CINXE.COM
Search results for: phylogenetic analysis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: phylogenetic analysis</title> <meta name="description" content="Search results for: phylogenetic analysis"> <meta name="keywords" content="phylogenetic analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="phylogenetic analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="phylogenetic analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 27892</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: phylogenetic analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27892</span> New Approach to Construct Phylogenetic Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouafae%20Baida">Ouafae Baida</a>, <a href="https://publications.waset.org/abstracts/search?q=Najma%20Hamzaoui"> Najma Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Akbib"> Maha Akbib</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelfettah%20Sedqui"> Abdelfettah Sedqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouahid%20Lyhyaoui"> Abdelouahid Lyhyaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous scientific works present various methods to analyze the data for several domains, specially the comparison of classifications. In our recent work, we presented a new approach to help the user choose the best classification method from the results obtained by every method, by basing itself on the distances between the trees of classification. The result of our approach was in the form of a dendrogram contains methods as a succession of connections. This approach is much needed in phylogeny analysis. This discipline is intended to analyze the sequences of biological macro molecules for information on the evolutionary history of living beings, including their relationship. The product of phylogeny analysis is a phylogenetic tree. In this paper, we recommend the use of a new method of construction the phylogenetic tree based on comparison of different classifications obtained by different molecular genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20classification" title="hierarchical classification">hierarchical classification</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20methods" title=" classification methods"> classification methods</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20of%20tree" title=" structure of tree"> structure of tree</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a> </p> <a href="https://publications.waset.org/abstracts/21857/new-approach-to-construct-phylogenetic-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27891</span> Phylogenetic Analysis of the Myxosporea Detected from Emaciated Olive Flounder (Paralichthys olivaceus) in Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung%20Min%20Kim">Seung Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyu%20Jin%20Jun"> Lyu Jin Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon%20Bum%20Jeong"> Joon Bum Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Myxosporea to cause emaciation disease in the olive flounder (Paralichthys olivaceus) is a pathogen to cause severe losses in the aquafarming industry in Korea. The 3,362 bp of DNA nucleotide sequences of four myxosporean strains (EM-HM-12, EM-MA-13, EM-JJ-14, and EM-MS-15) detected by PCR method from olive flounder suffering from emaciation disease in Korea during 2012-2015 were sequenced and deposited in GenBank database (GenBank accession numbers: KU377574, KT321705, KU377575 and KU377573, respectively). The homologies of DNA nucleotide sequences of four strains were compared to each other and were more than 99.7% homologous between the four strains. All of the strains were identified as Parvicapsula petunia based on the results of phylogenetic analysis. The results in this study would be useful for the research of emaciation disease in olive flounder of Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disease" title="disease">disease</a>, <a href="https://publications.waset.org/abstracts/search?q=emaciation" title=" emaciation"> emaciation</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20flounder" title=" olive flounder"> olive flounder</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a> </p> <a href="https://publications.waset.org/abstracts/97913/phylogenetic-analysis-of-the-myxosporea-detected-from-emaciated-olive-flounder-paralichthys-olivaceus-in-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27890</span> Phylogenetic Study of L1 Protein Human Papillomavirus Type 16 From Cervical Cancer Patients in Bandung</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fitri%20Rahmi%20Fadhilah">Fitri Rahmi Fadhilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Edhyana%20Sahiratmadja"> Edhyana Sahiratmadja</a>, <a href="https://publications.waset.org/abstracts/search?q=Ani%20Melani%20Maskoen"> Ani Melani Maskoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratu%20Safitri"> Ratu Safitri</a>, <a href="https://publications.waset.org/abstracts/search?q=Supartini%20Syarif"> Supartini Syarif</a>, <a href="https://publications.waset.org/abstracts/search?q=Herman%20Susanto"> Herman Susanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cervical cancer is the second most common cancer in women after breast cancer. In Indonesia, the incidence of cervical cancer cases is estimated at 25-40 per 100,000 women per year. Human papillomavirus (HPV) infection is a major cause of cervical cancer, and HPV-16 is the most common genotype that infects the cervical tissue. The major late protein L1 may be associated with infectivity and pathogenicity and its variation can be used to classify HPV isolates. The aim of this study was to determine the phylogenetic tree of HPV 16 L1 gene from cervical cancer patient isolates in Bandung. After confirming HPV-16 by Linear Array Genotyping Test, L1 gene was amplified using specific primers and subject for sequencing. Phylogenetic analysis revealed that HPV 16 from Bandung was in the subgroup of Asia and East Asia, showing the close host-agent relationship among the Asian type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=L1%20HPV%2016" title="L1 HPV 16">L1 HPV 16</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer" title=" cervical cancer"> cervical cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=bandung" title=" bandung"> bandung</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic" title=" phylogenetic"> phylogenetic</a> </p> <a href="https://publications.waset.org/abstracts/6541/phylogenetic-study-of-l1-protein-human-papillomavirus-type-16-from-cervical-cancer-patients-in-bandung" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27889</span> Viral Metagenomics Revealed a Novel Cardiovirus in Feces of Wild Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asif%20Mahmood">Asif Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Shama%20Shama"> Shama Shama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Ni"> Hao Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang"> Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Ling"> Yu Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Xu"> Hui Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shixing%20Yang"> Shixing Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qais%20Ahmad%20Naseer"> Qais Ahmad Naseer</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Zhang"> Wen Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiovirus is a genus of viruses belonging to the family Picornaviridae. Here, we used viral metagenomic techniques to detect the viral nucleic acid in the fecal samples from wild rats in Zhenjiang city in China. Fecal samples were collected from 20 wild rats and pooled into four sample pools and then subjected to libraries construction which were then sequenced on Illumina MiSeq platform. The sequenced reads were analyzed using viral metagenomic analysis pipeline. A novel cardiovirus from feces of a wild rat was identified, named amzj-2018, of which the complete genome was acquired. Phylogenetic analysis based on the complete amino acid sequence of polyprotein revealed that amzj-2018 formed a separate branch located between clusters of Saffold virus and Rat Theilovirus 1 (RTV-1). Phylogenetic analysis based on different regions of the polyproteins, including P1, P2, P3, and P2+P3, respectively, showed discordant trees, where the tree based on P3 region indicated that amzj-2018 clustered separately between Theiler's murine encephalomyelitis virus and RTV-1. The complete genome of a cardiovirus was determined from the feces of wild rats which belonged to a novel type of cardiovirus based on phylogenetic analysis. Whether it is associated with disease needs further investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovirus" title="cardiovirus">cardiovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=viral%20metagenomics" title=" viral metagenomics"> viral metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20organization" title=" genomic organization"> genomic organization</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a> </p> <a href="https://publications.waset.org/abstracts/192230/viral-metagenomics-revealed-a-novel-cardiovirus-in-feces-of-wild-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27888</span> Phylogenetic Relationships of the Malaysian Primates Cercopithecine Based on COI Gene Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Md-Zain">B. M. Md-Zain</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Rahman"> N. A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20B.