CINXE.COM

Search results for: synthetic zeolites

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: synthetic zeolites</title> <meta name="description" content="Search results for: synthetic zeolites"> <meta name="keywords" content="synthetic zeolites"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="synthetic zeolites" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="synthetic zeolites"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1128</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: synthetic zeolites</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1128</span> Silver Nanoparticles Impregnated Zeolitic Composites: Effect of the Silver Loading on Adsorption of Mercury (II)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhandos%20Tauanov">Zhandos Tauanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhawal%20Shah"> Dhawal Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Grigorios%20Itskos"> Grigorios Itskos</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasileios%20Inglezakis"> Vasileios Inglezakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of mercury (II) from aqueous phase is of utmost importance, as it is highly toxic and hazardous to the environment and human health. One way of removal of mercury (II) ions from aqueous solutions is by using adsorbents derived from coal fly ash (CFA), such as synthetic zeolites. In this work, we present the hydrothermal production of synthetic zeolites from CFA with conversion rate of 75%. In order to produce silver containing nanocomposites, synthetic zeolites are subsequently impregnated with various amounts of silver nanoparticles, from 0.2 to 2wt.%. All produced zeolites and parent materials are characterized by XRD, XRF, BET, SEM, and TEM to obtain morphological and microstructural data. Moreover, mercury (II) ions removal from aqueous solutions with initial concentration of 10 ppm is studied. According to results, zeolites and Ag-nanocomposites demonstrate much higher removal than parent CFA (up to 98%). In addition to this, we could observe a distinct adsorption behavior depending on the loading of Ag NPs in nanocomposites. A possible reaction mechanism for both zeolites and Ag-nanocomposites is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20fly%20ash" title="coal fly ash">coal fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury%20%28II%29%20removal" title=" mercury (II) removal"> mercury (II) removal</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolite" title=" synthetic zeolite"> synthetic zeolite</a> </p> <a href="https://publications.waset.org/abstracts/87756/silver-nanoparticles-impregnated-zeolitic-composites-effect-of-the-silver-loading-on-adsorption-of-mercury-ii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1127</span> Sustainable Biogas Upgrading: Characterization of Adsorption Properties of Tuff</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emanuele%20Bonamente">Emanuele Bonamente</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Aquino"> Andrea Aquino</a>, <a href="https://publications.waset.org/abstracts/search?q=Franco%20Cotana"> Franco Cotana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents experimental results from the analysis of Tuff for CO2 and H2S removal from biogas. Synthetic zeolites, commonly used for biogas upgrading, are characterized by excellent performance in terms of carbon dioxide adsorption, however, cost and environmental footprint represent a negative contribute to their sustainability. Natural zeolites contained in Tuff, a totally inexpensive byproduct of the construction industry, show very interesting selective adsorption properties, associated with its availability in regions, as central Italy, where biogas production from small scale plants is rapidly increasing. An in-house experimental device was assembled to measure the adsorption capacity of Tuff as a function of partial CO2 pressure for different temperatures (i.e. adsorption isotherms). Results show performances as high as 66% with respect to commercial zeolites (13X). A sensitivity analysis of different regeneration processes is also presented. A comparative analysis of natural and synthetic zeolites was finally performed using biogas samples obtained from different types of feedstock and characterized by varying CO2 and H2S content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas%20upgrading" title="biogas upgrading">biogas upgrading</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20adsorption" title=" CO2 adsorption"> CO2 adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=tuff" title=" tuff"> tuff</a> </p> <a href="https://publications.waset.org/abstracts/56266/sustainable-biogas-upgrading-characterization-of-adsorption-properties-of-tuff" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1126</span> Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Kunecki">Piotr Kunecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Wdowin"> Magdalena Wdowin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites" title=" synthetic zeolites"> synthetic zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20mercury%20removal" title=" elemental mercury removal"> elemental mercury removal</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream" title=" simulated gas stream"> simulated gas stream</a> </p> <a href="https://publications.waset.org/abstracts/161119/fly-ash-derived-zeolites-as-potential-sorbents-for-elemental-mercury-removal-from-simulated-gas-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1125</span> Pozzolanic Properties of Synthetic Zeolites as Materials Used for the Production of Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Styczen">Joanna Styczen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Franus"> Wojciech Franus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, cement production reaches 3-6 Gt per year. The production of one ton of cement is associated with the emission of 0.5 to 1 ton of carbon dioxide into the atmosphere, which means that this process is responsible for 5% of global CO2 emissions. Simply improving the cement manufacturing process is not enough. An effective solution is the use of pozzolanic materials, which can partly replace clinker and thus reduce energy consumption, and emission of pollutants and give mortars the desired characteristics, shaping their microstructure. Pozzolanic additives modify the phase composition of cement, reducing the amount of portlandite and changing the CaO/SiO2 ratio in the C-S-H phase. Zeolites are a pozzolanic additive that is not commonly used. Three types of zeolites were synthesized in work: Na-A, sodalite and ZSM-5 (these zeolites come from three different structural groups). Zeolites were obtained by hydrothermal synthesis of fly ash in an aqueous NaOH solution. Then, the pozzolanicity of the obtained materials was assessed. The pozzolanic activity of the zeolites synthesized for testing was tested