CINXE.COM
Search results for: Daily peak load forecasting
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Daily peak load forecasting</title> <meta name="description" content="Search results for: Daily peak load forecasting"> <meta name="keywords" content="Daily peak load forecasting"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Daily peak load forecasting" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Daily peak load forecasting"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2530</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Daily peak load forecasting</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2530</span> Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Subbaraj">P. Subbaraj</a>, <a href="https://publications.waset.org/search?q=V.%20Rajasekaran"> V. Rajasekaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Combined%20ANN" title="Combined ANN">Combined ANN</a>, <a href="https://publications.waset.org/search?q=Evolutionary%20Programming" title=" Evolutionary Programming"> Evolutionary Programming</a>, <a href="https://publications.waset.org/search?q=Particle%0D%0ASwarm%20Optimization" title=" Particle Swarm Optimization"> Particle Swarm Optimization</a>, <a href="https://publications.waset.org/search?q=Genetic%20Algorithm%20and%20Peak%20load%20forecasting." title=" Genetic Algorithm and Peak load forecasting."> Genetic Algorithm and Peak load forecasting.</a> </p> <a href="https://publications.waset.org/3469/evolutionary-techniques-based-combined-artificial-neural-networks-for-peak-load-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3469/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3469/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3469/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3469/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3469/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3469/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3469/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3469/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3469/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3469/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1680</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2529</span> Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tarik%20Rashid">Tarik Rashid</a>, <a href="https://publications.waset.org/search?q=B.%20Q.%20Huang"> B. Q. Huang</a>, <a href="https://publications.waset.org/search?q=M-T.%20Kechadi"> M-T. Kechadi</a>, <a href="https://publications.waset.org/search?q=B.%20Gleeson"> B. Gleeson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting" title="Daily peak load forecasting">Daily peak load forecasting</a>, <a href="https://publications.waset.org/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/search?q=recurrent%20neural%20networks" title=" recurrent neural networks"> recurrent neural networks</a>, <a href="https://publications.waset.org/search?q=auto%20regressive%20multi-context%20neural%20network." title=" auto regressive multi-context neural network."> auto regressive multi-context neural network.</a> </p> <a href="https://publications.waset.org/15396/auto-regressive-recurrent-neural-network-approach-for-electricity-load-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15396/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15396/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15396/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15396/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15396/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15396/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15396/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15396/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15396/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15396/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2543</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2528</span> Application of Neural Networks for 24-Hour-Ahead Load Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fatemeh%20Mosalman%20Yazdi">Fatemeh Mosalman Yazdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important requirements for the operation and planning activities of an electrical utility is the prediction of load for the next hour to several days out, known as short term load forecasting. This paper presents the development of an artificial neural network based short-term load forecasting model. The model can forecast daily load profiles with a load time of one day for next 24 hours. In this method can divide days of year with using average temperature. Groups make according linearity rate of curve. Ultimate forecast for each group obtain with considering weekday and weekend. This paper investigates effects of temperature and humidity on consuming curve. For forecasting load curve of holidays at first forecast pick and valley and then the neural network forecast is re-shaped with the new data. The ANN-based load models are trained using hourly historical. Load data and daily historical max/min temperature and humidity data. The results of testing the system on data from Yazd utility are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20neural%20network" title="Artificial neural network">Artificial neural network</a>, <a href="https://publications.waset.org/search?q=Holiday%20forecasting" title=" Holiday forecasting"> Holiday forecasting</a>, <a href="https://publications.waset.org/search?q=pickand%20valley%20load%20forecasting" title=" pickand valley load forecasting"> pickand valley load forecasting</a>, <a href="https://publications.waset.org/search?q=Short-term%20load-forecasting." title=" Short-term load-forecasting."> Short-term load-forecasting.</a> </p> <a href="https://publications.waset.org/8451/application-of-neural-networks-for-24-hour-ahead-load-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8451/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8451/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8451/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8451/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8451/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8451/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8451/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8451/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8451/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8451/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2192</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2527</span> A Practical Approach for Electricity Load Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Rashid">T. Rashid</a>, <a href="https://publications.waset.org/search?q=T.%20Kechadi"> T. Kechadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting" title="Daily peak load forecasting">Daily peak load forecasting</a>, <a href="https://publications.waset.org/search?q=feed%20forward%20and%20feedback%20multi-context%20neural%20network." title=" feed forward and feedback multi-context neural network."> feed forward and feedback multi-context neural network.