%20Abdul-Latiff"> M. A. B. Abdul-Latiff</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20M.%20R.%20Idris"> W. M. R. Idris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We conducted molecular research to portray phylogenetic relationships of Malaysian primates particularly in the genus of Macaca. We have sequenced cytochrome C oxidase subunit I (COI) of mitochondrial DNA of several individuals from M. fascicularis and M. arctoides. PCR amplifications were performed and COI DNA sequences were aligned using ClustalW. Phylogenetic trees were constructed using distance analyses by employing neighbor-joining algorithm (NJ). We managed to sequence 700 bp of COI DNA sequences. The tree topology showed that M. fascicularis did not clump based on phyleogeography division in Peninsular Malaysia. Individuals from Negeri Sembilan merged together with samples from Perak and Penang into one clade. In addition, phylogenetic analyses indicated that M. arctoides was classified into sinica group instead of fascicularis group supported by genetic distance data. COI gene is an effective locus to clarify phylogenetic position of M. arctoides but not in discriminating M. fascicularis population in Peninsular Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cercopithecine" title="cercopithecine">cercopithecine</a>, <a href="https://publications.waset.org/abstracts/search?q=long-tailed%20macaque" title=" long-tailed macaque"> long-tailed macaque</a>, <a href="https://publications.waset.org/abstracts/search?q=Macaca%20fascicularis" title=" Macaca fascicularis"> Macaca fascicularis</a>, <a href="https://publications.waset.org/abstracts/search?q=Macaca%20arctoides" title=" Macaca arctoides"> Macaca arctoides</a> </p> <a href="https://publications.waset.org/abstracts/6415/phylogenetic-relationships-of-the-malaysian-primates-cercopithecine-based-on-coi-gene-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27887</span> Phylogenetic Analysis and a Review of the History of the Accidental Phytoplankter, Phaeodactylum tricornutum Bohlin (Bacillariophyta)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20S.%20M.%20Sabir">Jamal S. M. Sabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20C.%20Theriot"> Edward C. Theriot</a>, <a href="https://publications.waset.org/abstracts/search?q=Schonna%20R.%20Manning"> Schonna R. Manning</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20L.%20Al-Malki"> Abdulrahman L. Al-Malki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad"> Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumdooh%20J.%20Sabir"> Mumdooh J. Sabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwight%20K.%20Romanovicz"> Dwight K. Romanovicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20H.%20Hajrah"> Nahid H. Hajrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20K.%20Jansen"> Robert K. Jansen</a>, <a href="https://publications.waset.org/abstracts/search?q=Matt%20P.%20Ashworth"> Matt P. Ashworth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diatom Phaeodactylum tricornutum has been used as a model for cell biologists and ecologists for over a century. We have incorporated several new raphid pennates into a three-gene phylogenetic dataset (SSU, rbcL, psbC), and recover Gomphonemopsis sp. as sister to P. tricornutum with 100% BS support. This is the first time a close relative has been identified for P. tricornutum with robust statistical support. We test and reject a succession of hypotheses for other relatives. Our molecular data are statistically significantly incongruent with placement of either or both species among the Cymbellales, an order of diatoms with which both have been associated. We believe that further resolution of the phylogenetic position of P. tricornutum will rely more on increased taxon sampling than increased genetic sampling. Gomphonemopsis is a benthic diatom, and its phylogenetic relationship with P. tricornutum is congruent with the hypothesis that P. tricornutum is a benthic diatom with specific adaptations that lead to active recruitment into the plankton. We hypothesize that other benthic diatoms are likely to have similar adaptations and are not merely passively recruited into the plankton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benthic" title="benthic">benthic</a>, <a href="https://publications.waset.org/abstracts/search?q=diatoms%3B%20ecology" title=" diatoms; ecology"> diatoms; ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=Phaeodactylum%20tricornutum" title=" Phaeodactylum tricornutum"> Phaeodactylum tricornutum</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=tychoplankton" title=" tychoplankton "> tychoplankton </a> </p> <a href="https://publications.waset.org/abstracts/91315/phylogenetic-analysis-and-a-review-of-the-history-of-the-accidental-phytoplankter-phaeodactylum-tricornutum-bohlin-bacillariophyta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27886</span> The Efficiency of Cytochrome Oxidase Subunit 1 Gene (cox1) in Reconstruction of Phylogenetic Relations among Some Crustacean Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20M.%20Saad">Yasser M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20El-Sebaie%20Abd%20El-Sadek"> Heba El-Sebaie Abd El-Sadek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some <em>Metapenaeus monoceros</em><em> cox1</em> gene fragments were isolated, purified, sequenced, and comparatively analyzed with some other Crustacean <em>Cox1</em> gene sequences (obtained from National Center for Biotechnology Information). This work was designed for testing the efficiency of this system in reconstruction of phylogenetic relations among some Crustacean species belonging to four genera (Metapenaeus, Artemia, Daphnia and Calanus)<em>.</em> The single nucleotide polymorphism and haplotype diversity were calculated for all estimated mt-DNA fragments. The genetic distance values were 0.292, 0.015, 0.151, and 0.09 within <em>Metapenaeus </em>species<em>, Calanus</em> species<em>, Artemia</em> species, and<em> Daphnia</em> species, respectively<em>. </em>The reconstructed phylogenetic tree is clustered into some unique clades. Cytochrome oxidase subunit 1 gene (<em>cox1</em>) was a powerful system in reconstruction of phylogenetic relations among evaluated crustacean species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crustaceans" title="crustaceans">crustaceans</a>, <a href="https://publications.waset.org/abstracts/search?q=genetics" title=" genetics"> genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=Cox1" title=" Cox1"> Cox1</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a> </p> <a href="https://publications.waset.org/abstracts/73884/the-efficiency-of-cytochrome-oxidase-subunit-1-gene-cox1-in-reconstruction-of-phylogenetic-relations-among-some-crustacean-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27885</span> Molecular Characterization and Phylogenetic Analysis of Capripoxviruses from Outbreak in Iran 2021</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Torabi">Maryam Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Habibi"> Habibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolahi"> Abdolahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadi"> Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassanzadeh"> Hassanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Darban%20Maghami"> Darban Maghami</a>, <a href="https://publications.waset.org/abstracts/search?q=Baghi"> Baghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sheeppox Virus (SPPV) and goatpox virus (GTPV) are considerable diseases of sheep, and goats, caused by viruses of the Capripoxvirus (CaPV) genus. They are responsible for economic losses. Animal mortality, morbidity, cost of vaccinations, and restrictions in animal products’ trade are the reasons of economic losses. Control and eradication of CaPV depend on early detection of outbreaks so that molecular detection and genetic analysis could be effective to this aim. This study was undertaken to molecularly characterize SPPV and GTPV strains that have been circulating in Iran. 120 skin papules and nodule biopsies were collected from different regions of Iran and were examined for SPPV, GTPV viruses using TaqMan Real -Time PCR. Some of these amplified genes were