CINXE.COM

Search results for: Independent Component Analysis.

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Independent Component Analysis.</title> <meta name="description" content="Search results for: Independent Component Analysis."> <meta name="keywords" content="Independent Component Analysis."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Independent Component Analysis." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Independent Component Analysis."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9647</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Independent Component Analysis.</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9647</span> Time Series Forecasting Using Independent Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Theodor%20D.%20Popescu">Theodor D. Popescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each component, depending on its time structure. The paper gives also a review of the main algorithms for independent component analysis in the case of instantaneous mixture models, using second and high-order statistics. The method has been applied in simulation to an artificial multivariate time series with five components, generated from three sources and a mixing matrix, randomly generated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Independent%20Component%20Analysis" title="Independent Component Analysis">Independent Component Analysis</a>, <a href="https://publications.waset.org/search?q=second%20order%20statistics" title=" second order statistics"> second order statistics</a>, <a href="https://publications.waset.org/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/search?q=time%20series%20forecasting" title=" time series forecasting"> time series forecasting</a> </p> <a href="https://publications.waset.org/10199/time-series-forecasting-using-independent-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10199/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10199/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10199/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10199/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10199/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10199/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10199/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10199/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10199/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10199/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1779</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9646</span> Normalization Discriminant Independent Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liew%20Yee%20Ping">Liew Yee Ping</a>, <a href="https://publications.waset.org/search?q=Pang%20Ying%20Han"> Pang Ying Han</a>, <a href="https://publications.waset.org/search?q=Lau%20Siong%20Hoe"> Lau Siong Hoe</a>, <a href="https://publications.waset.org/search?q=Ooi%20Shih%20Yin"> Ooi Shih Yin</a>, <a href="https://publications.waset.org/search?q=Housam%20Khalifa%20Bashier%20Babiker"> Housam Khalifa Bashier Babiker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from the data and processed using Independent Component Analysis (ICA). The proposed method is evaluated on three face databases, Olivetti Research Ltd (ORL), Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC). NDICA showed it effectiveness compared with other unsupervised and supervised techniques.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=small%20sample%20size" title=" small sample size"> small sample size</a>, <a href="https://publications.waset.org/search?q=regularization" title=" regularization"> regularization</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysis." title=" independent component analysis."> independent component analysis.</a> </p> <a href="https://publications.waset.org/16147/normalization-discriminant-independent-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16147/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16147/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16147/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16147/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16147/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16147/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16147/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16147/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16147/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16147/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1954</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9645</span> Incremental Learning of Independent Topic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Takahiro%20Nishigaki">Takahiro Nishigaki</a>, <a href="https://publications.waset.org/search?q=Katsumi%20Nitta"> Katsumi Nitta</a>, <a href="https://publications.waset.org/search?q=Takashi%20Onoda"> Takashi Onoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Text%20mining" title="Text mining">Text mining</a>, <a href="https://publications.waset.org/search?q=topic%20extraction" title=" topic extraction"> topic extraction</a>, <a href="https://publications.waset.org/search?q=independent" title=" independent"> independent</a>, <a href="https://publications.waset.org/search?q=incremental" title=" incremental"> incremental</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysis." title=" independent component analysis."> independent component analysis.</a> </p> <a href="https://publications.waset.org/10006461/incremental-learning-of-independent-topic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006461/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006461/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006461/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006461/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006461/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006461/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006461/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006461/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006461/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006461/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1059</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9644</span> Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Simone%20C.%20F.%20Neves">Simone C. F. Neves</a>, <a href="https://publications.waset.org/search?q=L%C3%BAcio%20F.%20A.%20Campos"> L煤cio F. A. Campos</a>, <a href="https://publications.waset.org/search?q=Ewaldo%20Santana"> Ewaldo Santana</a>, <a href="https://publications.waset.org/search?q=Ginalber%20L.%20O.%20Serra"> Ginalber L. O. Serra</a>, <a href="https://publications.waset.org/search?q=Allan%20K.%20Barros"> Allan K. Barros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cancer%20ovarian" title="Cancer ovarian">Cancer ovarian</a>, <a href="https://publications.waset.org/search?q=Proteomic%20patterns%20in%20serum" title=" Proteomic patterns in serum"> Proteomic patterns in serum</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysis%20and%20neural%20networks." title=" independent component analysis and neural networks."> independent component analysis and neural networks.