and soliton microcombs generation, leveraging their strong third-order nonlinearity and high Pockels coefficients. However, achieving soliton frequency combs in X-cut ferroelectric materials remains challenging due to the competing effects of thermo-optic and photorefractive phenomena. These issues hinder the simultaneous realization of soliton generation and high-speed EO modulation. Here, following the thermal-regulated carrier behaviour and auxiliary-laser-assisted approach, we propose a convenient mechanism to suppress both photorefractive and thermal dragging effect at once, and implement a facile method for soliton formation and its long-term stabilization in integrated X-cut LT microresonators for the first time. The resulting mode-locked states exhibit robust stability against perturbations, enabling new pathways for fully integrated photonic circuits that combine Kerr nonlinearity with high-speed EO functionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08409v1-abstract-full').style.display = 'none'; document.getElementById('2502.08409v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07317">arXiv:2502.07317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07317">pdf</a>, <a href="https://arxiv.org/format/2502.07317">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Position reconstruction and surface background model for the PandaX-4T detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Z">Zhicheng Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zhaokan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhixing Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xunan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zichao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+C">Chencheng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Houqi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Junting Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+R">Ruquan Hou</a> , et al. (78 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07317v1-abstract-short" style="display: inline;"> We report the position reconstruction methods and surface background model for the PandaX-4T dark matter direct search experiment. This work develops two position reconstruction algorithms: template matching (TM) method and photon acceptance function (PAF) method. Both methods determine the horizontal position of events based on the light pattern of secondary scintillation collected by the light s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07317v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07317v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07317v1-abstract-full" style="display: none;"> We report the position reconstruction methods and surface background model for the PandaX-4T dark matter direct search experiment. This work develops two position reconstruction algorithms: template matching (TM) method and photon acceptance function (PAF) method. Both methods determine the horizontal position of events based on the light pattern of secondary scintillation collected by the light sensors. After a comprehensive evaluation of resolution, uniformity, and robustness, the PAF method was selected for position reconstruction, while the TM method was employed for verification. The PAF method achieves a bulk event resolution of 1.0 mm and a surface event resolution of 4.4 mm for a typical $S2$ signal with a bottom charge of 1500 PE (about 14 keV). The uniformity is around 20\%. Robustness studies reveal average deviations of 5.1 mm and 8.8 mm for the commissioning run (Run0) and the first science run (Run1), respectively, due to the deactivation of certain PMTs. A data-driven surface background model is developed based on the PAF method. The surface background is estimated to be $0.09 \pm 0.06$ events for Run0 (0.54 tonne$\cdot$year) and $0.17 \pm 0.11$ events for Run1 (1.00 tonne$\cdot$year). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07317v1-abstract-full').style.display = 'none'; document.getElementById('2502.07317v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07032">arXiv:2502.07032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07032">pdf</a>, <a href="https://arxiv.org/format/2502.07032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Shubnikov-de Haas oscillations in coherently strained AlN/GaN/AlN quantum wells on bulk AlN substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu-Hsin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Encomendero%2C+J">Jimy Encomendero</a>, <a href="/search/physics?searchtype=author&amp;query=Xing%2C+H+G">Huili Grace Xing</a>, <a href="/search/physics?searchtype=author&amp;query=Jena%2C+D">Debdeep Jena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07032v1-abstract-short" style="display: inline;"> We report the observation of Shubnikov-de Haas (SdH) oscillations in coherently strained, low-dislocation AlN/GaN/AlN quantum wells (QWs), including both undoped and $未$-doped structures. SdH measurements reveal a single subband occupation in the undoped GaN QW and two subband occupation in the $未$-doped GaN QW. More importantly, SdH oscillations enable direct measurement of critical two-dimension&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07032v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07032v1-abstract-full" style="display: none;"> We report the observation of Shubnikov-de Haas (SdH) oscillations in coherently strained, low-dislocation AlN/GaN/AlN quantum wells (QWs), including both undoped and $未$-doped structures. SdH measurements reveal a single subband occupation in the undoped GaN QW and two subband occupation in the $未$-doped GaN QW. More importantly, SdH oscillations enable direct measurement of critical two-dimensional electron gas (2DEG) parameters at the Fermi level: carrier density and ground state energy level, electron effective mass ($m^* \approx 0.289\,m_{\rm e}$ for undoped GaN QW and $m^* \approx 0.298\,m_{\rm e}$ for $未$-doped GaN QW), and quantum scattering time ($蟿_{\rm q} \approx 83.4 \, \text{fs}$ for undoped GaN QW and $蟿_{\rm q} \approx 130.6 \, \text{fs}$ for $未$-doped GaN QW). These findings provide important insights into the fundamental properties of 2DEGs that are strongly quantum confined in the thin GaN QWs, essential for designing nitride heterostructures for high-performance electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07032v1-abstract-full').style.display = 'none'; document.getElementById('2502.07032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05255">arXiv:2502.05255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05255">pdf</a>, <a href="https://arxiv.org/format/2502.05255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Incivility and Contentiousness Spillover between COVID-19 and Climate Science Engagement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Narimanzadeh%2C+H">Hasti Narimanzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Badie-Modiri%2C+A">Arash Badie-Modiri</a>, <a href="/search/physics?searchtype=author&amp;query=Smirnova%2C+I">Iuliia Smirnova</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+T+H+Y">Ted Hsuan Yun Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05255v1-abstract-short" style="display: inline;"> Affective polarization and its accompanying cleavage-based sorting drives incivility and contentiousness around climate change and other science-related issues. Looking at the COVID-19 period, we study cross-domain spillover of incivility and contentiousness in public engagements with climate change and climate science on Twitter and Reddit. We find strong evidence of the signatures of affective p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05255v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05255v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05255v1-abstract-full" style="display: none;"> Affective polarization and its accompanying cleavage-based sorting drives incivility and contentiousness around climate change and other science-related issues. Looking at the COVID-19 period, we study cross-domain spillover of incivility and contentiousness in public engagements with climate change and climate science on Twitter and Reddit. We find strong evidence of the signatures of affective polarization surrounding COVID-19 spilling into the climate change domain. Across different social media systems, COVID-19 content is associated with incivility and contentiousness in climate discussions. These patterns of increased antagonism were responsive to pandemic events that made the link between science and public policy more salient. We also show that the observed spillover activated along pre-pandemic political cleavages, specifically anti-internationalist populist beliefs, that linked climate policy opposition to vaccine hesitancy. Our findings highlight the dangers of entrenched cross-domain polarization manifesting as spillover of antagonistic behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05255v1-abstract-full').style.display = 'none'; document.getElementById('2502.05255v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04575">arXiv:2502.04575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.04575">pdf</a>, <a href="https://arxiv.org/ps/2502.04575">ps</a>, <a href="https://arxiv.org/format/2502.04575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> </div> </div> <p class="title is-5 mathjax"> Complexity Analysis of Normalizing Constant Estimation: from Jarzynski Equality to Annealed Importance Sampling and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guo%2C+W">Wei Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+M">Molei Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yongxin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04575v1-abstract-short" style="display: inline;"> Given an unnormalized probability density $蟺\propto\mathrm{e}^{-V}$, estimating its normalizing constant $Z=\int_{\mathbb{R}^d}\mathrm{e}^{-V(x)}\mathrm{d}x$ or free energy $F=-\log Z$ is a crucial problem in Bayesian statistics, statistical mechanics, and machine learning. It is challenging especially in high dimensions or when $蟺$ is multimodal. To mitigate the high variance of conventional impo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04575v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04575v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04575v1-abstract-full" style="display: none;"> Given an unnormalized probability density $蟺\propto\mathrm{e}^{-V}$, estimating its normalizing constant $Z=\int_{\mathbb{R}^d}\mathrm{e}^{-V(x)}\mathrm{d}x$ or free energy $F=-\log Z$ is a crucial problem in Bayesian statistics, statistical mechanics, and machine learning. It is challenging especially in high dimensions or when $蟺$ is multimodal. To mitigate the high variance of conventional importance sampling estimators, annealing-based methods such as Jarzynski equality and annealed importance sampling are commonly adopted, yet their quantitative complexity guarantees remain largely unexplored. We take a first step toward a non-asymptotic analysis of annealed importance sampling. In particular, we derive an oracle complexity of $\widetilde{O}\left(\frac{d尾^2{\mathcal{A}}^2}{\varepsilon^4}\right)$ for estimating $Z$ within $\varepsilon$ relative error with high probability, where $尾$ is the smoothness of $V$ and $\mathcal{A}$ denotes the action of a curve of probability measures interpolating $蟺$ and a tractable reference distribution. Our analysis, leveraging Girsanov theorem and optimal transport, does not explicitly require isoperimetric assumptions on the target distribution. Finally, to tackle the large action of the widely used geometric interpolation of probability distributions, we propose a new normalizing constant estimation algorithm based on reverse diffusion samplers and establish a framework for analyzing its complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04575v1-abstract-full').style.display = 'none'; document.getElementById('2502.04575v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03996">arXiv:2502.03996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.03996">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Power-over-fiber and distributed acoustic sensing hybridization in single fiber channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T">Tianye Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">Kaifu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+H">Hanlin Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yongkang Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+L">Lu Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+L">Liangming Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Shum%2C+P+P">Perry Ping Shum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03996v1-abstract-short" style="display: inline;"> The efficient and independent operation of power-over-fiber (PoF) and distributed acoustic sensing (DAS) has been demonstrated using standard single-mode fiber (SSMF). A transmission optical power efficiency (OPTE) of 6.67% was achieved over an 11.8 km fiber link, supporting both power delivery and distributed optical fiber sensing (DOFS). To minimize cross-talk, the system separates the power and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03996v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03996v1-abstract-full" style="display: none;"> The efficient and independent operation of power-over-fiber (PoF) and distributed acoustic sensing (DAS) has been demonstrated using standard single-mode fiber (SSMF). A transmission optical power efficiency (OPTE) of 6.67% was achieved over an 11.8 km fiber link, supporting both power delivery and distributed optical fiber sensing (DOFS). To minimize cross-talk, the system separates the power and sensing channels by a 40 THz bandwidth. In the experiment, the power and sensing light wavelengths are 1064 nm (continuous) and 1550 nm (pulsed), respectively. As the transmitted optical power increased from 0 W to 2.13 W, the DAS system successfully localized vibration sources and reconstructed phase information, confirming its ability to operate under high optical power. The reported scheme verifies the possibility of constructing the sensing-energy hybrid network based on conventional optical fiber with the advantages of flexibility and low cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03996v1-abstract-full').style.display = 'none'; document.getElementById('2502.03996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02926">arXiv:2502.02926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02926">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Exclusive Generation of Single-Atom Sulfur for Ultrahigh Quality Monolayer MoS$_2$ Growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yunhao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jingwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yumo Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xian Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+J">Junyang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiarong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Nong%2C+H">Huiyu