CINXE.COM
Search results for: tuned mass damper
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tuned mass damper</title> <meta name="description" content="Search results for: tuned mass damper"> <meta name="keywords" content="tuned mass damper"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tuned mass damper" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tuned mass damper"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3795</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tuned mass damper</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3795</span> Electromagnetic Tuned Mass Damper Approach for Regenerative Suspension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kopylov">S. Kopylov</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Z.%20Bo"> C. Z. Bo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed at exploring the possibility of energy recovery through the suppression of vibrations. The article describes design of electromagnetic dynamic damper. The magnetic part of the device performs the function of a tuned mass damper, thereby providing both energy regeneration and damping properties to the protected mass. According to the theory of tuned mass damper, equations of mathematical models were obtained. Then, under given properties of current system, amplitude frequency response was investigated. Therefore, main ideas and methods for further research were defined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20damper" title="electromagnetic damper">electromagnetic damper</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillations%20with%20two%20degrees%20of%20freedom" title=" oscillations with two degrees of freedom"> oscillations with two degrees of freedom</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration%20systems" title=" regeneration systems"> regeneration systems</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a> </p> <a href="https://publications.waset.org/abstracts/81403/electromagnetic-tuned-mass-damper-approach-for-regenerative-suspension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3794</span> Optimization and Vibration Suppression of Double Tuned Inertial Mass Damper of Damped System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaozhi%20Yang">Chaozhi Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinzhong%20Chen"> Xinzhong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Huang"> Guoqing Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inerter is a two-terminal inertial element that can produce apparent mass far larger than its physical mass. A double tuned inertial mass damper (DTIMD) is developed by combining a spring with an inerter and a dashpot in series to replace the viscous damper of a tuned mass damper (TMD), and its performance is investigated. Firstly, the DTIMD is optimized numerically with H∞ and H2 methods considering the system’s damping based on the single-degree-of-freedom (SDOF)-DTIMD system, and the optimal structural parameters are obtained. Then, compared with a TMD, the control effect of the DTIMD with the optimal structural parameters on wind-induced vibration of a wind turbine in downwind direction under the shutdown condition is studied. The results demonstrate that the vibration suppression of the DTIMD is superior than that of a TMD at the same mass ratio. And at the identical vibration suppression, the tuned mass of the DTIMD can be reduced by up to 40% compared with a TMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind-induced%20vibration" title="wind-induced vibration">wind-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=inerter" title=" inerter"> inerter</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a>, <a href="https://publications.waset.org/abstracts/search?q=damped%20system" title=" damped system"> damped system</a> </p> <a href="https://publications.waset.org/abstracts/164513/optimization-and-vibration-suppression-of-double-tuned-inertial-mass-damper-of-damped-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3793</span> Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauhidur%20Rahman">Tauhidur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhrubajyoti%20Thakuria"> Dhrubajyoti Thakuria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20superstructure" title="bridge superstructure">bridge superstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20vehicle" title=" high speed vehicle"> high speed vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a>, <a href="https://publications.waset.org/abstracts/search?q=TMD" title=" TMD"> TMD</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a> </p> <a href="https://publications.waset.org/abstracts/26465/vibration-control-of-bridge-super-structure-using-tuned-mass-damper-tmd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3792</span> Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yoneda">M. Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title="dynamic interaction">dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=footbridge" title=" footbridge"> footbridge</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20people" title=" stationary people"> stationary people</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damping" title=" structural damping"> structural damping</a> </p> <a href="https://publications.waset.org/abstracts/47682/tuned-mass-damper-effects-of-stationary-people-on-structural-damping-of-footbridge-due-to-dynamic-interaction-in-vertical-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3791</span> Research Developments in Vibration Control of Structure Using Tuned Liquid Column Dampers: A State-of-the-Art Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Gohel">Jay Gohel</a>, <a href="https://publications.waset.org/abstracts/search?q=Anant%20Parghi"> Anant Parghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A tuned liquid column damper (TLCD) is a modified passive system of tuned mass damper, where a liquid is used in place of mass in the structure. A TLCD consists of U-shaped tube with an orifice that produces damping against the liquid motion in the tube. This paper provides a state-of-the-art review on the vibration control of wind and earthquake excited structures using liquid dampers. Further, the paper will also discuss the theoretical background of TCLD, history of liquid dampers and existing literature on experimental, numerical, and analytical study. The review will also include different configuration of TLCD viz single TLCD, multi tuned