by chemical methods in accordance with the ASTM C 379-65 standard. The method consisted in determining the percentage content of active ingredients (soluble silicon oxide and aluminum).in alkaline solutions, i.e. those that are potentially reactive towards calcium hydroxide. The highest amount of active silica was found in zeolite ZSM-5 - 88.15%. The amount of active Al2O3 was small - 1%. The smallest pozzolanic activity was found in the Na-A zeolite (active SiO2 - 4.4%, and active Al2O3 - 2.52). The tests carried out using the XRD, SEM, XRF and textural tests showed that the obtained zeolites are characterized by high porosity, which makes them a valuable addition to mortars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20properties" title="pozzolanic properties">pozzolanic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration" title=" hydration"> hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=alite" title=" alite"> alite</a> </p> <a href="https://publications.waset.org/abstracts/160446/pozzolanic-properties-of-synthetic-zeolites-as-materials-used-for-the-production-of-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1124</span> Investigation of Modified Microporous Materials for Environmental Depollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souhila%20Bendenia">Souhila Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Chahrazed%20Bendenia"> Chahrazed Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20Merad-Dib"> Hanaa Merad-Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Merabet"> Sarra Merabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Moulebhar"> Samia Moulebhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sid%20Ahmed%20Khantar"> Sid Ahmed Khantar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, environmental pollution is a major concernworldwide, threateninghumanhealth. Various techniques have been used, includingdegradation, filtration, advancedoxidationprocesses, ion exchange, membrane processes, and adsorption. The latter is one of the mostsuitablemethods, usinghighly efficient materials. In this study, NaX zeolite was modified with Cu or Ni at various rates. Following ion exchange, the samples were characterized by XRD, BET and SEM/EDX. After characterization, the exchanged zeolites were used for adsorption of various pollutants as CO2. Different thermodynamic parameters were studied such as Qst. XRD results show that the most intense peaks characteristic of 13X persist after the exchange reaction for all samples. The SEM images of our samples have uniform and regular crystal shapes. The results show that ion exhange with Cu or Ni affect the textural properties of X zeolites and prove that the exchange zeolites can be used as an adsorbent for depollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X%20zeolites%20%28NaX%29" title="X zeolites (NaX)">X zeolites (NaX)</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/174447/investigation-of-modified-microporous-materials-for-environmental-depollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1123</span> Experimental Study on the Molecular Spring Isolator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muchun%20Yu">Muchun Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xue%20Gao"> Xue Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Chen"> Qian Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a novel passive vibration isolation technology, molecular spring isolator (MSI) is investigated in this paper. An MSI consists of water and hydrophobic zeolites as working medium. Under periodic excitation, water molecules intrude into hydrophobic pores of zeolites when the pressure rises and water molecules extrude from hydrophobic pores when pressure drops. At the same time, energy is stored, released and dissipated. An MSI of piston-cylinder structure was designed in this work. Experiments were conducted to investigate the stiffness properties of MSI. The results show that MSI exhibits high-static-low dynamic (HSLD) stiffness. Furthermore, factors such as the quantity of zeolites, temperature, and ions in water are proved to have an influence on the stiffness properties of MSI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20zeolites" title="hydrophobic zeolites">hydrophobic zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20spring" title=" molecular spring"> molecular spring</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20isolation" title=" vibration isolation"> vibration isolation</a> </p> <a href="https://publications.waset.org/abstracts/29568/experimental-study-on-the-molecular-spring-isolator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1122</span> Lead Removal by Using the Synthesized Zeolites from Sugarcane Bagasse Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirirat%20Jangkorn">Sirirat Jangkorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Pornsawai%20Praipipat"> Pornsawai Praipipat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sugarcane bagasse ash of sugar factories is solid wastes that the richest source of silica. The alkali fusion method, quartz particles in material can be dissolved and they can be used as the silicon source for synthesizing silica-based materials such as zeolites. Zeolites have many advantages such as catalyst to improve the chemical reactions and they can also remove heavy metals in the water including lead. Therefore, this study attempts to synthesize zeolites from the sugarcane bagasse ash, investigate their structure characterizations and chemical components to confirm the happening of zeolites, and examine their lead removal efficiency through the batch test studies. In this study, the sugarcane bagasse ash was chosen as the silicon source to synthesize zeolites, X-ray diffraction (XRD) and X-ray fluorescence spectrometry (XRF) were used to verify the zeolite pattern structures and element compositions, respectively. The batch test studies in dose (0.05, 0.1, 0.15 g.), contact time (1, 2, 3), and pH (3, 5, 7) were used to investigate the lead removal efficiency by the synthesized zeolite. XRD analysis result showed the crystalline phase of zeolite pattern, and XRF result showed the main element compositions of the synthesized zeolite that were SiO₂ (50%) and Al₂O₃ (30%). The batch test results showed the best optimum conditions of the synthesized zeolite for lead removal were 0.1 g, 2 hrs., and 5 of dose, contact time, and pH, respectively. As a result, this study can conclude that the zeolites can synthesize from the sugarcane bagasse ash and they can remove lead in the water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse%20ash" title="sugarcane bagasse ash">sugarcane bagasse ash</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20wastes" title=" solid wastes"> solid wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a> </p> <a