CINXE.COM

Search results for: electrochemical etching

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electrochemical etching</title> <meta name="description" content="Search results for: electrochemical etching"> <meta name="keywords" content="electrochemical etching"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electrochemical etching" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electrochemical etching"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 829</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electrochemical etching</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Micro-Electrical Discharge Machining (µEDM): Effect of the Electrochemical Etching Parameters on the Fabrication of Cylindrical Tungsten Micro-Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmae%20Tafraouti">Asmae Tafraouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Layouni"> Yasmina Layouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fabrication of cylindrical Tungsten micro-tools with a high aspect ratio is a real challenge because of several constraints that come into during their manufacture. In this paper, we will describe the process used to fabricate these micro-tools. It consists of using electrochemical etching. We will also present the optimal protocol that makes it possible to fabricate micro-tools with a high aspect ratio in a reproducible way. Next, we will show the limit of the experimental parameters chosen to manufacture micro-tools from a wire with an initial diameter of Φ_0=250µm. The protocol used allows obtaining an average diameter of Φ=88µm ±1 µm over a length of L=3.5mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drop-off%20effect" title="drop-off effect">drop-off effect</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching" title=" electrochemical etching"> electrochemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electrical%20discharge%20machining" title=" micro-electrical discharge machining"> micro-electrical discharge machining</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20micro-tools" title=" tungsten micro-tools"> tungsten micro-tools</a> </p> <a href="https://publications.waset.org/abstracts/140730/micro-electrical-discharge-machining-edm-effect-of-the-electrochemical-etching-parameters-on-the-fabrication-of-cylindrical-tungsten-micro-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Microstructures of Si Surfaces Fabricated by Electrochemical Anodic Oxidation with Agarose Stamps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hang%20Zhou">Hang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Limin%20Zhu"> Limin Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the fabrication of microstructures on Si surfaces by using electrochemical anodic oxidation with agarose stamps. The fabricating process is based on a selective anodic oxidation reaction that occurs in the contact area between a stamp and a Si substrate. The stamp which is soaked in electrolyte previously acts as a current flow channel. After forming the oxide patterns as an etching mask, a KOH aqueous is used for the wet etching of Si. A complicated microstructure array of 1 cm2 was fabricated by the method with high accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructures" title="microstructures">microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=anodic%20oxidation" title=" anodic oxidation"> anodic oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=agarose%20stamps" title=" agarose stamps"> agarose stamps</a> </p> <a href="https://publications.waset.org/abstracts/57259/microstructures-of-si-surfaces-fabricated-by-electrochemical-anodic-oxidation-with-agarose-stamps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> A Design of Anisotropic Wet Etching System to Reduce Hillocks on Etched Surface of Silicon Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alonggot%20Limcharoen%20Kaeochotchuangkul">Alonggot Limcharoen Kaeochotchuangkul</a>, <a href="https://publications.waset.org/abstracts/search?q=Pathomporn%20Sawatchai"> Pathomporn Sawatchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to design and build a wet etching system, which is suitable for anisotropic wet etching, in order to reduce etching time, to reduce hillocks on the etched surface (to reduce roughness), and to create a 45-degree wall angle (micro-mirror). This study would start by designing a wet etching system. There are four main components in this system: an ultrasonic cleaning, a condenser, a motor and a substrate holder. After that, an ultrasonic machine was modified by applying a condenser to maintain the consistency of the solution concentration during the etching process and installing a motor for improving the roughness. This effect on the etch rate and the roughness showed that the etch rate increased and the roughness was reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20wet%20etching" title="anisotropic wet etching">anisotropic wet etching</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20etching%20system" title=" wet etching system"> wet etching system</a>, <a href="https://publications.waset.org/abstracts/search?q=hillocks" title=" hillocks"> hillocks</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20cleaning" title=" ultrasonic cleaning"> ultrasonic cleaning</a> </p> <a href="https://publications.waset.org/abstracts/109308/a-design-of-anisotropic-wet-etching-system-to-reduce-hillocks-on-etched-surface-of-silicon-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouktif">B. Bouktif</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gaidi"> M. Gaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benrabha"> M. Benrabha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20nanostructure" title="semiconductor nanostructure">semiconductor nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20etching" title=" chemical etching"> chemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20property" title=" optoelectronic property"> optoelectronic property</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20surface" title=" silicon surface"> silicon surface</a> </p> <a href="https://publications.waset.org/abstracts/19048/silicon-nanostructure-based-on-metal-nanoparticle-assisted-chemical-etching-for-photovoltaic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> A Study on the Etching Characteristics of High aspect ratio Oxide Etching Using C4F6 Plasma in Inductively Coupled Plasma with Low Frequency Bias</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ByungJun%20Woo">ByungJun Woo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, high-aspect-ratio (HAR) oxide etching characteristics in inductively coupled plasma were investigated using low frequency (2 MHz) bias power with