CINXE.COM

Search results for: interfacial strength

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: interfacial strength</title> <meta name="description" content="Search results for: interfacial strength"> <meta name="keywords" content="interfacial strength"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="interfacial strength" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="interfacial strength"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3917</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: interfacial strength</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3917</span> Relationship between Interfacial Instabilities and Mechanical Strength of Multilayer Symmetric Polymer Melts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ranjbaran%20Madiseh">Mohammad Ranjbaran Madiseh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, an experimental apparatus has been developed for observing interfacial stability and deformation of multilayer pressure-driven channel flows. The interface instability of the co-extrusion flow of polyethylene and polypropylene is studied experimentally in a slit geometry. By investigating the growing interfacial wave (IW) and tensile stress of extrudate samples, a relationship between interfacial instability (II) and mechanical properties of polypropylene (PP) and high-density polyethylene (HDPE) has been established. It is shown that the mechanism of interfacial strength is related to interfacial instabilities as well as interfacial strength. It is shown that there is an ability to forecast the quality of final products in the co-extrusion process. In this study, it is found that the instability is controlled by its dominant wave number, which is associated with maximum tensile stress at the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interfacial%20instability" title="interfacial instability">interfacial instability</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20strength" title=" interfacial strength"> interfacial strength</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20number" title=" wave number"> wave number</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20wave" title=" interfacial wave"> interfacial wave</a> </p> <a href="https://publications.waset.org/abstracts/156768/relationship-between-interfacial-instabilities-and-mechanical-strength-of-multilayer-symmetric-polymer-melts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3916</span> Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Gabr">Mohamed H. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiyoshi%20Uzawa"> Kiyoshi Uzawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sub-micro%20particles" title="sub-micro particles">sub-micro particles</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-composites" title=" nano-composites"> nano-composites</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20shear%20strength" title=" interfacial shear strength"> interfacial shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamide%206" title=" polyamide 6"> polyamide 6</a> </p> <a href="https://publications.waset.org/abstracts/55436/effect-of-different-types-of-nanomicro-fillers-on-the-interfacial-shear-properties-of-polyamide-6-with-de-sized-carbon-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3915</span> Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Boudali">S. Boudali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Soliman"> A. M. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Abdulsalam"> B. Abdulsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ayed"> K. Ayed</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20E.%20Kerdal"> D. E. Kerdal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Poncet"> S. Poncet </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the potential of using crushed concrete as aggregates to produce green and sustainable concrete. Crushed concrete was sieved to powder fine recycled aggregate (PFRA) less than 80 &micro;m and coarse recycled aggregates (CRA). Physical, mechanical, and microstructural properties for PFRA and CRA were evaluated. The effect of the additional rates of PFRA and CRA on strength development of recycled aggregate concrete (RAC) was investigated. Additionally, the characteristics of interfacial transition zone (ITZ) between cement paste and recycled aggregate were also examined. Results show that concrete mixtures made with 100% of CRA and 40% PFRA exhibited similar performance to that of the control mixture prepared with 100% natural aggregate (NA) and 40% natural pozzolan (NP). Moreover, concrete mixture incorporating recycled aggregate exhibited a slightly higher later compressive strength than that of the concrete with NA. This was confirmed by the very dense microstructure for concrete mixture incorporating recycled concrete aggregates compared to that of conventional concrete mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregates" title=" recycled concrete aggregates"> recycled concrete aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20transition%20zone" title=" interfacial transition zone"> interfacial transition zone</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20fine%20recycled%20aggregate" title=" powder fine recycled aggregate"> powder fine recycled aggregate</a> </p> <a href="https://publications.waset.org/abstracts/75148/microstructural-properties-of-the-interfacial-transition-zone-and-strength-development-of-concrete-incorporating-recycled-concrete-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3914</span> Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20U.%20Khan">S. U. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ayub"> T. Ayub</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Shafiq"> N. Shafiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title="metakaolin">metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20deflection" title=" load deflection"> load deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20transition%20zone" title=" interfacial transition zone"> interfacial transition zone</a> </p> <a href="https://publications.waset.org/abstracts/75163/comparison-of-physical-and-chemical-properties-of-micro-silica-and-locally-produced-metakaolin-and-effect-on-the-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3913</span> Carbon Fiber Manufacturing Conditions to Improve Interfacial Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Filip%20Stojcevski">Filip Stojcevski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Hilditch"> Tim Hilditch</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20Henderson"> Luke