liquid column damper (MTLCD), TLCD-Interior (TLCDI), tuned liquid column ball damper (TLCBD), tuned liquid column ball gas damper (TLCBGD), and pendulum liquid column damper (PLCD). The dynamic characteristics of the different configurate TLCD system and their effectiveness in reducing the vibration of structure will be discussed. The effectiveness of semi-active TLCD will be also discussed with reference to experimental and analytical results. In addition, the review will also provide the numerous examples of implemented TLCD to control the vibration in real structures. Based on the comprehensive review of literature, some important conclusions will be made and the need for future research will be identified for vibration control of structures using TLCD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20liquid%20column%20damper" title=" tuned liquid column damper"> tuned liquid column damper</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20response%20control" title=" passive response control"> passive response control</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/139053/research-developments-in-vibration-control-of-structure-using-tuned-liquid-column-dampers-a-state-of-the-art-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3790</span> Vibration Control of Building Using Multiple Tuned Mass Dampers Considering Real Earthquake Time History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rama%20Debbarma">Rama Debbarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Debanjan%20Das"> Debanjan Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of multiple tuned mass dampers to mitigate the seismic vibration of structures considering real time history data is investigated in this paper. Three different real earthquake time history data like Kobe, Imperial Valley and Mammoth Lake are taken in the present study. The multiple tuned mass dampers (MTMD) are distributed at each storey. For comparative study, single tuned mass damper (STMD) is installed at top of the similar structure. This study is conducted for a fixed mass ratio (5%) and fixed damping ratio (5%) of structures. Numerical study is performed to evaluate the effectiveness of MTMDs and overall system performance. The displacement, acceleration, base shear and storey drift are obtained for both combined system (structure with MTMD and structure with STMD) for all earthquakes. The same responses are also obtained for structure without damper system. From obtained results, it is investigated that the MTMD configuration is more effective for controlling the seismic response of the primary system with compare to STMD configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earthquake" title="Earthquake">Earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20tuned%20mass%20dampers" title=" multiple tuned mass dampers"> multiple tuned mass dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20tuned%20mass%20damper" title=" single tuned mass damper"> single tuned mass damper</a>, <a href="https://publications.waset.org/abstracts/search?q=Time%20history." title=" Time history."> Time history.</a> </p> <a href="https://publications.waset.org/abstracts/46896/vibration-control-of-building-using-multiple-tuned-mass-dampers-considering-real-earthquake-time-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3789</span> Numerical Tools for Designing Multilayer Viscoelastic Damping Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Saleh%20Rezk">Mohammed Saleh Rezk</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Kashani"> Reza Kashani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxiliary damping has gained popularity in recent years, especially in structures such as mid- and high-rise buildings. Distributed damping systems (typically viscous and viscoelastic) or reactive damping systems (such as tuned mass dampers) are the two types of damping choices for such structures. Distributed VE dampers are normally configured as braces or damping panels, which are engaged through relatively small movements between the structural members when the structure sways under wind or earthquake loading. In addition to being used as stand-alone dampers in distributed damping applications, VE dampers can also be incorporated into the suspension element of tuned mass dampers (TMDs). In this study, analytical and numerical tools for modeling and design of multilayer viscoelastic damping devices to be used in dampening the vibration of large structures are developed. Considering the limitations of analytical models for the synthesis and analysis of realistic, large, multilayer VE dampers, the emphasis of the study has been on numerical modeling using the finite element method. To verify the finite element models, a two-layer VE damper using ½ inch synthetic viscoelastic urethane polymer was built, tested, and the measured parameters were compared with the numerically predicted ones. The numerical model prediction and experimentally evaluated damping and stiffness of the test VE damper were in very good agreement. The effectiveness of VE dampers in adding auxiliary damping to larger structures is numerically demonstrated by chevron bracing one such damper numerically into the model of a massive frame subject to an abrupt lateral load. A comparison of the responses of the frame to the aforementioned load, without and with the VE damper, clearly shows the efficacy of the damper in lowering the extent of frame vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscoelastic" title="viscoelastic">viscoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=damper" title=" damper"> damper</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20damping" title=" distributed damping"> distributed damping</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a> </p> <a href="https://publications.waset.org/abstracts/158763/numerical-tools-for-designing-multilayer-viscoelastic-damping-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3788</span> High Rise Building Vibration Control Using Tuned Mass Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Vikneshvaran">T. Vikneshvaran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aminudin"> A. Aminudin</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Alyaa%20Hashim"> U. Alyaa Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Waziralilah%20N.