</a> </p> <a href="https://publications.waset.org/592/a-practical-approach-for-electricity-load-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/592/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/592/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/592/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/592/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/592/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/592/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/592/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/592/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/592/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/592/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1854</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2526</span> A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Axay%20J%20Mehta">Axay J Mehta</a>, <a href="https://publications.waset.org/search?q=Hema%20A%20Mehta"> Hema A Mehta</a>, <a href="https://publications.waset.org/search?q=T.C.Manjunath"> T.C.Manjunath</a>, <a href="https://publications.waset.org/search?q=C.%20Ardil"> C. Ardil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Power%20system" title="Power system">Power system</a>, <a href="https://publications.waset.org/search?q=Load%20forecasting" title=" Load forecasting"> Load forecasting</a>, <a href="https://publications.waset.org/search?q=Neural%20Network" title=" Neural Network"> Neural Network</a>, <a href="https://publications.waset.org/search?q=Neuron" title="Neuron">Neuron</a>, <a href="https://publications.waset.org/search?q=Stabilization" title=" Stabilization"> Stabilization</a>, <a href="https://publications.waset.org/search?q=Network%20structure" title=" Network structure"> Network structure</a>, <a href="https://publications.waset.org/search?q=Load." title=" Load."> Load.</a> </p> <a href="https://publications.waset.org/4618/a-multi-layer-artificial-neural-network-architecture-design-for-load-forecasting-in-power-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4618/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4618/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4618/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4618/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4618/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4618/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4618/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4618/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4618/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4618/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3423</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2525</span> Two Day Ahead Short Term Load Forecasting Neural Network Based </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Firas%20M.%20Tuaimah">Firas M. Tuaimah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.</p> <p>The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Short-Term%20Load%20Forecasting" title="Short-Term Load Forecasting">Short-Term Load Forecasting</a>, <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Networks" title=" Artificial Neural Networks"> Artificial Neural Networks</a>, <a href="https://publications.waset.org/search?q=Back%20propagation%20learning." title=" Back propagation learning."> Back propagation learning.</a> </p> <a href="https://publications.waset.org/9998947/two-day-ahead-short-term-load-forecasting-neural-network-based" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998947/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998947/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998947/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998947/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998947/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998947/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998947/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998947/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998947/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998947/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1560</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2524</span> Comparison of Parametric and Nonparametric Techniques for Non-peak Traffic Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yang%20Zhang">Yang Zhang</a>, <a href="https://publications.waset.org/search?q=Yuncai%20Liu"> Yuncai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurately predicting non-peak traffic is crucial to daily traffic for all forecasting models. In the paper, least squares support vector machines (LS-SVMs) are investigated to solve such a practical problem. It is the first time to apply the approach and analyze the forecast performance in the domain. For comparison purpose, two parametric and two non-parametric techniques are selected because of their effectiveness proved in past research. Having good generalization ability and guaranteeing global minima, LS-SVMs perform better than the others. Providing sufficient improvement in stability and robustness reveals that the approach is practically promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Parametric%20and%20Nonparametric%20Techniques" title="Parametric and Nonparametric Techniques">Parametric and Nonparametric Techniques</a>, <a href="https://publications.waset.org/search?q=Non-peak%20Traffic%20Forecasting" title=" Non-peak Traffic Forecasting"> Non-peak Traffic Forecasting</a> </p> <a href="https://publications.waset.org/1000/comparison-of-parametric-and-nonparametric-techniques-for-non-peak-traffic-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1000/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1000/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1000/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1000/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1000/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1000/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1000/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1000/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1000/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1000/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2311</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2523</span> Hourly Electricity Load Forecasting: An Empirical Application to the Italian Railways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Centra">M. Centra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Due to the liberalization of countless electricity markets, load forecasting has become crucial to all public utilities for which electricity is a strategic variable. With the goal of contributing to the forecasting process inside public utilities, this paper addresses the issue of applying the Holt-Winters exponential smoothing technique and the time series analysis for forecasting the hourly electricity load curve of the Italian railways. The results of the analysis confirm the accuracy of the two models and therefore the relevance of forecasting inside public utilities.