</a> </p> <a href="https://publications.waset.org/12668/diagnosis-of-ovarian-cancer-with-proteomic-patterns-in-serum-using-independent-component-analysis-and-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12668/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12668/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12668/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12668/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12668/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12668/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12668/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12668/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12668/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12668/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1831</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9643</span> An Approach for Blind Source Separation using the Sliding DFT and Time Domain Independent Component Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Koji%20Yamanouchi">Koji Yamanouchi</a>, <a href="https://publications.waset.org/search?q=Masaru%20Fujieda"> Masaru Fujieda</a>, <a href="https://publications.waset.org/search?q=Takahiro%20Murakami"> Takahiro Murakami</a>, <a href="https://publications.waset.org/search?q=Yoshihisa%20Ishida"> Yoshihisa Ishida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ''Cocktail party problem'' is well known as one of the human auditory abilities. We can recognize the specific sound that we want to listen by this ability even if a lot of undesirable sounds or noises are mixed. Blind source separation (BSS) based on independent component analysis (ICA) is one of the methods by which we can separate only a special signal from their mixed signals with simple hypothesis. In this paper, we propose an online approach for blind source separation using the sliding DFT and the time domain independent component analysis. The proposed method can reduce calculation complexity in comparison with conventional methods, and can be applied to parallel processing by using digital signal processors (DSPs) and so on. We evaluate this method and show its availability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cocktail%20party%20problem" title="Cocktail party problem">Cocktail party problem</a>, <a href="https://publications.waset.org/search?q=blind%20Source%20Separation%28BSS%29" title=" blind Source Separation(BSS)"> blind Source Separation(BSS)</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/search?q=sliding%20DFT" title=" sliding DFT"> sliding DFT</a>, <a href="https://publications.waset.org/search?q=onlineprocessing." title=" onlineprocessing."> onlineprocessing.</a> </p> <a href="https://publications.waset.org/13540/an-approach-for-blind-source-separation-using-the-sliding-dft-and-time-domain-independent-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13540/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13540/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13540/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13540/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13540/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13540/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13540/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13540/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13540/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13540/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1638</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9642</span> Kurtosis, Renyi&#039;s Entropy and Independent Component Scalp Maps for the Automatic Artifact Rejection from EEG Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Antonino%20Greco">Antonino Greco</a>, <a href="https://publications.waset.org/search?q=Nadia%20Mammone"> Nadia Mammone</a>, <a href="https://publications.waset.org/search?q=Francesco%20Carlo%20Morabito"> Francesco Carlo Morabito</a>, <a href="https://publications.waset.org/search?q=Mario%20Versaci"> Mario Versaci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The goal of this work is to improve the efficiency and the reliability of the automatic artifact rejection, in particular from the Electroencephalographic (EEG) recordings. Artifact rejection is a key topic in signal processing. The artifacts are unwelcome signals that may occur during the signal acquisition and that may alter the analysis of the signals themselves. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we enhance this technique introducing the Renyi-s entropy. The performance of our method was tested exploiting the Independent Component scalp maps and it was compared to the performance of the method in literature and it showed to outperform it.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artifact" title="Artifact">Artifact</a>, <a href="https://publications.waset.org/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/search?q=Renyi%27s%20entropy" title=" Renyi&#039;s entropy"> Renyi&#039;s entropy</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/search?q=kurtosis." title=" kurtosis."> kurtosis.</a> </p> <a href="https://publications.waset.org/4562/kurtosis-renyis-entropy-and-independent-component-scalp-maps-for-the-automatic-artifact-rejection-from-eeg-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4562/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4562/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4562/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4562/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4562/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4562/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4562/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4562/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4562/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4562/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2431</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9641</span> Independent Component Analysis to Mass Spectra of Aluminium Sulphate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Heikkinen">M. Heikkinen</a>, <a href="https://publications.waset.org/search?q=A.%20Sarpola"> A. Sarpola</a>, <a href="https://publications.waset.org/search?q=H.%20Hellman"> H. Hellman</a>, <a href="https://publications.waset.org/search?q=J.%20R%C3%A4m%C3%B6"> J. R盲m枚</a>, <a href="https://publications.waset.org/search?q=Y.%20Hiltunen"> Y. Hiltunen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Independent component analysis (ICA) is a computational method for finding underlying signals or components from multivariate statistical data. The ICA method has been successfully applied in many fields, e.g. in vision research, brain imaging, geological signals and telecommunications. In this paper, we apply the ICA method to an analysis of mass spectra of oligomeric species emerged from aluminium sulphate. Mass spectra are typically complex, because they are linear combinations of spectra from different types of oligomeric species. The results show that ICA can decomposite the spectral components for useful information. This information is essential in developing coagulation phases of water treatment processes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Independent%20component%20analysis" title="Independent component analysis">Independent component analysis</a>, <a href="https://publications.waset.org/search?q=massspectroscopy" title=" massspectroscopy"> massspectroscopy</a>, <a href="https://publications.waset.org/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/search?q=aluminium%20sulphate." title=" aluminium sulphate."> aluminium sulphate.</a> </p> <a href="https://publications.waset.org/3558/independent-component-analysis-to-mass-spectra-of-aluminium-sulphate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3558/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3558/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3558/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3558/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3558/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3558/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3558/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3558/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3558/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3558/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2370</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9640</span> A Completed Adaptive De-mixing Algorithm on Stiefel Manifold for ICA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jianwei%20Wu">Jianwei Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Based on the one-bit-matching principle and by turning the de-mixing matrix into an orthogonal matrix via certain normalization, Ma et al proposed a one-bit-matching learning algorithm on the Stiefel manifold for independent component analysis [8]. But this algorithm is not adaptive. In this paper, an algorithm which can extract kurtosis and its sign of each independent source component directly from observation data is firstly introduced.With the algorithm , the one-bit-matching learning algorithm is revised, so that it can make the blind separation on the Stiefel manifold implemented completely in the adaptive mode in the framework of natural gradient.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Independent%20component%20analysis" title="Independent component analysis">Independent component analysis</a>, <a href="https://publications.waset.org/search?q=kurtosis" title=" kurtosis"> kurtosis</a>, <a href="https://publications.waset.org/search?q=Stiefel%20manifold" title=" Stiefel manifold"> Stiefel manifold</a>, <a href="https://publications.waset.org/search?q=super-gaussians%20or%20sub-gaussians." title=" super-gaussians or sub-gaussians."