%20Fathiah"> Waziralilah N. Fathiah</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Shakirah%20Shukor"> D. Shakirah Shukor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degrees-of-freedom" title="degrees-of-freedom">degrees-of-freedom</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20mode" title=" displacement mode"> displacement mode</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a> </p> <a href="https://publications.waset.org/abstracts/63247/high-rise-building-vibration-control-using-tuned-mass-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3787</span> Tuned Mass Damper Vibration Control of Pedestrian Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qinglin%20Shu">Qinglin Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridges" title="pedestrian bridges">pedestrian bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20vibration" title=" human-induced vibration"> human-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20dampers" title=" tuned mass dampers"> tuned mass dampers</a> </p> <a href="https://publications.waset.org/abstracts/152738/tuned-mass-damper-vibration-control-of-pedestrian-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3786</span> Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20T.%20A.%20Mohammed">W. T. A. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Eltaeb"> M. Eltaeb</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kashani"> R. Kashani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a)synthesizing such PTMDs for particular applications and b)evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20tuned%20mass%20damper" title="active tuned mass damper">active tuned mass damper</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20building" title=" high-rise building"> high-rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-frequency%20tuning" title=" multi-frequency tuning"> multi-frequency tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a> </p> <a href="https://publications.waset.org/abstracts/164535/passive-and-active-spatial-pendulum-tuned-mass-damper-with-two-tuning-frequencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3785</span> Robust Control Design and Analysis Using SCILAB for a Mass-Spring-Damper System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoonsoo%20Kim">Yoonsoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces an open-source software package SCILAB, an alternative of MATLAB, which can be used for robust control design and analysis of a typical mass-spring-damper (MSD) system. Using the previously published ideas in this popular mechanical system is considered to provide another example of usefulness of SCILAB for advanced control design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title="robust control">robust control</a>, <a href="https://publications.waset.org/abstracts/search?q=SCILAB" title=" SCILAB"> SCILAB</a>, <a href="https://publications.waset.org/abstracts/search?q=mass-spring-damper%20%28MSD%29" title=" mass-spring-damper (MSD)"> mass-spring-damper (MSD)</a>, <a href="https://publications.waset.org/abstracts/search?q=popular%20mechanical%20systems" title=" popular mechanical systems"> popular mechanical systems</a> </p> <a href="https://publications.waset.org/abstracts/1958/robust-control-design-and-analysis-using-scilab-for-a-mass-spring-damper-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3784</span> Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Akbarpour">A. Akbarpour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Adib%20Ramezani"> M. R. Adib Ramezani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zhian"> M. Zhian</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ghorbani%20Amirabad"> N. Ghorbani Amirabad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retrofitting" title="retrofitting">retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20liquid%20column%20damper" title=" tuned liquid column damper"> tuned liquid column damper</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/29189/retrofitting-of-asymmetric-steel-structure-equipped-with-tuned-liquid-column-dampers-by-nonlinear-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3783</span> Experimental Analysis of Tuned Liquid Damper (TLD) with Embossments Subject to Random Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Saberi">Mohamad Saberi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Sohrabi"> Arash Sohrabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TLD" title="TLD">TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20table" title=" seismic table"> seismic table</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20system" title=" structural system"> structural system</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunzer%20linear%20behaviour" title=" Hunzer linear behaviour"> Hunzer linear behaviour</a> </p> <a href="https://publications.waset.org/abstracts/6052/experimental-analysis-of-tuned-liquid-damper-tld-with-embossments-subject-to-random-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3782</span> Experimental Analysis of Tuned Liquid Damper (TLD) for High Raised Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Saberi">Mohamad Saberi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Sohrabi"> Arash Sohrabi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article, we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TLD" title="TLD">TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20table" title=" seismic table"> seismic table</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20system" title=" structural system"> structural system</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunzer%20linear%20behaviour" title=" Hunzer linear behaviour"> Hunzer linear behaviour</a> </p> <a href="https://publications.waset.org/abstracts/6043/experimental-analysis-of-tuned-liquid-damper-tld-for-high-raised-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3781</span> Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Ugalde">David Ugalde</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Castillo"> Arturo Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Leopoldo%20Breschi"> Leopoldo Breschi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title="system identification">system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20buildings" title=" wall buildings"> wall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20protection" title=" seismic protection "> seismic protection </a> </p> <a href="https://publications.waset.org/abstracts/106271/vibration-based-structural-health-monitoring-of-a-21-story-building-with-tuned-mass-damper-in-seismic-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3780</span> The Effect of Damper Attachment on Tennis Racket Vibration: A Simulation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuangyou%20B.