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ARIMA%20models" title="ARIMA models">ARIMA models</a>, <a href="https://publications.waset.org/search?q=Exponential%20smoothing" title=" Exponential smoothing"> Exponential smoothing</a>, <a href="https://publications.waset.org/search?q=Electricity" title="Electricity">Electricity</a>, <a href="https://publications.waset.org/search?q=Load%20forecasting" title=" Load forecasting"> Load forecasting</a>, <a href="https://publications.waset.org/search?q=Rail%20transportation." title=" Rail transportation."> Rail transportation.</a> </p> <a href="https://publications.waset.org/14225/hourly-electricity-load-forecasting-an-empirical-application-to-the-italian-railways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14225/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14225/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14225/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14225/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14225/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14225/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14225/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14225/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14225/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14225/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2631</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2522</span> Electric Load Forecasting Using Genetic Based Algorithm, Optimal Filter Estimator and Least Error Squares Technique: Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khaled%20M.%20EL-Naggar">Khaled M. EL-Naggar</a>, <a href="https://publications.waset.org/search?q=Khaled%20A.%20AL-Rumaih"> Khaled A. AL-Rumaih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents performance comparison of three estimation techniques used for peak load forecasting in power systems. The three optimum estimation techniques are, genetic algorithms (GA), least error squares (LS) and, least absolute value filtering (LAVF). The problem is formulated as an estimation problem. Different forecasting models are considered. Actual recorded data is used to perform the study. The performance of the above three optimal estimation techniques is examined. Advantages of each algorithms are reported and discussed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Forecasting" title="Forecasting">Forecasting</a>, <a href="https://publications.waset.org/search?q=Least%20error%20squares" title=" Least error squares"> Least error squares</a>, <a href="https://publications.waset.org/search?q=Least%20absolute%20Value" title=" Least absolute Value"> Least absolute Value</a>, <a href="https://publications.waset.org/search?q=Genetic%20algorithms" title=" Genetic algorithms"> Genetic algorithms</a> </p> <a href="https://publications.waset.org/3002/electric-load-forecasting-using-genetic-based-algorithm-optimal-filter-estimator-and-least-error-squares-technique-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3002/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3002/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3002/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3002/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3002/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3002/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3002/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3002/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3002/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3002/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2723</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2521</span> Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zhiyong%20Li">Zhiyong Li</a>, <a href="https://publications.waset.org/search?q=Zhigang%20Chen"> Zhigang Chen</a>, <a href="https://publications.waset.org/search?q=Chao%20Fu"> Chao Fu</a>, <a href="https://publications.waset.org/search?q=Shipeng%20Zhang"> Shipeng Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural networks and some traditional forecasting techniques. The results show that the proposed method exhibits superior performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=combinatorial%20algorithm" title="combinatorial algorithm">combinatorial algorithm</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=load%0Aforecasting" title=" load forecasting"> load forecasting</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a> </p> <a href="https://publications.waset.org/516/annual-power-load-forecasting-using-support-vector-regression-machines-a-study-on-guangdong-province-of-china-1985-2008" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/516/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/516/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/516/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/516/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/516/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/516/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/516/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/516/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/516/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/516/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1646</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2520</span> Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20M.%20Anowarul%20Haque">S. M. Anowarul Haque</a>, <a href="https://publications.waset.org/search?q=Md.%20Asiful%20Islam"> Md. Asiful Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Load%20forecasting" title="Load forecasting">Load forecasting</a>, <a href="https://publications.waset.org/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/search?q=particle%20swarm%20optimization." title=" particle swarm optimization."> particle swarm optimization.</a> </p> <a href="https://publications.waset.org/10011887/artificial-neural-network-based-short-term-load-forecasting-for-mymensingh-area-of-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011887/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011887/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011887/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011887/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011887/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011887/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011887/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011887/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011887/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011887/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">686</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2519</span> Fuzzy Ideology based Long Term Load Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jagadish%20H.