> super-gaussians or sub-gaussians.</a> </p> <a href="https://publications.waset.org/13924/a-completed-adaptive-de-mixing-algorithm-on-stiefel-manifold-for-ica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13924/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13924/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13924/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13924/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13924/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13924/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13924/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13924/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13924/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13924/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1504</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9639</span> Semi-Automatic Artifact Rejection Procedure Based on Kurtosis, Renyi&#039;s Entropy and Independent Component Scalp Maps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Antonino%20Greco">Antonino Greco</a>, <a href="https://publications.waset.org/search?q=Nadia%20Mammone"> Nadia Mammone</a>, <a href="https://publications.waset.org/search?q=Francesco%20Carlo%20Morabito"> Francesco Carlo Morabito</a>, <a href="https://publications.waset.org/search?q=Mario%20Versaci"> Mario Versaci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Artifact rejection plays a key role in many signal processing applications. The artifacts are disturbance that can occur during the signal acquisition and that can alter the analysis of the signals themselves. Our aim is to automatically remove the artifacts, in particular from the Electroencephalographic (EEG) recordings. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we try to enhance this technique proposing a new method based on the Renyi-s entropy. The performance of our method was tested and compared to the performance of the method in literature and the former proved to outperform the latter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artifact" title="Artifact">Artifact</a>, <a href="https://publications.waset.org/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/search?q=Renyi%27s%20entropy" title=" Renyi&#039;s entropy"> Renyi&#039;s entropy</a>, <a href="https://publications.waset.org/search?q=kurtosis" title=" kurtosis"> kurtosis</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysis." title=" independent component analysis."> independent component analysis.</a> </p> <a href="https://publications.waset.org/4839/semi-automatic-artifact-rejection-procedure-based-on-kurtosis-renyis-entropy-and-independent-component-scalp-maps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4839/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4839/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4839/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4839/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4839/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4839/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4839/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4839/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4839/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4839/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1856</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9638</span> An ICA Algorithm for Separation of Convolutive Mixture of Speech Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rajkishore%20Prasad">Rajkishore Prasad</a>, <a href="https://publications.waset.org/search?q=Hiroshi%20Saruwatari"> Hiroshi Saruwatari</a>, <a href="https://publications.waset.org/search?q=Kiyohiro%20Shikano"> Kiyohiro Shikano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper describes Independent Component Analysis (ICA) based fixed-point algorithm for the blind separation of the convolutive mixture of speech, picked-up by a linear microphone array. The proposed algorithm extracts independent sources by non- Gaussianizing the Time-Frequency Series of Speech (TFSS) in a deflationary way. The degree of non-Gaussianization is measured by negentropy. The relative performances of algorithm under random initialization and Null beamformer (NBF) based initialization are studied. It has been found that an NBF based initial value gives speedy convergence as well as better separation performance</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Blind%20signal%20separation" title="Blind signal separation">Blind signal separation</a>, <a href="https://publications.waset.org/search?q=independent%20component%0D%0Aanalysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/search?q=negentropy" title=" negentropy"> negentropy</a>, <a href="https://publications.waset.org/search?q=convolutive%20mixture." title=" convolutive mixture."> convolutive mixture.</a> </p> <a href="https://publications.waset.org/8106/an-ica-algorithm-for-separation-of-convolutive-mixture-of-speech-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8106/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8106/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8106/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8106/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8106/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8106/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8106/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8106/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8106/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8106/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1778</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9637</span> An Experimental Comparison of Unsupervised Learning Techniques for Face Recognition </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dinesh%20Kumar">Dinesh Kumar</a>, <a href="https://publications.waset.org/search?q=C.S.%20Rai"> C.S. Rai</a>, <a href="https://publications.waset.org/search?q=Shakti%20Kumar"> Shakti Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Face Recognition has always been a fascinating research area. It has drawn the attention of many researchers because of its various potential applications such as security systems, entertainment, criminal identification etc. Many supervised and unsupervised learning techniques have been reported so far. Principal Component Analysis (PCA), Self Organizing Maps (SOM) and Independent Component Analysis (ICA) are the three techniques among many others as proposed by different researchers for Face Recognition, known as the unsupervised techniques. This paper proposes integration of the two techniques, SOM and PCA, for dimensionality reduction and feature selection. Simulation results show that, though, the individual techniques SOM and PCA itself give excellent performance but the combination of these two can also be utilized for face recognition. Experimental results also indicate that for the given face database and the classifier used, SOM performs better as compared to other unsupervised learning techniques. A comparison of two proposed methodologies of SOM, Local and Global processing, shows the superiority of the later but at the cost of more computational time.