href="https://publications.waset.org/abstracts/99003/lead-removal-by-using-the-synthesized-zeolites-from-sugarcane-bagasse-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1121</span> Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esma%20Gizem%20Daskiran">Esma Gizem Daskiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Mustafa%20Daskiran"> Mehmet Mustafa Daskiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sand and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performance of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at %10 and %20 replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at %20 replacement level was effective in mitigating expansions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20silica%20reaction" title="alkali silica reaction">alkali silica reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20zeolite" title=" natural zeolite"> natural zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion" title=" expansion"> expansion</a> </p> <a href="https://publications.waset.org/abstracts/32640/effectiveness-of-natural-zeolite-in-mitigating-alkali-silica-reaction-expansions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1120</span> Hierarchical Zeolites as Potential Carriers of Curcumin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewelina%20Musielak">Ewelina Musielak</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Feliczak-Guzik"> Agnieszka Feliczak-Guzik</a>, <a href="https://publications.waset.org/abstracts/search?q=Izabela%20Nowak"> Izabela Nowak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the latest data, it is expected that the substances of therapeutic interest used will be as natural as possible. Therefore, active substances with the highest possible efficacy and low toxicity are sought. Among natural substances with therapeutic effects, those of plant origin stand out. Curcumin isolated from the Curcuma longa plant has proven to be particularly important from a medical point of view. Due to its ability to regulate many important transcription factors, cytokines, and protein kinases, curcumin has found use as an anti-inflammatory, antioxidant, antiproliferative, antiangiogenic, and anticancer agent. The unfavorable properties of curcumin, such as low solubility, poor bioavailability, and rapid degradation under neutral or alkaline pH conditions, limit its clinical application. These problems can be solved by combining curcumin with suitable carriers such as hierarchical zeolites. This is a new class of materials that exhibit several advantages. Hierarchical zeolites used as drug carriers enable delayed release of the active ingredient and promote drug transport to the desired tissues and organs. In addition, hierarchical zeolites play an important role in regulating micronutrient levels in the body and have been used successfully in cancer diagnosis and therapy. To apply curcumin to hierarchical zeolites synthesized from commercial FAU zeolite, solutions containing curcumin, carrier and acetone were prepared. The prepared mixtures were then stirred on a magnetic stirrer for 24 h at room temperature. The curcumin-filled hierarchical zeolites were drained into a glass funnel, where they were washed three times with acetone and distilled water, after which the obtained material was air-dried until completely dry. In addition, the effect of piperine addition to zeolite carrier containing a sufficient amount of curcumin was studied. The resulting products were weighed and the percentage of pure curcumin in the hierarchical zeolite was calculated. All the synthesized materials were characterized by several techniques: elemental analysis, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Fourier transform infrared (FT-IR), N2 adsorption, and X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The aim of the presented study was to improve the biological activity of curcumin by applying it to hierarchical zeolites based on FAU zeolite. The results showed that the loading efficiency of curcumin into hierarchical zeolites based on commercial FAU-type zeolite is enhanced by modifying the zeolite carrier itself. The hierarchical zeolites proved to be very good and efficient carriers of plant-derived active ingredients such as curcumin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carriers%20of%20active%20substances" title="carriers of active substances">carriers of active substances</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20zeolites" title=" hierarchical zeolites"> hierarchical zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=incorporation" title=" incorporation"> incorporation</a> </p> <a href="https://publications.waset.org/abstracts/149020/hierarchical-zeolites-as-potential-carriers-of-curcumin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1119</span> Synthesis of Zeolites from Bauxite and Kaolin: Effect of Synthesis Parameters on Competing Phases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bright%20Kwakye-Awuah">Bright Kwakye-Awuah</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Von-Kiti"> Elizabeth Von-Kiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Nkrumah"> Isaac Nkrumah</a>, <a href="https://publications.waset.org/abstracts/search?q=Baah%20Sefa-Ntiri"> Baah Sefa-Ntiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20D.%20Williams"> Craig D. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bauxite and kaolin from Ghana Bauxite Company mine site were used to synthesize zeolites. Bauxite served as the alumina source and kaolin the silica source. Synthesis variations include variation of aging time at constant crystallization time and variation of crystallization times at constant aging time. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR) were employed in the characterization of the raw samples as well as the synthesized samples. The results obtained showed that the transformations that occurred and the phase of the resulting products were coordinated by the aging time, crystallization time, alkaline concentration and Si/Al ratio of the system. Zeolites A, X, Y, analcime, Sodalite, and ZK-14 were some of the phases achieved. Zeolite LTA was achieved with short crystallization times of 3, 5, 18 and 24 hours and a maximum aging of 24 hours. Zeolite LSX was synthesized with 24 hr aging followed with 24 hr hydrothermal treatment whilst zeolite Y crystallized after 48 hr of aging and 24 hr crystallization. Prolonged crystallization time produced a mixed phased product. Prolonged aging times, on the other hand, did not yield any zeolite as the sample was amorphous. Increasing the alkaline content of the reaction mixture above 5M introduced sodalite phase in the final product. The properties of the final products were comparable to zeolites synthesized from pure chemical reagents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bauxite" title="bauxite">bauxite</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolin" title=" kaolin"> kaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolites" title=" zeolites"> zeolites</a> </p> <a