CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–38 of 38 results for author: <span class="mathjax">Brauner, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-th" aria-role="search"> Searching in archive <strong>hep-th</strong>. <a href="/search/?searchtype=author&query=Brauner%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Brauner, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Brauner%2C+T&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Brauner, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14858">arXiv:2412.14858</a> <span> [<a href="https://arxiv.org/pdf/2412.14858">pdf</a>, <a href="https://arxiv.org/format/2412.14858">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Diagrammatic Derivation of Hidden Zeros and Exact Factorisation of Pion Scattering Amplitudes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/hep-th?searchtype=author&query=Wang%2C+T">Tianzhi Wang</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Roest%2C+D">Diederik Roest</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14858v1-abstract-short" style="display: inline;"> Pion scattering amplitudes were recently found to vanish on specific kinematic loci, and to factorise close to these loci into a product of two lower-point amplitudes of an extended theory. We propose a diagrammatic representation of pion amplitudes that makes their vanishing on the loci manifest diagram by diagram. Moreover, we provide evidence that there is a closed-form expression for the ampli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14858v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14858v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14858v1-abstract-full" style="display: none;"> Pion scattering amplitudes were recently found to vanish on specific kinematic loci, and to factorise close to these loci into a product of two lower-point amplitudes of an extended theory. We propose a diagrammatic representation of pion amplitudes that makes their vanishing on the loci manifest diagram by diagram. Moreover, we provide evidence that there is a closed-form expression for the amplitudes that generalises the near-zero factorisation in an exact manner, not only close to the loci but for all kinematic configurations. Our approach crucially relies on a novel formulation of the effective field theory of pions, in which tree-level scattering amplitudes are extracted from classical field equations for a set of covariantly conserved currents and emergent composite gauge fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14858v1-abstract-full').style.display = 'none'; document.getElementById('2412.14858v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14518">arXiv:2404.14518</a> <span> [<a href="https://arxiv.org/pdf/2404.14518">pdf</a>, <a href="https://arxiv.org/format/2404.14518">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-031-48378-3">10.1007/978-3-031-48378-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective Field Theory for Spontaneously Broken Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14518v1-abstract-short" style="display: inline;"> This is a preprint of an open-access book published by Springer Cham. The book gives an up-to-date overview of the physics of spontaneously broken continuous symmetry from the point of view of effective field theory. Upon building up the necessary foundations, the text reviews the classification of Nambu-Goldstone bosons and then focuses on the construction of the effective-field-theoretic descrip… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14518v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14518v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14518v1-abstract-full" style="display: none;"> This is a preprint of an open-access book published by Springer Cham. The book gives an up-to-date overview of the physics of spontaneously broken continuous symmetry from the point of view of effective field theory. Upon building up the necessary foundations, the text reviews the classification of Nambu-Goldstone bosons and then focuses on the construction of the effective-field-theoretic description of their dynamics. Both internal and spacetime broken symmetries are covered, including numerous illustrative examples and a few selected applications, worked out in greater detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14518v1-abstract-full').style.display = 'none'; document.getElementById('2404.14518v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">400 pages; preprint of an open-access book published by Springer Cham. Comments are welcome, no citation requests please</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Lecture Notes in Physics, volume 1023 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04479">arXiv:2303.04479</a> <span> [<a href="https://arxiv.org/pdf/2303.04479">pdf</a>, <a href="https://arxiv.org/format/2303.04479">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.16.2.051">10.21468/SciPostPhys.16.2.051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dipole symmetries from the topology of the phase space and the constraints on the low-energy spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Yamamoto%2C+N">Naoki Yamamoto</a>, <a href="/search/hep-th?searchtype=author&query=Yokokura%2C+R">Ryo Yokokura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04479v3-abstract-short" style="display: inline;"> We demonstrate the general existence of a local dipole conservation law in bosonic field theory. The scalar charge density arises from the symplectic form of the system, whereas the tensor current descends from its stress tensor. The algebra of spatial translations becomes centrally extended in presence of field configurations with a finite nonzero charge. Furthermore, when the symplectic form is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04479v3-abstract-full').style.display = 'inline'; document.getElementById('2303.04479v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04479v3-abstract-full" style="display: none;"> We demonstrate the general existence of a local dipole conservation law in bosonic field theory. The scalar charge density arises from the symplectic form of the system, whereas the tensor current descends from its stress tensor. The algebra of spatial translations becomes centrally extended in presence of field configurations with a finite nonzero charge. Furthermore, when the symplectic form is closed but not exact, the system may, surprisingly, lack a well-defined momentum density. This leads to a theorem for the presence of additional light modes in the system whenever the short-distance physics is governed by a translationally invariant local field theory. We also illustrate this mechanism for axion electrodynamics as an example of a system with Nambu--Goldstone modes of higher-form symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04479v3-abstract-full').style.display = 'none'; document.getElementById('2303.04479v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 2 figures; v2: expanded discussion and updated reference list; v3: minor revision and further update of the reference list</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-TH-2502 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 16, 051 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06902">arXiv:2302.06902</a> <span> [<a href="https://arxiv.org/pdf/2302.06902">pdf</a>, <a href="https://arxiv.org/format/2302.06902">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2023)163">10.1007/JHEP07(2023)163 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral soliton lattice at next-to-leading order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Kole%C5%A1ov%C3%A1%2C+H">Helena Kole拧ov谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06902v2-abstract-short" style="display: inline;"> We compute the free energy of the chiral soliton lattice state in quantum chromodynamics (QCD) at nonzero baryon chemical potential, temperature and external magnetic field at the next-to-leading order of chiral perturbation theory. This extends previous work where only a special limit of the chiral soliton lattice, the domain wall, was considered. Our results therefore serve as a consistency chec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06902v2-abstract-full').style.display = 'inline'; document.getElementById('2302.06902v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06902v2-abstract-full" style="display: none;"> We compute the free energy of the chiral soliton lattice state in quantum chromodynamics (QCD) at nonzero baryon chemical potential, temperature and external magnetic field at the next-to-leading order of chiral perturbation theory. This extends previous work where only a special limit of the chiral soliton lattice, the domain wall, was considered. Our results therefore serve as a consistency check of the previously established phase diagram of QCD at moderate magnetic fields and temperature and sub-nuclear baryon chemical potentials. Moreover, we use the result for the free energy to determine the magnetization carried by the domain wall and the chiral soliton lattice, both at the next-to-leading order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06902v2-abstract-full').style.display = 'none'; document.getElementById('2302.06902v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 5 figures; published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03199">arXiv:2210.03199</a> <span> [<a href="https://arxiv.org/pdf/2210.03199">pdf</a>, <a href="https://arxiv.org/format/2210.03199">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Snowmass Theory Frontier: Effective Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Baumgart%2C+M">Matthew Baumgart</a>, <a href="/search/hep-th?searchtype=author&query=Bishara%2C+F">Fady Bishara</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Brod%2C+J">Joachim Brod</a>, <a href="/search/hep-th?searchtype=author&query=Cabass%2C+G">Giovanni Cabass</a>, <a href="/search/hep-th?searchtype=author&query=Cohen%2C+T">Timothy Cohen</a>, <a href="/search/hep-th?searchtype=author&query=Craig%2C+N">Nathaniel Craig</a>, <a href="/search/hep-th?searchtype=author&query=de+Rham%2C+C">Claudia de Rham</a>, <a href="/search/hep-th?searchtype=author&query=Draper%2C+P">Patrick Draper</a>, <a href="/search/hep-th?searchtype=author&query=Fitzpatrick%2C+A+L">A. Liam Fitzpatrick</a>, <a href="/search/hep-th?searchtype=author&query=Gorbahn%2C+M">Martin Gorbahn</a>, <a href="/search/hep-th?searchtype=author&query=Hartnoll%2C+S">Sean Hartnoll</a>, <a href="/search/hep-th?searchtype=author&query=Ivanov%2C+M">Mikhail Ivanov</a>, <a href="/search/hep-th?searchtype=author&query=Kovtun%2C+P">Pavel Kovtun</a>, <a href="/search/hep-th?searchtype=author&query=Kundu%2C+S">Sandipan Kundu</a>, <a href="/search/hep-th?searchtype=author&query=Lewandowski%2C+M">Matthew Lewandowski</a>, <a href="/search/hep-th?searchtype=author&query=Liu%2C+H">Hong Liu</a>, <a href="/search/hep-th?searchtype=author&query=Lu%2C+X">Xiaochuan Lu</a>, <a href="/search/hep-th?searchtype=author&query=Mezei%2C+M">Mark Mezei</a>, <a href="/search/hep-th?searchtype=author&query=Mirbabayi%2C+M">Mehrdad Mirbabayi</a>, <a href="/search/hep-th?searchtype=author&query=Moldanazarova%2C+U">Ulserik Moldanazarova</a>, <a href="/search/hep-th?searchtype=author&query=Nicolis%2C+A">Alberto Nicolis</a>, <a href="/search/hep-th?searchtype=author&query=Penco%2C+R">Riccardo Penco</a>, <a href="/search/hep-th?searchtype=author&query=Goldberger%2C+W">Walter Goldberger</a>, <a href="/search/hep-th?searchtype=author&query=Reece%2C+M">Matthew Reece</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03199v1-abstract-short" style="display: inline;"> We summarize recent progress in the development, application, and understanding of effective field theories and highlight promising directions for future research. This Report is prepared as the TF02 "Effective Field Theory" topical group summary for the Theory Frontier as part of the Snowmass 2021 process. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03199v1-abstract-full" style="display: none;"> We summarize recent progress in the development, application, and understanding of effective field theories and highlight promising directions for future research. This Report is prepared as the TF02 "Effective Field Theory" topical group summary for the Theory Frontier as part of the Snowmass 2021 process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03199v1-abstract-full').style.display = 'none'; document.getElementById('2210.03199v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10110">arXiv:2203.10110</a> <span> [<a href="https://arxiv.org/pdf/2203.10110">pdf</a>, <a href="https://arxiv.org/format/2203.10110">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Snowmass White Paper: Effective Field Theories for Condensed Matter Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Hartnoll%2C+S+A">Sean A. Hartnoll</a>, <a href="/search/hep-th?searchtype=author&query=Kovtun%2C+P">Pavel Kovtun</a>, <a href="/search/hep-th?searchtype=author&query=Liu%2C+H">Hong Liu</a>, <a href="/search/hep-th?searchtype=author&query=Mezei%2C+M">M谩rk Mezei</a>, <a href="/search/hep-th?searchtype=author&query=Nicolis%2C+A">Alberto Nicolis</a>, <a href="/search/hep-th?searchtype=author&query=Penco%2C+R">Riccardo Penco</a>, <a href="/search/hep-th?searchtype=author&query=Shao%2C+S">Shu-Heng Shao</a>, <a href="/search/hep-th?searchtype=author&query=Son%2C+D+T">Dam Thanh Son</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10110v1-abstract-short" style="display: inline;"> We review recent progress and a number of future directions for applications of effective field theory methods to condensed matter systems broadly defined. Our emphasis is on areas that have allowed a fertile exchange of ideas between high energy physics and many-body theory. We discuss developments in the effective field theory of spontaneous symmetry breaking, of hydrodynamics and non-equilibriu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10110v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10110v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10110v1-abstract-full" style="display: none;"> We review recent progress and a number of future directions for applications of effective field theory methods to condensed matter systems broadly defined. Our emphasis is on areas that have allowed a fertile exchange of ideas between high energy physics and many-body theory. We discuss developments in the effective field theory of spontaneous symmetry breaking, of hydrodynamics and non-equilibrium dynamics more generally, fracton phases of matter, and dualities between 2+1 dimensional field theories. We furthermore discuss the application of effective field theory to non-Fermi liquids, the dynamics of entanglement entropy and to condensed matter aspects of cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10110v1-abstract-full').style.display = 'none'; document.getElementById('2203.10110v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021; 13 + 20 pages; 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00022">arXiv:2203.00022</a> <span> [<a href="https://arxiv.org/pdf/2203.00022">pdf</a>, <a href="https://arxiv.org/format/2203.00022">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.231601">10.1103/PhysRevLett.128.231601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fractional soft limits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Esposito%2C+A">Angelo Esposito</a>, <a href="/search/hep-th?searchtype=author&query=Penco%2C+R">Riccardo Penco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00022v2-abstract-short" style="display: inline;"> It is a common lore that the amplitude for a scattering process involving one soft Nambu--Goldstone boson should scale like an integer power of the soft momentum. We revisit this expectation by considering the $2 \to 2$ scattering of phonons in solids. We show that, depending on the helicities of the phonons involved in the scattering process, the scattering amplitude may in fact vanish like a fra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00022v2-abstract-full').style.display = 'inline'; document.getElementById('2203.00022v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00022v2-abstract-full" style="display: none;"> It is a common lore that the amplitude for a scattering process involving one soft Nambu--Goldstone boson should scale like an integer power of the soft momentum. We revisit this expectation by considering the $2 \to 2$ scattering of phonons in solids. We show that, depending on the helicities of the phonons involved in the scattering process, the scattering amplitude may in fact vanish like a fractional power of the soft momentum. This is a peculiarity of the 4-point amplitude, which can be traced back to (1) the (spontaneous or explicit) breaking of Lorentz invariance, and (2) the approximately collinear kinematics arising when one of the phonons becomes soft. Our results extend to the general class of non-relativistic shift-invariant theories of a vector field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00022v2-abstract-full').style.display = 'none'; document.getElementById('2203.00022v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 231601 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01393">arXiv:2201.01393</a> <span> [<a href="https://arxiv.org/pdf/2201.01393">pdf</a>, <a href="https://arxiv.org/format/2201.01393">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2022)086">10.1007/JHEP03(2022)086 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonrelativistic effective field theories with enhanced symmetries and soft behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Mojahed%2C+M+A">Martin A. Mojahed</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01393v1-abstract-short" style="display: inline;"> We systematically explore the landscape of nonrelativistic effective