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20Recognition" title="Face Recognition">Face Recognition</a>, <a href="https://publications.waset.org/search?q=Principal%20Component%20Analysis" title=" Principal Component Analysis"> Principal Component Analysis</a>, <a href="https://publications.waset.org/search?q=Self%20Organizing%20Maps" title=" Self Organizing Maps"> Self Organizing Maps</a>, <a href="https://publications.waset.org/search?q=Independent%20Component%20Analysis" title=" Independent Component Analysis"> Independent Component Analysis</a> </p> <a href="https://publications.waset.org/294/an-experimental-comparison-of-unsupervised-learning-techniques-for-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/294/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/294/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/294/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/294/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/294/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/294/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/294/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/294/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/294/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/294/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1880</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9636</span> Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mashitah%20Mohd%20Hussain">Mashitah Mohd Hussain</a>, <a href="https://publications.waset.org/search?q=Salleh%20Serwan"> Salleh Serwan</a>, <a href="https://publications.waset.org/search?q=Zuhaina%20Hj%20Zakaria"> Zuhaina Hj Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS庐E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrical%20Distribution%20System" title="Electrical Distribution System">Electrical Distribution System</a>, <a href="https://publications.waset.org/search?q=Power%20Flow%0D%0ASolution" title=" Power Flow Solution"> Power Flow Solution</a>, <a href="https://publications.waset.org/search?q=Distribution%20Network" title=" Distribution Network"> Distribution Network</a>, <a href="https://publications.waset.org/search?q=Independent%20Component%20Analysis" title=" Independent Component Analysis"> Independent Component Analysis</a>, <a href="https://publications.waset.org/search?q=Newton%20Raphson" title=" Newton Raphson"> Newton Raphson</a>, <a href="https://publications.waset.org/search?q=Power%20System%20Simulation%20for%20Engineering." title=" Power System Simulation for Engineering."> Power System Simulation for Engineering.</a> </p> <a href="https://publications.waset.org/5323/nodal-load-profiles-estimation-for-time-series-load-flow-using-independent-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5323/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5323/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5323/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5323/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5323/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5323/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5323/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5323/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5323/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5323/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2916</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9635</span> An Approach to Solving a Permutation Problem of Frequency Domain Independent Component Analysis for Blind Source Separation of Speech Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Masaru%20Fujieda">Masaru Fujieda</a>, <a href="https://publications.waset.org/search?q=Takahiro%20Murakami"> Takahiro Murakami</a>, <a href="https://publications.waset.org/search?q=Yoshihisa%20Ishida"> Yoshihisa Ishida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Independent component analysis (ICA) in the frequency domain is used for solving the problem of blind source separation (BSS). However, this method has some problems. For example, a general ICA algorithm cannot determine the permutation of signals which is important in the frequency domain ICA. In this paper, we propose an approach to the solution for a permutation problem. The idea is to effectively combine two conventional approaches. This approach improves the signal separation performance by exploiting features of the conventional approaches. We show the simulation results using artificial data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Blind%20source%20separation" title="Blind source separation">Blind source separation</a>, <a href="https://publications.waset.org/search?q=Independent%20componentanalysis" title=" Independent componentanalysis"> Independent componentanalysis</a>, <a href="https://publications.waset.org/search?q=Frequency%20domain" title=" Frequency domain"> Frequency domain</a>, <a href="https://publications.waset.org/search?q=Permutation%20ambiguity." title=" Permutation ambiguity."> Permutation ambiguity.</a> </p> <a href="https://publications.waset.org/3094/an-approach-to-solving-a-permutation-problem-of-frequency-domain-independent-component-analysis-for-blind-source-separation-of-speech-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3094/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3094/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3094/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3094/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3094/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3094/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3094/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3094/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3094/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3094/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1786</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9634</span> Network Anomaly Detection using Soft Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Surat%20Srinoy">Surat Srinoy</a>, <a href="https://publications.waset.org/search?q=Werasak%20Kurutach"> Werasak Kurutach</a>, <a href="https://publications.waset.org/search?q=Witcha%20Chimphlee"> Witcha Chimphlee</a>, <a href="https://publications.waset.org/search?q=Siriporn%20Chimphlee"> Siriporn Chimphlee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Network%20security" title="Network security">Network security</a>, <a href="https://publications.waset.org/search?q=intrusion%20detection" title=" intrusion detection"> intrusion detection</a>, <a href="https://publications.waset.org/search?q=rough%20set" title=" rough set"> rough set</a>, <a href="https://publications.waset.org/search?q=ICA" title=" ICA"> ICA</a>, <a href="https://publications.waset.org/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/search?q=rough%0Afuzzy%20." title=" rough fuzzy ."> rough fuzzy .</a> </p> <a href="https://publications.waset.org/14879/network-anomaly-detection-using-soft-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14879/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14879/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14879/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14879/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14879/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14879/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14879/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14879/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14879/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14879/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1955</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9633</span> Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V%20Krishnaveni">V Krishnaveni</a>, <a href="https://publications.waset.org/search?q=S%20Jayaraman"> S Jayaraman</a>, <a href="https://publications.waset.org/search?q=K%20Ramadoss"> K Ramadoss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electroencephalogram" title="Electroencephalogram">Electroencephalogram</a>, <a href="https://publications.waset.org/search?q=Ocular%20Artifacts%20%28OA%29" title=" Ocular Artifacts (OA)"> Ocular Artifacts (OA)</a>, <a href="https://publications.waset.org/search?q=Independent%20Component%20Analysis%20%28ICA%29" title="Independent Component Analysis (ICA)">Independent Component Analysis (ICA)</a>, <a href="https://publications.waset.org/search?q=Mutual%20Information%20%28MI%29" title=" Mutual Information (MI)"> Mutual Information (MI)</a>, <a href="https://publications.waset.org/search?q=Mutual%20Information%20based%20Least%20dependent%20Component%20Analysis%28MILCA%29" title="Mutual Information based Least dependent Component Analysis(MILCA)">Mutual Information based Least dependent Component Analysis(MILCA)</a> </p> <a href="https://publications.waset.org/12599/application-of-mutual-information-based-least-dependent-component-analysis-milca-for-removal-of-ocular-artifacts-from-electroencephalogram" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12599/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12599/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12599/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12599/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12599/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12599/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12599/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12599/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12599/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12599/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2193</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9632</span> Web