C4F6 gas. An experiment was conducted using CF4/C4F6/He as the mixed gas. A 100 nm (etch area)/500 nm (mask area) line patterns were used, and the etch cross-section and etch selectivity of the amorphous carbon layer thin film were derived using a scanning electron microscope. Ion density was extracted using a double Langmuir probe, and CFx and F neutral species were observed via optical emission spectroscopy. Based on these results, the possibility for HAR oxide etching using C4F6 gas chemistry was suggested in this work. These etching results also indicate that the use of C4F6 gas can significantly contribute to the development of next-generation HAR oxide etching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=etching" title=" etching"> etching</a>, <a href="https://publications.waset.org/abstracts/search?q=C4F6" title=" C4F6"> C4F6</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20aspect%20ratio" title=" high aspect ratio"> high aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=inductively%20coupled%20plasma" title=" inductively coupled plasma"> inductively coupled plasma</a> </p> <a href="https://publications.waset.org/abstracts/183420/a-study-on-the-etching-characteristics-of-high-aspect-ratio-oxide-etching-using-c4f6-plasma-in-inductively-coupled-plasma-with-low-frequency-bias" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Swarnalatha">V. Swarnalatha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Narasimha%20Rao"> A. V. Narasimha Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Pal"> P. Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH<sub>2</sub>OH) are used as main etchant and additive, respectively. The concentration of NH<sub>2</sub>OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KOH" title="KOH">KOH</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=micromachining" title=" micromachining"> micromachining</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=TMAH" title=" TMAH"> TMAH</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20anisotropic%20etching" title=" wet anisotropic etching"> wet anisotropic etching</a> </p> <a href="https://publications.waset.org/abstracts/65235/study-of-fast-etching-of-silicon-for-the-fabrication-of-bulk-micromachined-mems-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Silicon Carbide (SiC) Crystallization Obtained as a Side Effect of SF6 Etching Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20A.%20M.%20Galv%C3%A3o">N. K. A. M. Galvão</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Godoy%20Jr."> A. Godoy Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20J.%20Pereira"> A. L. J. Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20V.%20Martins"> G. V. Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Pessoa"> R. S. Pessoa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Maciel"> H. S. Maciel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Fraga"> M. A. Fraga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicon carbide (SiC) is a wide band-gap semiconductor material with very attractive properties, such as high breakdown voltage, chemical inertness, and high thermal and electrical stability, which makes it a promising candidate for several applications, including microelectromechanical systems (MEMS) and electronic devices. In MEMS manufacturing, the etching process is an important step. It has been proved that wet etching of SiC is not feasible due to its high bond strength and high chemical inertness. In view of this difficulty, the plasma etching technique has been applied with paramount success. However, in most of these studies, only the determination of the etching rate and/or morphological characterization of SiC, as well as the analysis of the reactive ions present in the plasma, are lowly explored. There is a lack of results in the literature on the chemical and structural properties of SiC after the etching process [4]. In this work, we investigated the etching process of sputtered amorphous SiC thin films on Si substrates in a reactive ion etching (RIE) system using sulfur hexafluoride (SF6) gas under different RF power. The results of the chemical and structural analyses of the etched films revealed that, for all conditions, a SiC crystallization occurred, in addition to fluoride contamination. In conclusion, we observed that SiC crystallization is a side effect promoted by structural, morphological and chemical changes caused by RIE SF6 etching process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20etching" title="plasma etching">plasma etching</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20deposition" title=" plasma deposition"> plasma deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Silicon%20Carbide" title=" Silicon Carbide"> Silicon Carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectromechanical%20systems" title=" microelectromechanical systems"> microelectromechanical systems</a> </p> <a href="https://publications.waset.org/abstracts/158558/silicon-carbide-sic-crystallization-obtained-as-a-side-effect-of-sf6-etching-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Silicon Surface Treatment Effect on the Structural, Optical, and Optoelectronic Properties for Solar Cell Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Hedi%20Khezami">Lotfi Hedi Khezami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Rabha"> Mohamed Ben Rabha</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sboui"> N. Sboui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Gaidi"> Mounir Gaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bessais"> B. Bessais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-nano particle-assisted Chemical Etching is an extraordinary developed wet etching method of producing uniform semiconductor nano structure (nano wires) from patterned metallic film on crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and opto electronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and opto electronic properties are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stain%20etching" title="stain etching">stain etching</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20nanowires" title=" silicon nanowires"> silicon nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity"> reflectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a> </p> <a href="https://publications.waset.org/abstracts/17930/silicon-surface-treatment-effect-on-the-structural-optical-and-optoelectronic-properties-for-solar-cell-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Cyclic Etching Process Using Inductively Coupled Plasma for Polycrystalline Diamond on AlGaN/GaN Heterostructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haolun%20Sun">Haolun Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Wang"> Ping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Wu"> Mei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Zhang"> Meng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Hou"> Bin Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Yang"> Ling Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Ma"> Xiaohua Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Hao"> Yue Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gallium nitride (GaN) is an attractive material for next-generation power devices. It is noted that the performance of GaN-based high electron mobility transistors (HEMTs) is always limited by the self-heating effect. In response to the problem, integrating devices with polycrystalline diamond (PCD) has been demonstrated to be an efficient way to alleviate the self-heating issue of the GaN-based HEMTs. Among all the heat-spreading schemes, using PCD to cap the epitaxial layer before the HEMTs process is one of the most effective schemes. Now, the mainstream method of fabricating the PCD-capped HEMTs is to deposit the diamond heat-spreading layer on the AlGaN surface, which is covered by a thin nucleation dielectric/passivation layer. To achieve the pattern etching of the diamond heat spreader and device preparation, we selected SiN as the hard mask for diamond etching, which was deposited by plasma-enhanced chemical vapor deposition (PECVD). The conventional diamond etching method first uses F-based etching to remove the SiN from the special window region, followed by using O₂/Ar plasma to etch the diamond. However, the results of the scanning electron microscope (SEM) and focused ion beam microscopy (FIB) show that there are lots of diamond pillars on the etched diamond surface. Through our study, we found that it was caused by the high roughness of the diamond surface and the existence of the overlap between the diamond grains, which makes the etching of the SiN hard mask insufficient and leaves micro-masks on the diamond surface. Thus, a cyclic etching method was proposed to solve the problem of the residual SiN, which was left in the F-based etching. We used F-based etching during the first step to remove the SiN hard mask in the specific region; then, the O₂/Ar plasma was introduced to etch the diamond in the corresponding region. These two etching steps were set as one cycle. After the first cycle, we further used cyclic etching to clear the pillars, in which the F-based etching was used to remove the residual SiN, and then the O₂/Ar plasma was used to etch the diamond. Whether to take the next cyclic etching depends on whether there are still SiN micro-masks left. By using this method, we eventually achieved the self-terminated etching of the diamond and the smooth surface after the etching. These results demonstrate that the cyclic etching method can be successfully applied to the integrated preparation of polycrystalline diamond thin films and GaN HEMTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN%20heterojunction" title="AlGaN/GaN heterojunction">AlGaN/GaN heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=O%E2%82%82%2FAr%20plasma" title=" O₂/Ar plasma"> O₂/Ar plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20etching" title=" cyclic etching"> cyclic etching</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond" title=" polycrystalline diamond"> polycrystalline diamond</a> </p> <a href="https://publications.waset.org/abstracts/159880/cyclic-etching-process-using-inductively-coupled-plasma-for-polycrystalline-diamond-on-algangan-heterostructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> SEM Analysis of the Effectiveness of the Acid Etching on Cat Enamel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Gallottini">C. Gallottini</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Di%20Mari"> W. Di Mari</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20De%20Carolis"> C. De Carolis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dolci"> A. Dolci</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Dolci"> G. Dolci</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Gallottini"> L. Gallottini</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Barraco"> G. Barraco</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Eramo"> S. Eramo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to summarize the literature on micromorphology and composition of the enamel of the cat and present an original experiment by SEM on how it responds to the etching with ortophosphoric acid for the time recommended in the veterinary literature (30", 45", 60"), derived from research and experience on human enamel; 21 teeth of cat were randomly divided into three groups of 7 (A, B, C): Group A was subjected to etching for 30 seconds by means of orthophosphoric acid to 40% on a circular area with diameter of about 2mm of the enamel coronal; the Groups B and C had the same treatment but, respectively, for 45 and 60 seconds. The samples obtained were observed by SEM to constant magnification of 1000x framing, in particular, the border area between enamel exposed and not exposed to etching to highlight differences. The images were subjected to the analysis of three blinded experienced operators in electron microscopy. In the enamel of the cat the etching for the times considered is not optimally effective for the purpose adhesives and the presence of a thick prismless layer could explain this situation. To improve this condition may clinically in the likeness of what is proposed for the enamel of human deciduous teeth: a bevel or a chamfer of 1 mm on the contour of the cavity to discover the prismatic enamel and increase the bonding surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cat%20enamel" title="cat enamel">cat enamel</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=veterinary%20dentistry" title=" veterinary dentistry"> veterinary dentistry</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20etching" title=" acid etching"> acid etching</a> </p> <a href="https://publications.waset.org/abstracts/1802/sem-analysis-of-the-effectiveness-of-the-acid-etching-on-cat-enamel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Nano-Texturing of Single Crystalline Silicon via Cu-Catalyzed Chemical Etching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abaker%20Omer">A. A. Abaker Omer</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Mohamed%20Balh"> H. B. Mohamed Balh</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Liu"> W. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abas"> A. Abas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Yu"> J. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Li"> S. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Ma"> W. Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20El%20Kolaly"> W. El Kolaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Y.%20Ahmed%20Abuker"> Y. Y. Ahmed Abuker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have discovered an important technical solution that could make new approaches in the processing of wet silicon etching, especially in the production of photovoltaic cells. During its inferior light-trapping and structural properties, the inverted pyramid structure outperforms the conventional pyramid textures and black silicone. The traditional pyramid textures and black silicon can only be accomplished with more advanced lithography, laser processing, etc. Importantly, our data demonstrate the feasibility of an inverted pyramidal structure of silicon via one-step Cu-catalyzed chemical etching (CCCE) in Cu (NO<sub>3</sub>)<sub>2</sub>/HF/H<sub>2</sub>O<sub>2</sub>/H<sub>2</sub>O solutions. The effects of etching time and reaction temperature on surface geometry and light trapping were systematically investigated. The conclusion shows that the inverted pyramid structure has ultra-low reflectivity of ~4.2% in the wavelength of 300~1000 nm; introduce of Cu particles can significantly accelerate the dissolution of the silicon wafer. The etching and the inverted pyramid structure formation mechanism are discussed. Inverted pyramid structure with outstanding anti-reflectivity includes useful applications throughout the manufacture of semi-conductive industry-compatible solar cells, and can have significant impacts on industry colleagues and populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-catalyzed%20chemical%20etching" title="Cu-catalyzed chemical etching">Cu-catalyzed chemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=inverted%20pyramid%20nanostructured" title=" inverted pyramid nanostructured"> inverted pyramid nanostructured</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection" title=" reflection"> reflection</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a> </p> <a href="https://publications.waset.org/abstracts/118084/nano-texturing-of-single-crystalline-silicon-via-cu-catalyzed-chemical-etching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Humidity Sensing Behavior of Graphene Oxide on Porous Silicon Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Hasani">Amirhossein Hasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamin%20Houshmand%20Sharifi"> Shamin Houshmand Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we investigate humidity sensing behavior of the graphene oxide with porous silicon substrate. By evaporation method, aluminum interdigital electrodes have been deposited onto porous silicon substrate. Then, by drop-casting method graphene oxide solution was deposited onto electrodes. The porous silicon was formed by electrochemical etching. The experimental results showed that using porous silicon substrate, we obtained two times larger sensitivity and response time compared with the results obtained with silicon substrate without porosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20sensor" title=" humidity sensor"> humidity sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a> </p> <a href="https://publications.waset.org/abstracts/13093/humidity-sensing-behavior-of-graphene-oxide-on-porous-silicon-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> A Dissolution Mechanism of the Silicon Carbide in HF/K₂Cr₂O₇ Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Bourenane">Karima Bourenane</a>, <a href="https://publications.waset.org/abstracts/search?q=Aissa%20Keffous"> Aissa Keffous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an experimental method on the etching reaction of p-type 6H-SiC, etching that was carried out in HF/K₂Cr₂O₇ solutions. The morphology of the etched surface was examined with varying K₂Cr₂O₇ concentrations, etching time and temperature solution. The surfaces of the etched samples were analyzed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Photoluminescence. The surface morphology of samples etched in HF/K₂Cr₂O₇ is shown to depend on the solution composition and bath temperature. The investigation of the HF/K₂Cr₂O₇ solutions on 6H-SiC surface shows that as K₂Cr₂O₇ concentration increases, the etch rate increases to reach a maximum value at about 0.75 M and then decreases. Similar behavior has been observed when the temperature of the solution is increased. The maximum etch rate is found for 80 °C. Taking into account the result, a polishing etching solution of 6H-SiC has been developed. In addition, the result is very interesting when, to date, no chemical polishing solution has been developed on silicon carbide (SiC). Finally, we have proposed a dissolution mechanism of the silicon carbide in HF/K₂Cr₂O₇ solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title="silicon carbide">silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemical%20etching" title=" Chemical etching"> Chemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a> </p> <a href="https://publications.waset.org/abstracts/184641/a-dissolution-mechanism-of-the-silicon-carbide-in-hfk2cr2o7-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Control of Oxide and Silicon Loss during Exposure of Silicon Waveguide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gu%20Zhonghua">Gu Zhonghua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control method of bulk silicon dioxide etching process to approach then expose silicon waveguide has been developed. It has been demonstrated by silicon waveguide of photonics devices. It is also able to generalize other applications. Use plasma dry etching to etch bulk silicon dioxide and approach oxide-silicon interface accurately, then use dilute HF wet etching to etch silicon dioxide residue layer to expose the silicon waveguide as soft landing. Plasma dry etch macro loading effect and endpoint technology was used to determine dry etch time accurately with a low wafer expose ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waveguide" title="waveguide">waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=etch" title=" etch"> etch</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20loss" title=" silicon loss"> silicon loss</a> </p> <a href="https://publications.waset.org/abstracts/34993/control-of-oxide-and-silicon-loss-during-exposure-of-silicon-waveguide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> Electrochemical Regeneration of GIC Adsorbent in a Continuous Electrochemical Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Hussain">S. N. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20A.%20Asghar"> H. M. A. Asghar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sattar"> H. Sattar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20P.