Nong</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">Liqiong He</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Q">Qinke Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+G">Guangmin Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X">Xiaolong Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bilu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02926v1-abstract-short" style="display: inline;"> Preparation of high-quality two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the precondition for realizing their applications. However, the synthesized 2D TMDCs (e.g., MoS$_2$) crystals suffer from low quality due to the massive defects formed during the growth. Here, we report the single-atom sulfur (S1) as a highly reactive sulfur species to grow ultrahigh-quality monolayer MoS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02926v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02926v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02926v1-abstract-full" style="display: none;"> Preparation of high-quality two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the precondition for realizing their applications. However, the synthesized 2D TMDCs (e.g., MoS$_2$) crystals suffer from low quality due to the massive defects formed during the growth. Here, we report the single-atom sulfur (S1) as a highly reactive sulfur species to grow ultrahigh-quality monolayer MoS$_2$. Derived from battery waste, the sulfurized polyacrylonitrile (SPAN) is found to be exclusive and efficient in releasing S1. The monolayer MoS$_2$ prepared by SPAN exhibits an ultralow defect density of $~7\times 10^{12}$ cm$^{-2}$ and the narrowest photoluminescence (PL) emission peak with full-width at half-maximum of ~47.11 meV at room temperature. Moreover, the statistical resonance Raman and low-temperature PL results further verify the significantly lower defect density and higher optical quality of SPAN-grown MoS$_2$ than the conventional S-powder-grown samples. This work provides an effective approach for preparing ultrahigh-quality 2D single crystals, facilitating their industrial applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02926v1-abstract-full').style.display = 'none'; document.getElementById('2502.02926v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures. Journal of the American Chemical Society, 2024, 146, 49, 33289</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JACS, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02485">arXiv:2502.02485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02485">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Flexible radio-frequency transistors exceeding 100 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xia%2C+F">Fan Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+T">Tian Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haotian Su</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+L">Lanyue Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Q">Qianlan Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wanyi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+R">Ruyi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+T">Tianshun Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yufan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+C">Chao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Long%2C+G">Guanhua Long</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+X">Shan X. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Pop%2C+E">Eric Pop</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+L">Lian-Mao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Youfan Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02485v2-abstract-short" style="display: inline;"> The advent of 6G communication demands seamlessly integrated terminals operating above 100 GHz with low power consumption for human-centric applications. In this work, we report high-performance, flexible radio-frequency (RF) transistors based on aligned carbon nanotube (CNT) arrays, achieving, for the first time, as-measured current gain cutoff frequency ($f_{\mathrm{T}}$) and power gain cutoff f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02485v2-abstract-full').style.display = 'inline'; document.getElementById('2502.02485v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02485v2-abstract-full" style="display: none;"> The advent of 6G communication demands seamlessly integrated terminals operating above 100 GHz with low power consumption for human-centric applications. In this work, we report high-performance, flexible radio-frequency (RF) transistors based on aligned carbon nanotube (CNT) arrays, achieving, for the first time, as-measured current gain cutoff frequency ($f_{\mathrm{T}}$) and power gain cutoff frequency ($f_{\mathrm{max}}$) both exceeding 100 GHz. Electro-thermal co-design improves both heat dissipation and RF performance, despite the low thermal conductivity of the flexible substrate. The transistors deliver 0.947 mA/ $\mathrm渭$m on-state current and 0.728 mS/ $\mathrm渭$m transconductance. Peak extrinsic $f_{\mathrm{T}}$ and $f_{\mathrm{max}}$ reach 152 GHz and 102 GHz, with low power consumption of 199 mW/mm and 147 mW/mm, respectively, setting new performance records for flexible CNT-based RF transistors by nearly 100$\times$, outperforming all other flexible RF devices. Additionally, flexible RF amplifiers achieve output power of 64 mW/mm and power gain of 11 dB in the K-band (18 GHz), marking a significant milestone in the development of flexible RF technologies for next-generation wireless communication systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02485v2-abstract-full').style.display = 'none'; document.getElementById('2502.02485v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00498">arXiv:2502.00498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.00498">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> MetaOpenFOAM 2.0: Large Language Model Driven Chain of Thought for Automating CFD Simulation and Post-Processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuxuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xu Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Hua Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhuyin Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00498v1-abstract-short" style="display: inline;"> Computational Fluid Dynamics (CFD) is widely used in aerospace, energy, and biology to model fluid flow, heat transfer, and chemical reactions. While Large Language Models (LLMs) have transformed various domains, their application in CFD remains limited, particularly for complex tasks like post-processing. To bridge this gap, we introduce MetaOpenFOAM 2.0, which leverages Chain of Thought (COT) de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00498v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00498v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00498v1-abstract-full" style="display: none;"> Computational Fluid Dynamics (CFD) is widely used in aerospace, energy, and biology to model fluid flow, heat transfer, and chemical reactions. While Large Language Models (LLMs) have transformed various domains, their application in CFD remains limited, particularly for complex tasks like post-processing. To bridge this gap, we introduce MetaOpenFOAM 2.0, which leverages Chain of Thought (COT) decomposition and iterative verification to enhance accessibility for non-expert users through natural language inputs. Tested on a new benchmark covering simulation (fluid flow, heat transfer, combustion) and post-processing (extraction, visualization), MetaOpenFOAM 2.0 achieved an Executability score of 6.3/7 and a pass rate of 86.9%, significantly outperforming MetaOpenFOAM 1.0 (2.1/7, 0%). Additionally, it proved cost-efficient, averaging $0.15 per case. An ablation study confirmed that COT-driven decomposition and iterative refinement substantially improved task performance. Furthermore, scaling laws showed that increasing COT steps enhanced accuracy while raising token usage, aligning with LLM post-training scaling trends. These results highlight the transformative potential of LLMs in automating CFD workflows for industrial and research applications. Code is available at https://github.com/Terry-cyx/MetaOpenFOAM <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00498v1-abstract-full').style.display = 'none'; document.getElementById('2502.00498v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00234">arXiv:2502.00234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.00234">pdf</a>, <a href="https://arxiv.org/format/2502.00234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Fast Solvers for Discrete Diffusion Models: Theory and Applications of High-Order Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Y">Yinuo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Haoxuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+W">Wei Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yongxin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Rotskoff%2C+G+M">Grant M. Rotskoff</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+M">Molei Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Ying%2C+L">Lexing Ying</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00234v1-abstract-short" style="display: inline;"> Discrete diffusion models have emerged as a powerful generative modeling framework for discrete data with successful applications spanning from text generation to image synthesis. However, their deployment faces challenges due to the high dimensionality of the state space, necessitating the development of efficient inference algorithms. Current inference approaches mainly fall into two categories:&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00234v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00234v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00234v1-abstract-full" style="display: none;"> Discrete diffusion models have emerged as a powerful generative modeling framework for discrete data with successful applications spanning from text generation to image synthesis. However, their deployment faces challenges due to the high dimensionality of the state space, necessitating the development of efficient inference algorithms. Current inference approaches mainly fall into two categories: exact simulation and approximate methods such as $蟿$-leaping. While exact methods suffer from unpredictable inference time and redundant function evaluations, $蟿$-leaping is limited by its first-order accuracy. In this work, we advance the latter category by tailoring the first extension of high-order numerical inference schemes to discrete diffusion models, enabling larger step sizes while reducing error. We rigorously analyze the proposed schemes and establish the second-order accuracy of the $胃$-trapezoidal method in KL divergence. Empirical evaluations on GPT-2 level text and ImageNet-level image generation tasks demonstrate that our method achieves superior sample quality compared to existing approaches under equivalent computational constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00234v1-abstract-full').style.display = 'none'; document.getElementById('2502.00234v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17319">arXiv:2501.17319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.17319">pdf</a>, <a href="https://arxiv.org/format/2501.17319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> MDDM: A Molecular Dynamics Diffusion Model to Predict Particle Self-Assembly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ferguson%2C+K">Kevin Ferguson</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu-hsuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Kara%2C+L+B">Levent Burak Kara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17319v1-abstract-short" style="display: inline;"> The discovery and study of new material systems relies on molecular simulations that often come with significant computational expense. We propose MDDM, a Molecular Dynamics Diffusion Model, which is capable of predicting a valid output conformation for a given input pair potential function. After training MDDM on a large dataset of molecular dynamics self-assembly results, the proposed model can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17319v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17319v1-abstract-full" style="display: none;"> The discovery and study of new material systems relies on molecular simulations that often come with significant computational expense. We propose MDDM, a Molecular Dynamics Diffusion Model, which is capable of predicting a valid output conformation for a given input pair potential function. After training MDDM on a large dataset of molecular dynamics self-assembly results, the proposed model can convert uniform noise into a meaningful output particle structure corresponding to an arbitrary input potential. The model&#39;s architecture has domain-specific properties built-in, such as satisfying periodic boundaries and being invariant to translation. The model significantly outperforms the baseline point-cloud diffusion model for both unconditional and conditional generation tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17319v1-abstract-full').style.display = 'none'; document.getElementById('2501.17319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15532">arXiv:2501.15532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15532">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.024102">10.1103/PhysRevB.111.024102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure induced Structure Change and Anomalies in Thermodynamic Quantities and Transport Properties in Liquid Lithium Hydride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+X+Z">X. Z. Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+M">Y. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+H+Y">Hua Y. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y+F">Y. F. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L+L">L. L. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y+L">Y. L. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15532v1-abstract-short" style="display: inline;"> Understand the nature of liquid structure and its evolution under different conditions is a major challenge in condensed physics and materials science. Here, we report a pressure-induced structure change spanning a wide pressure range in liquid-state lithium hydride (LiH) by first-principles molecular dynamic simulations. This behavior can be described as a continuous crossover from low pressure l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15532v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15532v1-abstract-full" style="display: none;"> Understand the nature of liquid structure and its evolution under different conditions is a major challenge in condensed physics and materials science. Here, we report a pressure-induced structure change spanning a wide pressure range in liquid-state lithium hydride (LiH) by first-principles molecular dynamic simulations. This behavior can be described as a continuous crossover from low pressure liquid with Li$^+$-H$^-$ duality symmetry to high pressure one with broken of duality symmetry. The thermodynamic quantities such as heat capacity and ionic transport properties such as diffusivity are also saliently impacted. It is important to stress that such behavior is firstly predicted for this category of materials, which is ubiquitous in universe as well as in industry applications. Lastly, a comprehensive high-pressure high-temperature phase diagram of LiH is constructed, which embodies rich physics in this previously-thought-simple ionic compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15532v1-abstract-full').style.display = 'none'; document.getElementById('2501.15532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures, with Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, 024102 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15518">arXiv:2501.15518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15518">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.4c06309">10.1021/acs.jpcc.4c06309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous Superconducting and Topological Properties in Mg-Li Electrides at High Pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">D. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+H">H. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Q">Q. Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+G">G. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">L. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+H+Y">Hua Y. Geng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15518v1-abstract-short" style="display: inline;"> Electrides as a unique class of emerging materials exhibit fascinating properties and hold important significance for understanding the matter under extreme conditions, which is characterized by valence electrons localized into the interstitial space as quasi-atoms (ISQs). In this work, using crystal structure prediction and first-principles calculations, we identified seven stable phases of Mg-Li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15518v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15518v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15518v1-abstract-full" style="display: none;"> Electrides as a unique class of emerging materials exhibit fascinating properties and hold important significance for understanding the matter under extreme conditions, which is characterized by valence electrons localized into the interstitial space as quasi-atoms (ISQs). In this work, using crystal structure prediction and first-principles calculations, we identified seven stable phases of Mg-Li that are electride with novel electronic properties under high pressure. Among them, MgLi10 is a semiconductor with a band gap of 0.22 eV; and Pm-3m MgLi is superconductor with a superconducting transition temperature of 22.8 K. The important role played by the localization degree of ISQ in the superconducting transition temperature of these electrides is revealed by systematic comparison of Mg-Li with other Li-rich electride superconductors. Furthermore, we proved that Pm-3m MgLi and Pnma MgLi also have distinct topological behavior with metallic surface states and the non-zero $Z_2$ invariant. The simultaneous coexistence of superconductivity, electronic band topology and electride property in the same structure of Pm-3m MgLi and Pnma MgLi demonstrates the feasibility of realizing multi-quantum phases in a single material, which will stimulate further research in these interdisciplinary fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15518v1-abstract-full').style.display = 'none'; document.getElementById('2501.15518v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 7 figures, with Supporting Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. C 129, 689-698 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15350">arXiv:2501.15350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15350">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Pyrochlore NaYbO2: A potential Quantum Spin Liquid Candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+L">Longlong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Teat%2C+S+J">Simon J. Teat</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+X">Xiaoran Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shi-lei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+H">Huifen Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+J">Jiazheng Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Z">Zhaohui Dong</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">Lunhua He</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+C">Chengwang Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+X">Xutang Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15350v1-abstract-short" style="display: inline;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15350v1-abstract-full" style="display: none;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the first time. Synchrotron X-ray single crystal diffraction unambiguously determined that the newfound beta-NaYbO2 belongs to the three-dimensional pyrochlore structure characterized by the R-3m space group, corroborated by synchrotron X-ray and neutron powder diffraction and pair distribution function. Magnetic measurements revealed no long-range magnetic order or spin glass behavior down to 0.4 K with a low boundary spin frustration factor of 17.5, suggesting a potential QSL ground state. Under high magnetic fields, the potential QSL state was broken and spins order. Our findings reveal that NaYbO2 is a fertile playground for studying novel quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'none'; document.getElementById('2501.15350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited author&#39;s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright American Chemical Society after peer review. To access the final edited and published work, a link will be provided soon</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14167">arXiv:2501.14167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14167">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Integration of Single-Crystalline MoS$_2$ for Flexible Electronics Enabled by Oxide Dry-transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yitong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jichuang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Q">Qi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+T">Tong Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Han Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+H">Huaze Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yaqing Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+C">Chen Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dingwei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Siyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+B">Bowen Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+W">Wei Kong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14167v1-abstract-short" style="display: inline;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14167v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14167v1-abstract-full" style="display: none;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface contamination, significantly degrading device performance. Here, we present a wafer-scale dry-transfer technique using a high-dielectric oxide as the transfer medium, enabling the integration of 4-inch single-crystalline MoS$_2$ onto flexible substrates. This method eliminates contact with polymers or solvents, thus preserving the intrinsic electronic properties of MoS$_2$. As a result, the fabricated flexible field-effect transistor (FET) arrays exhibit remarkable performance, with a mobility of 117 cm$^2$/Vs, a subthreshold swing of 68.8 mV dec$^{-1}$, and an ultra-high current on/off ratio of $10^{12}$-values comparable to those achieved on rigid substrates. Leveraging the outstanding electrical characteristics, we demonstrated MoS$_2$-based flexible inverters operating in the subthreshold regime, achieving both a high gain of 218 and ultra-low power consumption of 1.4 pW/$渭$m. Additionally, we integrated a flexible tactile sensing system driven by active-matrix MoS$_2$ FET arrays onto a robotic gripper, enabling real-time object identification. These findings demonstrate the simultaneous achievement of high electrical performance and flexibility, highlighting the immense potential of single-crystalline TMDC-based flexible electronics for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'none'; document.getElementById('2501.14167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13537">arXiv:2501.13537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13537">pdf</a>, <a href="https://arxiv.org/format/2501.13537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Precision determination of the excited-state hyperfine splitting of Cadmium ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Ying Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Y">Yanmei Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yiting Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+S">Shengnan Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+W">Wenxin Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jianwei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Lijun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13537v1-abstract-short" style="display: inline;"> Precision determination of the hyperfine splitting of cadmium ions is essential to study space-time variation of fundamental physical constants and isotope shifts. In this work, we present the precision frequency measurement of the excited-state $^2{P}_{3/2}$ hyperfine splitting of $^{111,113}\mathrm{Cd}^+$ ions using the laser-induced fluorescence technique. By introducing the technology of sympa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13537v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13537v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13537v1-abstract-full" style="display: none;"> Precision determination of the hyperfine splitting of cadmium ions is essential to study space-time variation of fundamental physical constants and isotope shifts. In this work, we present the precision frequency measurement of the excited-state $^2{P}_{3/2}$ hyperfine splitting of $^{111,113}\mathrm{Cd}^+$ ions using the laser-induced fluorescence technique. By introducing the technology of sympathetic cooling and setting up free-space beat detection unit based on the optical comb, the uncertainties are improved to 14.8 kHz and 10.0 kHz, respectively, two orders of magnitude higher than the reported results from the linear transformation of isotope shifts. The magnetic dipole constants $A_{P_{3/2}}$ of $^{111}\mathrm{Cd}^+$ and $^{113}\mathrm{Cd}^+$ are estimated to be 395 938.8(7.4) kHz and 411 276.0(5.0) kHz, respectively. The difference between the measured and theoretical hyperfine structure constants indicates that more physical effects are required to be considered in the theoretical calculation, and provides critical data for the examination of deviation from King-plot linearity in isotope shifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13537v1-abstract-full').style.display = 'none'; document.getElementById('2501.13537v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13196">arXiv:2501.13196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13196">pdf</a>, <a href="https://arxiv.org/format/2501.13196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Direct Measurement of the $^{39}$Ar Half-life from 3.4 Years of Data with the DEAP-3600 Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DEAP+Collaboration"> DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&amp;query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&amp;query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&amp;query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&amp;query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&amp;query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&amp;query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&amp;query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&amp;query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&amp;query=Cadeddu%2C+M">M. Cadeddu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&amp;query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&amp;query=Crampton%2C+R">R. Crampton</a>, <a href="/search/physics?searchtype=author&amp;query=Daugherty%2C+S">S. Daugherty</a>, <a href="/search/physics?searchtype=author&amp;query=DelGobbo%2C+P">P. DelGobbo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Stefano%2C+P">P. Di Stefano</a>, <a href="/search/physics?searchtype=author&amp;query=Dolganov%2C+G">G. Dolganov</a>, <a href="/search/physics?searchtype=author&amp;query=Doria%2C+L">L. Doria</a> , et al. (89 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13196v1-abstract-short" style="display: inline;"> The half-life of $^{39}$Ar is measured using the DEAP-3600 detector located 2 km underground at SNOLAB. In 2016-2020, DEAP-3600 used a target mass of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere in a direct-detection dark matter search. Such an argon mass also enables direct measurements of argon isotope properties. The decay of $^{39}$Ar in DEAP-3600 is the dominant source of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13196v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13196v1-abstract-full" style="display: none;"> The half-life of $^{39}$Ar is measured using the DEAP-3600 detector located 2 km underground at SNOLAB. In 2016-2020, DEAP-3600 used a target mass of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere in a direct-detection dark matter search. Such an argon mass also enables direct measurements of argon isotope properties. The decay of $^{39}$Ar in DEAP-3600 is the dominant source of triggers by two orders of magnitude, ensuring high statistics and making DEAP-3600 well-suited for measuring this isotope&#39;s half-life. Use of the pulse-shape discrimination technique in DEAP-3600 allows for powerful discrimination between nuclear recoils and electron recoils, resulting in the selection of a clean sample of $^{39}$Ar decays. Observing over a period of 3.4 years, the $^{39}$Ar half-life is measured to be $(302 \pm 8_{\rm stat} \pm 6_{\rm sys})$ years. This new direct measurement suggests that the half-life of $^{39}$Ar may be significantly longer than the accepted value, with potential implications for measurements using this isotope&#39;s half-life as