Search Engine Based Naming Procedure for Independent Topic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Takahiro%20Nishigaki">Takahiro Nishigaki</a>, <a href="https://publications.waset.org/search?q=Takashi%20Onoda"> Takashi Onoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {&quot;scor&quot;, &quot;game&quot;, &quot;lead&quot;, &quot;quarter&quot;, &quot;rebound&quot;}. This Topic 1 is considered to represent the topic of &quot;SPORTS&quot;. This topic name &quot;SPORTS&quot; has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Independent%20topic%20analysis" title="Independent topic analysis">Independent topic analysis</a>, <a href="https://publications.waset.org/search?q=topic%20extraction" title=" topic extraction"> topic extraction</a>, <a href="https://publications.waset.org/search?q=topic%0D%0Anaming" title=" topic naming"> topic naming</a>, <a href="https://publications.waset.org/search?q=web%20search%20engine." title=" web search engine."> web search engine.</a> </p> <a href="https://publications.waset.org/10011340/web-search-engine-based-naming-procedure-for-independent-topic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011340/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011340/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011340/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011340/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011340/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011340/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011340/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011340/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011340/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011340/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9631</span> A New Traffic Pattern Matching for DDoS Traceback Using Independent Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yuji%20Waizumi">Yuji Waizumi</a>, <a href="https://publications.waset.org/search?q=Tohru%20Sato"> Tohru Sato</a>, <a href="https://publications.waset.org/search?q=Yoshiaki%20Nemoto"> Yoshiaki Nemoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Recently, Denial of Service(DoS) attacks and Distributed DoS(DDoS) attacks which are stronger form of DoS attacks from plural hosts have become security threats on the Internet. It is important to identify the attack source and to block attack traffic as one of the measures against these attacks. In general, it is difficult to identify them because information about the attack source is falsified. Therefore a method of identifying the attack source by tracing the route of the attack traffic is necessary. A traceback method which uses traffic patterns, using changes in the number of packets over time as criteria for the attack traceback has been proposed. The traceback method using the traffic patterns can trace the attack by matching the shapes of input traffic patterns and the shape of output traffic pattern observed at a network branch point such as a router. The traffic pattern is a shapes of traffic and unfalsifiable information. The proposed trace methods proposed till date cannot obtain enough tracing accuracy, because they directly use traffic patterns which are influenced by non-attack traffics. In this paper, a new traffic pattern matching method using Independent Component Analysis(ICA) is proposed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Distributed%20Denial%20of%20Service" title="Distributed Denial of Service">Distributed Denial of Service</a>, <a href="https://publications.waset.org/search?q=Independent%20Component%20Analysis" title=" Independent Component Analysis"> Independent Component Analysis</a>, <a href="https://publications.waset.org/search?q=Traffic%20pattern" title=" Traffic pattern"> Traffic pattern</a> </p> <a href="https://publications.waset.org/12286/a-new-traffic-pattern-matching-for-ddos-traceback-using-independent-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12286/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12286/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12286/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12286/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12286/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12286/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12286/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12286/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12286/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12286/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1772</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9630</span> Blind Source Separation based on the Estimation for the Number of the Blind Sources under a Dynamic Acoustic Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Takaaki%20Ishibashi">Takaaki Ishibashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Independent component analysis can estimate unknown source signals from their mixtures under the assumption that the source signals are statistically independent. However, in a real environment, the separation performance is often deteriorated because the number of the source signals is different from that of the sensors. In this paper, we propose an estimation method for the number of the sources based on the joint distribution of the observed signals under two-sensor configuration. From several simulation results, it is found that the number of the sources is coincident to that of peaks in the histogram of the distribution. The proposed method can estimate the number of the sources even if it is larger than that of the observed signals. The proposed methods have been verified by several experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=blind%20source%20separation" title="blind source separation">blind source separation</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysys" title=" independent component analysys"> independent component analysys</a>, <a href="https://publications.waset.org/search?q=estimation%20for%20the%20number%20of%20the%20blind%20sources" title=" estimation for the number of the blind sources"> estimation for the number of the blind sources</a>, <a href="https://publications.waset.org/search?q=voice%20activity%20detection" title=" voice activity detection"> voice activity detection</a>, <a href="https://publications.waset.org/search?q=target%20extraction." title=" target extraction."> target extraction.</a> </p> <a href="https://publications.waset.org/13232/blind-source-separation-based-on-the-estimation-for-the-number-of-the-blind-sources-under-a-dynamic-acoustic-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13232/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13232/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13232/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13232/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13232/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13232/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13232/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13232/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13232/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13232/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1302</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9629</span> Quantitative Analysis of PCA, ICA, LDA and SVM in Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liton%20Jude%20Rozario">Liton Jude Rozario</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Reduanul%20Haque"> Mohammad Reduanul Haque</a>, <a href="https://publications.waset.org/search?q=Md.%20Ziarul%20Islam"> Md. Ziarul Islam</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Shorif%20Uddin"> Mohammad Shorif Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Face recognition is a technique to automatically identify or verify individuals. It receives great attention in identification, authentication, security and many more applications. Diverse methods had been proposed for this purpose and also a lot of comparative studies were performed. However, researchers could not reach unified conclusion. In this paper, we are reporting an extensive quantitative accuracy analysis of four most widely used face recognition algorithms: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) using AT&amp;T, Sheffield and Bangladeshi people face databases under diverse situations such as illumination, alignment and pose variations.