CINXE.COM

{"title":"In vitro Effects of Amygdalin on the Functional Competence of Rabbit Spermatozoa","authors":"Marek Halen\u00e1r, Eva Tvrd\u00e1, Tom\u00e1\u0161 Slanina, \u013dubom\u00edr Ondru\u0161ka, Eduard Koles\u00e1r, Peter Mass\u00e1nyi, Adriana Koles\u00e1rov\u00e1 ","volume":119,"journal":"International Journal of Animal and Veterinary Sciences","pagesStart":712,"pagesEnd":717,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10005743","abstract":"The present <em>in vitro<\/em> study was designed to reveal whether amygdalin (AMG) is able to cause changes to the motility, viability and mitochondrial activity of rabbit spermatozoa. New Zealand White rabbits (n = 10) aged four months were used in the study. Semen samples were collected from each animal and used for the <em>in vitro <\/em>incubation. The samples were divided into five equal parts and diluted with saline supplemented with 0, 0.5, 1, 2.5 and 5 mg\/mL AMG. At times 0h, 3h and 5h spermatozoa motion parameters were assessed using the SpermVision&trade; computer-aided sperm analysis (CASA) system, cell viability was examined with the metabolic activity (MTT) assay, and the eosin-nigrosin staining technique was used to evaluate the viability of rabbit spermatozoa. All AMG concentrations exhibited stimulating effects on the spermatozoa activity, as shown by a significant preservation of the motility (P&lt;0.05 with respect to 0.5 mg\/mL and 1 mg\/mL AMG; Time 5 h) and mitochondrial activity (P&lt;&thinsp;0.05 in case of 0.5 mg\/mL AMG; P&lt;&thinsp;0.01 in case of 1 mg\/mL AMG; P&thinsp;&lt;&thinsp;0.001 with respect to 2.5 mg\/mL and 5 mg\/mL AMG; Time 5 h). None of the AMG doses supplemented had any significant impact of the spermatozoa viability. In conclusion, the data revealed that short-term co-incubation of spermatozoa with AMG may result in a higher preservation of the sperm structural integrity and functional activity.","references":"[1]\tD. Dushenkov, and I. Raskin, \u201cNew strategy for the search of natural biologically active substances,\u201d Russian Journal of Plant Physiology, vol. 55, pp. 564-567, 2008.\r\n[2]\tS. Sasidharan, Y. Chen, D. Saravanan, K. M. Sundram, and L. Yoga Latha, \u201cExtraction, isolation and characterization of bioactive compounds from plants' extracts,\u201d African Journal of Traditional, Complementary and Alternative Medicines, vol. 8, pp. 1-10, 2011.\r\n[3]\tM. Halenar, M. Medvedova, N. Maruniakova, and A. Kolesarova, \u201cAssessment of a potential preventive ability of amygdalin in mycotoxin-induced ovarian toxicity,\u201d Journal of Environmental Science and Health, Part B, vol. 50, pp. 411-416, 2015.\r\n[4]\tM. M. Ames, T. P. Moyer, J. S. Kovach, C. G. Moertel, and J. Rubin, \u201cPharmacology of amygdalin (Laetrile) in cancer patients,\u201d Cancer Chemotherapy and Pharmacology, vol. 6, pp. 51-57, 1981.\r\n[5]\tH. K. Chang, M. S. Shin, H. Y. Yang, J. W. Lee, Y. S. Kim, M. H. Lee, J. Kim, K. H. Kim, and C. J. Kim, \u201cAmygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells,\u201d Biological and Pharmaceutical Bulletin, vol. 29, pp. 1597-1602, 2006.\r\n[6]\tJ. Yan, S. Tong, J. Li, and J. Lou, J., \u201cPreparative isolation and purification of amygdalin from Prunus armeniaca L. with high recovery by high-speed countercurrent chromatography,\u201d Journal of Liquid Chromatography & Related Technologies, vol. 29, pp. 1271-1279, 2006.