href="https://publications.waset.org/abstracts/90949/synthesis-of-zeolites-from-bauxite-and-kaolin-effect-of-synthesis-parameters-on-competing-phases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1118</span> Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Feliczak%20Guzik">A. Feliczak Guzik</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nowak"> I. Nowak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20application" title="catalytic application">catalytic application</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20zeolites" title=" hierarchical zeolites"> hierarchical zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/148892/synthesis-characterization-and-catalytic-application-of-modified-hierarchical-zeolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1117</span> Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gayathri%20Devi%20V">Gayathri Devi V</a>, <a href="https://publications.waset.org/abstracts/search?q=Aravamudan%20Kannan"> Aravamudan Kannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Sircar"> Amit Sircar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20enthalpy" title="adsorption enthalpy">adsorption enthalpy</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalized%20zeolites" title=" functionalized zeolites"> functionalized zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20isotopes" title=" hydrogen isotopes"> hydrogen isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fusion" title=" nuclear fusion"> nuclear fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=physisorption" title=" physisorption"> physisorption</a> </p> <a href="https://publications.waset.org/abstracts/137108/quantum-chemical-investigation-of-hydrogen-isotopes-adsorption-on-metal-ion-functionalized-linde-type-a-and-faujasite-type-zeolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1116</span> Unlocking the Potential of Phosphatic Wastes: Sustainable Valorization Pathways for Synthesizing Functional Metal-Organic Frameworks and Zeolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammed%20Yimer">Ali Mohammed Yimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayalew%20H.%20Assen"> Ayalew H. Assen</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Belmabkhout"> Youssef Belmabkhout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study delves into sustainable approaches for valorizing phosphatic wastes, specifically phosphate mining wastes and phosphogypsum, which are byproducts of phosphate industries and pose significant environmental challenges due to their accumulation. We propose a unified strategic synthesis method aimed at converting these wastes into hetero-functional porous materials. Our approach involves isolating the primary components of phosphatic wastes, such as CaO, SiO2 and Al2O3 to fabricate functional porous materials falling into two distinct classes. Firstly, alumina and silica components are extracted or isolated to produce zeolites (including CAN, GIS, SOD, FAU, and LTA), characterized by a Si/Al ratio of less than 5. Secondly, residual calcium is utilized to synthesize calcium-based metal–organic frameworks (Ca-MOFs) employing various organic linkers like Ca-BDC, Ca-BTC and Ca-TCPB (SBMOF-2), thereby providing flexibility in material design. Characterization techniques including XRD, SEM-EDX, FTIR, and TGA-MS affirm successful material assembly, while sorption analyses using N2, CO2, and H2O demonstrate the porosity of the materials. Particularly noteworthy is the water/alcohol separation potential exhibited by the Ca-BTC MOF, owing to its optimal pore aperture size (∼3.4 Å). To enhance replicability and scalability, detailed protocols for each synthesis step and specific conditions for each process are provided, ensuring that the methodology can be easily reproduced and scaled up for industrial applications. This synthetic transformation approach represents a valorization route for converting phosphatic wastes into extended porous structures, promising significant environmental and economic benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium-based%20metal-organic%20frameworks" title="calcium-based metal-organic frameworks">calcium-based metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=low-silica%20zeolites" title=" low-silica zeolites"> low-silica zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20synthesis" title=" sustainable synthesis"> sustainable synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a> </p> <a href="https://publications.waset.org/abstracts/188791/unlocking-the-potential-of-phosphatic-wastes-sustainable-valorization-pathways-for-synthesizing-functional-metal-organic-frameworks-and-zeolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1115</span> Characterization of Monoclonal Antibodies Specific for Synthetic Cannabinoids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Nakayama">Hiroshi Nakayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Ito"> Yuji Ito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic cannabinoids have attracted much public attention recently in Japan. 1-pentyl-3-(1-naphthoyl)-indole (JWH-018), 1-pentyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), 1-(5-fluoropentyl)-3- (1-(2,2,3,3- tetramethylcyclopropyl)) indole (XLR-11) and 1-methyl-3- (1-admantyl) indole (JWH-018 adamantyl analog) are known as synthetic cannabinoids and are also considered dangerous illegal drugs in Japan. It has become necessary to develop sensitive and useful methods for detection of synthetic cannabinoids. We produced two monoclonal antibodies (MAb) against synthetic cannabinoids, named NT1 (IgG1) and NT2 (IgG1), using Hybridoma technology. The cross-reactivity of these produced MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize many kinds of synthetic cannabinoids analog. However, neither of these antibodies recognizes naphtoic acid, 1-methyl-indole and indole known as a raw material of synthetic cannabinoid. Thus, the MAbs produced in this study could be a useful tool for the detection of synthetic cannabinoids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ELISA" title="ELISA">ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclonal%20antibody" title=" monoclonal antibody"> monoclonal antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20cannabinoid" title=" synthetic cannabinoid"> synthetic cannabinoid</a> </p> <a href="https://publications.waset.org/abstracts/51072/characterization-of-monoclonal-antibodies-specific-for-synthetic-cannabinoids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1114</span> Design and Synthesis of Copper Doped Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal from Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feleke%20Terefe%20Fanta">Feleke Terefe Fanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The existence of heavy metals and microbial contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, has