input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13196v1-abstract-full').style.display = 'none'; document.getElementById('2501.13196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12677">arXiv:2501.12677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.12677">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mai%2C+T+N+A">Thi Ngoc Anh Mai</a>, <a href="/search/physics?searchtype=author&amp;query=Hossain%2C+M+S">Md Shakhawath Hossain</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+N+M">Nhat Minh Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yongliang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chaohao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiaoxue Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Trinh%2C+Q+T">Quang Thang Trinh</a>, <a href="/search/physics?searchtype=author&amp;query=Dinh%2C+T">Toan Dinh</a>, <a href="/search/physics?searchtype=author&amp;query=Tran%2C+T+T">Toan Trong Tran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12677v1-abstract-short" style="display: inline;"> Solid-state quantum emitters, molecular-sized complexes releasing a single photon at a time, have garnered much attention owing to their use as a key building block in various quantum technologies. Among these, quantum emitters in hexagonal boron nitride (hBN) have emerged as front runners with superior attributes compared to other competing platforms. These attributes are attainable thanks to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12677v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12677v1-abstract-full" style="display: none;"> Solid-state quantum emitters, molecular-sized complexes releasing a single photon at a time, have garnered much attention owing to their use as a key building block in various quantum technologies. Among these, quantum emitters in hexagonal boron nitride (hBN) have emerged as front runners with superior attributes compared to other competing platforms. These attributes are attainable thanks to the robust, two-dimensional lattice of the material formed by the extremely strong B-N bonds. This review discusses the fundamental properties of quantum emitters in hBN and highlights recent progress in the field. The focus is on the fabrication and engineering of these quantum emitters facilitated by state-of-the-art equipment. Strategies to integrate the quantum emitters with dielectric and plasmonic cavities to enhance their optical properties are summarized. The latest developments in new classes of spin-active defects, their predicted structural configurations, and the proposed suitable quantum applications are examined. Despite the current challenges, quantum emitters in hBN have steadily become a promising platform for applications in quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12677v1-abstract-full').style.display = 'none'; document.getElementById('2501.12677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12657">arXiv:2501.12657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.12657">pdf</a>, <a href="https://arxiv.org/format/2501.12657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconstructing Pristine Molecular Orbitals from Scanning Tunneling Microscopy Images via Artificial Intelligence Approaches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yu Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+R">Renjie Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+H">Hao Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yicheng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+W">Wenjie Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+B">Bingzheng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+S">Sai Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Haiming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chi%2C+L">Lifeng Chi</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xin Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12657v1-abstract-short" style="display: inline;"> Molecular orbital (MO) is one of the most fundamental concepts for molecules, relating to all branches of chemistry, while scanning tunneling microscopy (STM) has been widely recognized for its potential to measure the spatial distribution of MOs. However, the precise characterization of MO with high resolution in real space is a long-standing challenge owing to the inevitable interference of high&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12657v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12657v1-abstract-full" style="display: none;"> Molecular orbital (MO) is one of the most fundamental concepts for molecules, relating to all branches of chemistry, while scanning tunneling microscopy (STM) has been widely recognized for its potential to measure the spatial distribution of MOs. However, the precise characterization of MO with high resolution in real space is a long-standing challenge owing to the inevitable interference of high-angular-momentum contributions from functionalized tips in STM. Here, leveraging advances in artificial intelligence for image recognition, we establish a physics-driven deep-learning network, named STM-Net, to reconstruct MOs from high-resolution STM images with a functionalized tip, taking advantage of the separable characteristics of different angular momentum contributions. We demonstrate that STM-Net can be directly applied to a variety of experimental observations, successfully reconstructing pristine MO features for molecules under diverse conditions. Moreover, STM-Net can adapt to various states of the functionalized tip and the substrate, illustrating the broad applicability of our physics-driven framework. These results pave the way for accurate characterization of MO with high resolution, potentially leading to new insights and applications for this fundamental concept in chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12657v1-abstract-full').style.display = 'none'; document.getElementById('2501.12657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures, 4 extended data figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11005">arXiv:2501.11005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.11005">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Acoustic Emission Sensor Network Optimization Based on Grid Loop Search and Particle Swarm Source Location </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yiling Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Shang%2C+X">Xueyi Shang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Y">Yi Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Linghao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaoying Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhuqing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tai%2C+Y">Yang Tai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11005v1-abstract-short" style="display: inline;"> The layout of acoustic emission sensors plays a critical role in non-destructive structural testing. This study proposes a grid-based optimization method focused on multi-source location results, in contrast to traditional sensor layout optimization methods that construct a correlation matrix based on sensor layout and one source location. Based on the seismic source travel-time theory, the propos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11005v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11005v1-abstract-full" style="display: none;"> The layout of acoustic emission sensors plays a critical role in non-destructive structural testing. This study proposes a grid-based optimization method focused on multi-source location results, in contrast to traditional sensor layout optimization methods that construct a correlation matrix based on sensor layout and one source location. Based on the seismic source travel-time theory, the proposed method establishes a location objective function based on minimum travel-time differences, which is solved through the particle swarm optimization (PSO) algorithm. Furthermore, based on location accuracy across various configurations, the method systematically evaluates potential optimal sensor locations through grid search. Synthetic tests and laboratory pencil-lead break (PLB) experiments are conducted to compare the effectiveness of PSO, genetic algorithm, and simulated annealing, with the following conclusions: (1) In synthetic tests, the proposed method achieved an average location error of 1.78 mm, outperforming that based on the traditional layout, genetic algorithm (GA), and simulated annealing (SA). (2) For different noise cases, the location accuracy separately improved by 24.89% (蟽=0.5渭s), 12.59% (蟽=2渭s), and 15.06% (蟽=5渭s) compared with the traditional layout. (3) For the PLB experiments, the optimized layout achieved an average location error of 9.37 mm, which improved the location accuracy by 59.15% compared with the Traditional layout. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11005v1-abstract-full').style.display = 'none'; document.getElementById('2501.11005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10764">arXiv:2501.10764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.10764">pdf</a>, <a href="https://arxiv.org/format/2501.10764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Energy-Threshold Bias Calculator: A Physics-Model Based Adaptive Correction Scheme for Photon-Counting CT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuting Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xing%2C+Y">Yuxiang Xing</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zhi Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+H">Hewei Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10764v1-abstract-short" style="display: inline;"> Photon-counting detector based computed tomography (PCCT) has greatly advanced in recent years. However, the spectral inconsistency is still a serious challenge for PCCT that could directly introduce obvious artifacts and severe inaccuracies. This work attempts to overcome the challenge by modeling the spectral inconsistency in a novel, unified, and two-term factorized framework, with a spectral s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10764v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10764v1-abstract-full" style="display: none;"> Photon-counting detector based computed tomography (PCCT) has greatly advanced in recent years. However, the spectral inconsistency is still a serious challenge for PCCT that could directly introduce obvious artifacts and severe inaccuracies. This work attempts to overcome the challenge by modeling the spectral inconsistency in a novel, unified, and two-term factorized framework, with a spectral skew term independent of the energy threshold, and an energy-threshold bias analytical characterization term. To solve the spectral inconsistency, a two-step decomposition algorithm called energy-threshold bias calculator (ETB-Cal) is derived here, in which the spectral skew term is grossly determined at a relatively low energy threshold and only the energy-threshold bias is needed to be calculated as the energy threshold changes. After the two terms being computed out in calibration stage, they will be incorporated into our spectral model to generate the spectral correction vectors as well as the material decomposition vectors if needed, for PCCT projection data. To validate our method, both numerical simulations physics experiments were carried out on a tabletop PCCT system. Preliminary results showed that the spectral inconsistency can be significantly reduced, for example, with an non-uniformity quantitative indicators decreasing from 26.27 to 5.80 HU for Gammex multi-energy phantom and from 27.88 to 3.16 HU for kyoto head phantom. The considerable improvements consistently demonstrate a great potential of the proposed novel physics-model based correction scheme in practical applications, as computationally efficient, calibration-wise convenient with high degree of generality, and substantially avoiding the use of X-ray florescence material in the energy-threshold calibration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10764v1-abstract-full').style.display = 'none'; document.getElementById('2501.10764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09590">arXiv:2501.09590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09590">pdf</a>, <a href="https://arxiv.org/format/2501.09590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovering dense hydrogen solid at 1200K with deep variational free energy approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dong%2C+X">Xinyang Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+H">Hao Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yixiao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+W">Wenshuo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Linfeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Han Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09590v1-abstract-short" style="display: inline;"> We perform deep variational free energy calculations to investigate the dense hydrogen system at 1200 K and high pressures. In this computational framework, neural networks are used to model the free energy through the proton Boltzmann distribution and the electron wavefunction. By directly minimizing the free energy, our results reveal the emergence of a crystalline order associated with the cent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09590v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09590v1-abstract-full" style="display: none;"> We perform deep variational free energy calculations to investigate the dense hydrogen system at 1200 K and high pressures. In this computational framework, neural networks are used to model the free energy through the proton Boltzmann distribution and the electron wavefunction. By directly minimizing the free energy, our results reveal the emergence of a crystalline order associated with the center of mass of hydrogen molecules at approximately 180 GPa. This transition from atomic liquid to a molecular solid is marked by discontinuities in both the pressure and thermal entropy. Additionally, we discuss the broader implications and limitations of these findings in the context of recent studies of dense hydrogen under similar conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09590v1-abstract-full').style.display = 'none'; document.getElementById('2501.09590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08919">arXiv:2501.08919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08919">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Revealing Local Structures through Machine-Learning- Fused Multimodal Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H">Haili Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yiming Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+G">Gi-Hyeok Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Smith%2C+J">Jacob Smith</a>, <a href="/search/physics?searchtype=author&amp;query=Chi%2C+M">Miaofang Chi</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Wanli Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+M+K+Y">Maria K. Y. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08919v1-abstract-short" style="display: inline;"> Atomistic structures of materials offer valuable insights into their functionality. Determining these structures remains a fundamental challenge in materials science, especially for systems with defects. While both experimental and computational methods exist, each has limitations in resolving nanoscale structures. Core-level spectroscopies, such as x-ray absorption (XAS) or electron energy-loss s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08919v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08919v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08919v1-abstract-full" style="display: none;"> Atomistic structures of materials offer valuable insights into their functionality. Determining these structures remains a fundamental challenge in materials science, especially for systems with defects. While both experimental and computational methods exist, each has limitations in resolving nanoscale structures. Core-level spectroscopies, such as x-ray absorption (XAS) or electron energy-loss spectroscopies (EELS), have been used to determine the local bonding environment and structure of materials. Recently, machine learning (ML) methods have been applied to extract structural and bonding information from XAS/EELS, but most of these frameworks rely on a single data stream, which is often insufficient. In this work, we address this challenge by integrating multimodal ab initio simulations, experimental data acquisition, and ML techniques for structure characterization. Our goal is to determine local structures and properties using EELS and XAS data from multiple elements and edges. To showcase our approach, we use various lithium nickel manganese cobalt (NMC) oxide compounds which are used for lithium ion batteries, including those with oxygen vacancies and antisite defects, as the sample material system. We successfully inferred local element content, ranging from lithium to transition metals, with quantitative agreement with experimental data. Beyond improving prediction accuracy, we find that ML model based on multimodal spectroscopic data is able to determine whether local defects such as oxygen vacancy and antisites are present, a task which is impossible for single mode spectra or other experimental techniques. Furthermore, our framework is able to provide physical interpretability, bridging spectroscopy with the local atomic and electronic structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08919v1-abstract-full').style.display = 'none'; document.getElementById('2501.08919v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07917">arXiv:2501.07917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07917">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Roadmap on Neuromorphic Photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+D">Daniel Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Shastri%2C+B+J">Bhavin J. Shastri</a>, <a href="/search/physics?searchtype=author&amp;query=Qadasi%2C+M+A+A">Mohammed A. Al Qadasi</a>, <a href="/search/physics?searchtype=author&amp;query=Ballani%2C+H">H. Ballani</a>, <a href="/search/physics?searchtype=author&amp;query=Barbay%2C+S">Sylvain Barbay</a>, <a href="/search/physics?searchtype=author&amp;query=Biasi%2C+S">Stefano Biasi</a>, <a href="/search/physics?searchtype=author&amp;query=Bienstman%2C+P">Peter Bienstman</a>, <a href="/search/physics?searchtype=author&amp;query=Bilodeau%2C+S">Simon Bilodeau</a>, <a href="/search/physics?searchtype=author&amp;query=Bogaerts%2C+W">Wim Bogaerts</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%B6hm%2C+F">Fabian B枚hm</a>, <a href="/search/physics?searchtype=author&amp;query=Brennan%2C+G">G. Brennan</a>, <a href="/search/physics?searchtype=author&amp;query=Buckley%2C+S">Sonia Buckley</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+X">Xinlun Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Strinati%2C+M+C">Marcello Calvanese Strinati</a>, <a href="/search/physics?searchtype=author&amp;query=Canakci%2C+B">B. Canakci</a>, <a href="/search/physics?searchtype=author&amp;query=Charbonnier%2C+B">Benoit Charbonnier</a>, <a href="/search/physics?searchtype=author&amp;query=Chemnitz%2C+M">Mario Chemnitz</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yitong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheung%2C+S">Stanley Cheung</a>, <a href="/search/physics?searchtype=author&amp;query=Chiles%2C+J">Jeff Chiles</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+S">Suyeon Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Christodoulides%2C+D+N">Demetrios N. Christodoulides</a>, <a href="/search/physics?searchtype=author&amp;query=Chrostowski%2C+L">Lukas Chrostowski</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+J">J. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Clegg%2C+J+H">J. H. Clegg</a> , et al. (125 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07917v2-abstract-short" style="display: inline;"> This roadmap consolidates recent advances while exploring emerging applications, reflecting the remarkable diversity of hardware platforms, neuromorphic concepts, and implementation philosophies reported in the field. It emphasizes the critical role of cross-disciplinary collaboration in this rapidly evolving field. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07917v2-abstract-full" style="display: none;"> This roadmap consolidates recent advances while exploring emerging applications, reflecting the remarkable diversity of hardware platforms, neuromorphic concepts, and implementation philosophies reported in the field. It emphasizes the critical role of cross-disciplinary collaboration in this rapidly evolving field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07917v2-abstract-full').style.display = 'none'; document.getElementById('2501.07917v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07077">arXiv:2501.07077</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07077">pdf</a>, <a href="https://arxiv.org/format/2501.07077">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> D3MES: Diffusion Transformer with multihead equivariant self-attention for 3D molecule generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhejun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuanping Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+S">Shibing Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07077v1-abstract-short" style="display: inline;"> Understanding and predicting the diverse conformational states of molecules is crucial for advancing fields such as chemistry, material science, and drug development. Despite significant progress in generative models, accurately generating complex and biologically or material-relevant molecular structures remains a major challenge. In this work, we introduce a diffusion model for three-dimensional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07077v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07077v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07077v1-abstract-full" style="display: none;"> Understanding and predicting the diverse conformational states of molecules is crucial for advancing fields such as chemistry, material science, and drug development. Despite significant progress in generative models, accurately generating complex and biologically or material-relevant molecular structures remains a major challenge. In this work, we introduce a diffusion model for three-dimensional (3D) molecule generation that combines a classifiable diffusion model, Diffusion Transformer, with multihead equivariant self-attention. This method addresses two key challenges: correctly attaching hydrogen atoms in generated molecules through learning representations of molecules after hydrogen atoms are removed; and overcoming the limitations of existing models that cannot generate molecules across multiple classes simultaneously. The experimental results demonstrate that our model not only achieves state-of-the-art performance across several key metrics but also exhibits robustness and versatility, making it highly suitable for early-stage large-scale generation processes in molecular design, followed by validation and further screening to obtain molecules with specific properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07077v1-abstract-full').style.display = 'none'; document.getElementById('2501.07077v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06717">arXiv:2501.06717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06717">pdf</a>, <a href="https://arxiv.org/format/2501.06717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> BATSRUS GPU: Faster-than-Real-Time Magnetospheric Simulations with a Block-Adaptive Grid Code </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+Y">Yifu An</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuxi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Hongyang Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Gaenko%2C+A">Alexander Gaenko</a>, <a href="/search/physics?searchtype=author&amp;query=T%C3%B3th%2C+G">G谩bor T贸th</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06717v1-abstract-short" style="display: inline;"> BATSRUS, our state-of-the-art extended magnetohydrodynamic code, is the most used and one of the most resource-consuming models in the Space Weather Modeling Framework. It has always been our objective to improve its efficiency and speed with emerging techniques, such as GPU acceleration. To utilize the GPU nodes on modern supercomputers, we port BATSRUS to GPUs with the OpenACC API. Porting the c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06717v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06717v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06717v1-abstract-full" style="display: none;"> BATSRUS, our state-of-the-art extended magnetohydrodynamic code, is the most used and one of the most resource-consuming models in the Space Weather Modeling Framework. It has always been our objective to improve its efficiency and speed with emerging techniques, such as GPU acceleration. To utilize the GPU nodes on modern supercomputers, we port BATSRUS to GPUs with the OpenACC API. Porting the code to a single GPU requires rewriting and optimizing the most used functionalities of the original code into a new solver, which accounts for around 1% of the entire program in length. To port it to multiple GPUs, we implement a new message passing algorithm to support its unique block-adaptive grid feature. We conduct weak scaling tests on as many as 256 GPUs and find good performance. The program has 50-60% parallel efficiency on up to 256 GPUs, and up to 95% efficiency within a single node (4 GPUs). Running large problems on more than one node has reduced efficiency due to hardware bottlenecks. We also demonstrate our ability to run representative magnetospheric simulations on GPUs. The performance for a single A100 GPU is about the same as 270 AMD &#34;Rome&#34; CPU cores, and it runs 3.6 times faster than real time. The simulation can run 6.9 times faster than real time on four A100 GPUs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06717v1-abstract-full').style.display = 'none'; document.getElementById('2501.06717v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Astrophysical Journal. Under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06102">arXiv:2501.06102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06102">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Gigahertz directional light modulation with electro-optic metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+S">Sam Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yixin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hwang%2C+T">Taeseung Hwang</a>, <a href="/search/physics?searchtype=author&amp;query=Upadhyay%2C+A">Anant Upadhyay</a>, <a href="/search/physics?searchtype=author&amp;query=Rady%2C+R">Ramy Rady</a>, <a href="/search/physics?searchtype=author&amp;query=Dolt%2C+D">David Dolt</a>, <a href="/search/physics?searchtype=author&amp;query=Palermo%2C+S">Samuel Palermo</a>, <a href="/search/physics?searchtype=author&amp;query=Entesari%2C+K">Kamran Entesari</a>, <a href="/search/physics?searchtype=author&amp;query=Madsen%2C+C">Christi Madsen</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+Z+J">Zi Jing Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+S">Shoufeng Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06102v1-abstract-short" style="display: inline;"> Active metasurfaces promise spatiotemporal control over optical wavefronts, but achieving high-speed modulation with pixel-level control has remained an unmet challenge. While local phase control can be achieved with nanoscale optical confinement, such as in plasmonic nanoparticles, the resulting electrode spacings lead to large capacitance, limiting speed. Here, we demonstrate the operation of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06102v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06102v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06102v1-abstract-full" style="display: none;"> Active metasurfaces promise spatiotemporal control over optical wavefronts, but achieving high-speed modulation with pixel-level control has remained an unmet challenge. While local phase control can be achieved with nanoscale optical confinement, such as in plasmonic nanoparticles, the resulting electrode spacings lead to large capacitance, limiting speed. Here, we demonstrate the operation of a gigahertz-tunable metasurface for beam steering through local control of metasurface elements in a plasmonic-organic hybrid architecture. Our device comprises a corrugated metallic slot array engineered to support plasmonic quasi-bound states in the continuum (quasi-BICs). These plasmonic quasi-BICs provide ideal optical confinement and electrical characteristics for integrating organic electro-optic (OEO) materials like JRD1 and have not been previously utilized in optical metasurfaces. We obtain a quasi-static resonance tunability of 0.4 nm/V, which we leverage to steer light between three diffraction orders and achieve an electro-optic bandwidth of ~4 GHz, with the potential for further speed improvements through scaling rules. This work showcases on-chip spatiotemporal control of light at the sub-micrometer and gigahertz level, opening new possibilities for applications in 3D sensing and high-speed spatial light modulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06102v1-abstract-full').style.display = 'none'; document.getElementById('2501.06102v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05001">arXiv:2501.05001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05001">pdf</a>, <a href="https://arxiv.org/format/2501.05001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> 40 Years