sequenced, and phylogenetic trees were constructed. Out of the 120 samples analysed, 98 were positive for CaPV by Real- Time PCR (81.6%), and most of them wereSPPV. then 10 positive samples were sequenced and characterized by amplifying the ORF 103CaPV gene. sequencing and phylogenetic analysis for these positive samples revealed a high percentage of identity with SPPV isolated from different countries in Middle East. In conclusions, molecular characterization revealed nearly complete identity with all recent SPPVs strains in local countries that requires further studies to monitor the virus evolution and transmission pathways to better understand the virus pathobiology that will help for SPPV control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20epidemiology" title="molecular epidemiology">molecular epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=Real-Time%20PCR" title="Real-Time PCR">Real-Time PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=capripoxviruses" title=" capripoxviruses"> capripoxviruses</a> </p> <a href="https://publications.waset.org/abstracts/144359/molecular-characterization-and-phylogenetic-analysis-of-capripoxviruses-from-outbreak-in-iran-2021" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27884</span> A Comprehensive Analysis of the Phylogenetic Signal in Ramp Sequences in 211 Vertebrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lauren%20M.%20McKinnon">Lauren M. McKinnon</a>, <a href="https://publications.waset.org/abstracts/search?q=Justin%20B.%20Miller"> Justin B. Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20F.%20Whiting"> Michael F. Whiting</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20S.%20K.%20Kauwe"> John S. K. Kauwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Perry%20G.%20Ridge"> Perry G. Ridge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Ramp sequences increase translational speed and accuracy when rare, slowly-translated codons are found at the beginnings of genes. Here, the results of the first analysis of ramp sequences in a phylogenetic construct are presented. Methods: Ramp sequences were compared from 211 vertebrates (110 Mammalian and 101 non-mammalian). The presence and absence of ramp sequences were analyzed as a binary character in a parsimony and maximum likelihood framework. Additionally, ramp sequences were mapped to the Open Tree of Life taxonomy to determine the number of parallelisms and reversals that occurred, and these results were compared to what would be expected due to random chance. Lastly, aligned nucleotides in ramp sequences were compared to the rest of the sequence in order to examine possible differences in phylogenetic signal between these regions of the gene. Results: Parsimony and maximum likelihood analyses of the presence/absence of ramp sequences recovered phylogenies that are highly congruent with established phylogenies. Additionally, the retention index of ramp sequences is significantly higher than would be expected due to random chance (p-value = 0). A chi-square analysis of completely orthologous ramp sequences resulted in a p-value of approximately zero as compared to random chance. Discussion: Ramp sequences recover comparable phylogenies as other phylogenomic methods. Although not all ramp sequences appear to have a phylogenetic signal, more ramp sequences track speciation than expected by random chance. Therefore, ramp sequences may be used in conjunction with other phylogenomic approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=codon%20usage%20bias" title="codon usage bias">codon usage bias</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetics" title=" phylogenetics"> phylogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenomics" title=" phylogenomics"> phylogenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp%20sequence" title=" ramp sequence"> ramp sequence</a> </p> <a href="https://publications.waset.org/abstracts/124024/a-comprehensive-analysis-of-the-phylogenetic-signal-in-ramp-sequences-in-211-vertebrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27883</span> Phylogenetic Analysis of Klebsiella Species from Clinical Specimens from Nelson Mandela Academic Hospital in Mthatha, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Vasaikar">Sandeep Vasaikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lary%20Obi"> Lary Obi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid and discriminative genotyping methods are useful for determining the clonality of the isolates in nosocomial or household outbreaks. Multilocus sequence typing (MLST) is a nucleotide sequence-based approach for characterising bacterial isolates. The genetic diversity and the clinical relevance of the drug-resistant Klebsiella isolates from Mthatha are largely unknown. For this reason, prospective, experimental study of the molecular epidemiology of Klebsiella isolates from patients being treated in Mthatha over a three-year period was analysed. Methodology: PCR amplification and sequencing of the drug-resistance-associated genes, and multilocus sequence typing (MLST) using 7 housekeeping genes mdh, pgi, infB, FusAR, phoE, gapA and rpoB were conducted. A total of 32 isolates were analysed. Results: The percentages of multidrug-resistant (MDR), extensively drug-resistance (XDR) and pandrug-resistant (PDR) isolates were; MDR 65.6 % (21) and XDR and PDR with 0 % each. In this study, K. pneumoniae was 19/32 (59.4 %). MLST results showed 22 sequence types (STs) were identified, which were further separated by Maximum Parsimony into 10 clonal complexes and 12 singletons. The most dominant group was Klebsiella pneumoniae with 23/32 (71.8 %) isolates, Klebsiella oxytoca as a second group with 2/32 (6.25 %) isolates, and a single (3.1 %) K. varricola as a third group while 6 isolates were of unknown sequences. Conclusions/significance: A phylogenetic analysis of the concatenated sequences of the 7 housekeeping genes showed that strains of K. pneumoniae form a distinct lineage within the genus Klebsiella, with K. oxytoca and K. varricola its nearest phylogenetic neighbours. With the analysis of 7 genes were determined 1 K. variicola, which was mistakenly identified as K. pneumoniae by phenotypic methods. Two misidentifications of K. oxytoca were found when phenotypic methods were used. No significant differences were observed between ESBL blaCTX-M, blaTEM and blaSHV groups in the distribution of Sequence types (STs) or Clonal complexes (CCs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title="phylogenetic analysis">phylogenetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=klebsiella%20phylogenetic" title=" klebsiella phylogenetic"> klebsiella phylogenetic</a>, <a href="https://publications.waset.org/abstracts/search?q=klebsiella" title=" klebsiella"> klebsiella</a> </p> <a href="https://publications.waset.org/abstracts/66402/phylogenetic-analysis-of-klebsiella-species-from-clinical-specimens-from-nelson-mandela-academic-hospital-in-mthatha-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27882</span> Phylogenetic Analysis of the Thunnus Tuna Fish Using Cytochrome C Oxidase Subunit I Gene Sequence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yijun%20Lai">Yijun Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Saber%20Khederzadeh"> Saber Khederzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingshaung%20Han"> Lingshaung Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Species in Thunnus are organized due to the similarity between them. The closeness between T. maccoyii, T. thynnus, T. Tonggol, T. atlanticus, T. albacares, T. obsesus, T. alalunga, and T. orientails are in different degrees. However, the genetic pattern of differentiation has not been presented based on individuals yet, to the author’s best knowledge. Hence, we aimed to analyze the difference in individuals level of tuna species to identify the factors that contribute to the maternal lineage variety using Cytochrome c oxidase subunit I (COXI) gene sequences. Our analyses provided evidence of sharing lineages in the Thunnus. A phylogenetic analysis revealed that these lineages are basal to the other sequences. We also showed a close connection between the T. tonggol, T. thynnus, and T. albacares populations. Also, the majority of the T. orientalis samples were clustered with the T. alalunga and, then, T. atlanticus populations. Phylogenetic trees and migration modeling revealed high proximity of T. thynnus sequences to a few T. orientalis and suggested possible gene flow with T. tonggol and T. albacares lineages, while all T. obsesus samples indicated unique clustering with each other. Our results support the presence of old maternal lineages in Thunnus, as a legacy of an ancient wave of colonization or migration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thunnus%20Tuna" title="Thunnus Tuna">Thunnus Tuna</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal%20lineage" title=" maternal