%20Pujar">Jagadish H. Pujar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Fuzzy Load forecasting plays a paramount role in the operation and management of power systems. Accurate estimation of future power demands for various lead times facilitates the task of generating power reliably and economically. The forecasting of future loads for a relatively large lead time (months to few years) is studied here (long term load forecasting). Among the various techniques used in forecasting load, artificial intelligence techniques provide greater accuracy to the forecasts as compared to conventional techniques. Fuzzy Logic, a very robust artificial intelligent technique, is described in this paper to forecast load on long term basis. The paper gives a general algorithm to forecast long term load. The algorithm is an Extension of Short term load forecasting method to Long term load forecasting and concentrates not only on the forecast values of load but also on the errors incorporated into the forecast. Hence, by correcting the errors in the forecast, forecasts with very high accuracy have been achieved. The algorithm, in the paper, is demonstrated with the help of data collected for residential sector (LT2 (a) type load: Domestic consumers). Load, is determined for three consecutive years (from April-06 to March-09) in order to demonstrate the efficiency of the algorithm and to forecast for the next two years (from April-09 to March-11).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20Logic%20Control%20%28FLC%29" title="Fuzzy Logic Control (FLC)">Fuzzy Logic Control (FLC)</a>, <a href="https://publications.waset.org/search?q=Data%20DependantFactors%28DDF%29" title=" Data DependantFactors(DDF)"> Data DependantFactors(DDF)</a>, <a href="https://publications.waset.org/search?q=Model%20Dependent%20Factors%28MDF%29" title=" Model Dependent Factors(MDF)"> Model Dependent Factors(MDF)</a>, <a href="https://publications.waset.org/search?q=StatisticalError%28SE%29" title=" StatisticalError(SE)"> StatisticalError(SE)</a>, <a href="https://publications.waset.org/search?q=Short%20Term%20Load%20Forecasting%20%28STLF%29" title=" Short Term Load Forecasting (STLF)"> Short Term Load Forecasting (STLF)</a>, <a href="https://publications.waset.org/search?q=MiscellaneousError%28ME%29." title=" MiscellaneousError(ME)."> MiscellaneousError(ME).</a> </p> <a href="https://publications.waset.org/8962/fuzzy-ideology-based-long-term-load-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8962/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8962/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8962/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8962/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8962/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8962/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8962/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8962/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8962/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8962/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2469</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2518</span> One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20J.%20Al-Shareef">A. J. Al-Shareef</a>, <a href="https://publications.waset.org/search?q=E.%20A.%20Mohamed"> E. A. Mohamed</a>, <a href="https://publications.waset.org/search?q=E.%20Al-Judaibi"> E. Al-Judaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20neural%20networks" title="Artificial neural networks">Artificial neural networks</a>, <a href="https://publications.waset.org/search?q=short-term%20load%20forecasting" title=" short-term load forecasting"> short-term load forecasting</a>, <a href="https://publications.waset.org/search?q=back%20propagation." title=" back propagation."> back propagation.</a> </p> <a href="https://publications.waset.org/3362/one-hour-ahead-load-forecasting-using-artificial-neural-network-for-the-western-area-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3362/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3362/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3362/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3362/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3362/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3362/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3362/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3362/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3362/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3362/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2112</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2517</span> New Approach for Load Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Chokri">S. Chokri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20network" title="Neural network">Neural network</a>, <a href="https://publications.waset.org/search?q=Load%20Forecasting" title=" Load Forecasting"> Load Forecasting</a>, <a href="https://publications.waset.org/search?q=Fuzzy%20inference" title=" Fuzzy inference"> Fuzzy inference</a>, <a href="https://publications.waset.org/search?q=Machine%20learning" title=" Machine learning"> Machine learning</a>, <a href="https://publications.waset.org/search?q=Fuzzy%20modeling%20and%20rule%20extraction" title=" Fuzzy modeling and rule extraction"> Fuzzy modeling and rule extraction</a>, <a href="https://publications.waset.org/search?q=Support%0D%0AVector%20Regression." title=" Support Vector Regression."> Support Vector Regression.</a> </p> <a href="https://publications.waset.org/10000663/new-approach-for-load-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000663/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000663/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000663/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000663/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000663/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000663/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000663/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000663/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000663/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000663/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2198</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2516</span> Short-Term Electric Load Forecasting Using Multiple Gaussian Process Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tomohiro%20Hachino">Tomohiro Hachino</a>, <a href="https://publications.waset.org/search?q=Hitoshi%20Takata"> Hitoshi Takata</a>, <a href="https://publications.waset.org/search?q=Seiji%20Fukushima"> Seiji Fukushima</a>, <a href="https://publications.waset.org/search?q=Yasutaka%20Igarashi"> Yasutaka Igarashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a Gaussian process model-based short-term electric load forecasting. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distribution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasting approach. The separable least-squares approach that combines the linear least-squares method and genetic algorithm is applied to train these Gaussian process models. Simulation results are shown to demonstrate the effectiveness of the proposed electric load forecasting.