become a public concern as human population increases and land development continues. This is because effluents from chemical and pharmaceutical industries are directly discharged onto surrounding land, irrigation fields and surface water bodies. In the present study, we synthesised zeolites and copper- zeolite composite based adsorbent through cost effective and simple approach to mitigate the problem. The study presents determination of heavy metal content and microbial contamination level of waste water sample collected from Akaki river using zeolites and copper- doped zeolites as adsorbents. The synthesis of copper- zeolite X composite was carried out by ion exchange method of copper ions into zeolites frameworks. The optimum amount of copper ions loaded into the zeolites frameworks were studied using the pore size determination concept via iodine test. The copper- loaded zeolites were characterized by X-ray diffraction (XRD). The XRD analysis showed clear difference in phase purity of zeolite before and after copper ion exchange. The concentration of Cd, Cr, and Pb were determined in waste water sample using atomic absorption spectrophotometry. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. The concentration of Cd, Cr, and Pb decreased to 0.005, 0.052 and BDL mg/L for sample treated with bare zeolite X while a further decrease in concentration of Cd, Cr, and Pb (0.005, BDL and BDL) mg/L respectively was observed for the sample treated with copper- zeolite composite. The antimicrobial activity was investigated by exposing the total coliform to the Zeolite X and Copper-modified Zeolite X. Zeolite X and Copper-modified Zeolite X showed complete elimination of microbilas after 90 and 50 minutes contact time respectively. This demonstrates effectiveness of copper- zeolite composite as efficient disinfectant. To understand the mode of heavy metals removal and antimicrobial activity of the copper-loaded zeolites; the adsorbent dose, contact time, temperature was studied. Overall, the results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title="waste water">waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20doped%20zeolite%20x" title=" copper doped zeolite x"> copper doped zeolite x</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20heavy%20metal" title=" adsorption heavy metal"> adsorption heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfection" title=" disinfection"> disinfection</a> </p> <a href="https://publications.waset.org/abstracts/168687/design-and-synthesis-of-copper-doped-zeolite-composite-for-antimicrobial-activity-and-heavy-metal-removal-from-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1113</span> Compressive Strength of Synthetic Fiber Reinforced Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler">Soner Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Yavuz"> Demet Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuat%20Korkut"> Fuat Korkut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic fibers are commonly used in many civil engineering applications because of its some superior characteristics such as non-corrosive and cheapness. This study presents the results of experimental study on compressive strength of synthetic fiber reinforced concretes. Two types of polyamide (PA) synthetic fiber with the length of 12 and 54 mm are used for this study. The fiber volume ratio is kept as 0.25%, 0.75%, and 0.75% in all mixes. The plain concrete compressive strength is 36.2 MPa. The test results clearly show that the increase in compressive strength for synthetic fiber reinforced concretes is significant. The greatest increase in compressive strength is 23% for PA synthetic fiber reinforced concretes with 0.75% fiber volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20fibers" title="synthetic fibers">synthetic fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamide%20fibers" title=" polyamide fibers"> polyamide fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume" title=" fiber volume"> fiber volume</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/53592/compressive-strength-of-synthetic-fiber-reinforced-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1112</span> Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen">Jyh-Cherng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jie%20Lin"> Yi-Jie Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20fusion" title="alkali fusion">alkali fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/95849/reuse-of-municipal-solid-waste-incinerator-fly-ash-for-the-synthesis-of-zeolite-effects-of-different-operation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1111</span> Identification and Quantification of Acid Sites of M(X)X Zeolites (M= Cu2+ and/or Zn2+,X = Level of Exchange): An In situ FTIR Study Using Pyridine Adsorption/Desorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hammoudi">H. Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bendenia"> S. Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Batonneau-Gener"> I. Batonneau-Gener</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Comparot"> J. Comparot</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Marouf-Khelifa"> K. Marouf-Khelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khelifa"> A. Khelifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X zeolites were prepared by ion-exchange with Cu2+ and/or Zn2+ cations, at different concentrations of the exchange solution, and characterised by thermal analysis and nitrogen adsorption. The acidity of the samples was investigated by pyridine adsorption–desorption followed by in situ Fourier transform infrared (FTIR) spectroscopy. Desorption was carried out at 150, 250 and 350 °C. The objective is to estimate the nature and concentration of acid sites. A comparison between the binary (Cu(x)X, Zn(x)X) and ternary (CuZn(x)X) exchanges was also established (x = level of exchange) through the Cu(43)X, Zn(48)X and CuZn(50)X samples. Lewis acidity decreases overall with desorption temperature and the level of exchange. As the latter increases, there is a conversion of some Lewis sites into those of Brønsted during thermal treatment. In return, the concentration of Brønsted sites increases with the degree of exchange. The Brønsted acidity of CuZn(50)X at 350 °C is more important than the sum of those of Cu(43)X and Zn(48)X. The found values were 73, 32 and 15 μmol g-1, respectively. Besides, the concentration of Brønsted sites for CuZn(50)X increases with desorption temperature. These features indicate the presence of a synergistic effect amplifying the strength of these sites when Cu2+ and Zn2+ cations compete for the occupancy of sites distributed inside zeolitic cavities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidity" title="acidity">acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridine" title=" pyridine"> pyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolites" title=" zeolites"> zeolites</a> </p> <a