Henderson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although carbon fibre composites are becoming ever more prominent in the engineering industry, interfacial failure still remains one of the most common limitations to material performance. Carbon fiber surface treatments have played a major role in advancing composite properties however research into the influence of manufacturing variables on a fiber manufacturing line is lacking. This project investigates the impact of altering carbon fiber manufacturing conditions on a production line (specifically electrochemical oxidization and sizing variables) to assess fiber-matrix adhesion. Pristine virgin fibers were manufactured and interfacial adhesion systematically assessed from a microscale (single fiber) to a mesoscale (12k tow), and ultimately a macroscale (laminate). Correlations between interfacial shear strength (IFSS) at each level is explored as a function of known interfacial bonding mechanisms; namely mechanical interlocking, chemical adhesion and fiber wetting. Impact of these bonding mechanisms is assessed through extensive mechanical, topological and chemical characterisation. They are correlated to performance as a function of IFSS. Ultimately this study provides a bottoms up approach to improving composite laminates. By understanding the scaling effects from a singular fiber to a composite laminate and linking this knowledge to specific bonding mechanisms, material scientists can make an informed decision on the manufacturing conditions most beneficial for interfacial adhesion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fibers" title="carbon fibers">carbon fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20adhesion" title=" interfacial adhesion"> interfacial adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sizing" title=" sizing"> sizing</a> </p> <a href="https://publications.waset.org/abstracts/85487/carbon-fiber-manufacturing-conditions-to-improve-interfacial-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3912</span> Synthesis and Properties of Sulfonate Gemini Surfactants with Amide Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Wang">Rui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanfa%20Tang"> Shanfa Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanwu%20Dong"> Yuanwu Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Siyao%20Wang"> Siyao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaowen%20Jiang"> Zhaowen Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Di%20Han"> Di Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sulfonate Gemini surfactant sodium N,N`-bis(tetradecanoyl) propanediamine dipropyl sulfonate (GNS-14) was synthesized from 1,3-propanediamine, tetradecanoyl chloride, and1,3-propanesulfonic lactone. GNS-14 was characterized by FT-IR, 1H NMR. The surface activity, interfacial activity, and emulsification properties of GNS-14 solution were systematically studied. The critical micelle concentration (CCMC) of GNS-14 surfactant was 0.056 mmol/L, and the surface tension (γCMC) was 18.2 mN/m; at 50℃, 0.5% GNS-14 solution can reduce the oil-water interfacial tension to 6.5×10−2 mN/m. GNS-14 has excellent surface activity, interfacial activity, and emulsifying properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gemini%20surfactants" title="gemini surfactants">gemini surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20interfacial%20tension" title=" low interfacial tension"> low interfacial tension</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsifying%20properties" title=" emulsifying properties"> emulsifying properties</a> </p> <a href="https://publications.waset.org/abstracts/150208/synthesis-and-properties-of-sulfonate-gemini-surfactants-with-amide-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3911</span> Synthesis of Carboxylate Gemini Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Wang">Rui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanfa%20Tang"> Shanfa Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanwu%20Dong"> Yuanwu Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Siyao%20Wang"> Siyao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A carboxylate Gemini surfactant N, N`-bis (3-chloro-2 -hydroxypropane-N-dodecyl secondary amine) p-phenylenediamine diacetate sodium (GD12-P-12) was synthesized by substitution and ring-opening reaction from p-phenylenediamine, sodium chloroacetate, epichlorohydrin, and dodecylamine. The synthesis conditions were optimized by controlling variables. The structure of GD12-P-12 was characterized by FT-IR and 1H NMR, and its foam performance, interfacial tension, viscosity was evaluated. The results show that the molecular structure of the synthesized product is consistent with that of the target product, the GD12-P-12 can reduce the oil-water interfacial tension to 7.49×10⁻³mN/m (ultra-low interfacial tension level) in 20min. GD12-P-12 surfactant has excellent foam performance, ultra-low interfacial tension, good temperature-resistant viscosity-increasing properties, has good application prospect in foam flooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gemini%20surfactant" title="gemini surfactant">gemini surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20of%20synthesis%20conditions" title=" optimization of synthesis conditions"> optimization of synthesis conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20performance" title=" foam performance"> foam performance</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20interfacial%20tension" title=" low interfacial tension"> low interfacial tension</a> </p> <a href="https://publications.waset.org/abstracts/150328/synthesis-of-carboxylate-gemini-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3910</span> Utilization of Waste Glass Powder in Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhaib%20Salahuddin%20Alzubair%20Suliman">Suhaib Salahuddin Alzubair Suliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title="glass powder">glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolana" title=" pozzolana"> pozzolana</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a> </p> <a href="https://publications.waset.org/abstracts/175562/utilization-of-waste-glass-powder-in-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3909</span> Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josef%20Fl%C3%A1dr">Josef Fládr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20N%C4%9Bme%C4%8Dek"> Jiří Němeček</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronika%20Koudelkov%C3%A1"> Veronika Koudelková</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20B%C3%ADl%C3%BD"> Petr Bílý</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 &micro;m. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 &micro;m). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy" title="electron diffraction spectroscopy">electron diffraction spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20transition%20zone" title=" interfacial transition zone"> interfacial transition zone</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20strength%20concrete" title=" normal strength concrete"> normal strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/67357/microscopic-analysis-of-interfacial-transition-zone-of-cementitious-composites-prepared-by-various-mixing-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3908</span> A Comparative Study on Electrical Characteristics of Au/n-SiC structure, with and Without Zn-Doped PVA Interfacial Layer at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Aldahrob">M. H. Aldahrob</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kokce"> A. Kokce</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Altindal"> S. Altindal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20Lapa"> H. E. Lapa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to obtain the detailed information about the effect of (Zn-doped PVA) interfacial layer, surface states (Nss) and series resistance (Rs) on electrical characteristics, both Au/n- type 4H-SiC (MS) with and without (Zn doped PVA) interfacial layer were fabricated to compare. The main electrical parameters of them were investigated using forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance –voltage (G/W –V) measurements were performed at room temperature. Experimental results show that the value of ideality factor (n), zero –bias barrier height (ΦBo), Rs, rectifier rate (RR=IF/IR) and the density of Nss are strong functions interfacial layer and applied bias voltage. The energy distribution profile of Nss was obtained from forward bias I-V data by taking into account voltage dependent effective BH (ΦBo) and ideality factor (n(V)). Voltage dependent profile of Rs was also obtained both by using Ohm’s law and Nicollian and Brew methods. The other main diode parameters such as the concentration of doping donor atom (ND), Fermi energy level (EF).BH (ΦBo), depletion layer with (WD) were obtained by using the intercept and slope of the reverse bias C-2 vs V plots. It was found that (Zn-doped PVA) interfacial layer lead to a quite decrease in the values Nss, Rs and leakage current and increase in shunt resistance (Rsh) and RR. Therefore, we can say that the use of thin (Zn-doped PVA) interfacial layer can quite improved the performance of MS structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interfacial%20polymer%20layer" title="interfacial polymer layer">interfacial polymer layer</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness%20dependence" title=" thickness dependence"> thickness dependence</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20and%20dielectric%20properties" title=" electric and dielectric properties"> electric and dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=series%20resistance" title=" series resistance"> series resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20state" title=" interface state"> interface state</a> </p> <a href="https://publications.waset.org/abstracts/46570/a-comparative-study-on-electrical-characteristics-of-aun-sic-structure-with-and-without-zn-doped-pva-interfacial-layer-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3907</span> The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Dangtungee">R. Dangtungee</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rattanapan"> A. Rattanapan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Siengchin"> S. Siengchin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-density%20polyethylene" title="high-density polyethylene">high-density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE-g-MA" title=" HDPE-g-MA"> HDPE-g-MA</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20properties" title=" morphological properties"> morphological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20silicon%20carbide" title=" waste silicon carbide"> waste silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/17302/the-effect-of-surface-modifiers-on-the-mechanical-and-morphological-properties-of-waste-silicon-carbide-filled-high-density-polyethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3906</span> Characteristics and Mechanical Properties of Bypass-Current MIG Welding-Brazed Dissimilar Al/Ti Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bintao%20Wu">Bintao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangfang%20Xu"> Xiangfang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yugang%20Miao%EF%BC%8CDuanfeng%20Han"> Yugang Miao,Duanfeng Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Joining of 1 mm thick aluminum 6061 to titanium TC4 was conducted using Bypass-current MIG welding-brazed, and stable welding process and good bead appearance were obtained. The Joint profile and microstructure of Ti/Al joints were observed by optical microscopy and SEM and then the structure of the interfacial reaction layers were analyzed in details. It was found that the intermetallic compound layer at the interfacial top is in the form of columnar crystal, which is in short and dense state. A mount of AlTi were observed at the interfacial layer near the Ti base metal while intermetallic compound like Al3Ti、TiSi3 were formed near the Al base metal, and the Al11Ti5 transition phase was found in the center of the interface layer due to the uneven distribution inside the weld pool during the welding process. Tensile test results show that the average tensile strength of joints is up to 182.6 MPa, which reaches about 97.6% of aluminum base metal. Fracture is prone to occur in the base metal with a certain amount of necking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bypass-current%20MIG%20welding-brazed" title="bypass-current MIG welding-brazed">bypass-current MIG welding-brazed</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20alloy" title=" Al alloy"> Al alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti%20alloy" title=" Ti alloy"> Ti alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20characteristics" title=" joint characteristics"> joint characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/17396/characteristics-and-mechanical-properties-of-bypass-current-mig-welding-brazed-dissimilar-alti-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3905</span> Chemical Modification of Jute