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=PCA" title="PCA">PCA</a>, <a href="https://publications.waset.org/search?q=ICA" title=" ICA"> ICA</a>, <a href="https://publications.waset.org/search?q=LDA" title=" LDA"> LDA</a>, <a href="https://publications.waset.org/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/search?q=noise." title=" noise."> noise.</a> </p> <a href="https://publications.waset.org/9999412/quantitative-analysis-of-pca-ica-lda-and-svm-in-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999412/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999412/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999412/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999412/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999412/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999412/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999412/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999412/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999412/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999412/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2431</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9628</span> Finger Vein Recognition using PCA-based Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sepehr%20Damavandinejadmonfared">Sepehr Damavandinejadmonfared</a>, <a href="https://publications.waset.org/search?q=Ali%20Khalili%20Mobarakeh"> Ali Khalili Mobarakeh</a>, <a href="https://publications.waset.org/search?q=Mohsen%20Pashna">Mohsen Pashna</a>, <a href="https://publications.waset.org/search?q="></a>, <a href="https://publications.waset.org/search?q=Jiangping%20Gou%0D%0ASayedmehran%20Mirsafaie%20Rizi"> Jiangping Gou Sayedmehran Mirsafaie Rizi</a>, <a href="https://publications.waset.org/search?q=Saba%20Nazari"> Saba Nazari</a>, <a href="https://publications.waset.org/search?q=Shadi%20Mahmoodi%20Khaniabadi"> Shadi Mahmoodi Khaniabadi</a>, <a href="https://publications.waset.org/search?q=Mohamad%20Ali%20Bagheri"> Mohamad Ali Bagheri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a novel algorithm is proposed to merit the accuracy of finger vein recognition. The performances of Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Kernel Entropy Component Analysis (KECA) in this algorithm are validated and compared with each other in order to determine which one is the most appropriate one in terms of finger vein recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biometrics" title="Biometrics">Biometrics</a>, <a href="https://publications.waset.org/search?q=finger%20vein%20recognition" title=" finger vein recognition"> finger vein recognition</a>, <a href="https://publications.waset.org/search?q=PrincipalComponent%20Analysis%20%28PCA%29" title=" PrincipalComponent Analysis (PCA)"> PrincipalComponent Analysis (PCA)</a>, <a href="https://publications.waset.org/search?q=Kernel%20Principal%20Component%20Analysis%28KPCA%29" title=" Kernel Principal Component Analysis(KPCA)"> Kernel Principal Component Analysis(KPCA)</a>, <a href="https://publications.waset.org/search?q=Kernel%20Entropy%20Component%20Analysis%20%28KPCA%29." title=" Kernel Entropy Component Analysis (KPCA)."> Kernel Entropy Component Analysis (KPCA).</a> </p> <a href="https://publications.waset.org/9030/finger-vein-recognition-using-pca-based-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9030/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9030/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9030/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9030/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9030/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9030/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9030/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9030/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9030/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9030/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2680</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9627</span> Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Bosques-Perez">M. Bosques-Perez</a>, <a href="https://publications.waset.org/search?q=W.%20Izquierdo"> W. Izquierdo</a>, <a href="https://publications.waset.org/search?q=H.%20Martin"> H. Martin</a>, <a href="https://publications.waset.org/search?q=L.%20Deng"> L. Deng</a>, <a href="https://publications.waset.org/search?q=J.%20Rodriguez"> J. Rodriguez</a>, <a href="https://publications.waset.org/search?q=T.%20Yan"> T. Yan</a>, <a href="https://publications.waset.org/search?q=M.%20Cabrerizo"> M. Cabrerizo</a>, <a href="https://publications.waset.org/search?q=A.%20Barreto"> A. Barreto</a>, <a href="https://publications.waset.org/search?q=N.%20Rishe"> N. Rishe</a>, <a href="https://publications.waset.org/search?q=M.%20Adjouadi"> M. Adjouadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Big%20data" title="Big data">Big data</a>, <a href="https://publications.waset.org/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/search?q=principal%0D%0Acomponent%20analysis." title=" principal component analysis."> principal component analysis.</a> </p> <a href="https://publications.waset.org/10013776/utilizing-the-principal-component-analysis-on-multispectral-aerial-imagery-for-identification-of-underlying-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013776/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013776/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013776/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013776/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013776/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013776/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013776/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013776/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013776/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013776/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9626</span> Non-negative Principal Component Analysis for Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zhang%20Yan">Zhang Yan</a>, <a href="https://publications.waset.org/search?q=Yu%20Bin"> Yu Bin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/search?q=non-negativeprinciple%20component%20analysis%20%28NPCA%29" title=" non-negativeprinciple component analysis (NPCA)"> non-negativeprinciple component analysis (NPCA)</a> </p> <a href="https://publications.waset.org/14158/non-negative-principal-component-analysis-for-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14158/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14158/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14158/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14158/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14158/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14158/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14158/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14158/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14158/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14158/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1695</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9625</span> Performance Evaluation of Faculties of Islamic Azad University of Zahedan Branch Based-On Two-Component DEA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ali%20Payan">Ali Payan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this paper is to evaluate the performance of the faculties of Islamic Azad University of Zahedan Branch based on two-component (teaching and research) decision making units (DMUs) in data envelopment analysis (DEA). Nowadays it is obvious that most of the systems as DMUs do not act as a simple inputoutput structure. Instead, if they have been studied more delicately, they include network structure. University is such a network in which different sections i.e. teaching, research, students and office work as a parallel structure. They consume some inputs of university commonly and some others individually. Then, they produce both dependent and independent outputs. These DMUs are called two-component DMUs with network structure. In this paper, performance of the faculties of Zahedan branch is calculated by using relative efficiency model and also, a formula to compute relative efficiencies teaching and research components based on DEA are offered.