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Direct%20method" title="Direct method">Direct method</a>, <a href="https://publications.waset.org/search?q=electric%20load%20forecasting" title=" electric load forecasting"> electric load forecasting</a>, <a href="https://publications.waset.org/search?q=Gaussian%20process%20model" title=" Gaussian process model"> Gaussian process model</a>, <a href="https://publications.waset.org/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/search?q=separable%20least-squares%20method." title=" separable least-squares method."> separable least-squares method.</a> </p> <a href="https://publications.waset.org/9998341/short-term-electric-load-forecasting-using-multiple-gaussian-process-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998341/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998341/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998341/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998341/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998341/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998341/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998341/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998341/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998341/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998341/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1984</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2515</span> Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Charline%20David">Charline David</a>, <a href="https://publications.waset.org/search?q=Alexandre%20Blondin%20Mass%C3%A9"> Alexandre Blondin Massé</a>, <a href="https://publications.waset.org/search?q=Arnaud%20Zinflou"> Arnaud Zinflou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We present a multiple equation time series approach for the short-term load forecasting applied to the electrical power load consumption for the whole Quebec province, in Canada. More precisely, we take into account three meteorological variables — temperature, cloudiness and wind speed —, and we use meteorological measurements taken at different locations on the territory. Our final model shows an average MAPE score of 1.79% over an 8-years dataset.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Short-term%20load%20forecasting" title="Short-term load forecasting">Short-term load forecasting</a>, <a href="https://publications.waset.org/search?q=special%20days" title=" special days"> special days</a>, <a href="https://publications.waset.org/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/search?q=multiple%20equations" title=" multiple equations"> multiple equations</a>, <a href="https://publications.waset.org/search?q=parallelization" title=" parallelization"> parallelization</a>, <a href="https://publications.waset.org/search?q=clustering." title=" clustering."> clustering.</a> </p> <a href="https://publications.waset.org/10013273/fast-short-term-electrical-load-forecasting-under-high-meteorological-variability-with-a-multiple-equation-time-series-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013273/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013273/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013273/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013273/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013273/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013273/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013273/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013273/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013273/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013273/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2514</span> Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Xiaolei%20Hu">Xiaolei Hu</a>, <a href="https://publications.waset.org/search?q=Enrico%20Ferrera"> Enrico Ferrera</a>, <a href="https://publications.waset.org/search?q=Riccardo%20Tomasi"> Riccardo Tomasi</a>, <a href="https://publications.waset.org/search?q=Claudio%20Pastrone"> Claudio Pastrone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Short-term%20load%20forecasting" title="Short-term load forecasting">Short-term load forecasting</a>, <a href="https://publications.waset.org/search?q=smart%20micro%20grid" title=" smart micro grid"> smart micro grid</a>, <a href="https://publications.waset.org/search?q=linear%0D%0Aregression" title=" linear regression"> linear regression</a>, <a href="https://publications.waset.org/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/search?q=radial%20basis%20function%20network" title=" radial basis function network"> radial basis function network</a>, <a href="https://publications.waset.org/search?q=Gain." title=" Gain."> Gain.</a> </p> <a href="https://publications.waset.org/9999697/evaluation-of-short-term-load-forecasting-techniques-applied-for-smart-micro-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999697/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999697/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999697/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999697/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999697/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999697/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999697/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999697/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999697/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999697/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2602</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2513</span> Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Firas%20M.%20Tuaimah">Firas M. Tuaimah</a>, <a href="https://publications.waset.org/search?q=Huda%20M.%20Abdul%20Abbas"> Huda M. Abdul Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Short%20term%20load%20forecasting" title="Short term load forecasting">Short term load forecasting</a>, <a href="https://publications.waset.org/search?q=prediction%20interval" title=" prediction interval"> prediction interval</a>, <a href="https://publications.waset.org/search?q=type%202%20fuzzy%20logic%20systems." title=" type 2 fuzzy logic systems."> type 2 fuzzy logic systems.</a> </p> <a href="https://publications.waset.org/9999011/iraqi-short-term-electrical-load-forecasting-based-on-interval-type-2-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999011/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999011/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999011/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999011/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999011/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999011/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999011/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999011/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999011/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999011/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1888</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2512</span> Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jiangyong%20Liu">Jiangyong Liu</a>, <a href="https://publications.waset.org/search?q=Xiangxiang%20Xu"> Xiangxiang Xu</a>, <a href="https://publications.waset.org/search?q=Bote%20Luo"> Bote Luo</a>, <a href="https://publications.waset.org/search?q=Xiaoxue%20Luo"> Xiaoxue Luo</a>, <a href="https://publications.waset.org/search?q=Jiang%20Zhu"> Jiang Zhu</a>, <a href="https://publications.waset.org/search?q=Lingzhi%20Yi"> Lingzhi Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Load%20forecasting" title="Load forecasting">Load forecasting</a>, <a href="https://publications.waset.org/search?q=variational%20mode%20decomposition" title=" variational mode decomposition"> variational mode decomposition</a>, <a href="https://publications.waset.org/search?q=improved%20sparrow%20search%20algorithm" title=" improved sparrow search algorithm"> improved sparrow search algorithm</a>, <a href="https://publications.waset.org/search?q=least%20square%20support%20vector%20machine." title=" least square support vector machine."