of Interdisciplinary Research: Phases, Origins, and Key Turning Points (1981-2020) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rong%2C+G">Guoyang Rong</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+F">Feicheng Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Koch%2C+T">Thorsten Koch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05001v1-abstract-short" style="display: inline;"> This study examines the historical evolution of interdisciplinary research (IDR) over a 40-year period, focusing on its dynamic trends, phases, and key turning points. We apply time series analysis to identify critical years for interdisciplinary citations (CYICs) and categorizes IDR into three distinct phases based on these trends: Period I (1981-2002), marked by sporadic and limited interdiscipl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05001v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05001v1-abstract-full" style="display: none;"> This study examines the historical evolution of interdisciplinary research (IDR) over a 40-year period, focusing on its dynamic trends, phases, and key turning points. We apply time series analysis to identify critical years for interdisciplinary citations (CYICs) and categorizes IDR into three distinct phases based on these trends: Period I (1981-2002), marked by sporadic and limited interdisciplinary activity; Period II (2003-2016), characterized by the emergence of large-scale IDR led primarily by Medicine, with significant breakthroughs in cloning and medical technology; and Period III (2017-present), where IDR became a widely adopted research paradigm. Our findings indicate that IDR has been predominantly concentrated within the Natural Sciences, with Medicine consistently at the forefront, and highlights increasing contributions from Engineering and Environmental disciplines as a new trend. These insights enhance the understanding of the evolution of IDR, its driving factors, and the shifts in the focus of interdisciplinary collaborations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05001v1-abstract-full').style.display = 'none'; document.getElementById('2501.05001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04845">arXiv:2501.04845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04845">pdf</a>, <a href="https://arxiv.org/ps/2501.04845">ps</a>, <a href="https://arxiv.org/format/2501.04845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kvapil%2C+J">J. Kvapil</a>, <a href="/search/physics?searchtype=author&amp;query=Borca-Tasciuc%2C+G">G. Borca-Tasciuc</a>, <a href="/search/physics?searchtype=author&amp;query=Bossi%2C+H">H. Bossi</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Morales%2C+Y+C">Y. Corrales Morales</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Costa%2C+H">H. Da Costa</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Silva%2C+C">C. Da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Dean%2C+C">C. Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Durham%2C+J">J. Durham</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S">S. Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+C">C. Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Harris%2C+P">P. Harris</a>, <a href="/search/physics?searchtype=author&amp;query=Hen%2C+O">O. Hen</a>, <a href="/search/physics?searchtype=author&amp;query=Jheng%2C+H">H. Jheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">P. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M+X">M. X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Loncar%2C+V">V. Loncar</a>, <a href="/search/physics?searchtype=author&amp;query=Mitrevski%2C+J+P">J. P. Mitrevski</a>, <a href="/search/physics?searchtype=author&amp;query=Olvera%2C+A">A. Olvera</a>, <a href="/search/physics?searchtype=author&amp;query=Purschke%2C+M+L">M. L. Purschke</a>, <a href="/search/physics?searchtype=author&amp;query=Renck%2C+J+S">J. S. Renck</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04845v1-abstract-short" style="display: inline;"> This R\&amp;D project, initiated by the DOE Nuclear Physics AI-Machine Learning initiative in 2022, leverages AI to address data processing challenges in high-energy nuclear experiments (RHIC, LHC, and future EIC). Our focus is on developing a demonstrator for real-time processing of high-rate data streams from sPHENIX experiment tracking detectors. The limitations of a 15 kHz maximum trigger rate imp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04845v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04845v1-abstract-full" style="display: none;"> This R\&amp;D project, initiated by the DOE Nuclear Physics AI-Machine Learning initiative in 2022, leverages AI to address data processing challenges in high-energy nuclear experiments (RHIC, LHC, and future EIC). Our focus is on developing a demonstrator for real-time processing of high-rate data streams from sPHENIX experiment tracking detectors. The limitations of a 15 kHz maximum trigger rate imposed by the calorimeters can be negated by intelligent use of streaming technology in the tracking system. The approach efficiently identifies low momentum rare heavy flavor events in high-rate p+p collisions (3MHz), using Graph Neural Network (GNN) and High Level Synthesis for Machine Learning (hls4ml). Success at sPHENIX promises immediate benefits, minimizing resources and accelerating the heavy-flavor measurements. The approach is transferable to other fields. For the EIC, we develop a DIS-electron tagger using Artificial Intelligence - Machine Learning (AI-ML) algorithms for real-time identification, showcasing the transformative potential of AI and FPGA technologies in high-energy nuclear and particle experiments real-time data processing pipelines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04845v1-abstract-full').style.display = 'none'; document.getElementById('2501.04845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">proceedings for 42nd International Conference on High Energy Physics (ICHEP2024), 18-24 July 2024, Prague, Czech Republic</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-24-30394 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03502">arXiv:2501.03502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03502">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Zeno Freezing and Anti-Zeno Acceleration of the Dynamic Evolution of Acoustic Topological Boundary States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiao-Meng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Ze-Guo Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+G">Guancong Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+M">Ming-Hui Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yan-Feng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03502v1-abstract-short" style="display: inline;"> Quantum measurements severely disrupt the dynamic evolution of a quantum system by collapsing the probabilistic wavefunction. This principle can be leveraged to control quantum states by effectively freezing the system&#39;s dynamics or enhancing transitions between states. These are known as the quantum Zeno effect (ZE) and anti-Zeno effect (AZE), respectively. However, it remains elusive how quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03502v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03502v1-abstract-full" style="display: none;"> Quantum measurements severely disrupt the dynamic evolution of a quantum system by collapsing the probabilistic wavefunction. This principle can be leveraged to control quantum states by effectively freezing the system&#39;s dynamics or enhancing transitions between states. These are known as the quantum Zeno effect (ZE) and anti-Zeno effect (AZE), respectively. However, it remains elusive how quantum measurements affect topological states, which are famous for their robustness against disorder and perturbations. Here, we theoretically and experimentally show that the dynamic evolution of topological boundary states (TBSs) can be controlled by quantum-like measurement (QLM). Our work is based on spatially modulated topological acoustic waveguide systems with varying parameters that adiabatically pump the TBS across the bulk to the opposite boundary. Therein, the QLM is emulated using a perturbation to the Hamiltonian known as the Zeno subspace. With the help of quantum metrics, we identify the general conditions for ZE and AZE, and experimentally demonstrate their effects in freezing and accelerating the tunneling of the TBS. Furthermore, we discover a tunneling mechanism by varying the strength of the QLM. These results highlight QLM as a versatile tool for manipulating topological states and wave propagation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03502v1-abstract-full').style.display = 'none'; document.getElementById('2501.03502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02248">arXiv:2501.02248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02248">pdf</a>, <a href="https://arxiv.org/format/2501.02248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Atom-by-Atom Assembly of Defect-Free Two-Dimensional Mixed-Species Atomic Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wei%2C+M">Ming-Rui Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K">Kun-Peng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+J">Jia-Yi Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+J">Jun Zhuang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+R">Rui-Jun Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xiao-Dong He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02248v2-abstract-short" style="display: inline;"> Defect-free single atom array in optical tweezers is a promising platform for scalable quantum computing, quantum simulation, and quantum metrology. Extending single-species array to mixed-species one promise to offer new possibilities. In our recent proof of principle realization of defect-free two-dimensional assembly of mixed-species $^{85}$Rb ($^{87}$Rb) atom arrays [C. Sheng et al.\href{https&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02248v2-abstract-full').style.display = 'inline'; document.getElementById('2501.02248v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02248v2-abstract-full" style="display: none;"> Defect-free single atom array in optical tweezers is a promising platform for scalable quantum computing, quantum simulation, and quantum metrology. Extending single-species array to mixed-species one promise to offer new possibilities. In our recent proof of principle realization of defect-free two-dimensional assembly of mixed-species $^{85}$Rb ($^{87}$Rb) atom arrays [C. Sheng et al.\href{https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.083202}{{\color{blue} Phys. Rev. Lett. 128, 083202(2022)}}], the filling fractions were limited by the imperfect transfer of atoms and the occurrence of logjams during the atom rearrangement. In order to scale up the size of defect-free mixed-species atom array, we scale up the tweezer array and improve the atom transfer, and upgrade the heuristic heteronuclear algorithm so as to facilitate multiple rearrangement cycles. Consequently, we successfully create defect-free atom arrays with 120 mixed-species single atoms. The corresponding filling fraction and defect-free probability are improved to be 98.6(1)\% and 14(2)\%, respectively. It is anticipated that the enhanced algorithm can be extended to other combinations of atomic species, and this mixed-species atom array is readily for studies of many-body physics, quantum error correction, and quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02248v2-abstract-full').style.display = 'none'; document.getElementById('2501.02248v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01270">arXiv:2501.01270</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01270">pdf</a>, <a href="https://arxiv.org/format/2501.01270">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c05865">10.1021/acs.nanolett.4c05865 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competing Hexagonal and Square Lattices on a Spherical Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+H">Han Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wenyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zhenyue Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+Z+Y">Jeff Z. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01270v1-abstract-short" style="display: inline;"> The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state- and soft-matter physics. Confined on spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01270v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01270v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01270v1-abstract-full" style="display: none;"> The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state- and soft-matter physics. Confined on spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report here the emergence of new types of disclination patterns: domain and counter-domain defects, when hexagonal and square patterns coexist. A new angle is presented to understand the incompatibility between tiling lattice shapes and the available spherical areal shapes, which is common in nature -- from molecular systems in biology to backbone construction in architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01270v1-abstract-full').style.display = 'none'; document.getElementById('2501.01270v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Authors&#39; version of the article submitted to Nano Letters and accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01137">arXiv:2501.01137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01137">pdf</a>, <a href="https://arxiv.org/format/2501.01137">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Computational fluid dynamics-based structure optimization of ultra-high-pressure water-jet nozzle using approximation method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuan-Jie Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T">Ting Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01137v1-abstract-short" style="display: inline;"> Since the geometry structure of ultra-high-pressure (UHP) water-jet nozzle is a critical factor to enhance its hydrodynamic performance, it is critical to obtain a suitable geometry for a UHP water jet nozzle. In this study, a CFD-based optimization loop for UHP nozzle structure has been developed by integrating an approximate model to optimize nozzle structure for increasing the radial peak wall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01137v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01137v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01137v1-abstract-full" style="display: none;"> Since the geometry structure of ultra-high-pressure (UHP) water-jet nozzle is a critical factor to enhance its hydrodynamic performance, it is critical to obtain a suitable geometry for a UHP water jet nozzle. In this study, a CFD-based optimization loop for