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20envelopment%20analysis" title="Data envelopment analysis">Data envelopment analysis</a>, <a href="https://publications.waset.org/search?q=faculties%20of%20Islamic%20Azad%20University%20of%20Zahedan%20branch" title=" faculties of Islamic Azad University of Zahedan branch"> faculties of Islamic Azad University of Zahedan branch</a>, <a href="https://publications.waset.org/search?q=two-component%20DMUs." title=" two-component DMUs."> two-component DMUs.</a> </p> <a href="https://publications.waset.org/17213/performance-evaluation-of-faculties-of-islamic-azad-university-of-zahedan-branch-based-on-two-component-dea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17213/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17213/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17213/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17213/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17213/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17213/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17213/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17213/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17213/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17213/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1663</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9624</span> Spectral Analysis of Speech: A New Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Neeta%20Awasthy">Neeta Awasthy</a>, <a href="https://publications.waset.org/search?q=J.P.Saini"> J.P.Saini</a>, <a href="https://publications.waset.org/search?q=D.S.Chauhan"> D.S.Chauhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition. The mixing matrix A is different before and after MFCC as expected. As Mel is a nonlinear scale. However, cepstrals generated from Linear Predictive Coefficient being independent prove to be the right candidate for ICA. Matlab is the tool used for all comparisons. The database used is samples of ISOLET. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cepstral%20Coefficient" title="Cepstral Coefficient">Cepstral Coefficient</a>, <a href="https://publications.waset.org/search?q=Distance%20measures" title=" Distance measures"> Distance measures</a>, <a href="https://publications.waset.org/search?q=Independent%0AComponent%20Analysis" title=" Independent Component Analysis"> Independent Component Analysis</a>, <a href="https://publications.waset.org/search?q=Linear%20Predictive%20Coefficients." title=" Linear Predictive Coefficients."> Linear Predictive Coefficients.</a> </p> <a href="https://publications.waset.org/2935/spectral-analysis-of-speech-a-new-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2935/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2935/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2935/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2935/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2935/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2935/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2935/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2935/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2935/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2935/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1957</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9623</span> Resting-State Functional Connectivity Analysis Using an Independent Component Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Eric%20Jacob%20Bacon">Eric Jacob Bacon</a>, <a href="https://publications.waset.org/search?q=Chaoyang%20Jin"> Chaoyang Jin</a>, <a href="https://publications.waset.org/search?q=Dianning%20He"> Dianning He</a>, <a href="https://publications.waset.org/search?q=Shuaishuai%20Hu"> Shuaishuai Hu</a>, <a href="https://publications.waset.org/search?q=Lanbo%20Wang"> Lanbo Wang</a>, <a href="https://publications.waset.org/search?q=Han%20Li"> Han Li</a>, <a href="https://publications.waset.org/search?q=Shouliang%20Qi"> Shouliang Qi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as Independent Component Analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Independent%20Component%20Analysis" title="Independent Component Analysis">Independent Component Analysis</a>, <a href="https://publications.waset.org/search?q=Resting%20State%20Network" title=" Resting State Network"> Resting State Network</a>, <a href="https://publications.waset.org/search?q=refractory%20epilepsy" title=" refractory epilepsy"> refractory epilepsy</a>, <a href="https://publications.waset.org/search?q=rsfMRI." title=" rsfMRI."> rsfMRI.</a> </p> <a href="https://publications.waset.org/10013167/resting-state-functional-connectivity-analysis-using-an-independent-component-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013167/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013167/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013167/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013167/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013167/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013167/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013167/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013167/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013167/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013167/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9622</span> Novel Anti-leukemia Calanone Compounds by Quantitative Structure-Activity Relationship AM1 Semiempirical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ponco%20Iswanto">Ponco Iswanto</a>, <a href="https://publications.waset.org/search?q=Mochammad%20Chasani"> Mochammad Chasani</a>, <a href="https://publications.waset.org/search?q=Muhammad%20Hanafi"> Muhammad Hanafi</a>, <a href="https://publications.waset.org/search?q=Iqmal%20Tahir"> Iqmal Tahir</a>, <a href="https://publications.waset.org/search?q=Eva%20Vaulina%20YD"> Eva Vaulina YD</a>, <a href="https://publications.waset.org/search?q=Harjono"> Harjono</a>, <a href="https://publications.waset.org/search?q=Lestari%20Solikhati"> Lestari Solikhati</a>, <a href="https://publications.waset.org/search?q=Winkanda%20S.%20Putra"> Winkanda S. Putra</a>, <a href="https://publications.waset.org/search?q=Yayuk%20Yuliantini"> Yayuk Yuliantini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantitative Structure-Activity Relationship (QSAR) approach for discovering novel more active Calanone derivative as anti-leukemia compound has been conducted. There are 6 experimental activities of Calanone compounds against leukemia cell L1210 that are used as material of the research. Calculation of theoretical predictors (independent variables) was performed by AM1 semiempirical method. The QSAR equation is determined by Principle Component Regression (PCR) analysis, with Log IC50 as dependent variable and the independent variables are atomic net charges, dipole moment (渭), and coefficient partition of noctanol/ water (Log P). Three novel Calanone derivatives that obtained by this research have higher activity against leukemia cell L1210 than pure Calanone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=AM1%20semiempirical%20calculation" title="AM1 semiempirical calculation">AM1 semiempirical calculation</a>, <a href="https://publications.waset.org/search?q=Calanone" title=" Calanone"> Calanone</a>, <a href="https://publications.waset.org/search?q=Principle%20Component%20Regression" title=" Principle Component Regression"> Principle Component Regression</a>, <a href="https://publications.waset.org/search?q=QSAR%20approach." title=" QSAR approach."> QSAR approach.