field theories with a local $S$-matrix and enhanced symmetries and soft behavior. The exploration is carried out using both conventional quantum field theory methods based on symmetry arguments, and recently developed on-shell recursion relations. We show that, in contrary to relativistic theories, enhancement of the soft limit o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01393v1-abstract-full').style.display = 'inline'; document.getElementById('2201.01393v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01393v1-abstract-full" style="display: none;"> We systematically explore the landscape of nonrelativistic effective field theories with a local $S$-matrix and enhanced symmetries and soft behavior. The exploration is carried out using both conventional quantum field theory methods based on symmetry arguments, and recently developed on-shell recursion relations. We show that, in contrary to relativistic theories, enhancement of the soft limit of scattering amplitudes in nonrelativistic theories is generally not a byproduct of symmetry alone, but requires additional low-energy data. Sufficient conditions for enhanced scattering amplitudes can be derived by combining symmetries and dispersion relations of the scattered particles. This has direct consequences for the infrared dynamics that different types of nonrelativistic Nambu-Goldstone bosons can exhibit. We then use a bottom-up soft bootstrap approach to narrow down the landscape of nonrelativistic effective field theories that possess a consistent low-energy $S$-matrix. We recover two exceptional theories of a complex Schr枚dinger-type scalar, namely the $\mathbb{C} P^1$ nonlinear sigma model and the Schr枚dinger-Dirac-Born-Infeld theory. Moreover, we use soft recursion to prove a no-go theorem ruling out the existence of other exceptional Schr枚dinger-type theories. We also prove that all exceptional theories of a single real scalar with a linear dispersion relation are necessarily Lorentz-invariant. Soft recursion allows us to obtain some further general bounds on the landscape of nonrelativistic effective theories with enhanced soft limits. Finally, we present a novel theory of a complex scalar with a technically natural quartic dispersion relation. Altogether, our work represents the first step of a program to extend the developments in the study of scattering amplitudes to theories without Lorentz invariance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01393v1-abstract-full').style.display = 'none'; document.getElementById('2201.01393v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-HEP-1381/21 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 03 (2022) 086 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10044">arXiv:2108.10044</a> <span> [<a href="https://arxiv.org/pdf/2108.10044">pdf</a>, <a href="https://arxiv.org/format/2108.10044">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136767">10.1016/j.physletb.2021.136767 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral soliton lattice phase in warm QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Kole%C5%A1ov%C3%A1%2C+H">Helena Kole拧ov谩</a>, <a href="/search/hep-th?searchtype=author&query=Yamamoto%2C+N">Naoki Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10044v2-abstract-short" style="display: inline;"> We analyze the phase diagram of quantum chromodynamics at low-to-moderate temperature, baryon chemical potential and external magnetic field within chiral perturbation theory at next-to-leading order of the derivative expansion. Our main result is that the anomaly-induced chiral soliton lattice (CSL) phase is stabilized by thermal fluctuations. As a consequence, the CSL state may survive up to tem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10044v2-abstract-full').style.display = 'inline'; document.getElementById('2108.10044v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10044v2-abstract-full" style="display: none;"> We analyze the phase diagram of quantum chromodynamics at low-to-moderate temperature, baryon chemical potential and external magnetic field within chiral perturbation theory at next-to-leading order of the derivative expansion. Our main result is that the anomaly-induced chiral soliton lattice (CSL) phase is stabilized by thermal fluctuations. As a consequence, the CSL state may survive up to temperatures at which chiral symmetry is restored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10044v2-abstract-full').style.display = 'none'; document.getElementById('2108.10044v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages + references, 2 figures; v2: added explicit discussion of power counting</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 823 (2021) 136767 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.03189">arXiv:2108.03189</a> <span> [<a href="https://arxiv.org/pdf/2108.03189">pdf</a>, <a href="https://arxiv.org/format/2108.03189">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136705">10.1016/j.physletb.2021.136705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On-Shell Recursion Relations for Nonrelativistic Effective Field Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Mojahed%2C+M+A">Martin A. Mojahed</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.03189v2-abstract-short" style="display: inline;"> We derive on-shell recursion relations for nonrelativistic effective field theories (EFTs) with enhanced soft limits. The recursion relations are illustrated through analytic calculation of tree-level scattering amplitudes in theories with a complex Schr枚dinger-type field, real scalar with linear dispersion relation, and real scalar with Lifshitz-type dispersion relation. Our results show that the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03189v2-abstract-full').style.display = 'inline'; document.getElementById('2108.03189v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.03189v2-abstract-full" style="display: none;"> We derive on-shell recursion relations for