%20Cheng">Kuangyou B. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tennis is among the most popular sports worldwide. During ball-racket impact, substantial vibration transmitted to the hand/arm may be the cause of “tennis elbow”. Although it is common for athletes to attach a “vibration damper” to the spring-bed, the effect remains unclear. To avoid subjective factors and errors in data recording, the effect of damper attachment on racket handle end vibration was investigated with computer simulation. The tennis racket was modeled as a beam with free-free ends (similar to loosely holding the racket). Finite difference method with 40 segments was used to simulate ball-racket impact response. The effect of attaching a damper was modeled as having a segment with increased mass. It was found that the damper has the largest effect when installed at the spring-bed center. However, this is not a practical location due to interference with ball-racket impact. Vibration amplitude changed very slightly when the damper was near the top or bottom of the spring-bed. The damper works only slightly better at the bottom than at the top of the spring-bed. In addition, heavier dampers work better than lighter ones. These simulation results were comparable with experimental recordings in which the selection of damper locations was restricted by ball impact locations. It was concluded that mathematical model simulations were able to objectively investigate the effect of damper attachment on racket vibration. In addition, with very slight difference in grip end vibration amplitude when the damper was attached at the top or bottom of the spring-bed, whether the effect can really be felt by athletes is questionable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference" title="finite difference">finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20amplitude" title=" vibration amplitude"> vibration amplitude</a> </p> <a href="https://publications.waset.org/abstracts/60427/the-effect-of-damper-attachment-on-tennis-racket-vibration-a-simulation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3779</span> Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20H.%20Alkmim">Mansour H. Alkmim</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriano%20T.%20Fabro"> Adriano T. Fabro</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20V.%20G.%20De%20Morais"> Marcus V. G. De Morais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20pattern%20search" title="generalized pattern search">generalized pattern search</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20optimization" title=" parameter optimization"> parameter optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20vibration%20analysis" title=" random vibration analysis"> random vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20suppression" title=" vibration suppression"> vibration suppression</a> </p> <a href="https://publications.waset.org/abstracts/68674/global-direct-search-optimization-of-a-tuned-liquid-column-damper-subject-to-stochastic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3778</span> Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Lara-Valencia">Luis Lara-Valencia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateo%20Ramirez-Acevedo"> Mateo Ramirez-Acevedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Caicedo"> Daniel Caicedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Brito"> Jose Brito</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosef%20Farbiarz"> Yosef Farbiarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20cultural%20algorithm" title="evolutionary cultural algorithm">evolutionary cultural algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20inerter%20damper" title=" tuned inerter damper"> tuned inerter damper</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-induced%20vibrations" title=" wind-induced vibrations"> wind-induced vibrations</a> </p> <a href="https://publications.waset.org/abstracts/131091/optimal-design-of-tuned-inerter-damper-based-system-for-the-control-of-wind-induced-vibration-in-tall-buildings-through-cultural-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3777</span> Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vedat%20Senol">Vedat Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Gursoy%20Turan"> Gursoy Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Helmersson"> Anders Helmersson</a>, <a href="https://publications.waset.org/abstracts/search?q=Vortechz%20Andersson"> Vortechz Andersson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20modeling" title="uncertainty modeling">uncertainty modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20control" title=" structural control"> structural control</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20Damper" title=" MR Damper"> MR Damper</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%88%9E" title=" H∞"> H∞</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a> </p> <a href="https://publications.waset.org/abstracts/111738/magneto-rheological-damper-based-semi-active-robust-h-control-of-civil-structures-with-parametric-uncertainties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3776</span> Active Control Effects on Dynamic Response of Elevated Water Storage Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Etemadi">Ali Etemadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Fernanda%20Yasar"> Claudia Fernanda Yasar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elevated%20water%20storage%20tank" title="elevated water storage tank">elevated water storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper%20model" title=" tuned mass damper model"> tuned mass damper model</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20control" title=" real time control"> real time control</a>, <a href="https://publications.waset.org/abstracts/search?q=shaping%20control" title=" shaping control"> shaping control</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20vibration%20control" title=" seismic vibration control"> seismic vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20laplace%20transform" title=" the laplace transform"> the laplace transform</a> </p> <a