</a> </p> <a href="https://publications.waset.org/8792/novel-anti-leukemia-calanone-compounds-by-quantitative-structure-activity-relationship-am1-semiempirical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8792/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8792/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8792/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8792/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8792/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8792/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8792/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8792/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8792/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8792/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1478</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9621</span> Mutually Independent Hamiltonian Cycles of Cn x Cn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kai-Siou%20Wu">Kai-Siou Wu</a>, <a href="https://publications.waset.org/search?q=Justie%20Su-Tzu%20Juan"> Justie Su-Tzu Juan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In a graph G, a cycle is Hamiltonian cycle if it contain all vertices of G. Two Hamiltonian cycles C_1 = &lang;u_0, u_1, u_2, ..., u_{n&minus;1}, u_0&rang; and C_2 = &lang;v_0, v_1, v_2, ..., v_{n&minus;1}, v_0&rang; in G are independent if u_0 = v_0, u_i = 谈 v_i for all 1 &le; i &le; n&minus;1. In G, a set of Hamiltonian cycles C = {C_1, C_2, ..., C_k} is mutually independent if any two Hamiltonian cycles of C are independent. The mutually independent Hamiltonicity IHC(G), = k means there exist a maximum integer k such that there exists k-mutually independent Hamiltonian cycles start from any vertex of G. In this paper, we prove that IHC(C_n &times; C_n) = 4, for n &ge; 3.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hamiltonian" title="Hamiltonian">Hamiltonian</a>, <a href="https://publications.waset.org/search?q=independent" title=" independent"> independent</a>, <a href="https://publications.waset.org/search?q=cycle" title=" cycle"> cycle</a>, <a href="https://publications.waset.org/search?q=Cartesian%20product" title=" Cartesian product"> Cartesian product</a>, <a href="https://publications.waset.org/search?q=mutually%20independent%20Hamiltonicity" title=" mutually independent Hamiltonicity"> mutually independent Hamiltonicity</a> </p> <a href="https://publications.waset.org/14050/mutually-independent-hamiltonian-cycles-of-cn-x-cn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14050/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14050/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14050/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14050/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14050/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14050/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14050/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14050/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14050/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14050/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1281</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9620</span> Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V%20Krishnaveni">V Krishnaveni</a>, <a href="https://publications.waset.org/search?q=S%20Jayaraman"> S Jayaraman</a>, <a href="https://publications.waset.org/search?q=A%20Gunasekaran"> A Gunasekaran</a>, <a href="https://publications.waset.org/search?q=K%20Ramadoss"> K Ramadoss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Auto%20Regressive%20%28AR%29%20Coefficients" title="Auto Regressive (AR) Coefficients">Auto Regressive (AR) Coefficients</a>, <a href="https://publications.waset.org/search?q=Feed%20Forward%20Neural%20Network%20%28FNN%29" title=" Feed Forward Neural Network (FNN)"> Feed Forward Neural Network (FNN)</a>, <a href="https://publications.waset.org/search?q=Joint%20Approximation%20Diagonalisation%20of%20Eigen%20matrices%20%28JADE%29%20Algorithm" title=" Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm"> Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm</a>, <a href="https://publications.waset.org/search?q=Polynomial%20Neural%20Network%20%28PNN%29." title=" Polynomial Neural Network (PNN)."> Polynomial Neural Network (PNN).</a> </p> <a href="https://publications.waset.org/7212/automatic-removal-of-ocular-artifacts-using-jade-algorithm-and-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7212/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7212/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7212/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7212/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7212/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7212/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7212/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7212/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7212/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7212/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1889</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9619</span> Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dipali%20Bansal">Dipali Bansal</a>, <a href="https://publications.waset.org/search?q=Rashima%20Mahajan"> Rashima Mahajan</a>, <a href="https://publications.waset.org/search?q=Shweta%20Singh"> Shweta Singh</a>, <a href="https://publications.waset.org/search?q=Dheeraj%20Rathee"> Dheeraj Rathee</a>, <a href="https://publications.waset.org/search?q=Sujit%20Roy"> Sujit Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Brain%20Computer%20Interface" title="Brain Computer Interface">Brain Computer Interface</a>, <a href="https://publications.waset.org/search?q=EDF%20Browser" title=" EDF Browser"> EDF Browser</a>, <a href="https://publications.waset.org/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/search?q=EEGLab" title=" EEGLab"> EEGLab</a>, <a href="https://publications.waset.org/search?q=EMOTIV" title=" EMOTIV"> EMOTIV</a>, <a href="https://publications.waset.org/search?q=Real%20time%20Acquisition" title=" Real time Acquisition"> Real time Acquisition</a> </p> <a href="https://publications.waset.org/9998082/real-time-acquisition-and-analysis-of-neural-response-for-rehabilitative-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998082/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998082/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998082/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998082/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998082/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998082/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998082/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998082/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998082/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998082/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3237</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9618</span> Studying Frame-Resistant Steel Structures under Near Field Ground Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20A.%20Hashemi">S. A. Hashemi</a>, <a href="https://publications.waset.org/search?q=A.%20Khoshraftar"> A. Khoshraftar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectlyplastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Inelastic%20behavior" title="Inelastic behavior">Inelastic behavior</a>, <a href="https://publications.waset.org/search?q=non-linear%20dynamic%20analysis" title=" non-linear dynamic analysis"> non-linear dynamic analysis</a>, <a href="https://publications.waset.org/search?q=steel%0D%0Astructure" title=" steel structure"> steel structure</a>, <a href="https://publications.waset.org/search?q=vertical%20component." title=" vertical component."> vertical component.</a> </p> <a href="https://publications.waset.org/10002686/studying-frame-resistant-steel-structures-under-near-field-ground-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002686/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002686/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002686/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002686/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002686/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002686/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002686/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002686/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002686/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002686/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1580</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=321">321</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=322">322</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Independent%20Component%20Analysis.&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10