> least square support vector machine.</a> </p> <a href="https://publications.waset.org/10013826/short-term-load-forecasting-based-on-variational-mode-decomposition-and-least-square-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013826/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013826/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013826/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013826/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013826/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013826/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013826/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013826/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013826/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013826/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2511</span> Electricity Load Modeling: An Application to Italian Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Giovanni%20Masala">Giovanni Masala</a>, <a href="https://publications.waset.org/search?q=Stefania%20Marica"> Stefania Marica</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ARMA-GARCH%20process" title="ARMA-GARCH process">ARMA-GARCH process</a>, <a href="https://publications.waset.org/search?q=electricity%20load" title=" electricity load"> electricity load</a>, <a href="https://publications.waset.org/search?q=fitting%0D%0Atests" title=" fitting tests"> fitting tests</a>, <a href="https://publications.waset.org/search?q=Fourier%20series" title=" Fourier series"> Fourier series</a>, <a href="https://publications.waset.org/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/search?q=non-linear%20regression." title=" non-linear regression."> non-linear regression.</a> </p> <a href="https://publications.waset.org/10003944/electricity-load-modeling-an-application-to-italian-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003944/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003944/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003944/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003944/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003944/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003944/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003944/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003944/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003944/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003944/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1486</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2510</span> Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohsen%20Hayati">Mohsen Hayati</a>, <a href="https://publications.waset.org/search?q=Yazdan%20Shirvany"> Yazdan Shirvany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the application of neural networks to study the design of short-term load forecasting (STLF) Systems for Illam state located in west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STLF systems was used. Our study based on MLP was trained and tested using three years (2004-2006) data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STLF systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20neural%20networks" title="Artificial neural networks">Artificial neural networks</a>, <a href="https://publications.waset.org/search?q=Forecasting" title=" Forecasting"> Forecasting</a>, <a href="https://publications.waset.org/search?q=Multi-layer%0Aperceptron." title=" Multi-layer perceptron."> Multi-layer perceptron.</a> </p> <a href="https://publications.waset.org/554/artificial-neural-network-approach-for-short-term-load-forecasting-for-illam-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/554/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/554/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/554/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/554/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/554/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/554/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/554/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/554/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/554/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/554/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2776</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2509</span> Role of GIS in Distribution Power Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Rezaee">N. Rezaee</a>, <a href="https://publications.waset.org/search?q=M%20Nayeripour"> M Nayeripour</a>, <a href="https://publications.waset.org/search?q=A.%20Roosta"> A. Roosta</a>, <a href="https://publications.waset.org/search?q=T.%20Niknam"> T. Niknam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Geographic%20information%20systems%20%28GIS%29" title="Geographic information systems (GIS)">Geographic information systems (GIS)</a>, <a href="https://publications.waset.org/search?q=optimallocation%20and%20capacity" title=" optimallocation and capacity"> optimallocation and capacity</a>, <a href="https://publications.waset.org/search?q=power%20distribution%20planning" title=" power distribution planning"> power distribution planning</a>, <a href="https://publications.waset.org/search?q=route%20selection" title=" route selection"> route selection</a>, <a href="https://publications.waset.org/search?q=spatial%20load%20forecasting." title="spatial load forecasting.">spatial load forecasting.</a> </p> <a href="https://publications.waset.org/13968/role-of-gis-in-distribution-power-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13968/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13968/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13968/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13968/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13968/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13968/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13968/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13968/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13968/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13968/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5505</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2508</span> Clustering Based Formulation for Short Term Load Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ajay%20Shekhar%20Pandey">Ajay Shekhar Pandey</a>, <a href="https://publications.waset.org/search?q=D.