UHP nozzle structure has been developed by integrating an approximate model to optimize nozzle structure for increasing the radial peak wall shear stress. In order to improve the optimization accuracy of the sparrow search algorithm (SSA), an enhanced version called the Logistic-Tent chaotic sparrow search algorithm (LTC-SSA) is proposed. The LTC-SSA algorithm utilizes the Logistic-Tent Chaotic (LTC) map, which is designed by combining the Logistic and Tent maps. This new approach aims to overcome the shortcoming of &#34;premature convergence&#34; for the SSA algorithm by increasing the diversity of the sparrow population. In addition, to improve the prediction accuracy of peak wall shear stress, a data prediction method based on LTC-SSA-support vector machine (SVM) is proposed. Herein, LTC-SSA algorithm is used to train the penalty coefficient C and parameter gamma g of SVM model. In order to build LTC-SSA-SVM model, optimal Latin hypercube design (Opt LHD) is used to design the sampling nozzle structures, and the peak wall shear stress (objective function) of these nozzle structures are calculated by CFD method. For the purpose of this article, this optimization framework has been employed to optimize original nozzle structure. The results show that the optimization framework developed in this study can be used to optimize nozzle structure with significantly improved its hydrodynamic performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01137v1-abstract-full').style.display = 'none'; document.getElementById('2501.01137v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20938">arXiv:2412.20938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20938">pdf</a>, <a href="https://arxiv.org/format/2412.20938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrical switching of altermagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yiyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20938v1-abstract-short" style="display: inline;"> Switching magnetism using only electricity is of great significance for information applications but remains challenging. We find that, altermagnetism, as a newly discovered unconventional magnetism, may open an avenue along this effort. Specifically, to have deterministic switching, i.e., reversing current direction must reverse magnetic structure, parity symmetry has to be broken. We discover th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20938v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20938v1-abstract-full" style="display: none;"> Switching magnetism using only electricity is of great significance for information applications but remains challenging. We find that, altermagnetism, as a newly discovered unconventional magnetism, may open an avenue along this effort. Specifically, to have deterministic switching, i.e., reversing current direction must reverse magnetic structure, parity symmetry has to be broken. We discover that due to their symmetry that depends on chemical environments, altermagnet devices may naturally carry the parity symmetry breaking required for deterministic electrical switching of magnetism. More importantly, we identify MnTe and FeS bilayers as candidate devices. This scheme will inspire further explorations on unconventional magnetism and potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20938v1-abstract-full').style.display = 'none'; document.getElementById('2412.20938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20698">arXiv:2412.20698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20698">pdf</a>, <a href="https://arxiv.org/format/2412.20698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Tutorial of Fourier and Hankel transforms for ultrafast optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yi-Hao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20698v8-abstract-short" style="display: inline;"> This tutorial is designed for individuals who are new to the field of ultrafast optics. It was written in response to the apparent lack of comprehensive introductions to the basic Fourier transform, extending beyond the flat-phase description. Additionally, it contains complete derivations of the general formulations of several Fourier-transform relations. It shows the importance of having Fourier&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20698v8-abstract-full').style.display = 'inline'; document.getElementById('2412.20698v8-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20698v8-abstract-full" style="display: none;"> This tutorial is designed for individuals who are new to the field of ultrafast optics. It was written in response to the apparent lack of comprehensive introductions to the basic Fourier transform, extending beyond the flat-phase description. Additionally, it contains complete derivations of the general formulations of several Fourier-transform relations. It shows the importance of having Fourier-transform constants as parameters, and helps clarify the arbitrary selection of Fourier-transform constants and conventions. Most of the time, an implementation of an optical numerical simulation is first verified by checking the smoothness of the generated result (because physical phenomena mostly exhibit some smooth physical features, e.g., temporal or spectral profiles) or further by seeing if the simulation reasonably duplicates the ``known physics.&#39;&#39; However, the misuse of Fourier transform, from my observations, cannot be easily detected by such naive verifications. One main purpose of this tutorial is to clarify the correct Fourier-transform convention to be employed in ultrafast optics. Moreover, other Fourier-transform aspects, such as convolution and aliasing, are discussed. In addition, a tutorial of the Hankel transform, which arises from the two-dimensional spatial Fourier transform of a radially-symmetric function, is provided. Its numerical implementation based on the fast Hankel transform with high accuracy (FHATHA) is also provided, which is the core element of computationally-efficient radially-symmetric full-field optical propagation. Despite being a tutorial, I, for the first time, propose a new numerical scheme for the fast Hankel transform that outperforms both the original FHATHA and the discrete Hankel transform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20698v8-abstract-full').style.display = 'none'; document.getElementById('2412.20698v8-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Add Hankel transform</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20394">arXiv:2412.20394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20394">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> A Universal Method to Transform Aromatic Hydrocarbon Molecules into Confined Carbyne inside Single-Walled Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yingzhi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+K">Kunpeng Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wendi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+H">Huiju Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hongwei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Yanghao Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+W">Weili Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yuan Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+G">Guowei Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20394v1-abstract-short" style="display: inline;"> Carbyne, a sp1-hybridized allotrope of carbon, is a linear carbon chain with exceptional theoretically predicted properties that surpass those of sp2-hybridized graphene and carbon nanotubes (CNTs). However, the existence of carbyne has been debated due to its instability caused by Peierls distortion, which limits its practical development. The only successful synthesis of carbyne has been achieve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20394v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20394v1-abstract-full" style="display: none;"> Carbyne, a sp1-hybridized allotrope of carbon, is a linear carbon chain with exceptional theoretically predicted properties that surpass those of sp2-hybridized graphene and carbon nanotubes (CNTs). However, the existence of carbyne has been debated due to its instability caused by Peierls distortion, which limits its practical development. The only successful synthesis of carbyne has been achieved inside CNTs, resulting in a form known as confined carbyne (CC). However, CC can only be synthesized inside multi-walled CNTs, limiting its property-tuning capabilities to the inner tubes of the CNTs. Here, we present a universal method for synthesizing CC inside single-walled carbon nanotubes (SWCNTs) with diameter of 0.9-1.3 nm. Aromatic hydrocarbon molecules are filled inside SWCNTs and subsequently transformed into CC under low-temperature annealing. A variety of aromatic hydrocarbon molecules are confirmed as effective precursors for formation of CC, with Raman frequencies centered around 1861 cm-1. Enriched (6,5) and (7,6) SWCNTs with diameters less than 0.8 nm are less effective than the SWCNTs with diameter of 0.9-1.3 nm for CC formation. Furthermore, resonance Raman spectroscopy reveals that optical band gap of the CC at 1861 cm-1 is 2.353 eV, which is consistent with the result obtained using a linear relationship between the Raman signal and optical band gap. This newly developed approach provides a versatile route for synthesizing CC from various precursor molecules inside diverse templates, which is not limited to SWCNTs but could extend to any templates with appropriate size, including molecular sieves, zeolites, boron nitride nanotubes, and metal-organic frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20394v1-abstract-full').style.display = 'none'; document.getElementById('2412.20394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20343">arXiv:2412.20343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20343">pdf</a>, <a href="https://arxiv.org/ps/2412.20343">ps</a>, <a href="https://arxiv.org/format/2412.20343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbit interactions of the twisted random light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+B">Benli Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yahong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+W">Weimin Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+T">Tongbiao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+L">Lipeng Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+T">Tianbao Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20343v2-abstract-short" style="display: inline;"> The twist phase of random light represents a nontrivial two-point phase, endowing the field with orbital angular momentum. Although the mutual transition of the spin and orbit angular momenta of coherent light has been revealed, the relationship between spin-orbital angular momentum interaction (SOI) and the twist phase has remained unexplored. This is because of the stochastic nature of random li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20343v2-abstract-full').style.display = 'inline'; document.getElementById('2412.20343v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20343v2-abstract-full" style="display: none;"> The twist phase of random light represents a nontrivial two-point phase, endowing the field with orbital angular momentum. Although the mutual transition of the spin and orbit angular momenta of coherent light has been revealed, the relationship between spin-orbital angular momentum interaction (SOI) and the twist phase has remained unexplored. This is because of the stochastic nature of random light, making it challenging to explore the properties of angular momenta that rely on well-defined spatial and polarization structures. This study addresses this gap from the view of the asymmetry coherent-mode decomposition for twisted random light to gain insight into the intricate interplay between the twist phase and the SOI within a tight focusing system. Our findings reveal that spin and orbit angular momentum transitions occur in the tightly focused twisted random light beam, yielding the transverse spin density controlled by the twist phase. This effect becomes more pronounced when the spin of random light and the chirality of the twist phase are the same. Our work may find significant applications in optical sensing, metrology, and quantum optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20343v2-abstract-full').style.display = 'none'; document.getElementById('2412.20343v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19984">arXiv:2412.19984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.19984">pdf</a>, <a href="https://arxiv.org/format/2412.19984">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> The magnetic origin of the mystery of rare H$伪$ Moreton waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Z">Ze Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+Y+W">Y. W. Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+P+F">P. F. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+R">Ruisheng Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+X">Xiangliang Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19984v1-abstract-short" style="display: inline;"> Over the past three decades, a lot of coronal fast-mode waves were detected by space missions, but their counterparts in the chromosphere, called the Moreton waves, were rarely captured. How this happens remains a mystery. Here, to shed light on this problem, we investigate the photospheric vector magnetograms of the Moreton wave events associated with M- and X-class solar flares in 2010--2023. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19984v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19984v1-abstract-full" style="display: none;"> Over the past three decades, a lot of coronal fast-mode waves were detected by space missions, but their counterparts in the chromosphere, called the Moreton waves, were rarely captured. How this happens remains a mystery. Here, to shed light on this problem, we investigate the photospheric vector magnetograms of the Moreton wave events associated with M- and X-class solar flares in 2010--2023. The H$伪$ data are taken with the Global Oscillation Network Group (GONG) and the Chinese H$伪$ Solar Explorer (CHASE). Our statistical results show that more than 80\% of the events occur at the edge of active regions and propagate non-radially due to asymmetric magnetic fields above the flares. According to the reconstructed magnetic field and atmospheric model, Moreton waves propagate in the direction along which the horizontal fast-mode wave speed drops the fastest. The result supports that the inclined magnetic configuration of the eruption is crucial to generate Moreton waves, even for X-class flares. It may explain the low occurrence rate of Moreton waves and why some X-class flares accompanied with coronal mass ejections (CMEs) do not generate Moreton waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19984v1-abstract-full').style.display = 'none'; document.getElementById('2412.19984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures, 1 table; Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18455">arXiv:2412.18455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18455">pdf</a>, <a href="https://arxiv.org/ps/2412.18455">ps</a>, <a href="https://arxiv.org/format/2412.18455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Amplifier scheme: driven by indirect-drive under 10 MJ laser toward inertial fusion energy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongsheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+K">Ke Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+H">Hui Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yao-Hua Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiaohui Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Sui%2C+Z">Zhan Sui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18455v1-abstract-short" style="display: inline;"> Burn efficiency is a key for commercial feasibility of fusion power station for inertial fusion energy, while burn efficiency is usually lower than 30% in the central ignition scheme of inertial confinement fusion (ICF). A recent conceptual design for a 10 MJ laser driver [Z. Sui and K. Lan et al., Matter Radiat. Extremes 9, 043002 (2024)] provides a new room for target design to achieve a higher&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18455v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18455v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18455v1-abstract-full" style="display: none;"> Burn efficiency is a key for commercial feasibility of fusion power station for inertial fusion energy, while burn efficiency is usually lower than 30% in the central ignition scheme of inertial confinement fusion (ICF). A recent conceptual design for a 10 MJ laser driver [Z. Sui and K. Lan et al., Matter Radiat. Extremes 9, 043002 (2024)] provides a new room for target design to achieve a higher burn efficiency. Here, we take the advantage of fuel density in reaction rate and propose a novel amplifier scheme for increasing burn efficiency via two cascading explosions by ICF. The amplifier scheme can be realized either by indirect-drive or by direct-drive. Here, we give a 1D design for an indirect-driven amplifier capsule containing 2.02 mg DT fuel under a 300 eV radiation generated by a 10 MJ and 1785 TW laser inside an octahedral spherical hohlraum. As a result, the amplifier capsule has a burn efficiency of 48% and a gain of 33 at a convergence ratio of 24. This novel scheme can achieve a relatively high burn efficiency at a relatively low convergence ratio, which can greatly relax the stringent requirements of high gain fusion on hot spot ignition conditions and engineering issues. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18455v1-abstract-full').style.display = 'none'; document.getElementById('2412.18455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18414">arXiv:2412.18414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18414">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of 2D Materials via Symmetry-Constrained Diffusion Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shihang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+S">Shibing Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Mrad%2C+R">Rami Mrad</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhejun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhelin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+R">Runxian Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuanping Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18414v1-abstract-short" style="display: inline;"> Generative model for 2D materials has shown significant promise in accelerating the material discovery process. The stability and performance of these materials are strongly influenced by their underlying symmetry. However, existing generative models for 2D materials often neglect symmetry constraints, which limits both the diversity and quality of the generated structures. Here, we introduce a sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18414v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18414v1-abstract-full" style="display: none;"> Generative model for 2D materials has shown significant promise in accelerating the material discovery process. The stability and performance of these materials are strongly influenced by their underlying symmetry. However, existing generative models for 2D materials often neglect symmetry constraints, which limits both the diversity and quality of the generated structures. Here, we introduce a symmetry-constrained diffusion model (SCDM) that integrates space group symmetry into the generative process. By incorporating Wyckoff positions, the model ensures adherence to symmetry principles, leading to the generation of 2,000 candidate structures. DFT calculations were conducted to evaluate the convex hull energies of these structures after structural relaxation. From the generated samples, 843 materials that met the energy stability criteria (Ehull &lt; 0.6 eV/atom) were identified. Among these, six candidates were selected for further stability analysis, including phonon band structure evaluations and electronic properties investigations, all of which exhibited phonon spectrum stability. To benchmark the performance of SCDM, a symmetry-unconstrained diffusion model was also evaluated via crystal structure prediction model. The results highlight that incorporating symmetry constraints enhances the effectiveness of generated 2D materials, making a contribution to the discovery of 2D materials through generative modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18414v1-abstract-full').style.display = 'none'; document.getElementById('2412.18414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18019">arXiv:2412.18019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18019">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Bio-inspired site characterization -- towards soundings with lightweight equipment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+A">Alejandro Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuyan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Anilkumar%2C+R">Riya Anilkumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18019v1-abstract-short" style="display: inline;"> Equipment used for site investigation activities like drill rigs are typically large and heavy to provide sufficient reaction mass to overcome the soil&#39;s penetration resistance. The need for large and heavy equipment creates challenges for performing site investigations at sites with limited accessibility, such as urban centres, vegetated areas, locations with height restrictions and surficial sof&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18019v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18019v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18019v1-abstract-full" style="display: none;"> Equipment used for site investigation activities like drill rigs are typically large and heavy to provide sufficient reaction mass to overcome the soil&#39;s penetration resistance. The need for large and heavy equipment creates challenges for performing site investigations at sites with limited accessibility, such as urban centres, vegetated areas, locations with height restrictions and surficial soft soils, and steep slopes. Also, mobilization of large equipment to the project site is responsible for a significant portion of the carbon footprint of site investigations. Successful development of self burrowing technology can have enormous implications for geotechnical site investigation, ranging from performance of in situ tests to installation of instrumentation without the need of heavy equipment. During the last decade there has been an acceleration of research in the field of bioinspired geotechnics, whose premise is that certain animals and plants have developed efficient strategies to interact with geomaterials in ways that are analogous to those in geotechnical engineering. This paper provides a synthesis of advances in bioinspired site investigation related to the reduction of penetration resistance by means of modifying the tip shape, expanding a shaft section near the probe tip, applying motions to the tip like rotation and oscillation, and injecting fluids and generation of reaction forces with temporary anchors that enable self burrowing. Examples of prototypes that have been tested experimentally are highlighted. However, there are important research gaps associated with testing in a broader range of conditions, interpretation of results, and development of hardware that need to be addressed to develop field ready equipment that can provide useful data for geotechnical design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18019v1-abstract-full').style.display = 'none'; document.getElementById('2412.18019v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 7th International Conference on Geotechnical and Geophysical Site Characterization</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16644">arXiv:2412.16644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16644">pdf</a>, <a href="https://arxiv.org/format/2412.16644">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> An explainable operator approximation framework under the guideline of Green&#39;s function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+J">Jianghang Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+L">Ling Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuntian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shiyi Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16644v1-abstract-short" style="display: inline;"> Traditional numerical methods, such as the finite element method and finite volume method, adress partial differential equations (PDEs) by discretizing them into algebraic equations and solving these iteratively. However, this process is often computationally expensive and time-consuming. An alternative approach involves transforming PDEs into integral equations and solving them using Green&#39;s func&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16644v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16644v1-abstract-full" style="display: none;"> Traditional numerical methods, such as the finite element method and finite volume method, adress partial differential equations (PDEs) by discretizing them into algebraic equations and solving these iteratively. However, this process is often computationally expensive and time-consuming. An alternative approach involves transforming PDEs into integral equations and solving them using Green&#39;s functions, which provide analytical solutions. Nevertheless, deriving Green&#39;s functions analytically is a challenging and non-trivial task, particularly for complex systems. In this study, we introduce a novel framework, termed GreensONet, which is constructed based on the strucutre of deep operator networks (DeepONet) to learn embedded Green&#39;s functions and solve PDEs via Green&#39;s integral formulation. Specifically, the Trunk Net within GreensONet is designed to approximate the unknown Green&#39;s functions of the system, while the Branch Net are utilized to approximate the auxiliary gradients of the Green&#39;s function. These outputs are subsequently employed to perform surface integrals and volume integrals, incorporating user-defined boundary conditions and source terms, respectively. The effectiveness of the proposed framework is demonstrated on three types of PDEs in bounded domains: 3D heat conduction equations, reaction-diffusion equations, and Stokes equations. Comparative results in these cases demonstrate that GreenONet&#39;s accuracy and generalization ability surpass those of existing methods, including Physics-Informed Neural Networks (PINN), DeepONet, Physics-Informed DeepONet (PI-DeepONet), and Fourier Neural Operators (FNO). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16644v1-abstract-full').style.display = 'none'; document.getElementById('2412.16644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">no comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15489">arXiv:2412.15489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15489">pdf</a>, <a href="https://arxiv.org/format/2412.15489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Tunable optical amplification and group delay in cavity magnomechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wahab%2C+A">Abdul Wahab</a>, <a href="/search/physics?searchtype=author&amp;query=Abbas%2C+M">Muqaddar Abbas</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xiaosen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuanping Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15489v1-abstract-short" style="display: inline;"> In this work, we theoretically investigate the controllable output probe transmission and group delay in a hybrid cavity magnomechanics (CMM) system. The setup comprises a gain (active) cavity and a passive (loss) cavity, which incorporates an optical parametric amplifier (OPA) and two yttrium iron garnet spheres to facilitate magnon-photon coupling. Unlike the single transparency window typically&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15489v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15489v1-abstract-full" style="display: none;"> In this work, we theoretically investigate the controllable output probe transmission and group delay in a hybrid cavity magnomechanics (CMM) system. The setup comprises a gain (active) cavity and a passive (loss) cavity, which incorporates an optical parametric amplifier (OPA) and two yttrium iron garnet spheres to facilitate magnon-photon coupling. Unlike the single transparency window typically resulting from magnon-photon interactions, we also observe magnomechanically induced transparency due to nonlinear magnon-phonon interactions. Additionally, two absorption dips on either side of the central absorption dip can be asymmetrically modulated into amplification and absorption by varying different system parameters. A PT-symmetric to broken-PT-symmetric phase transition is observed in both balanced and unbalanced gain-to-loss scenarios. Notably, replacing the second passive cavity with an active one mitigates high absorption and introduces effective gain into the system. Our findings reveal that the group delay of the probe light can be adjusted between positive and negative values by modifying various system parameters. This study provides a robust platform for controlling light propagation in CMM systems, highlighting potential applications in optical communication and signal processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15489v1-abstract-full').style.display = 'none'; document.getElementById('2412.15489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10