href="https://publications.waset.org/abstracts/43779/identification-and-quantification-of-acid-sites-of-mxx-zeolites-m-cu2-andor-zn2x-level-of-exchange-an-in-situ-ftir-study-using-pyridine-adsorptiondesorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1110</span> Reactivity of Clay Minerals of the Hydrocarbon Reservoir Rocks and the Effect of Zeolites on Operation and Production Costs That the Oil Industry in the World Assumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Alberto%20R%C3%ADos%20Reyes">Carlos Alberto Ríos Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, clays have been considered as one of the main problems in the flow of fluids in hydrocarbon reservoirs. However, there is not known the significance of zeolites formed from the reactivity of clays and their effect not only on the costs of operations carried out by the oil industry in the world but also on production. The present work focused on understanding the interaction between clay minerals with brines and alkaline solutions used in the oil industry. For this, a comparative study was conducted where the reaction of sedimentary rocks under laboratory conditions was examined. Original and treated rocks were examined by X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM) to determine the changes that these rocks underwent upon contact with fluids of variable chemical composition. As a result, zeolite Linde Type A (LTA), sodalite (SOD), and cancrinite (CAN) can be formed after experimental work, which coincided with the dissolution of kaolinite and smectite. Results reveal that the Oil Industry should invest efforts and focus its gaze to understand at the pore scale the problem that could arise as a consequence of the clay-fluid interaction in hydrocarbon reservoir rocks due to the presence of clays in their porous system, as well as the formation of zeolites, which are better hydrocarbon absorbents. These issues could be generating losses in world production. We conclude that there is a critical situation that may be occurring in the stimulation of hydrocarbon reservoirs, where real solutions are necessary not only for the formulation of more efficient and effective injection fluids but also to contribute to the improvement of production and avoid considerable losses in operating costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title="clay minerals">clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolites" title=" zeolites"> zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=rock-fluid%20interaction" title=" rock-fluid interaction"> rock-fluid interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20work" title=" experimental work"> experimental work</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a> </p> <a href="https://publications.waset.org/abstracts/165555/reactivity-of-clay-minerals-of-the-hydrocarbon-reservoir-rocks-and-the-effect-of-zeolites-on-operation-and-production-costs-that-the-oil-industry-in-the-world-assumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1109</span> Synthesis of Nanoparticle Mordenite Zeolite for Dimethyl Ether Carbonylation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Haitao">Zhang Haitao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different size of nanoparticle mordenite zeolites were prepared by adding different soft template during hydrothermal process for carbonylation of dimethyl ether (DME) to methyl acetate (MA). The catalysts were characterized by X-ray diffraction, Ar adsorption-desorption, high-resolution transmission electron microscopy, NH3-temperature programmed desorption, scanning electron microscopy and Thermogravimetric. The characterization results confirmed that mordenite zeolites with small nanoparticle showed more strong acid sites which was the active site for carbonylation thus promoting conversion of DME and MA selectivity. Furthermore, the nanoparticle mordenite had increased the mass transfer efficiency which could suppress the formation of coke. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20mordenite" title="nanoparticle mordenite">nanoparticle mordenite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonylation" title=" carbonylation"> carbonylation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethyl%20ether" title=" dimethyl ether"> dimethyl ether</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20acetate" title=" methyl acetate"> methyl acetate</a> </p> <a href="https://publications.waset.org/abstracts/120694/synthesis-of-nanoparticle-mordenite-zeolite-for-dimethyl-ether-carbonylation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1108</span> Study of the Adsorptives Properties of Zeolites X Exchanged by the Cations Cu2 + and/or Zn2+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hammoudi">H. Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bendenia"> S. Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Batonneau-Gener"> I. Batonneau-Gener</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khelifa"> A. Khelifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying growing zeolites is due to their intrinsic physicochemical properties: a porous structure, regular, generating a large free volume, a high specific surface area, acidic properties of interest to the origin of their activity, selectivity energy and dimensional, leading to a screening phenomenon, hence the name of molecular sieves is generally attributed to them. Most of the special properties of zeolites have been valued as direct applications such as ion exchange, adsorption, separation and catalysis. Due to their crystalline structure stable, their large pore volume and their high content of cation X zeolites are widely used in the process of adsorption and separation. The acidic properties of zeolites X and interesting selectivity conferred on them their porous structure is also have potential catalysts. The study presented in this manuscript is devoted to the chemical modification of an X zeolite by cation exchange. Ion exchange of zeolite NaX by Zn 2 + cations and / or Cu 2 + is gradually conducted by following the evolution of some of its characteristics: crystallinity by XRD, micropore volume by nitrogen adsorption. Once characterized, the different samples will be used for the adsorption of propane and propylene. Particular attention is paid thereafter, on the modeling of adsorption isotherms. In this vein, various equations of adsorption isotherms and localized mobile, some taking into account the adsorbate-adsorbate interactions, are used to describe the experimental isotherms. We also used the Toth equation, a mathematical model with three parameters whose adjustment requires nonlinear regression. The last part is dedicated to the study of acid properties of Cu (x) X, Zn (x) X and CuZn (x) X, with the adsorption-desorption of pyridine followed by IR. The effect of substitution at different rates of Na + by Cu2 + cations and / or Zn 2 +, on the crystallinity and on the textural properties was treated. Some results on the morphology of the crystallites and the thermal effects during a temperature rise, obtained by scanning electron microscopy and DTA-TGA thermal analyzer, respectively, are also reported. The acidity of our different samples was also studied. Thus, the nature and strength of each type of acidity are estimated. The evaluation of these various features will provide a comparison between Cu (x) X, Zn (x) X and CuZn (x) X. One study on adsorption of C3H8 and C3H6 in NaX, Cu (x) X , Zn (x) x and CuZn (x) x has been undertaken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=acidity" title=" acidity"> acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/43774/study-of-the-adsorptives-properties-of-zeolites-x-exchanged-by-the-cations-cu2-andor-zn2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1107</span> Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Prayaga">Lakshmi Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prayaga.%20Aaron%20Wade"> Chandra Prayaga. Aaron Wade</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Shankar%20Mallu"> Gopi Shankar Mallu</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsha%20Satya%20Pola"> Harsha Satya Pola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data%20generation" title="synthetic data generation">synthetic data generation</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20networks" title=" generative adversarial networks"> generative adversarial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20tabular%20GAN" title=" conditional tabular GAN"> conditional tabular GAN</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20copula" title=" Gaussian copula"> Gaussian copula</a> </p> <a href="https://publications.waset.org/abstracts/183000/generative-ai-a-comparison-of-conditional-tabular-generative-adversarial-networks-and-conditional-tabular-generative-adversarial-networks-with-gaussian-copula-in-generating-synthetic-data-with-synthetic-data-vault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1106</span> Hierarchical Zeolites as Catalysts for Cyclohexene Epoxidation Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Feliczak-Guzik">Agnieszka Feliczak-Guzik</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Szczyglewska"> Paulina Szczyglewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Izabela%20Nowak"> Izabela Nowak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A catalyst-assisted oxidation reaction is one of the key reactions exploited by various industries. Their conductivity yields essential compounds and intermediates, such as alcohols, epoxides, aldehydes, ketones, and organic acids. Researchers are devoting more and more attention to developing active and selective materials that find application in many catalytic reactions, such as cyclohexene epoxidation. This reaction yields 1,2-epoxycyclohexane and 1,2-diols as the main products. These compounds are widely used as intermediates in the perfume industry and synthesizing drugs and lubricants. Hence, our research aimed to use hierarchical zeolites modified with transition metal ions, e.g., Nb, V, and Ta, in the epoxidation reaction of cyclohexene using microwaveheating. Hierarchical zeolites are materials with secondary porosity, mainly in the mesoporous range, compared to microporous zeolites. In the course of the research, materials based on two commercial zeolites, with Faujasite (FAU) and Zeolite Socony Mobil-5 (ZSM-5) structures, were synthesized and characterized by various techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and low-temperature nitrogen adsorption/desorption isotherms. The materials obtained were then used in a cyclohexene epoxidation reaction, which was carried out as follows: catalyst (0.02 g), cyclohexene (0.1 cm3), acetonitrile (5 cm3) and dihydrogen peroxide (0.085 cm3) were placed in a suitable glass reaction vessel with a magnetic stirrer inside in a microwave reactor. Reactions were carried out at 45° C for 6 h (samples were taken every 1 h). The reaction mixtures were filtered to separate the liquid products from the solid catalyst and then transferred to 1.5 cm3 vials for chromatographic analysis. The test techniques confirmed the acquisition of additional secondary porosity while preserving the structure of the commercial zeolite (XRD and low-temperature nitrogen adsorption/desorption isotherms). The results of the activity of the hierarchical catalyst modified with niobium in the cyclohexene epoxidation reaction indicate that the conversion of cyclohexene, after 6 h of running the process, is about 70%. As the main product of the reaction, 2-cyclohexanediol was obtained (selectivity > 80%). In addition to the mentioned product, adipic acid, cyclohexanol, cyclohex-2-en-1-one, and 1,2-epoxycyclohexane were also obtained. Furthermore, in a blank test, no cyclohexene conversion was obtained after 6 h of reaction. Acknowledgments The work was carried out within the project “Advanced biocomposites for tomorrow’s economy BIOG-NET,” funded by the Foundation for Polish Science from the European Regional Development Fund (POIR.04.04.00-00-1792/18-00. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title="epoxidation">epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20reactions" title=" oxidation reactions"> oxidation reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20zeolites" title=" hierarchical zeolites"> hierarchical zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/162758/hierarchical-zeolites-as-catalysts-for-cyclohexene-epoxidation-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1105</span> Recovery of Heavy Metals by Ion Exchange on the Zeolite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Menad">K. Menad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Faddeg"> A. Faddeg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zeolites are a family of mineral compounds. With special properties that have led to several important industrial applications. Ion exchange has enabled the first industrial application in the field of water treatment. The exchange by aqueous pathway is the method most used in the case of such microporous materials and this technique will be used in this work. The objective of this work is to find performance materials for the recovery of heavy metals such as cadmium. The study is to compare the properties of different ion exchange zeolite Na-X, Na-A, their physical mixture and the composite A (LTA) / X (FAU). After the synthesis of various zeolites X and A, it was designed a model Core-Shell to form a composite zeolite A on zeolite X. Finally, ion exchange studies were performed on these zeolite materials. The cation is exclusively tested for cadmium, a toxic element and is harmful to health and the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zeolite%20A" title="zeolite A">zeolite