%20Singh"> D. Singh</a>, <a href="https://publications.waset.org/search?q=S.%20K.%20Sinha"> S. K. Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Load%20forecasting" title="Load forecasting">Load forecasting</a>, <a href="https://publications.waset.org/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/search?q=fuzzy%20inference." title=" fuzzy inference."> fuzzy inference.</a> </p> <a href="https://publications.waset.org/2837/clustering-based-formulation-for-short-term-load-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2837/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2837/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2837/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2837/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2837/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2837/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2837/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2837/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2837/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2837/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1627</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2507</span> Forecasting 24-Hour Ahead Electricity Load Using Time Series Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ramin%20Vafadary">Ramin Vafadary</a>, <a href="https://publications.waset.org/search?q=Maryam%20Khanbaghi"> Maryam Khanbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bagging" title="Bagging">Bagging</a>, <a href="https://publications.waset.org/search?q=Fbprophet" title=" Fbprophet"> Fbprophet</a>, <a href="https://publications.waset.org/search?q=Holt-Winters" title=" Holt-Winters"> Holt-Winters</a>, <a href="https://publications.waset.org/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/search?q=Load%0D%0AForecast" title=" Load Forecast"> Load Forecast</a>, <a href="https://publications.waset.org/search?q=SARIMA" title=" SARIMA"> SARIMA</a>, <a href="https://publications.waset.org/search?q=tensorflow%20probability" title=" tensorflow probability"> tensorflow probability</a>, <a href="https://publications.waset.org/search?q=time%20series." title=" time series."> time series.</a> </p> <a href="https://publications.waset.org/10012634/forecasting-24-hour-ahead-electricity-load-using-time-series-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012634/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012634/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012634/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012634/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012634/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012634/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012634/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012634/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012634/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012634/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2506</span> Intelligent Neural Network Based STLF</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Shayeghi">H. Shayeghi</a>, <a href="https://publications.waset.org/search?q=H.%20A.%20Shayanfar"> H. A. Shayanfar</a>, <a href="https://publications.waset.org/search?q=G.%20Azimi"> G. Azimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feed-forward%20Large%20Neural%20Network" title="Feed-forward Large Neural Network">Feed-forward Large Neural Network</a>, <a href="https://publications.waset.org/search?q=Short-TermLoad%20Forecasting" title=" Short-TermLoad Forecasting"> Short-TermLoad Forecasting</a>, <a href="https://publications.waset.org/search?q=Continuous%20Genetic%20Algorithm." title=" Continuous Genetic Algorithm."> Continuous Genetic Algorithm.</a> </p> <a href="https://publications.waset.org/15960/intelligent-neural-network-based-stlf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15960/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15960/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15960/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15960/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15960/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15960/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15960/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15960/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15960/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15960/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1830</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2505</span> The Pixel Value Data Approach for Rainfall Forecasting Based on GOES-9 Satellite Image Sequence Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Yaiprasert">C. Yaiprasert</a>, <a href="https://publications.waset.org/search?q=K.%20Jaroensutasinee"> K. Jaroensutasinee</a>, <a href="https://publications.waset.org/search?q=M.%20Jaroensutasinee"> M. Jaroensutasinee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>To develop a process of extracting pixel values over the using of satellite remote sensing image data in Thailand. It is a very important and effective method of forecasting rainfall. This paper presents an approach for forecasting a possible rainfall area based on pixel values from remote sensing satellite images. First, a method uses an automatic extraction process of the pixel value data from the satellite image sequence. Then, a data process is designed to enable the inference of correlations between pixel value and possible rainfall occurrences. The result, when we have a high averaged pixel value of daily water vapor data, we will also have a high amount of daily rainfall. This suggests that the amount of averaged pixel values can be used as an indicator of raining events. There are some positive associations between pixel values of daily water vapor images and the amount of daily rainfall at each rain-gauge station throughout Thailand. The proposed approach was proven to be a helpful manual for rainfall forecasting from meteorologists by which using automated analyzing and interpreting process of meteorological remote sensing data.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Pixel%20values" title="Pixel values">Pixel values</a>, <a href="https://publications.waset.org/search?q=satellite%20image" title=" satellite image"> satellite image</a>, <a href="https://publications.waset.org/search?q=water%20vapor" title=" water vapor"> water vapor</a>, <a href="https://publications.waset.org/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/search?q=image%20processing." title="image processing.">image processing.