href="https://publications.waset.org/abstracts/133584/active-control-effects-on-dynamic-response-of-elevated-water-storage-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3775</span> Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Riascos">Carlos Riascos</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Thomson"> Peter Thomson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20control" title="structural control">structural control</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20simulation" title=" hybrid simulation"> hybrid simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20liquid%20column%20damper" title=" tuned liquid column damper"> tuned liquid column damper</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-active%20sontrol%20strategy" title=" semi-active sontrol strategy "> semi-active sontrol strategy </a> </p> <a href="https://publications.waset.org/abstracts/39360/real-time-hybrid-simulation-for-a-tuned-liquid-column-damper-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3774</span> Dry Friction Occurring in the Suspensions for Passive and Switchable Damper Systems and Its Effect on Ride Comfort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20M.%20A.%20Soliman">Aref M. A. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Hassan"> Mahmoud A. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In all vehicle suspension, there is a dry friction. One of the various active suspensions, which have been shown to have considerable practical potential, is a switchable damper suspension system. In this paper, vehicle ride comfort for the passive and switchable damper suspension systems as affected by the value of frictional force generated in springs is discussed. A mathematical model of a quarter vehicle model for two setting switchable damper suspension system with dry friction force is developed to evaluate vehicle ride comfort in terms of suspension performance criteria. The vehicle itself is treated as a rigid body undergoing vertical motions. Comparisons between passive and switchable damper suspensions systems with dry friction force in terms of ride performance are also discussed. The results showed that the ride comfort for the passive and switchable damper suspension systems was deteriorated due to dry friction occurring in the suspensions. The two setting switchable damper with and without dry friction force gives better ride improvements compared with the passive suspension system. Also, the obtained results show an optimum value of damping ratio of the passive suspension system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ride%20comfort" title="ride comfort">ride comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20friction" title=" dry friction"> dry friction</a>, <a href="https://publications.waset.org/abstracts/search?q=switchable%20damper" title=" switchable damper"> switchable damper</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20suspension" title=" passive suspension"> passive suspension</a> </p> <a href="https://publications.waset.org/abstracts/82923/dry-friction-occurring-in-the-suspensions-for-passive-and-switchable-damper-systems-and-its-effect-on-ride-comfort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3773</span> Analytical Evaluation on Structural Performance and Optimum Section of CHS Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeonghyun%20Jang"> Jeonghyun Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to evaluate the effective size, section and structural characteristics of circular hollow steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are inexpensive. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √("3"), nonlinear FE analyses were carried out to evaluate the structural characteristics and effective section (diameter-to-ratio). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20hollow%20steel%20damper" title="circular hollow steel damper">circular hollow steel damper</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20characteristics" title=" structural characteristics"> structural characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20size" title=" effective size"> effective size</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20section" title=" effective section"> effective section</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deformation" title=" large deformation"> large deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analysis" title=" FE analysis"> FE analysis</a> </p> <a href="https://publications.waset.org/abstracts/33241/analytical-evaluation-on-structural-performance-and-optimum-section-of-chs-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3772</span> Evaluation on Effective Size and Hysteresis Characteristics of CHS Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to evaluate the effective size and hysteresis characteristics of Circular Hollow Steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are low cost. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √ ("3”), nonlinear FE analyses were conducted to evaluate the hysteresis characteristics. To verify the analysis simulation quasi static loading was carried out and the result was compared and satisfactory result was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SS400%20steel" title="SS400 steel">SS400 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20hollow%20steel%20damper" title=" circular hollow steel damper"> circular hollow steel damper</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20size" title=" effective size"> effective size</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi%20static%20loading" title=" quasi static loading"> quasi static loading</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analysis" title=" FE analysis"> FE analysis</a> </p> <a href="https://publications.waset.org/abstracts/5963/evaluation-on-effective-size-and-hysteresis-characteristics-of-chs-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3771</span> Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Ghodsi">S. S. Ghodsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Mehrabi"> M. H. Mehrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainah%20Ibrahim"> Zainah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Meldi%20Suhatril"> Meldi Suhatril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20damper" title=" hybrid damper"> hybrid damper</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control%20system" title=" passive control system"> passive control system</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20damper" title=" viscoelastic damper"> viscoelastic