Fibers with Oxidative Agents for Usability as Reinforcement in Polymeric Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Seki">Yasemin Seki</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysun%20Ak%C5%9Fit"> Aysun Akşit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this research is to modify the surface characterization of jute yarns with different chemical agents to improve the compatibility with a non-polar polymer, polypropylene, when used as reinforcement. A literature review provided no knowledge on surface treatment of jute fibers with sodium perborate trihydrate. This study also aims to compare the efficiency of sodium perborate trihydrate on jute fiber treatment with other commonly used chemical agents. Accordingly, jute yarns were treated with 0.02% potassium dichromate (PD), potassium permanganate (PM) and sodium perborate trihydrate (SP) aqueous solutions in order to enhance interfacial compatibility with polypropylene in this study. The effect of treatments on surface topography, surface chemistry and interfacial shear strength of jute yarns with polypropylene were investigated. XPS results revealed that surface treatments enhanced surface hydrophobicity by increasing C/O ratios of fiber surface. Surface roughness values increased with the treatments. The highest interfacial adhesion with polypropylene was achieved after SP treatment by providing the highest surface roughness values and hydrophobic character of jute fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jute" title="jute">jute</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20modification" title=" chemical modification"> chemical modification</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20perborate" title=" sodium perborate"> sodium perborate</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a> </p> <a href="https://publications.waset.org/abstracts/25462/chemical-modification-of-jute-fibers-with-oxidative-agents-for-usability-as-reinforcement-in-polymeric-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3904</span> The Evaluation for Interfacial Adhesion between SOFC and Metal Adhesive in the High Temperature Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Koo%20Jeon">Sang Koo Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Hoon%20Nahm"> Seung Hoon Nahm</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Heon%20Kwon"> Oh Heon Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unit cell of solid oxide fuel cell (SOFC) must be stacked as several layers type to obtain the high power. The most of researcher have concerned about the performance of stacked SOFC rather than the structural stability of stacked SOFC and especially interested how to design for reducing the electrical loss and improving the high efficiency. Consequently, the stacked SOFC able to produce the electrical high power and related parts like as manifold, gas seal, bipolar plate were developed to optimize the stack design. However, the unit cell of SOFC was just layered on the interconnector without the adhesion and the hydrogen and oxygen were injected to the interfacial layer in the high temperature. On the operating condition, the interfacial layer can be the one of the weak point in the stacked SOFC. Therefore the evaluation of the structural safety for the failure is essentially needed. In this study, interfacial adhesion between SOFC and metal adhesive was estimated in the high temperature environment. The metal adhesive was used to strongly connect the unit cell of SOFC with interconnector and provide the electrical conductivity between them. The four point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and SiO2 wafer were diced and then attached by metal adhesive. The SiO2 wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. Additionally, the interfacial adhesion was evaluated in the high temperature condition because the metal adhesive was affected by high temperature. Also the specimen was exposed in the furnace during several hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy was quantitatively determined and compared in the each condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell%20%28SOFC%29" title="solid oxide fuel cell (SOFC)">solid oxide fuel cell (SOFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20adhesive" title=" metal adhesive"> metal adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a> </p> <a href="https://publications.waset.org/abstracts/13959/the-evaluation-for-interfacial-adhesion-between-sofc-and-metal-adhesive-in-the-high-temperature-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3903</span> Study on the Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamrun%20N.%20Keya">Kamrun N. Keya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20A.%20Kona"> Nasrin A. Kona</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruhul%20A.%20Khan"> Ruhul A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo fiber (BF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, bamboo composites were manufactured using different percentages of fiber, which were varying from 25-65% on the total weight of the composites. To fabricate the BF/PP composites untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical, and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact, and bending properties were observed precisely. Maximum tensile strength (TS) and bending strength (BS) were found for 50 wt% fiber composites, 65 MPa, and 85.5 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 5.73 GPa and 7.85 GPa respectively. The BF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (i.e. 10, 20, 30, 40, 50 and 60 kGy doses). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 30.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray) gamma dose showed better mechanical properties than other doses. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated BF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated BF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20fiber" title="bamboo fiber">bamboo fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20molding%20technique" title=" compression molding technique"> compression molding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/111997/study-on-the-mechanical-properties-of-bamboo-fiber-reinforced-polypropylene-based-composites-effect-of-gamma-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3902</span> Finite Element Approach to Evaluate Time Dependent Shear Behavior of Connections in Hybrid Steel-PC Girder under Sustained Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Najmol%20Haque">Mohammad Najmol Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Maki"> Takeshi Maki</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Sasaki"> Jun Sasaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Headed stud shear connections are widely used in the junction or embedded zone of hybrid girder to achieve whole composite action with continuity that can sustain steel-concrete interfacial tensile and shear forces. In Japan, Japan Road Association (JRA) specifications are used for hybrid girder design that utilizes very low level of stud capacity than those of American Institute of Steel Construction (AISC) specifications, Japan Society of Civil Engineers (JSCE) specifications and EURO code. As low design shear strength is considered in design of connections, the time dependent shear behavior due to sustained external loading is not considered, even not fully studied. In this study, a finite element approach was used to evaluate the time dependent shear behavior for headed studs used as connections at the junction. This study clarified, how the sustained loading distinctively impacted on changing the interfacial shear of connections with time which was sensitive to lodging history, positions of flanges, neighboring studs, position of prestress bar and reinforcing bar, concrete strength, etc. and also identified a shear influence area. Stud strength was also confirmed through pushout tests. The outcome obtained from the study may provide an important basis and reference data in designing connections of hybrid girders with enhanced stud capacity with due consideration of their long-term shear behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20girder" title=" hybrid girder"> hybrid girder</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connections" title=" shear connections"> shear connections</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained%20loading" title=" sustained loading"> sustained loading</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20dependent%20behavior" title=" time dependent behavior"> time dependent behavior</a> </p> <a href="https://publications.waset.org/abstracts/109092/finite-element-approach-to-evaluate-time-dependent-shear-behavior-of-connections-in-hybrid-steel-pc-girder-under-sustained-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3901</span> Mechanical and Barrier Properties of Cellulose Fibers/HNT Reinforced Epoxy Nanocomposites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Alamri">H. Alamri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fiber reinforced composites have attracted researchers for their desirable properties of toughness, high modulus, low density, recyclability, and renewability. In fact, the use of natural fibers in polymer composites has the potential to produce materials with higher specific strength and specific modulus due of their low density. Likewise, polymer-nano-filler composites have been widely investigated for their unique and significant improvement in strength, modulus, impact strength, barrier properties, heat resistance and thermal stability. In this paper, The addition of halloysite nanotubes (HNTs) with three different weight percentages (1%, 3% and 5%) on enhancing barrier and flexural strength and modulus of cellulose-fiber (CF) /epoxy composites after water treatment for six months was studied. Results indicated that water uptake decreased as HNT content increased. The presence of HNT improved flexural strength and flexural modulus of CF/epoxy composites. SEM results showed damages in fiber-matrix interfacial bonding due to water absorption. The addition of HNTs was found to enhance to adhesion between fibers and matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title="mechanical properties">mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=halloysite%20nanotubes" title=" halloysite nanotubes"> halloysite nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/40494/mechanical-and-barrier-properties-of-cellulose-fibershnt-reinforced-epoxy-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3900</span> Improvement of Recycled Aggregate Concrete Properties by Controlling the Water Flow in the Interfacial Transition Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Eckert">M. Eckert</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Oliveira"> M. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bettencourt%20Ribeiro"> A. Bettencourt Ribeiro </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intensive use of natural aggregate, near the towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and take up space for noblest purposes. The main problem of recycled aggregate lies in its high water absorption, what is due to the porosity of the materials which constitute this type of aggregate. When the aggregates are dry, water flows from the inside to the engaging cement paste matrix, and when they are saturated an inverse process occurs. This water flow breaks the aggregate-cement paste bonds and the greater water concentration, in the inter-facial transition zone, degrades the concrete properties in its fresh and hardened state. Based on the water absorption over time, it was optimized an staged mixing method, to regulate the said flow and manufacture recycled aggregate concrete with levels of work-ability, strength and shrinkage equivalent to those of conventional concrete.The physical, mechanical and geometrical properties of the aggregates where related to the properties of concrete in its fresh and hardened state. Three types of commercial recycled aggregates and two types of natural aggregates where evaluated. Six compositions with different percentages of recycled coarse aggregate where tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title="recycled aggregate">recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption" title=" water absorption"> water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20transition%20zone" title=" interfacial transition zone"> interfacial transition zone</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive-strength" title=" compressive-strength"> compressive-strength</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a> </p> <a href="https://publications.waset.org/abstracts/23004/improvement-of-recycled-aggregate-concrete-properties-by-controlling-the-water-flow-in-the-interfacial-transition-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3899</span> Resistance Spot Welding of Boron Steel 22MnB5 with Complex Welding Programs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Kowieski">Szymon Kowieski</a>, <a href="https://publications.waset.org/abstracts/search?q=Zygmunt%20Mikno"> Zygmunt