%20L.%20Roberts"> E. P. L. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arvia™ introduced a novel technology consisting of adsorption followed by electrochemical regeneration with a graphite intercalation compound adsorbent that takes place in a single unit. The adsorbed species may lead to the formation of intermediate by-products products due to incomplete mineralization during electrochemical regeneration. Therefore, the investigation of breakdown products due to incomplete oxidation is of great concern regarding the commercial applications of this process. In the present paper, the formation of the chlorinated breakdown products during continuous process of adsorption and electrochemical regeneration based on a graphite intercalation compound adsorbent has been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIC" title="GIC">GIC</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20regeneration" title=" electrochemical regeneration"> electrochemical regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorphenols" title=" chlorphenols"> chlorphenols</a> </p> <a href="https://publications.waset.org/abstracts/13387/electrochemical-regeneration-of-gic-adsorbent-in-a-continuous-electrochemical-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Forecasting Etching Behavior Silica Sand Using the Design of Experiments Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kefaifi%20Aissa">Kefaifi Aissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahraoui%20Tahar"> Sahraoui Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kheloufi%20Abdelkrim"> Kheloufi Abdelkrim</a>, <a href="https://publications.waset.org/abstracts/search?q=Anas%20Sabiha"> Anas Sabiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannane%20Farouk"> Hannane Farouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to show how the Design of Experiments Method (DOE) can be put into use as a practical approach for silica sand etching behavior modeling during its primary step of leaching. In the present work, we have studied etching effect on particle size during a primary step of leaching process on Algerian silica sand with florid acid (HF) at 20% and 30 % during 4 and 8 hours. Therefore, a new purity of the sand is noted depending on the time of leaching. This study was expanded by a numerical approach using a method of experiment design, which shows the influence of each parameter and the interaction between them in the process and approved the obtained experimental results. This model is a predictive approach using hide software. Based on the measured parameters experimentally in the interior of the model, the use of DOE method can make it possible to predict the outside parameters of the model in question and can give us the optimize response without making the experimental measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20leaching" title="acid leaching">acid leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments%20method%28DOE%29" title=" design of experiments method(DOE)"> design of experiments method(DOE)</a>, <a href="https://publications.waset.org/abstracts/search?q=purity%20silica" title=" purity silica"> purity silica</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20etching" title=" silica etching"> silica etching</a> </p> <a href="https://publications.waset.org/abstracts/46244/forecasting-etching-behavior-silica-sand-using-the-design-of-experiments-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> Rapid Generation of Octagonal Pyramids on Silicon Wafer for Photovoltaics by Swift Anisotropic Chemical Etching Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Iqbal">Sami Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Hussain"> Azam Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiping%20Wu"> Weiping Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guo%20Xinli"> Guo Xinli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Zhang"> Tong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel octagonal upright micro-pyramid structure was generated by wet chemical anisotropic etching on a monocrystalline silicon wafer (100). The primary objectives are to reduce front surface reflectance of silicon wafers, improve wettability, enhance surface morphology, and maximize the area coverage by generated octagonal pyramids. Under rigorous control and observation, the etching process' response time was maintained precisely. The experimental outcomes show a significant decrease in the optical surface reflectance of silicon wafers, with the lowest reflectance of 8.98%, as well as enhanced surface structure, periodicity, and surface area coverage of more than 85%. The octagonal silicon pyramid was formed with a high etch rate of 0.41 um/min and a much shorter reaction time with the addition of hydrofluoric acid coupled with magnetic stirring (mechanical agitation) at 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=octagonal%20pyramids" title="octagonal pyramids">octagonal pyramids</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20etching" title=" rapid etching"> rapid etching</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20engineering" title=" surface engineering"> surface engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20reflectance" title=" surface reflectance"> surface reflectance</a> </p> <a href="https://publications.waset.org/abstracts/167589/rapid-generation-of-octagonal-pyramids-on-silicon-wafer-for-photovoltaics-by-swift-anisotropic-chemical-etching-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Busra%20Balli">Busra Balli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuncay%20Dikici"> Tuncay Dikici</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Toparli"> Mustafa Toparli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20implant" title="dental implant">dental implant</a>, <a href="https://publications.waset.org/abstracts/search?q=etching" title=" etching"> etching</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modifications" title=" surface modifications"> surface modifications</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/17922/enhancement-and-characterization-of-titanium-surfaces-with-sandblasting-and-acid-etching-for-dental-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20S.%20Klimin">Victor S. Klimin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20A.%20Rezvan"> Alexey A. Rezvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxim%20S.%20Solodovnik"> Maxim S. Solodovnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20A.