lineage"> maternal lineage</a>, <a href="https://publications.waset.org/abstracts/search?q=COXI%20gene" title=" COXI gene"> COXI gene</a> </p> <a href="https://publications.waset.org/abstracts/161742/phylogenetic-analysis-of-the-thunnus-tuna-fish-using-cytochrome-c-oxidase-subunit-i-gene-sequence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27881</span> The Phylogenetic Investigation of Candidate Genes Related to Type II Diabetes in Man and Other Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srijoni%20Banerjee">Srijoni Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sequences of some of the candidate genes (e.g., CPE, CDKAL1, GCKR, HSD11B1, IGF2BP2, IRS1, LPIN1, PKLR, TNF, PPARG) implicated in some of the complex disease, e.g. Type II diabetes in man has been compared with other species to investigate phylogenetic affinity. Based on mRNA sequence of these genes of 7 to 8 species, using bioinformatics tools Mega 5, Bioedit, Clustal W, distance matrix was obtained. Phylogenetic trees were obtained by NJ and UPGMA clustering methods. The results of the phylogenetic analyses show that of the species compared: Xenopus l., Danio r., Macaca m., Homo sapiens s., Rattus n., Mus m. and Gallus g., Bos taurus, both NJ and UPGMA clustering show close affinity between clustering of Homo sapiens s. (Man) with Rattus n. (Rat), Mus m. species for the candidate genes, except in case of Lipin1 gene. The results support the functional similarity of these genes in physiological and biochemical process involving man and mouse/rat. Therefore, in understanding the complex etiology and treatment of the complex disease mouse/rate model is the best laboratory choice for experimentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title="phylogeny">phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=candidate%20gene%20of%20type-2%20diabetes" title=" candidate gene of type-2 diabetes"> candidate gene of type-2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=CPE" title=" CPE"> CPE</a>, <a href="https://publications.waset.org/abstracts/search?q=CDKAL1" title=" CDKAL1"> CDKAL1</a>, <a href="https://publications.waset.org/abstracts/search?q=GCKR" title=" GCKR"> GCKR</a>, <a href="https://publications.waset.org/abstracts/search?q=HSD11B1" title=" HSD11B1"> HSD11B1</a>, <a href="https://publications.waset.org/abstracts/search?q=IGF2BP2" title=" IGF2BP2"> IGF2BP2</a>, <a href="https://publications.waset.org/abstracts/search?q=IRS1" title=" IRS1"> IRS1</a>, <a href="https://publications.waset.org/abstracts/search?q=LPIN1" title=" LPIN1"> LPIN1</a>, <a href="https://publications.waset.org/abstracts/search?q=PKLR" title=" PKLR"> PKLR</a>, <a href="https://publications.waset.org/abstracts/search?q=TNF" title=" TNF"> TNF</a>, <a href="https://publications.waset.org/abstracts/search?q=PPARG" title=" PPARG"> PPARG</a> </p> <a href="https://publications.waset.org/abstracts/5222/the-phylogenetic-investigation-of-candidate-genes-related-to-type-ii-diabetes-in-man-and-other-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27880</span> In silico Comparative Analysis of Chloroplast Genome (cpDNA) and Some Individual Genes (rbcL and trnH-psbA) in Pooideae Subfamily Members</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Ilker%20Ozyigit">Ibrahim Ilker Ozyigit</a>, <a href="https://publications.waset.org/abstracts/search?q=Ertugrul%20Filiz"> Ertugrul Filiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilhan%20Dogan"> Ilhan Dogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An in silico analysis of Brachypodium distachyon, Triticum aestivum, Festuca arundinacea, Lolium perenne, Hordeum vulgare subsp. vulgare of the Pooideaea was performed based on complete chloroplast genomes including rbcL coding and trnH-psbA intergenic spacer regions alone to compare phylogenetic resolving power. Neighbor-joining, Minimum Evolution, and Unweighted Pair Group Method with arithmetic mean methods were used to reconstruct phylogenies with the highest bootstrap supported the obtained data from whole chloroplast genome sequence. The highest and lowest values from nucleotide diversity (π) analysis were found to be 0.315813 and 0.043495 in rbcL coding region in chloroplast genome and complete chloroplast genome, respectively. The highest transition/transversion bias (R) value was recorded as 1.384 in complete chloroplast genomes. F. arudinacea-L. perenne clade was uncovered in all phylogenies. Sequences of rbcL and trnH-psbA regions were not able to resolve the Pooideae phylogenies due to lack of genetic variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chloroplast%20DNA" title="chloroplast DNA">chloroplast DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooideae" title=" Pooideae"> Pooideae</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rbcL" title=" rbcL"> rbcL</a>, <a href="https://publications.waset.org/abstracts/search?q=trnH-psbA" title=" trnH-psbA"> trnH-psbA</a> </p> <a href="https://publications.waset.org/abstracts/15466/in-silico-comparative-analysis-of-chloroplast-genome-cpdna-and-some-individual-genes-rbcl-and-trnh-psba-in-pooideae-subfamily-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27879</span> Phylogenetic Differential Separation of Environmental Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amber%20C.%20W.%20Vandepoele">Amber C. W. Vandepoele</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20A.%20Marciano"> Michael A. Marciano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20isolation" title="DNA isolation">DNA isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=geolocation" title=" geolocation"> geolocation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-human" title=" non-human"> non-human</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20separation" title=" phylogenetic separation"> phylogenetic separation</a> </p> <a href="https://publications.waset.org/abstracts/122792/phylogenetic-differential-separation-of-environmental-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27878</span> Phylogenetic Analyses of Newcastle Disease Virus Isolated from Unvaccinated Chicken Flocks in Kyrgyzstan from 2015 to 2016</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giang%20Tran%20Thi%20Huong">Giang Tran Thi Huong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hieu%20Dong%20Van"> Hieu Dong Van</a>, <a href="https://publications.waset.org/abstracts/search?q=Tung%20Dao%20Duy"> Tung Dao Duy</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadanov%20Iskender"> Saadanov Iskender</a>, <a href="https://publications.waset.org/abstracts/search?q=Isakeev%20Mairambek"> Isakeev Mairambek</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsutomu%20Omatsu"> Tsutomu Omatsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukie%20Katayama"> Yukie Katayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsuya%20Mizutani"> Tetsuya Mizutani</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuki%20Ozeki"> Yuki Ozeki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yohei%20Takeda"> Yohei Takeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruko%20Ogawa"> Haruko Ogawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunitoshi%20Imai"> Kunitoshi Imai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Newcastle disease virus (NDV) is a contagious viral disease of the poultry industry and other birds throughout the world. At present, very little is known about molecular epidemiological data regarding the causes of ND outbreak in commercial poultry farms in Kyrgyzstan. In the current study, the NDV isolated from the one out of three samples from the unvaccinated flock was confirmed as NDV. Phylogenetic analysis indicated that this NDV strain is clustered in the Class II subgenotype VIId, and closely related to the Chinese NDV isolate. Phylogenetic analyses revealed that the isolated NDV strain has an origin different from the 4 NDV strains previously identified in Kyrgyzstan. According to the mean death time (MDT: 61.1 h) and a multibasic amino acid (aa) sequence at the F0 proteolytic cleavage site (¹¹²R-R-Q-K-R-F¹¹⁷), the NDV isolate was determined as mesogenic strain. Several mutations in the neutralizing epitopes (notably, ³⁴⁷E→K) and the global head were observed in the hemagglutinin-neuraminidase (HN) protein of the current isolate. The present study represents the molecular characterization of the coding gene region of NDV in Kyrgyzstan. Additionally, further study will be investigated on the antigenic characterization using monoclonal antibody. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyrgyzstan" title="Kyrgyzstan">Kyrgyzstan</a>, <a href="https://publications.waset.org/abstracts/search?q=Newcastle%20disease" title=" Newcastle disease"> Newcastle disease</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype" title=" genotype"> genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%20characterization" title=" genome characterization"> genome characterization</a> </p> <a href="https://publications.waset.org/abstracts/105195/phylogenetic-analyses-of-newcastle-disease-virus-isolated-from-unvaccinated-chicken-flocks-in-kyrgyzstan-from-2015-to-2016" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27877</span> Molecular Epidemiology of Circulating Adenovirus Types in Acute Conjunctivitis Cases in Chandigarh, North India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mini%20P.%20Singh">Mini P. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagat%20Ram"> Jagat Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Archit%20Kumar"> Archit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tripti%20Rungta"> Tripti Rungta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmine%20Khurana"> Jasmine Khurana</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Gupta"> Amit Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Ratho"> R. K. Ratho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Human adenovirus is the most common agent involved in viral conjunctivitis. The clinical manifestations vary with different serotypes. The identification of the circulating strains followed by phylogenetic analysis can be helpful in understanding the origin and transmission of the disease. The present study aimed to carry out molecular epidemiology of the adenovirus types in the patients with conjunctivitis presenting to the eye centre of a tertiary care hospital in North India. Materials and Methods: The conjunctival swabs were collected from 23 suspected adenoviral conjunctivitis patients between April-August, 2014 and transported in viral transport media. The samples were subjected to nested PCR targeting hexon gene of human adenovirus. The band size of 956bp was eluted and 8 representative positive samples were subjected to sequencing. The sequences were analyzed by using CLUSTALX2.1 and MEGA 5.1 software. Results: The male: female ratio was found to be 3.6:1. The mean age of presenting patients was 43.95 years (+17.2). Approximately 52.1% (12/23) of patients presented with bilateral involvement while 47.8% (11/23) with unilateral involvement of the eye. Human adenovirus DNA could be detected in 65.2% (15/23) of the patients. The phylogenetic analysis revealed presence of serotype 8 in 7 patients and serotype 4 in one patient. The serotype 8 sequences showed 99-100% identity with Tunisian, Indian and Japanese strains. The adenovirus serotype 4 strains had 100% identity with strains from Tunisia, China and USA. Conclusion: Human adenovirus was found be an important etiological agent for conjunctivitis in our set up. The phylogenetic analysis showed that the predominant circulating strains in our epidemic keratoconjunctivitis were serotypes 8 and 4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjunctivitis" title="conjunctivitis">conjunctivitis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20adenovirus" title=" human adenovirus"> human adenovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20epidemiology" title=" molecular epidemiology"> molecular epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetics" title=" phylogenetics"> phylogenetics</a> </p> <a href="https://publications.waset.org/abstracts/55742/molecular-epidemiology-of-circulating-adenovirus-types-in-acute-conjunctivitis-cases-in-chandigarh-north-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27876</span> Biophysically Motivated Phylogenies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Felce">Catherine Felce</a>, <a href="https://publications.waset.org/abstracts/search?q=Lior%20Pachter"> Lior Pachter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phylogenetics" title="phylogenetics">phylogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=single-cell" title=" single-cell"> single-cell</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysical%20modeling" title=" biophysical modeling"> biophysical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription" title=" transcription"> transcription</a> </p> <a href="https://publications.waset.org/abstracts/186016/biophysically-motivated-phylogenies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27875</span> A Similarity/Dissimilarity Measure to Biological Sequence Alignment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Khan">Muhammad A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Shahzad"> Waseem Shahzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of protein sequences is carried out for the purpose to discover their structural and ancestry relationship. Sequence similarity determines similar protein structures, similar function, and homology detection. Biological sequences composed of amino acid residues or nucleotides provide significant information through sequence alignment. In this paper, we present a new similarity/dissimilarity measure to sequence alignment based on the primary structure of a protein. The approach finds the distance between the two given sequences using the novel sequence alignment algorithm and a mathematical model. The algorithm runs at a time complexity of O(n²). A distance matrix is generated to construct a phylogenetic tree of different species. The new similarity/dissimilarity measure outperforms other existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alignment" title="alignment">alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=distance" title=" distance"> distance</a>, <a href="https://publications.waset.org/abstracts/search?q=homology" title=" homology"> homology</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20tree" title=" phylogenetic tree"> phylogenetic tree</a> </p> <a href="https://publications.waset.org/abstracts/95183/a-similaritydissimilarity-measure-to-biological-sequence-alignment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27874</span> Elongation Factor 1 Alpha Molecular Phylogenetic Analysis for Anastrepha fraterculus Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratibha%20Srivastava">Pratibha Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayyamperumal%20Jeyaprakash"> Ayyamperumal Jeyaprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Steck"> Gary Steck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exotic, invasive tephritid fruit flies (Diptera: Tephritidae) are a major concern to fruit and vegetable production in the USA. Timely detection and identification of these agricultural pests facilitate the possibility of eradication from newly invaded areas. They spread primarily as larvae in infested fruits carried in commerce or personal baggage. Identification of larval stages to species level is difficult but necessary to determine pest loads and their pathways into the USA. The main focus of this study is the New World genus, Anastrepha. Many of its constituent taxa are pests of major economic importance. This study is significant for national quarantine use, as morphological diagnostics to separate larvae of the various members remain poorly developed. Elongation factor 1 alpha sequences were amplified from Anastrepha fraterculus specimens collected from South America (Ecuador and Peru). Phylogenetic analysis was performed to characterize the Anastrepha fraterculus complex at a molecular level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anastrepha" title="anastrepha">anastrepha</a>, <a href="https://publications.waset.org/abstracts/search?q=diptera" title=" diptera"> diptera</a>, <a href="https://publications.waset.org/abstracts/search?q=elongation%20factor" title=" elongation factor"> elongation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20fly" title=" fruit fly"> fruit fly</a> </p> <a href="https://publications.waset.org/abstracts/53407/elongation-factor-1-alpha-molecular-phylogenetic-analysis-for-anastrepha-fraterculus-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27873</span> Phylogenetic Diversity and Antibiotic Resistance in Sediments of Aegean Sea </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilknur%20Tuncer">Ilknur Tuncer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihayet%20Bizsel"> Nihayet Bizsel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studies in bacterial diversity and antimicrobial resistance in coastal areas are important to understand the variability in the community structures and metabolic activities. In the present study, antimicrobial susceptibility and phylogenetic analysis of bacteria isolated from stations with different depths and influenced by terrestrial and marine fluxes in eastern Aegean Sea were illustrated. 51% of the isolates were found as resistant and 14% showed high MAR index indicating the high-risk sources of contamination in the environment. The resistance and the intermediate levels and high MAR index of the study area were 38–60%, 11–38% and 0–40%, respectively. According to 16S rRNA gene analysis, it was found that the isolates belonged to two phyla Firmicutes and Gammaproteobacteria with the genera Bacillus, Halomonas, Oceanobacillus, Photobacterium, Pseudoalteromonas, Psychrobacter, and Vibrio. 