damper</a> </p> <a href="https://publications.waset.org/abstracts/78097/evaluation-of-hybrid-viscoelastic-damper-for-passive-energy-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3770</span> The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jobin%20Varghese">Jobin Varghese</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Akhil"> V. M. Akhil</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Rajendrakumar"> P. K. Rajendrakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Sivanandan"> K. S. Sivanandan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spring" title="spring">spring</a>, <a href="https://publications.waset.org/abstracts/search?q=mass" title=" mass"> mass</a>, <a href="https://publications.waset.org/abstracts/search?q=damper" title=" damper"> damper</a>, <a href="https://publications.waset.org/abstracts/search?q=knee%20joint" title=" knee joint"> knee joint</a> </p> <a href="https://publications.waset.org/abstracts/62460/the-effect-of-impact-on-the-knee-joint-due-to-the-shocks-during-double-impact-phase-of-gait-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3769</span> Vibration Mitigation in Partially Liquid-Filled Vessel Using Passive Energy Absorbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maor%20Farid">Maor Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Gendelman"> Oleg Gendelman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following study deals with fluid vibration of a liquid in a partially filled vessel under periodic ground excitation. This external excitation might lead to hidraulic impact applied on the vessel inner walls. In order to model these sloshing dynamic regimes, several equivalent mechanical models were suggested in the literature, such as series of pendula or mass-spring systems that are able to impact the inner tank walls. In the following study, we use the latter methodology, use parameter values documented in literature corresponding to cylindrical tanks and consider structural elasticity of the tank. The hydraulic impulses are modeled by the high-exponent potential function. Additional system parameters are found with the help of Finite-Element (FE) analysis. Model-driven stress assessment method is developed. Finally, vibration mitigation performances of both tuned mass damper (TMD) and nonlinear energy sink (NES) are examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20energy%20sink%20%28NES%29" title="nonlinear energy sink (NES)">nonlinear energy sink (NES)</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced-order%20modelling" title=" reduced-order modelling"> reduced-order modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20sloshing" title=" liquid sloshing"> liquid sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20mitigation" title=" vibration mitigation"> vibration mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-impact%20dynamics" title=" vibro-impact dynamics"> vibro-impact dynamics</a> </p> <a href="https://publications.waset.org/abstracts/83537/vibration-mitigation-in-partially-liquid-filled-vessel-using-passive-energy-absorbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3768</span> Estimation of Damping Force of Double Ended Shear Mode Magnetorheological Damper Using Computational Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurubasavaraju%20T.%20M.">Gurubasavaraju T. M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetorheological (MR) damper could provide variable damping force with respect to the different input magnetic field. The damping force could be estimated through computational analysis using finite element and computational fluid dynamics analysis. The double-ended damper operates without changing the total volume of fluid. In this paper, damping force of double ended damper under different magnetic field is computed. Initially, the magneto-statics analysis carried out to evaluate the magnetic flux density across the fluid flow gap. The respective change in the rheology of the MR fluid is computed by using the experimentally fitted polynomial equation of shear stress versus magnetic field plot of MR fluid. The obtained values are substituted in the Herschel Buckley model to express the non-Newtonian behavior of MR fluid. Later, using computational fluid dynamic (CFD) analysis damping characteristics in terms of force versus velocity and force versus displacement for the respective magnetic field is estimated. The purpose of the present approach is to characterize the preliminary designed MR damper before fabricating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MR%20fluid" title="MR fluid">MR fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper" title=" double ended MR damper"> double ended MR damper</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA "> FEA </a> </p> <a href="https://publications.waset.org/abstracts/98450/estimation-of-damping-force-of-double-ended-shear-mode-magnetorheological-damper-using-computational-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3767</span> Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Naeem">Asad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20viscous%20damper" title=" spring viscous damper"> spring viscous damper</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20structures" title=" earthquake resistant structures"> earthquake resistant structures</a> </p> <a href="https://publications.waset.org/abstracts/97455/shaking-table-test-and-seismic-performance-evaluation-of-spring-viscous-damper-cable-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3766</span> Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitish%20Kumar%20Vaja">Nitish Kumar Vaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Oumar%20Barry"> Oumar Barry</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20DeJong"> Brian DeJong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20stiffness" title="equivalent stiffness">equivalent stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration%20response" title=" free vibration response"> free vibration response</a>, <a href="https://publications.waset.org/abstracts/search?q=Stockbridge%20damper" title=" Stockbridge damper"> Stockbridge damper</a> </p> <a href="https://publications.waset.org/abstracts/60205/finite-element-modeling-of-stockbridge-damper-and-vibration-analysis-equivalent-cable-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=126">126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=127">127</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>