%20Ageev"> Oleg A. Ageev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title="nanostructures">nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20chemical%20etching" title=" plasma chemical etching"> plasma chemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=modification%20structures" title=" modification structures"> modification structures</a> </p> <a href="https://publications.waset.org/abstracts/106770/nanoprofiling-of-gaas-surface-in-a-combined-low-temperature-plasma-for-microwave-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Green Synthesized Palladium Loaded Titanium Nanotube Arrays for Simultaneous Azo-Dye Degradation and Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yen-Ping%20Peng">Yen-Ping Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku-Fan%20Chen"> Ku-Fan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken-Lin%20Chang"> Ken-Lin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Sun"> Jian Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, palladium loaded titanium dioxide nanotube arrays (Pd/TNAs) was successfully synthesized by anodic oxidation etching method combined with microwave hydrothermal method, using tea or coffee as a green reductant. Pd/TNAs was employed as an electrode in a photoelectrochemcial (PEC) system to simultaneously remove azo-dye and to generate hydrogen in the anodic and cathodic chamber, respectively. The chemical and physical properties of as-synthesized Pd/TNAs were characterized by scanning electron microscopy (SEM), ultraviolet–visible spectroscopy (UV-vis), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM image indicates the diameter and the length of Pd/TNAs were approximately 300 nm and 2.5 μm, respectively. XPS analyses indicate that 1.13% (atomic %) of Pd was loaded onto the surface of TNAs. UV-vis results show that the band gap of TNAs was reduced from 3.2 eV to 2.37 eV after Pd loading. In addition, the electrochemical performances of Pd/TNAs were investigated by photocurrent density test and electrochemical impedance spectroscopy (EIS). The photocurrent (4.0 mA/cm²) of Pd /TNAs was higher than that of the uncoated TNAs (1.4 mA/cm²) at a bias potential of 1 V (vs. Ag/AgCl), indicating that Pd/TNAs-C can effectively separate photogenerated electrons and holes. The mechanism of our PEC system was proposed and discussed in detail in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pd%2FTNAs" title="Pd/TNAs">Pd/TNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical" title=" photoelectrochemical"> photoelectrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=azo-dye%20degradation" title=" azo-dye degradation"> azo-dye degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20generation" title=" hydrogen generation "> hydrogen generation </a> </p> <a href="https://publications.waset.org/abstracts/80237/green-synthesized-palladium-loaded-titanium-nanotube-arrays-for-simultaneous-azo-dye-degradation-and-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> Effects of Surface Roughness on a Unimorph Piezoelectric Micro-Electro-Mechanical Systems Vibrational Energy Harvester Using Finite Element Method Modeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean%20Marriz%20M.%20Manzano">Jean Marriz M. Manzano</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20D.%20Rosales"> Marc D. Rosales</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdaleno%20R.%20Vasquez%20Jr."> Magdaleno R. Vasquez Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Theresa%20G.%20De%20Leon"> Maria Theresa G. De Leon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the effects of surface roughness on a cantilever beam vibrational energy harvester. A silicon sample was fabricated using MEMS fabrication processes. When etching silicon using deep reactive ion etching (DRIE) at large etch depths, rougher surfaces are observed as a result of increased response in process pressure, amount of coil power and increased helium backside cooling readings. To account for the effects of surface roughness on the characteristics of the cantilever beam, finite element method (FEM) modeling was performed using actual roughness data from fabricated samples. It was found that when etching about 550um of silicon, root mean square roughness parameter, Sq, varies by 1 to 3 um (at 100um thick) across a 6-inch wafer. Given this Sq variation, FEM simulations predict an 8 to148 Hz shift in the resonant frequency while having no significant effect on the output power. The significant shift in the resonant frequency implies that careful consideration of surface roughness from fabrication processes must be done when designing energy harvesters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20reactive%20ion%20etching" title="deep reactive ion etching">deep reactive ion etching</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectromechanical%20systems" title=" microelectromechanical systems"> microelectromechanical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphysics%20analysis" title=" multiphysics analysis"> multiphysics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20energy%20harvester" title=" vibrational energy harvester"> vibrational energy harvester</a> </p> <a href="https://publications.waset.org/abstracts/115941/effects-of-surface-roughness-on-a-unimorph-piezoelectric-micro-electro-mechanical-systems-vibrational-energy-harvester-using-finite-element-method-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">808</span> Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Amiri">Mandana Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Nouhi"> Sima Nouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Azizan-Kalandaragh"> Yashar Azizan-Kalandaragh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H<sub>2</sub>O<sub>2</sub>. The presented electrode can be employed as sensing element for hydrogen peroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title="electrochemical sensor">electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanostructures" title=" silver nanostructures "> silver nanostructures </a> </p> <a href="https://publications.waset.org/abstracts/21938/electrodeposited-silver-nanostructures-a-non-enzymatic-sensor-for-hydrogen-peroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">807</span> The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahmad%20Raji">H. Ahmad Raji</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Nozari"> M. A. Nozari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settings <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20condition" title="electrochemical condition">electrochemical condition</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20strength" title=" ionic strength"> ionic strength</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=xhanthan%20gum" title=" xhanthan gum "> xhanthan gum </a> </p> <a href="https://publications.waset.org/abstracts/116666/the-viscosity-of-xanthan-gum-grout-with-different-ph-and-ionic-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">806</span> Comparing