47% of Bacillus strains which were dominant among all isolates were resistant. In addition to phylogenetically diverse bacteria, the variability in resistance, intermediate and high MAR index levels of the study area indicated the effect of geographical differences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20diversity" title="bacterial diversity">bacterial diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20antibiotic%20resistance" title=" multiple antibiotic resistance"> multiple antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA%20genes" title=" 16S rRNA genes"> 16S rRNA genes</a>, <a href="https://publications.waset.org/abstracts/search?q=Aegean%20Sea" title=" Aegean Sea"> Aegean Sea</a> </p> <a href="https://publications.waset.org/abstracts/9844/phylogenetic-diversity-and-antibiotic-resistance-in-sediments-of-aegean-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27872</span> Phylogenetic Relationships of Aproaerema Simplexella (Walker) and the Groundnut Leaf Miner Aproaerema Modicella (Deventer) (Lepidoptera: Gelechiidae) Collected from Australia, India, Mozambique, and South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makhosi%20Buthelezi">Makhosi Buthelezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitochondrial DNA cytochrome c oxidase I (COI) gene analyses linked the South African groundnut leaf miner (GLM) to the Australian soya bean moth Aproaerema simplexella (Walker) and Indian Aproaerema modicella (Deventer). Thus, the genetic relatedness of GLM, A. simplexela, and A. modicella was examined by performing mitochondrial and nuclear (COI, cytochrome oxidase subunit II (COII), mitochondrial cytochrome b (CYTB), nuclear ribosomal 28S (28S) and intergenic spacer elongation factor-1 alpha ( EF-1 ALPHA) on 44 specimens collected from South Africa, four from Mozambique, and three each from single locations in India and Australia. Phylogenetic analyses were conducted using the Maximum Parsimony (MP) and Neighbour-Joining (NJ) methods. All of the datasets of the five DNA gene regions that were sequenced were also analyzed using the Basic Local Alignment Search Tool (BLAST) to find the closest matches for inclusion in the phylogenetic trees as outgroups and for purposes of information. In the phylogenetic trees for COI, COII, cytb and EF-1 ALPHA, a similar pattern was observed in the way that the sequences assembled into different groups; i.e., some sequences of A. simplexella from Australia were grouped separately from the others, but some Australian sequences grouped with those of the GLM from South Africa, India, and Mozambique. In the phylogenetic tree for 28S, all sequences from South Africa, Australia, India, and Mozambique grouped together and formed one group. For COI, genetic pairwise distance ranged from 0.97 to 3.60 %, for COII it ranged from 0.19% to 2.32%, for cytb it ranged from 0.25 to 9.77% and for EF-1 ALPHA it ranged 0.48 to 6.99%. Results of this study indicate that these populations are genetically related and presumably constitute a single species. Thus, further molecular and morphological studies need to be undertaken in order to resolve this apparent conundrum on the taxonomy of these populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aproaerema%20modicella" title="aproaerema modicella">aproaerema modicella</a>, <a href="https://publications.waset.org/abstracts/search?q=aproaerema%20simplexella" title=" aproaerema simplexella"> aproaerema simplexella</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20DNA" title=" mitochondrial DNA"> mitochondrial DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20DNA" title=" nuclear DNA"> nuclear DNA</a> </p> <a href="https://publications.waset.org/abstracts/106498/phylogenetic-relationships-of-aproaerema-simplexella-walker-and-the-groundnut-leaf-miner-aproaerema-modicella-deventer-lepidoptera-gelechiidae-collected-from-australia-india-mozambique-and-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27871</span> Identifying Pathogenic Mycobacterium Species Using Multiple Gene Phylogenetic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lemar%20Blake">Lemar Blake</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Oura"> Chris Oura</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayanna%20C.%20N.%20Phillips%20Savage"> Ayanna C. N. Phillips Savage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improved DNA sequencing technology has greatly enhanced bacterial identification, especially for organisms that are difficult to culture. Mycobacteriosis with consistent hyphema, bilateral exophthalmia, open mouth gape and ocular lesions, were observed in various fish populations at the School of Veterinary Medicine, Aquaculture/Aquatic Animal Health Unit. Objective: To identify the species of Mycobacterium that is affecting aquarium fish at the School of Veterinary Medicine, Aquaculture/Aquatic Animal Health Unit. Method: A total of 13 fish samples were collected and analyzed via: Ziehl-Neelsen, conventional polymerase chain reaction (PCR) and real-time PCR. These tests were carried out simultaneously for confirmation. The following combination of conventional primers: 16s rRNA (564 bp), rpoB (396 bp), sod (408 bp) were used. Concatenation of the gene fragments was carried out to phylogenetically classify the organism. Results: Acid fast non-branching bacilli were detected in all samples from homogenized internal organs. All 13 acid fast samples were positive for Mycobacterium via real-time PCR. Partial gene sequences using all three primer sets were obtained from two samples and demonstrated a novel strain. A strain 99% related to Mycobacterium marinum was also confirmed in one sample, using 16srRNA and rpoB genes. The two novel strains were clustered with the rapid growers and strains that are known to affect humans. Conclusions: Phylogenetic analysis demonstrated two novel Mycobacterium strains with the potential of being zoonotic and one strain 99% related to Mycobacterium marinum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymerase%20chain%20reaction" title="polymerase chain reaction">polymerase chain reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic" title=" phylogenetic"> phylogenetic</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20sequencing" title=" DNA sequencing"> DNA sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=zoonotic" title=" zoonotic "> zoonotic </a> </p> <a href="https://publications.waset.org/abstracts/124273/identifying-pathogenic-mycobacterium-species-using-multiple-gene-phylogenetic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27870</span> Genome-Wide Identification and Characterization of MLO Family Genes in Pumpkin (Cucurbita maxima Duch.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khin%20Thanda%20Win">Khin Thanda Win</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunying%20Zhang"> Chunying Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghyeob%20Lee"> Sanghyeob Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mildew resistance locus o (Mlo), a plant-specific gene family with seven-transmembrane (TM), plays an important role in plant resistance to powdery mildew (PM). PM caused by Podosphaera xanthii is a widespread plant disease and probably represents the major fungal threat for many Cucurbits. The recent Cucurbita maxima genome sequence data provides an opportunity to identify and characterize the MLO gene family in this species. Total twenty genes (designated CmaMLO1 through CmaMLO20) have been identified by using an in silico cloning method with the MLO gene sequences of Cucumis sativus, Cucumis melo, Citrullus lanatus and Cucurbita pepo as probes. These CmaMLOs were evenly distributed on 15 chromosomes of 20 C. maxima chromosomes without any obvious clustering. Multiple sequence alignment showed that the common structural features of MLO gene family, such as TM domains, a calmodulin-binding domain and 30 important amino acid residues for MLO function, were well conserved. Phylogenetic analysis of the CmaMLO genes and other plant species reveals seven different clades (I through VII) and only clade IV is specific to monocots (rice, barley, and wheat). Phylogenetic and structural analyses provided preliminary evidence that five genes belonged to clade V could be the susceptibility genes which may play the importance role in PM resistance. This study is the first comprehensive report on MLO genes in C. maxima to our knowledge. These findings will facilitate the functional analysis of the MLOs related to PM susceptibility and are valuable resources for the development of disease resistance in pumpkin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mildew%20resistance%20locus%20o%20%28Mlo%29" title="Mildew