\r\n[7]\tT. Fukuda, H. Ito, T. Mukainaka, H. Tokuda, H. Nishino, and T. Yoshida, \u201cAnti-tumor promoting effect of glycosides from Prunus persica seeds, Biological and Pharmaceutical Bulletin, vol. 26, pp. 271-273, 2003.\r\n[8]\tH. J. Hwang, H. J. Lee, Ch, J, Kim, I. Shim, and D. H. Hahm, \u201cInhibitory effect of amygdalin on lipopolyccharide-inducible TNF-\u03b1 and IL-1\u03b2 mRNA expression and carrageenan-induced rats arthritis,\u201d Journal of Microbiology and Biotechnology, vol. 18, pp. 1641-1647, 2008.\r\n[9]\tJ. Makarevi\u0107, J. Rutz, E. Juengel, S. Kaulfuss, M. Reiter, I. Tsaur, G. Bartsch, A. Haferkamp, and R. A. Blaheta, \u201cAmygdalin blocks bladder cancer cell growth in vitro by diminishing cyklin A and cdk2,\u201d PLoS ONE, vol. 9, pP. 1-9, 2014.\r\n[10]\tC. G. Moertel, C.G., Ames, M.M., Kovach, J.S., Moyer, T.P., Rubin, J.R., and J. H. Tinker, \u201cA pharmacologic and toxicological study of amygdalin,\u201d JAMA, vol. 245, pp. 591\u2013594, 1981.\r\n[11]\tF. A. Yildirim, and M. A. Askin, \u201cVariability of amygdalin content in seeds of sweet or bitter apricot cultivars in Turkey,\u201d African Journal of Biotechnology, vol. 9, pp. 6522\u20136524, 2010.\r\n[12]\tE. Tvrd\u00e1, N. Luk\u00e1\u010d, J. Luk\u00e1\u010dov\u00e1, T. Jambor, and P. Mass\u00e1nyi, \u201cDose- and time-dependent in vitro effects of divalent and trivalent iron on the activity of bovine spermatozoa,\u201d Biological Trace Element Research, vol. 167, pp. 36-47, 2015.\r\n[13]\tS. I. Moskovstev, and C. L. Librach, \u201cMethods of sperm vitality assessment,\u201d in: Spermatogenesis, Methods and Protocols, 1st ed. vol. 927, D. T. Carrel, and K. I. Aston, Ed. New York: Springer Science + Business Media, pp. 13-19. \r\n[14]\tM. Halen\u00e1r, M. Medve\u010fov\u00e1, N. Maruniakov\u00e1, and A. Koles\u00e1rov\u00e1, \u201cAmygdalin and its effects on animal cells,\u201d Journal of Microbiology, Biotechnology and Food Sciences, vol. 2, pp. 1414-1423, 2013.\r\n[15]\tA. Koles\u00e1rov\u00e1, M. Capcarov\u00e1, Z. Bakov\u00e1, B. G\u00e1lik, M. Jur\u00e1\u010dek, M. \u0160imko, and A. V. Sirotkin, \u201cThe effect of bee pollen on secretion activity, markers of proliferation and apoptosis of porcine ovarian granulosa cells in vitro,\u201d Journal of Environmental Science and Health, Part B, vol. 46, pp. 207-212, 2011.\r\n[16]\tS. Tanyildizi, and T. Bozkurt, 2004. \u201cIn vitro effects of linamarin, amygdalin and gossypol acetic acid on hyaluronidase activity, sperm motility and morphological abnormality in bull sperm,\u201d Turkish Journal of Veterinary and Animal Sciences, vol. 28, pp. 819-824, 2004.\r\n[17]\tT. Yasui, T. Matsuzaki, K. Ushigoe, A. Kuwahara, M. Maegawa, H. Furumoto, T. Aono, and M. Irahara, \u201cStimulatory effect of the herbal medicine Keishi-bukuryo-ganon a cytokine-induced neutrophil chemoattractant, in rat ovarian cell culture,\u201d American Journal of Reproductive Immunology, vol. 50, pp. 90-97, 2003.\r\n[18]\tE. Tvrd\u00e1, E. Tu\u0161imov\u00e1, A. Kov\u00e1\u010dik, D. Pa\u00e1l, \u013d. Libov\u00e1, and N. Luk\u00e1\u010d, \u201cProtective effects of quercetin on selected oxidative biomarkers in bovine spermatozoa subjected to ferrous ascorbate,\u201d Reproduction in Domestic Animals, to be published, 2016.\r\n[19]\tY. Chen, J. Ma, and F. Wang, \u201cAmygdalin induces apoptosis in human cervical cancer cell line HeLa cells,\u201d Immunopharmacology and Immunotoxicology, vol. 35, pp. 43-51, 2013.