the Gap Formation around Composite Restorations in Three Regions of Tooth Using Optical Coherence Tomography (OCT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rima%20Zakzouk">Rima Zakzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasushi%20Shimada"> Yasushi Shimada</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Zhou"> Yuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Sumi"> Yasunori Sumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Junji%20Tagami"> Junji Tagami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Purpose: Swept source optical coherence tomography (OCT) is an interferometric imaging technique that has been recently used in cariology. In spite of progress made in adhesive dentistry, the composite restoration has been failing due to secondary caries which occur due to environmental factors in oral cavities. Therefore, a precise assessment to effective marginal sealing of restoration is highly required. The aim of this study was evaluating gap formation at composite/cavity walls interface with or without phosphoric acid etching using SS-OCT. Materials and Methods: Round tapered cavities (2×2 mm) were prepared in three locations, mid-coronal, cervical, and root of bovine incisors teeth in two groups (SE and PA Groups). While self-etching adhesive (Clearfil SE Bond) was applied for the both groups, Group PA had been already pretreated with phosphoric acid etching (K-Etchant gel). Subsequently, both groups were restored by Estelite Flow Quick Flowable Composite Resin. Following 5000 thermal cycles, three cross-sectionals were obtained from each cavity using OCT at 1310-nm wavelength at 0°, 60°, 120° degrees. Scanning was repeated after two months to monitor the gap progress. Then the average percentage of gap length was calculated using image analysis software, and the difference of mean between both groups was statistically analyzed by t-test. Subsequently, the results were confirmed by sectioning and observing representative specimens under Confocal Laser Scanning Microscope (CLSM). Results: The results showed that pretreatment with phosphoric acid etching, Group PA, led to significantly bigger gaps in mid-coronal and cervical compared to SE group, while in the root cavity no significant difference was observed between both groups. On the other hand, the gaps formed in root’s cavities were significantly bigger than those in mid-coronal and cervical within the same group. This study investigated the effect of phosphoric acid on gap length progress on the composite restorations. In conclusions, phosphoric acid etching treatment did not reduce the gap formation even in different regions of the tooth. Significance: The cervical region of tooth was more exposing to gap formation than mid-coronal region, especially when we added pre-etching treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title="image analysis">image analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20coherence%20tomography" title=" optical coherence tomography"> optical coherence tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoric%20acid%20etching" title=" phosphoric acid etching"> phosphoric acid etching</a>, <a href="https://publications.waset.org/abstracts/search?q=self-etch%20adhesives" title=" self-etch adhesives"> self-etch adhesives</a> </p> <a href="https://publications.waset.org/abstracts/61117/comparing-the-gap-formation-around-composite-restorations-in-three-regions-of-tooth-using-optical-coherence-tomography-oct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">805</span> Fabrication of Durable and Renegerable Superhydrophobic Coatings on Metallic Surfaces for Potential Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Varshney">Priya Varshney</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumya%20S.%20Mohapatra"> Soumya S. Mohapatra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabrication of anti-corrosion and self-cleaning superhydrophobic coatings for metallic surfaces which are regenerable and durable in the aggressive conditions has shown tremendous interest in materials science. In this work, the superhydrophobic coatings on metallic surfaces (aluminum, steel, copper) were prepared by two-step and one-step chemical etching process. In two-step process, roughness on surface was created by chemical etching and then passivation of roughened surface with low surface energy materials whereas, in one-step process, roughness on surface by chemical etching and passivation of surface with low surface energy materials were done in a single step. Beside this, the effect of etchant concentration and etching time on wettability and morphology was also studied. Thermal, mechanical, ultra-violet stability of these coatings were also tested. Along with this, regeneration of coatings and self-cleaning, corrosion resistance and water repelling characteristics were also studied. The surface morphology shows the presence of a rough microstuctures on the treated surfaces and the contact angle measurements confirms the superhydrophobic nature. It is experimentally observed that the surface roughness and contact angle increases with increase in etching time as well as with concentration of etchant. Superhydrophobic surfaces show the excellent self-cleaning behaviour. Coatings are found to be stable and maintain their superhydrophobicity in acidic and alkaline solutions. Water jet impact, floatation on water surface, and low temperature condensation tests prove the water-repellent nature of the coatings. These coatings are found to be thermal, mechanical and ultra-violet stable. These durable superhydrophobic metallic surfaces have potential industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title="superhydrophobic">superhydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=water-repellent" title=" water-repellent"> water-repellent</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-corrosion" title=" anti-corrosion"> anti-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a> </p> <a href="https://publications.waset.org/abstracts/61291/fabrication-of-durable-and-renegerable-superhydrophobic-coatings-on-metallic-surfaces-for-potential-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">804</span> Influence of Surface Preparation Effects on the Electrochemical Behavior of 2098-T351 Al–Cu–Li Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rejane%20Maria%20P.%20da%20Silva">Rejane Maria P. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20X.%20Milagre"> Mariana X. Milagre</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Victor%20de%20S.%20Araujo"> João Victor de S. Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20A.