resistance locus o (Mlo)">Mildew resistance locus o (Mlo)</a>, <a href="https://publications.waset.org/abstracts/search?q=powdery%20mildew" title=" powdery mildew"> powdery mildew</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20relationship" title=" phylogenetic relationship"> phylogenetic relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptibility%20genes" title=" susceptibility genes"> susceptibility genes</a> </p> <a href="https://publications.waset.org/abstracts/75919/genome-wide-identification-and-characterization-of-mlo-family-genes-in-pumpkin-cucurbita-maxima-duch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27869</span> Cytolethal Distending Toxins in Intestinal and Extraintestinal E. coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katar%C3%ADna%20%C4%8Curov%C3%A1">Katarína Čurová</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonard%20Siegfried"> Leonard Siegfried</a>, <a href="https://publications.waset.org/abstracts/search?q=Radka%20Vargov%C3%A1"> Radka Vargová</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Kme%C5%A5ov%C3%A1"> Marta Kmeťová</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADr%20Hrabovsk%C3%BD"> Vladimír Hrabovský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Cytolethal distending toxins (CDTs) represent intracellular acting proteins which interfere with cell cycle of eukaryotic cells. They are produced by Gram-negative bacteria with afinity to mucocutaneous surfaces and could play a role in the pathogenesis of various diseases. CDTs induce DNA damage probably through DNAse activity, which causes cell cycle arrest and leads to further changes (cell distension and death, apoptosis) depending on the cell type. Five subtypes of CDT (I to V) were reported in E. coli. Methods: We examined 252 E. coli strains belonging to four different groups. Of these strains, 57 were isolated from patients with diarrhea, 65 from patients with urinary tract infections (UTI), 65 from patients with sepsis and 65 from patients with other extraintestinal infections (mostly surgical wounds, decubitus ulcers and respiratory tract infections). Identification of these strains was performed by MALDI-TOF analysis and detection of genes encoding CDTs and determination of the phylogenetic group was performed by PCR. Results: In this study, we detected presence of cdt genes in 11 of 252 E. coli strains tested (4,4 %). Four cdt positive E. coli strains were confirmed in group of UTI (6,15 %), three cdt positive E. coli strains in groups of diarrhea (5,3 %) and other extraintestinal infections (4,6 %). The lowest incidence, one cdt positive E. coli strain, was observed in group of sepsis (1,5 %). All cdt positive E. coli strains belonged to phylogenetic group B2. Conclusion: CDT-producing E. coli are isolated in a low percentage from patients with intestinal and extraintestinal infections, including sepsis and our results correspond with these studies. A weak prevalence of cdt genes suggests that CDTs are not major virulence factors but in combination with other virulence factors may increase virulence potential of E. coli. We suppose that all 11 cdt positive E. coli strains represent real pathogens because they belong to the phylogenetic group B2 which is pathogenic lineage for bacteria E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytolethal%20distending%20toxin" title="cytolethal distending toxin">cytolethal distending toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20group" title=" phylogenetic group"> phylogenetic group</a>, <a href="https://publications.waset.org/abstracts/search?q=extraintestinal%20infection" title=" extraintestinal infection"> extraintestinal infection</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title=" diarrhea"> diarrhea</a> </p> <a href="https://publications.waset.org/abstracts/29361/cytolethal-distending-toxins-in-intestinal-and-extraintestinal-e-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27868</span> Prevalence and Pathomorphological Study of Natural Coccidiosis in Japanese Quails (Coturnix coturnix japonica) in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khordadmehr">M. Khordadmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Ranjbar"> V. R. Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Norouzi"> R. Norouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zeinoddin"> M. Zeinoddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coccidiosis is recognized as a serious parasitic disease problem limiting quail industry recently. But the data on incidence, clinical signs, species of coccidia and pathological changes in Japanese quail are rare, especially in Iran in spite of the significant improvement of commercial quail breeding in this country in recent decades. Therefore, in the present paper was studied natural infection of quail coccidiosis in three commercial rearing farms with 80% morbidity and 3% mortality rate. For this purpose, fecal sample, oocyst examination, and morphological study were performed beside necropsy, histopathology, and PCR to confirm the diagnosis. In the affected birds, clinical signs included brown diarrhea, weakness, and pale face. In the fecal examination, three species of the genus Eimeria were identified including E. uzura, E. bateri, and E. tsunodai. At necropsy, the main gross lesions were edema, congestion and small blood spots in the small intestine. In histopathologic examination, endogenous stages of the parasites associated with hyperplasia of the intestinal glands, mild congestion, infiltration of mononuclear cells, and edema were observed in the intestine. The molecular study using BSEF and BSER specific primers confirmed the presence of the genus Eimeria in the affected birds. Interestingly, phylogenetic analysis showed relatively high bootstrap values in Japanese quail Eimeria with E. acervuline and E. maxima strains in the chicken. The present study is the first phylogenetic findings on Eimeria of quail which could be valuable for further research on Japanese quail coccidiosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coccidiosis" title="coccidiosis">coccidiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Japanese%20Quail" title=" Japanese Quail"> Japanese Quail</a>, <a href="https://publications.waset.org/abstracts/search?q=pathomorphology" title=" pathomorphology"> pathomorphology</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a> </p> <a href="https://publications.waset.org/abstracts/85394/prevalence-and-pathomorphological-study-of-natural-coccidiosis-in-japanese-quails-coturnix-coturnix-japonica-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27867</span> Molecular Characterization and Phylogenetic Analysis of Influenza a(H3N2) Virus Circulating during the 2010-2011 in Riyadh, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazanfar%20Ali">Ghazanfar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20N%20Almajhdi"> Fahad N Almajhdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study provides data on the viral diagnosis and molecular epidemiology of influenza A(H3N2) virus isolated in Riyadh, Saudi Arabia. Nasopharyngeal aspirates from 80 clinically infected patients in the peak of the 2010-2011 winter seasons were processed for viral diagnosis by RT-PCR. Sequencing of entire HA and NA genes of representative isolates and molecular epidemiological analysis were performed. A total of 06 patients were positive for influenza A, B and respiratory syncytial viruses by RT-PCR assays; out of these only one sample was positive for influenza A(H3N2) by RT-PCR. Phylogenetic analysis of the HA and NA gene sequences showed identities higher than 99-98.8 % in both genes. They were also similar to reference isolates in HA sequences (99 % identity) and in NA sequences (99 % identity). Amino acid sequences predicted for the HA gene were highly identical to reference strains. The NA amino acid substitutions identified did not include the oseltamivir-resistant H275Y substitution. Conclusion: Viral isolation and RT-PCR together were useful for diagnosis of the influenza A (H3N2) virus. Variations in HA and NA sequences are similar to those identified in worldwide reference isolates and no drug resistance was found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influenza%20A%20%28H3N2%29" title="influenza A (H3N2)">influenza A (H3N2)</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20characterization" title=" genetic characterization"> genetic characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=viral%20isolation" title=" viral isolation"> viral isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia "> Saudi Arabia </a> </p> <a href="https://publications.waset.org/abstracts/17317/molecular-characterization-and-phylogenetic-analysis-of-influenza-ah3n2-virus-circulating-during-the-2010-2011-in-riyadh-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27866</span> Phylogenetic Analysis