Mikno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study involved the optimization of process parameters during resistance spot welding of Al-coated martensitic boron steel 22MnB5, applied in hot stamping, performed using a programme with a multiple current impulse mode and a programme with variable pressure force. The aim of this research work was to determine the possibilities of a growth in welded joint strength and to identify the expansion of a welding lobe. The process parameters were adjusted on the basis of welding process simulation and confronted with experimental data. 22MnB5 steel is known for its tendency to obtain high hardness values in weld nuggets, often leading to interfacial failures (observed in the study-related tests). In addition, during resistance spot welding, many production-related factors can affect process stability, e.g. welding lobe narrowing, and lead to the deterioration of quality. Resistance spot welding performed using the above-named welding programme featuring 3 levels of force made it possible to achieve 82% of welding lobe extension. Joints made using the multiple current impulse program, where the total welding time was below 1.4s, revealed a change in a peeling mode (to full plug) and an increase in weld tensile shear strength of 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=22MnB5" title="22MnB5">22MnB5</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20stamping" title=" hot stamping"> hot stamping</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20fracture" title=" interfacial fracture"> interfacial fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20spot%20welding" title=" resistance spot welding"> resistance spot welding</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20lap%20joint" title=" single lap joint"> single lap joint</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20lobe" title=" welding lobe"> welding lobe</a> </p> <a href="https://publications.waset.org/abstracts/68990/resistance-spot-welding-of-boron-steel-22mnb5-with-complex-welding-programs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3898</span> Tuning the Microstructure and Mechanical Properties of Fine Recycled Plastic Aggregates in Concrete Using Ethylene-Vinyl Acetate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Mansour">Ahmed Al-Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Zeng"> Qiang Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling waste plastics in the form of concrete components, i.e. fine aggregates, has been an attractive topic among the society of civil engineers. Not only does the recycling of plastics reduce the overall cost of concrete production, but it also takes part in solving environmental issues. Nevertheless, the incorporation of recycled plastics into concrete results in an increasing reduction in the mechanical properties of concrete as the percentage of replacement of natural aggregates increases. In order to overcome this reduction, Ethylene-vinyl acetate (EVA) was used as an additive in concrete with recycled plastic aggregates. The aim of this additive is to: 1) increase the interfacial interaction at the interfacial transition zone (ITZ) between plastic pellets and cement matrix, and 2) mitigate the loss in mechanical properties. Three different groups of samples (i.e. cubes and prisms) were tested according to the plastics substituting fine aggregates. 5, 10, and 15% of fine aggregates were substituted for recycled plastic pellets, and 2 – 4% of the cement was substituted for EVA that produces a flexible agent when mixed properly with water. Compressive and tensile strength tests were conducted for the mechanical properties, while SEM and X-CT scan were implemented for further investigation of calcium-silicate-hydrate (C–S–H) formation and ITZ analysis. The optimal amount of plastic particles with EVA is suggested to get the most compact and dense matrix structure according to the results of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20durability%20of%20concrete" title="the durability of concrete">the durability of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene-vinyl%20acetate%20%28EVA%29" title=" ethylene-vinyl acetate (EVA)"> ethylene-vinyl acetate (EVA)</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20transition%20zone%20%28ITZ%29" title=" interfacial transition zone (ITZ)"> interfacial transition zone (ITZ)</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20plastics" title=" recycled plastics"> recycled plastics</a> </p> <a href="https://publications.waset.org/abstracts/132018/tuning-the-microstructure-and-mechanical-properties-of-fine-recycled-plastic-aggregates-in-concrete-using-ethylene-vinyl-acetate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3897</span> Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamrun%20N.%20Keya">Kamrun N. Keya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20A.%20Kona"> Nasrin A. Kona</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruhul%20A.%20Khan"> Ruhul A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PALF" title="PALF">PALF</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20molding%20technique" title=" compression molding technique"> compression molding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/111995/study-on-the-fabrication-and-mechanical-characterization-of-pineapple-fiber-reinforced-unsaturated-polyester-resin-based-composites-effect-of-gamma-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3896</span> Stress Field Induced By an Interfacial Edge Dislocation in a Multi-Layered Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Khanna">Aditya Khanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Kotousov"> Andrei Kotousov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel method is presented for obtaining the stress field induced by an edge dislocation in a multilayered composite. To demonstrate the applications of the obtained solution, we consider the problem of an interfacial crack in a periodically layered bimaterial medium. The crack is modeled as a continuous distribution of edge dislocations and the Distributed Dislocation Technique (DDT) is utilized to obtain numerical results for the energy release rate (ERR). The numerical results correspond well with previously published results and the comparison serves as a validation of the obtained dislocation solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20dislocation%20technique" title="distributed dislocation technique">distributed dislocation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20dislocation" title=" edge dislocation"> edge dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20field" title=" elastic