%20de%20Oliveira"> Leandro A. de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20A.%20Antunes"> Renato A. Antunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Isolda%20Costa"> Isolda Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Al-Cu-Li alloys are advanced materials for aerospace application because of their interesting mechanical properties and low density when compared with conventional Al-alloys. However, Al-Cu-Li alloys are susceptible to localized corrosion. The near-surface deformed layer (NSDL) induced by the rolling process during the production of the alloy and its removal by polishing can influence on the corrosion susceptibility of these alloys. In this work, the influence of surface preparation effects on the electrochemical activity of AA2098-T351 (Al–Cu–Li alloy) was investigated using a correlation between surface chemistry, microstructure, and electrochemical activity. Two conditions were investigated, polished and as-received surfaces of the alloy. The morphology of the two types of surfaces was investigated using confocal laser scanning microscopy (CLSM) and optical microscopy. The surface chemistry was analyzed by X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). Global electrochemical techniques (potentiodynamic polarization and EIS technique) and a local electrochemical technique (Localized Electrochemical Impedance Spectroscopy-LEIS) were used to examine the electrochemical activity of the surfaces. The results obtained in this study showed that in the as-received surface, the near-surface deformed layer (NSDL), which is composed of Mg-rich bands, influenced the electrochemical behavior of the alloy. The results showed higher electrochemical activity to the polished surface condition compared to the as-received one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Cu-Li%20alloys" title="Al-Cu-Li alloys">Al-Cu-Li alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20preparation%20effects" title=" surface preparation effects"> surface preparation effects</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20techniques" title=" electrochemical techniques"> electrochemical techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20corrosion" title=" localized corrosion"> localized corrosion</a> </p> <a href="https://publications.waset.org/abstracts/110369/influence-of-surface-preparation-effects-on-the-electrochemical-behavior-of-2098-t351-al-cu-li-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">803</span> Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambrish%20Singh">Ambrish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=EFM" title=" EFM"> EFM</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MD" title=" MD"> MD</a> </p> <a href="https://publications.waset.org/abstracts/115086/analysis-of-some-produced-inhibitors-for-corrosion-of-j55-steel-in-nacl-solution-saturated-with-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">802</span> Investigation of Mesoporous Silicon Carbonization Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Kargin">N. I. Kargin</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Safaraliev"> G. K. Safaraliev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Gusev"> A. S. Gusev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Sultanov"> A. O. Sultanov</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Siglovaya"> N. V. Siglovaya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ryndya"> S. M. Ryndya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Timofeev"> A. A. Timofeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an experimental and theoretical study of the processes of mesoporous silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and related wide-band-gap semiconductors is performed. Experimental samples were obtained by the method of chemical vapor deposition and investigated by scanning electron microscopy. Analytic expressions were obtained for the effective diffusion factor and carbon atoms diffusion length in a porous system. The proposed model takes into account the processes of Knudsen diffusion, coagulation and overgrowing of pores during the formation of a silicon carbide layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title="silicon carbide">silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching" title=" electrochemical etching"> electrochemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a> </p> <a href="https://publications.waset.org/abstracts/78976/investigation-of-mesoporous-silicon-carbonization-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">801</span> Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naima%20Boudieb">Naima Boudieb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Loucif%20Seaid"> Mohamed Loucif Seaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Rati"> Imad Rati</a>, <a href="https://publications.waset.org/abstracts/search?q=Imane%20Benammane"> Imane Benammane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=SIE" title=" SIE"> SIE</a>, <a href="https://publications.waset.org/abstracts/search?q=VC" title=" VC"> VC</a>, <a href="https://publications.waset.org/abstracts/search?q=PANI" title=" PANI"> PANI</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%283" title=" poly(3"> poly(3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-ethylenedioxythiophene" title="4-ethylenedioxythiophene">4-ethylenedioxythiophene</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDOT" title=" PEDOT"> PEDOT</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20sulfonate" title=" polystyrene sulfonate"> polystyrene sulfonate</a> </p> <a href="https://publications.waset.org/abstracts/182320/synthesis-and-electrochemical-characterization-of-a-copolymer-panipedotpss-for-application-in-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">800</span> Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Giwa">A. Giwa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Jung"> S. M. Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Fang"> W. Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kong"> J. Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Hasan"> S. W. Hasan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> MnO<sub>2</sub> nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO<sub>2</sub> nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO<sub>2</sub> resulted in very encouraging results with higher removal efficiencies of such pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-electrochemical" title="bio-electrochemical">bio-electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=novel" title=" novel"> novel</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/42431/bio-electrochemical-process-coupled-with-mno2-nanowires-for-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10