</a> </p> <a href="https://publications.waset.org/8795/the-pixel-value-data-approach-for-rainfall-forecasting-based-on-goes-9-satellite-image-sequence-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8795/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8795/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8795/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8795/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8795/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8795/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8795/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8795/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8795/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8795/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1862</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2504</span> Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Faz%C4%B1l%20G%C3%B6kg%C3%B6z">Fazıl Gökgöz</a>, <a href="https://publications.waset.org/search?q=Fahrettin%20Filiz"> Fahrettin Filiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Deep%20learning" title="Deep learning">Deep learning</a>, <a href="https://publications.waset.org/search?q=long-short-term%20memory" title=" long-short-term memory"> long-short-term memory</a>, <a href="https://publications.waset.org/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/search?q=renewable%20energy%20load%20forecasting." title=" renewable energy load forecasting."> renewable energy load forecasting.</a> </p> <a href="https://publications.waset.org/10009157/deep-learning-for-renewable-power-forecasting-an-approach-using-lstm-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009157/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009157/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009157/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009157/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009157/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009157/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009157/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009157/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009157/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009157/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1596</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2503</span> Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Mechgoug">R. Mechgoug</a>, <a href="https://publications.waset.org/search?q=A.%20Titaouine"> A. Titaouine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Foreign%20exchange%20rate" title="Foreign exchange rate">Foreign exchange rate</a>, <a href="https://publications.waset.org/search?q=time%20series%20forecasting" title=" time series forecasting"> time series forecasting</a>, <a href="https://publications.waset.org/search?q=Fuzzy%20System" title=" Fuzzy System"> Fuzzy System</a>, <a href="https://publications.waset.org/search?q=and%20Genetic%20Algorithm." title=" and Genetic Algorithm."> and Genetic Algorithm.</a> </p> <a href="https://publications.waset.org/9999822/forecasting-us-dollareuro-exchange-rate-with-genetic-fuzzy-predictor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999822/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999822/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999822/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999822/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999822/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999822/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999822/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999822/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999822/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999822/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1997</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2502</span> STLF Based on Optimized Neural Network Using PSO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Shayeghi">H. Shayeghi</a>, <a href="https://publications.waset.org/search?q=H.%20A.%20Shayanfar"> H. A. Shayanfar</a>, <a href="https://publications.waset.org/search?q=G.%20Azimi"> G. Azimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Large%20Neural%20Network" title="Large Neural Network">Large Neural Network</a>, <a href="https://publications.waset.org/search?q=Short-Term%20Load%20Forecasting" title=" Short-Term Load Forecasting"> Short-Term Load Forecasting</a>, <a href="https://publications.waset.org/search?q=Particle%20Swarm%20Optimization." title="Particle Swarm Optimization.">Particle Swarm Optimization.</a> </p> <a href="https://publications.waset.org/14888/stlf-based-on-optimized-neural-network-using-pso" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14888/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14888/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14888/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14888/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14888/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14888/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14888/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14888/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14888/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14888/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2224</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2501</span> Replacement of Power Transformers basis on Diagnostic Results and Load Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=G.%20Gavrilovs">G. Gavrilovs</a>, <a href="https://publications.waset.org/search?q=O.%20Borscevskis"> O. Borscevskis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes interconnection between technical and economical making decision. The reason of this dealing could be different: poor technical condition, change of substation (electrical network) regime, power transformer owner budget deficit and increasing of tariff on electricity. Establishing of recommended practice as well as to give general advice and guidance in economical sector, testing, diagnostic power transformers to establish its conditions, identify problems and provide potential remedies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Diagnostic%20results" title="Diagnostic results">Diagnostic results</a>, <a href="https://publications.waset.org/search?q=load%20forecasting" title=" load forecasting"> load forecasting</a>, <a href="https://publications.waset.org/search?q=power%20supplysystem" title=" power supplysystem"> power supplysystem</a>, <a href="https://publications.waset.org/search?q=replacement%20of%20power%20transformer." title=" replacement of power transformer."> replacement of power transformer.</a> </p> <a href="https://publications.waset.org/12358/replacement-of-power-transformers-basis-on-diagnostic-results-and-load-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12358/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12358/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12358/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12358/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12358/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12358/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12358/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12358/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12358/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12358/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2066</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Daily%20peak%20load%20forecasting&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>