field"> elastic field</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20crack" title=" interfacial crack"> interfacial crack</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layered%20composite" title=" multi-layered composite"> multi-layered composite</a> </p> <a href="https://publications.waset.org/abstracts/31667/stress-field-induced-by-an-interfacial-edge-dislocation-in-a-multi-layered-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3895</span> The Effect of Cassava Starch on Compressive Strength and Tear Strength of Alginate Impression Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of problem. Alginate impression material is an imported material and a dentist always used this material to make impression of teeth and oral cavity tissues. Purpose. The aim of this study was to compare about compressive strength and tear strength of alginate impression material and alginate impression material combined with cassava. Material and methods.Property measured included compressive strength and tear strength. Results.The compressive strength and tear strength of the impression materials tested of a comparable ANSI/ADA standard no.18.The compressive strength and tear strength alginate impression material combined with cassava have lower than the compressive strength and tear strength alginate impression material. The alginate impression material combined with cassava has more water and silica content more decrease than alginate impression material. Conclusions.We concluded that compressive strength and tear strength of alginate impression material combined with cassava has lower than alginate impression material without cassava starch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20strength" title=" tear strength"> tear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassava%20starch" title=" Cassava starch"> Cassava starch</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a> </p> <a href="https://publications.waset.org/abstracts/64938/the-effect-of-cassava-starch-on-compressive-strength-and-tear-strength-of-alginate-impression-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3894</span> Experimental and Numerical Investigation of Hardness and Compressive Strength of Hybrid Glass/Steel Fiber Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Patnaik">Amar Patnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Agarwal"> Pankaj Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the experimental study of hardness and compressive strength of hybrid glass/steel fiber reinforced polymer composites by varying the glass and steel fiber layer in the epoxy matrix. The hybrid composites with four stacking sequences HSG-1, HSG-2, HSG-3, and HSG-4 were fabricated by the VARTM process under the controlled environment. The experimentally evaluated results of Vicker’s hardness of the fabricated composites increases with an increase in the fiber layers sequence showing the high resistance. The improvement of micro-structure ability has been observed from the SEM study, which governs in the enhancement of compressive strength. The finite element model was developed on ANSYS to predict the above said properties and further compared with experimental results. The results predicted by the numerical simulation are in good agreement with the experimental results. The hybrid composites developed in this study was identified as the preferred materials due to their excellent mechanical properties to replace the conventional materialsused in the marine structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20strength" title=" interfacial strength"> interfacial strength</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composites" title=" polymer composites"> polymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=VARTM" title=" VARTM"> VARTM</a> </p> <a href="https://publications.waset.org/abstracts/147247/experimental-and-numerical-investigation-of-hardness-and-compressive-strength-of-hybrid-glasssteel-fiber-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3893</span> Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Rashmi">S. H. Rashmi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Madhu"> G. M. Madhu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Kittur"> A. A. Kittur</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Suresh"> R. Suresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glutaraldehyde" title="glutaraldehyde">glutaraldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposites" title=" polymer nanocomposites"> polymer nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20vinyl%20alcohol" title=" poly vinyl alcohol"> poly vinyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/1465/synthesis-characterization-and-physico-chemical-properties-of-nano-zinc-oxide-and-pva-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3892</span> Compressive Response of Unidirectional Basalt Fiber/Epoxy/MWCNTs Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Eslami-Farsani">Reza Eslami-Farsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Khosravi"> Hamed Khosravi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to study the influence of multi-walled carbon nanotubes (MWCNTs) addition at various contents with respect to the matrix (0-0.5 wt.% at a step of 0.1 wt.%) on the compressive response of unidirectional basalt fiber (UD-BF)/epoxy composites. Toward this end, MWCNTs were firstly functionalized with 3-glycidoxypropyltrimethoxysilane (3-GPTMS) to improve their dispersion state and interfacial compatibility with the epoxy. Subsequently, UD-BF/epoxy and multiscale 3-GPTMS-MWCNTs/UD-BF/epoxy composites were prepared. The mechanical properties of the composites were determined by quasi-static compression test. The compressive strength of the composites was obtained through performing the compression test on the off-axis specimens and extracting their longitudinal compressive strength. Results demonstrated that the highest value in compressive strength was attained at 0.4 wt.