of Georgian Populations of Potato Cyst Nematodes Globodera Rostochiensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dali%20Gaganidze">Dali Gaganidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterine%20Abashidze"> Ekaterine Abashidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato is one of the main agricultural crops in Georgia. Georgia produces early and late potato varieties in almost all regions. In traditional potato growing regions (Svaneti, Samckhet javaheti and Tsalka), the yield is higher than 30-35 t/ha. Among the plant pests that limit potato production and quality, the potato cyst nematodes (PCN) are harmful around the world. Yield losses caused by PCN are estimated up to 30%. Rout surveys conducted in two geographically distinct regions of Georgia producing potatoes - Samtskhe - Javakheti and Svaneti revealed potato cyst nematode Globodera rostochiensi. The aim of the study was the Phylogenetic analyses of Globodera rostochiensi revealed in Georgia by the amplification and sequencing of 28S gen in the D3 region and intergenic ITS1-15.8S-ITS2 region. Identification of all the samples from the two Globodera populations (Samtskhe - Javakheti and Svaneti), i.e., G. rostochiensis (20 isolates) were confirmed by conventional multiplex PCR with ITS 5 universal and PITSp4, PITSr3 specific primers of the cyst nematodes’ (G. pallida, G. rostochiensis). The size of PCR fragment 434 bp confirms that PCN samples from two populations, Samtskhe- Javakheti and Svaneti, belong to G. rostochiensi . The ITS1–5.8S-ITS2 regions were amplified using prime pairs: rDNA1 ( 5’ -TTGATTACGTCCCTGCCCTTT-3’ and rDNA2( 5’ TTTCACTCGCCGTTACTAAGG-3’), D3 expansion regions were amplified using primer pairs: D3A (5’ GACCCCTCTTGAAACACGGA-3’) and D3B (5’-TCGGAAGGAACCAGCTACTA-3’. PCR products of each region were cleaned up and sequenced using an ABI 3500xL Genetic Analyzer. Obtained sequencing results were analyzed by computer program BLASTN (https://blast.ncbi.nlm.nih.gov/Blast.cg). Phylogenetic analyses to resolve the relationships between the isolates were conducted in MEGA7 using both distance- and character-based methods. Based on analysis of G.rostochiensis isolate`s D3 expansion regions are grouped in three major clades (A, B and C) on the phylogenetic tree. Clade A is divided into three subclades; clade C is divided into two subclades. Isolates from the Samtckhet-javakheti population are in subclade 1 of clade A and isolates in subclade 1 of clade C. Isolates) from Svaneti populations are in subclade 2 of clade A and in clad B. In Clade C, subclade two is presented by three isolates from Svaneti and by one isolate (GL17) from Samckhet-Javakheti. . Based on analysis of G.rostochiensis isolate`s ITS1–5.8S-ITS2 regions are grouped in two main clades, the first contained 20 Georgian isolates of Globodera rostochiensis from Svaneti . The second clade contained 15 isolates of Globodera rostochiensis from Samckhet javakheti. Our investigation showed of high genetic variation of D3 and ITS1–5.8S-ITS2 region of rDNA of the isolates of G. rostochiensis from different geographic origins (Svameti, Samckhet-Javakheti) of Georgia. Acknowledgement: The research has been supported by the Shota Rustaveli National Scientific Foundation of Georgia : Project # FR17_235 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=globodera%20rostochiensi" title="globodera rostochiensi">globodera rostochiensi</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20tree" title=" phylogenetic tree"> phylogenetic tree</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a> </p> <a href="https://publications.waset.org/abstracts/137275/phylogenetic-analysis-of-georgian-populations-of-potato-cyst-nematodes-globodera-rostochiensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27865</span> Re-Stating the Origin of Tetrapod Using Measures of Phylogenetic Support for Phylogenomic Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunfeng%20Shan">Yunfeng Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoliang%20Wang"> Xiaoliang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Youjun%20Zhou"> Youjun Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to re-investigate the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high internode certainty, relative gene support, and high gene concordance factor. The evidence stems from five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup, such as slow-evolving species, while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=novel%20measures%20of%20phylogenetic%20support%20for%20phylogenomic%20data" title="novel measures of phylogenetic support for phylogenomic data">novel measures of phylogenetic support for phylogenomic data</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20concordance%20factor%20confidence" title=" gene concordance factor confidence"> gene concordance factor confidence</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20gene%20support" title=" relative gene support"> relative gene support</a>, <a href="https://publications.waset.org/abstracts/search?q=internode%20certainty" title=" internode certainty"> internode certainty</a>, <a href="https://publications.waset.org/abstracts/search?q=origin%20of%20tetrapods" title=" origin of tetrapods"> origin of tetrapods</a> </p> <a href="https://publications.waset.org/abstracts/179785/re-stating-the-origin-of-tetrapod-using-measures-of-phylogenetic-support-for-phylogenomic-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27864</span> A Preliminary Report of HBV Full Genome Sequencing Derived from Iranian Intravenous Drug Users</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Vaezjalali">Maryam Vaezjalali</a>, <a href="https://publications.waset.org/abstracts/search?q=Koroush%20Rahimian"> Koroush Rahimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Asli"> Maryam Asli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahmineh%20Kandelouei"> Tahmineh Kandelouei</a>, <a href="https://publications.waset.org/abstracts/search?q=Foad%20Davoodbeglou"> Foad Davoodbeglou</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20H.%20Kashi"> Amir H. Kashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The present study was conducted to assess the HBV molecular profiles including genotypes, subgenotypes, subtypes & mutations in hepatitis B genes. Materials/Patients and Methods: This study was conducted on 229 intravenous drug users who referred to three Drop- in-Centers and a hospital in Tehran. HBV DNA was extracted from HBsAg positive serum samples and amplified by Nested PCR. HBV genotype, subgenotypes, subtype and genes mutation were determined by direct sequencing. Phylogenetic tree was constructed using neighbor- joining (NJ) method. Statistical analyses were carried out by SPSS 20. Results: HBV DNA was found in 3 HBsAg positive cases. Phylogenetic tree of derived HBV DNAs showed the existence of genotype D (subgenotype D1, subtype ayw2). Also immune escape mutations were determined in S gene. Conclusion: There were a few variations and genotypes and subtypes among infected intravenous drug users. This study showed the predominance of genotype D among intravenous drug users. Our study concurs with other reports from Iran, that all showing currently only genotype D is the only detectable genotype in Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20users" title="drug users">drug users</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype" title=" genotype"> genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=HBV" title=" HBV"> HBV</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20tree" title=" phylogenetic tree"> phylogenetic tree</a> </p> <a href="https://publications.waset.org/abstracts/36252/a-preliminary-report-of-hbv-full-genome-sequencing-derived-from-iranian-intravenous-drug-users" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27863</span> Isolation, Characterization, and Antibacterial Activity of Endophytic Bacteria from Iranian Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Beiranvand">Maryam Beiranvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Yaghoubi"> Sajad Yaghoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug-resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20plant" title="medical plant">medical plant</a>, <a href="https://publications.waset.org/abstracts/search?q=endophytic%20bacteria" title=" endophytic bacteria"> endophytic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=whole%20genome%20sequencing%20analysis" title=" whole genome sequencing analysis"> whole genome sequencing analysis</a> </p> <a href="https://publications.waset.org/abstracts/164252/isolation-characterization-and-antibacterial-activity-of-endophytic-bacteria-from-iranian-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=929">929</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=930">930</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>