A</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite%20X" title=" zeolite X"> zeolite X</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/33493/recovery-of-heavy-metals-by-ion-exchange-on-the-zeolite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1104</span> Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feleke%20Terefe%20Fanta">Feleke Terefe Fanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WASTE%20WATER" title="WASTE WATER">WASTE WATER</a>, <a href="https://publications.waset.org/abstracts/search?q=COPPER%20DOPED%20ZEOITE%20X" title=" COPPER DOPED ZEOITE X"> COPPER DOPED ZEOITE X</a>, <a href="https://publications.waset.org/abstracts/search?q=ADSORPITION" title=" ADSORPITION"> ADSORPITION</a>, <a href="https://publications.waset.org/abstracts/search?q=HEAVY%20METAL" title=" HEAVY METAL"> HEAVY METAL</a>, <a href="https://publications.waset.org/abstracts/search?q=DISINFECTION" title=" DISINFECTION"> DISINFECTION</a>, <a href="https://publications.waset.org/abstracts/search?q=AKAKI%20RIVER" title=" AKAKI RIVER"> AKAKI RIVER</a> </p> <a href="https://publications.waset.org/abstracts/179364/design-and-synthesis-of-copper-zeolite-composite-for-antimicrobial-activity-and-heavy-metal-removal-from-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1103</span> Effect of the Binary and Ternary Exchanges on Crystallinity and Textural Properties of X Zeolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hammoudi">H. Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bendenia"> S. Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Marouf-Khelifa"> K. Marouf-Khelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Marouf"> R. Marouf</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Schott"> J. Schott</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khelifa"> A. Khelifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ionic exchange of the NaX zeolite by Cu2+ and/or Zn2+ cations is progressively driven while following the development of some of its characteristic: crystallinity by XR diffraction, profile of isotherms, RI criterion, isosteric adsorption heat and microporous volume using both the Dubinin–Radushkevich (DR) equation and the t-plot through the Lippens–de Boer method which also makes it possible to determine the external surface area. Results show that the cationic exchange process, in the case of Cu2+ introduced at higher degree, is accompanied by crystalline degradation for Cu(x)X, in contrast to Zn2+-exchanged zeolite X. This degradation occurs without significant presence of mesopores, because the RI criterion values were found to be much lower than 2.2. A comparison between the binary and ternary exchanges shows that the curves of CuZn(x)X are clearly below those of Zn(x)X and Cu(x)X, whatever the examined parameter. On the other hand, the curves relating to CuZn(x)X tend towards those of Cu(x)X. This would again confirm the sensitivity of the crystalline structure of CuZn(x)X with respect to the introduction of Cu2+ cations. An original result is the distortion of the zeolitic framework of X zeolites at middle exchange degree, when Cu2+ competes with another divalent cation, such as Zn2+, for the occupancy of sites distributed within zeolitic cavities. In other words, the ternary exchange accentuates the crystalline degradation of X zeolites. An unexpected result also is the no correlation between crystal damage and the external surface area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallinity" title=" crystallinity"> crystallinity</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/43775/effect-of-the-binary-and-ternary-exchanges-on-crystallinity-and-textural-properties-of-x-zeolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1102</span> Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Boualem">K. Boualem</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yahiaoui"> T. Yahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Azzi"> A. Azzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-&omega; SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20control" title="active control">active control</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20jet" title=" synthetic jet"> synthetic jet</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%20airfoil" title=" NACA airfoil"> NACA airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/58346/numerical-investigation-of-improved-aerodynamic-performance-of-a-naca-0015-airfoil-using-synthetic-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1101</span> The Role of Synthetic Data in Aerial Object Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ava%20Dodd">Ava Dodd</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Adams"> Jonathan Adams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data" title=" synthetic data"> synthetic data</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOv4" title=" YOLOv4"> YOLOv4</a> </p> <a href="https://publications.waset.org/abstracts/139194/the-role-of-synthetic-data-in-aerial-object-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1100</span> The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahryar%20Aftabi">Shahryar Aftabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Fathi"> Saeed Fathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Aminfar"> Mohammad H. Aminfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng&#39;s and Wroth-Wood&#39;s methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil&#39;s strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=California%20bearing%20ratio" title="California bearing ratio">California bearing ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=CBR" title=" CBR"> CBR</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear" title=" direct shear"> direct shear</a>, <a href="https://publications.waset.org/abstracts/search?q=fall-cone" title=" fall-cone"> fall-cone</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20silt" title=" sandy silt"> sandy silt</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/126569/the-effect-of-zeolite-on-sandy-silt-soil-mechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1099</span> Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaxin%20Bi">Yaxin Bi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LSTM" title="LSTM">LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=GAN" title=" GAN"> GAN</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data" title=" synthetic data"> synthetic data</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20AI" title=" generative AI"> generative AI</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20precursors" title=" seismic precursors"> seismic precursors</a> </p> <a href="https://publications.waset.org/abstracts/187478/generating-swarm-satellite-data-using-long-short-term-memory-and-generative-adversarial-networks-for-the-detection-of-seismic-precursors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10