% MWCNTs with 41% increase, compared to the BF/epoxy composite. Potential mechanisms behind these were implied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20polymeric%20composites" title="multiscale polymeric composites">multiscale polymeric composites</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional%20basalt%20fibers" title=" unidirectional basalt fibers"> unidirectional basalt fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20properties" title=" compressive properties"> compressive properties</a> </p> <a href="https://publications.waset.org/abstracts/53542/compressive-response-of-unidirectional-basalt-fiberepoxymwcnts-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3891</span> Experimental Investigation of Interfacial Bond Strength of Concrete Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkamal%20Kumar">Rajkamal Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Mishra"> Sudhir Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The connections between various elements of concrete structures play a vital role in determining the durability of structures. These connections produce discontinuities and to ensure the monolithic behavior of structures, these connections should be carefully designed. The connections between concrete layers may occur in various situations such as structure repairing and rehabilitation or construction of huge structures with cast-in-situ or pre-cast elements, etc. Bond strength at the interface of these concrete layers should be able to prevent the progressive slip from taking place and it should also ensure satisfactory performance of the structure. Different approaches to enhance the bond strength at interface have been a major area of research. Nowadays, micro-concrete is getting popular as a repair material. Under this ambit, this paper aims to present the experimental results of connections between concrete layers of different age with artificial indentation at interface with two types of repair material: Concrete with same parent concrete composition and ready-mix mortar (micro-concrete), artificial indentations (grooves and holes) were made on the old layer of concrete to increase the bond strength. Curing plays an important role in determining the bond strength. Optimum duration for curing have also been discussed for each type of repair material. Different types of failure patterns have also been mentioned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion" title=" cohesion"> cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20stress" title=" compressive stress"> compressive stress</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-concrete" title=" micro-concrete"> micro-concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=slant%20shear%20test" title=" slant shear test"> slant shear test</a> </p> <a href="https://publications.waset.org/abstracts/41536/experimental-investigation-of-interfacial-bond-strength-of-concrete-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3890</span> Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsu-Hsu%20Yen">Tsu-Hsu Yen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20aggregation" title="gas aggregation">gas aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20nanobubble" title=" interfacial nanobubble"> interfacial nanobubble</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/120507/gas-aggregation-and-nanobubbles-stability-on-substrates-influenced-by-surface-wettability-a-molecular-dynamics-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3889</span> Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Li">Lei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20M.%20Chai"> Ming M. Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20X.%20Lu"> Xiao X. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20W.%20Wang"> Jia W. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interfacial%20instability%20and%20mixing" title="interfacial instability and mixing">interfacial instability and mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20liquid%20layers" title=" two liquid layers"> two liquid layers</a>, <a href="https://publications.waset.org/abstracts/search?q=Planar%20Laser%20Induced%20Fluorescence%20%28PLIF%29" title=" Planar Laser Induced Fluorescence (PLIF)"> Planar Laser Induced Fluorescence (PLIF)</a>, <a href="https://publications.waset.org/abstracts/search?q=High%20Speed%20Camera%20%28HSC%29" title=" High Speed Camera (HSC)"> High Speed Camera (HSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20energy%20and%20tension" title=" interfacial energy and tension"> interfacial energy and tension</a>, <a href="https://publications.waset.org/abstracts/search?q=Cahn-Hilliard%20Navier-Stokes%20%28CHNS%29%20equations" title=" Cahn-Hilliard Navier-Stokes (CHNS) equations"> Cahn-Hilliard Navier-Stokes (CHNS) equations</a> </p> <a href="https://publications.waset.org/abstracts/68285/interfacial-instability-and-mixing-behavior-between-two-liquid-layers-bounded-in-finite-volumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3888</span> Optimal Formation of Metallic Nuggets during the Reduction of Coal-Composite Briquette</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chol%20Min%20Yu">Chol Min Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sok%20Chol%20Ri"> Sok Chol Ri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The optimization of formation and growth of metallic nuggets during self-reduction of coal composite briquette (CCB here) is essential to increase the yield of valuable metals. The formation of metallic nuggets was investigated theoretically and experimentally during the reduction of coal composite briquette made from stainless steel dust and coal. The formation of metallic nuggets is influenced by slag viscosity and interfacial tension between the liquid metal and the slag in the reduced product. Surface tensions of liquid metal and slag are rather strong, respectively, due to the high basicity of its slag. Strong surface tensions of them lead to increase of interfacial tension between the liquid metal and the slag to be favorable to the growth of metallic nuggets. The viscosity of slag and interfacial tension between the liquid metal and the slag depends on the temperature and composition of the slag. The formation and the growth of metallic nuggets depend on carbon to oxygen ratio FC/O and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20dust" title="stainless steel dust">stainless steel dust</a>, <a href="https://publications.waset.org/abstracts/search?q=coal-composite%20briquette" title=" coal-composite briquette"> coal-composite briquette</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20basicity" title=" high basicity"> high basicity</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension" title=" interfacial tension"> interfacial tension</a> </p> <a href="https://publications.waset.org/abstracts/179129/optimal-formation-of-metallic-nuggets-during-the-reduction-of-coal-composite-briquette" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=130">130</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=131">131</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interfacial%20strength&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10