\r\n[20]\tH. J. Park, S. H. Yoon, and L. Han, \u201cAmygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells,\u201d World Journal of Gastroenterology, vol. 11, pp. 5156-5161, 2005.\r\n[21]\tJ. Elia, N. Imbrogno, M. Delfino, R. Mazzilli, T. Rossi, and F. Mazzilli, \u201cThe importance of the sperm motility classes\u2014future directions,\u201d Open Andrology Journal, vol. 2, p. 42-43, 2010.\r\n[22]\tP. Massanyi, P. Chrenek, N. Luk\u00e1\u010d, A. V. Makarevich, A. Ostro, J. \u017div\u010d\u00e1k, and J. Bulla, \u201cComparison of different evaluation chambers for analysis of rabbit spermatozoa motility using CASA system,\u201d Slovak Journal of Animal Science, vol. 41, pp. 60-66, 2008.\r\n[23]\tN. Lukac, L. Bardos, R. Stawarz, S. Roychoudhury, A. V. Makarevich, P. Chrenek, J. Danko, and P. Massanyi, \u201cIn vitro effect of nickel on bovine spermatozoa motility and annexin V-labeled membrane changes,\u201d Journal of Applied Toxicology, vol. 31, pp. 144-149, 2011.\r\n[24]\tR. Eliasson, \u201cSemen analysis with regard to sperm number, sperm morphology and functional aspects,\u201d Asian Journal of Andrology, vol. 12, pp. 26-32, 2010.\r\n[25]\tM. Philippe, and P. Chevaillier, \u201cExtraction and biochemical characterization of a nuclear deoxyribonucleic acid polymerase activity in bull spermatozoa,\u201d Biochemical Journal, vol. 175, p. 585-594, 1978.\r\n[26]\tS. Waga, T. Masuda, and H. Takisawa, \u201cDNA polymerase varepsilon is required for coordinated and efficient chromosomal DNA replication in Xenopus egg extracts,\u201d PNAS, vol. 98, p. 4978-4983, 2001.\r\n[27]\tY. Mizushina, N. Takahashi, A. Ogewa, K. Tsurugaya, H. Koshino, M. Takemura, S. Yoshida, A. Matsukage, F. Sugawara, and K. Sakaguchi, \u201cThe cyanogenic glucoside, prunasin (Dmandelonitrile-beta-D-glucoside), is a novel inhibitor of DNA polymerase beta,\u201d Journal of Biochemistry (Tokio), vol. 126, pp. 430-436, 1999.\r\n[28]\tA. Amaral, J. Ramalho-Santos, and J. C. St John, \u201cThe expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm,\u201d Human Reproduction, vol. 22, pp. 1585-1596, 2007.\r\n[29]\tA. P. Sousa, A. Amaral, M. Baptista, R. Tavares, P. Caballero Campo, P. Caballero Peregrin, A. Freitas, A. Pavia, T. Almeida-Santos, and J. Ramalho-Santos, \u201cNot all sperm are equal: functional mitochondria characterize a subpopulation of human sperm with better fertilization potential,\u201d PLoS ONE, vol. 6, e18112, 2011.\r\n[30]\tF. G. Mann, and B. Ch. Saunders, Practical Organic Chemistry (4th ed.). London: Longman, 1975, pp. 509-517. \r\n[31]\tConchie and T. Mann, \u201cGlycosidases in mammalian sperm and seminal plasma,\u201d Nature, vol. 179, pp. 1190-1191, 1957.\r\n[32]\tA. Jauhiainen, and T. Vanha-Perttula, \u201cCharacterization of acid and neutral alpha-mannosidases in bull semen and reproductive organs,\u201d International Journal of Biochemistry, vol. 19, pp. 267-274, 1987.\r\n[33]\tP. Piomboni, R. Focarelli, A. Stendardi, A. Ferramosca, and V. Zara, \u201cThe role of mitochondria in energy production for human sperm motility,\u201d International Journal of Andrology, vol. 35, vol. 109-124, 2012.\r\n[34]\tT. Mosmann, \u201cRapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,\u201d Journal of Immunological Methods, vol. 65, pp. 55-63, 1983. ","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 119, 2016"}