nonrelativistic effective field theories (EFTs) with enhanced soft limits. The recursion relations are illustrated through analytic calculation of tree-level scattering amplitudes in theories with a complex Schr枚dinger-type field, real scalar with linear dispersion relation, and real scalar with Lifshitz-type dispersion relation. Our results show that the landscape of gapless nonrelativistic EFTs with local $S$-matrix can be constrained by soft theorems and the consistency of the low-energy $S$-matrix similarly to massless relativistic EFTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03189v2-abstract-full').style.display = 'none'; document.getElementById('2108.03189v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages; v2: matches version published in PLB plus an additional reference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B 822 (2021) 136705 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.00051">arXiv:2012.00051</a> <span> [<a href="https://arxiv.org/pdf/2012.00051">pdf</a>, <a href="https://arxiv.org/format/2012.00051">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2021)045">10.1007/JHEP04(2021)045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field theories with higher-group symmetry from composite currents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.00051v2-abstract-short" style="display: inline;"> Higher-form symmetries are associated with transformations that only act on extended objects, not on point particles. Typically, higher-form symmetries live alongside ordinary, point-particle (0-form), symmetries and they can be jointly described in terms of a direct product symmetry group. However, when the actions of 0-form and higher-form symmetries become entangled, a more general mathematical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00051v2-abstract-full').style.display = 'inline'; document.getElementById('2012.00051v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.00051v2-abstract-full" style="display: none;"> Higher-form symmetries are associated with transformations that only act on extended objects, not on point particles. Typically, higher-form symmetries live alongside ordinary, point-particle (0-form), symmetries and they can be jointly described in terms of a direct product symmetry group. However, when the actions of 0-form and higher-form symmetries become entangled, a more general mathematical structure is required, related to higher categorical groups. Systems with continuous higher-group symmetry were previously constructed in a top-down manner, descending from quantum field theories with a specific mixed 't Hooft anomaly. I show that higher-group symmetry also naturally emerges from a bottom-up, low-energy perspective, when the physical system at hand contains at least two different given, spontaneously broken symmetries. This leads generically to a hierarchy of emergent higher-form symmetries, corresponding to the Grassmann algebra of topological currents of the theory, with an underlying higher-group structure. Examples of physical systems featuring such higher-group symmetry include superfluid mixtures and variants of axion electrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00051v2-abstract-full').style.display = 'none'; document.getElementById('2012.00051v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+39 pages, 2 tables; v2: added a discussion of charged objects of composite symmetries and some extra references, version to appear in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 04 (2021) 045 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.08895">arXiv:2009.08895</a> <span> [<a href="https://arxiv.org/pdf/2009.08895">pdf</a>, <a href="https://arxiv.org/ps/2009.08895">ps</a>, <a href="https://arxiv.org/format/2009.08895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Remarks on relativistic scalar models with chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.08895v1-abstract-short" style="display: inline;"> We discuss selected aspects of classical relativistic scalar field theories with nonzero chemical potential. First, we offer a review of classical field theory at nonzero density within the Lagrangian formalism. The aspects covered include the question of equivalence of descriptions of finite-density states using a chemical potential or time-dependent field configurations, the choice of Hamiltonia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.08895v1-abstract-full').style.display = 'inline'; document.getElementById('2009.08895v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.08895v1-abstract-full" style="display: none;"> We discuss selected aspects of classical relativistic scalar field theories with nonzero chemical potential. First, we offer a review of classical field theory at nonzero density within the Lagrangian formalism. The aspects covered include the question of equivalence of descriptions of finite-density states using a chemical potential or time-dependent field configurations, the choice of Hamiltonian whose minimization yields the finite-density equilibrium state, and the issue of breaking of Lorentz invariance. Second, we demonstrate how the low-energy effective field theory for Nambu-Goldstone (NG) modes arising from the spontaneous breakdown of global internal symmetries can be worked out explicitly by integrating out the heavy (Higgs) fields. This makes it possible to analyze the spectrum of NG modes and their interactions without having to deal with mixing of NG and Higgs fields, ubiquitous in the linear-sigma-model description of spontaneous symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.08895v1-abstract-full').style.display = 'none'; document.getElementById('2009.08895v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages; pedagogical note on aspects of relativistic scalar field theory at nonzero density, self-published on the author's web page, see https://sites.google.com/site/braunercz/notes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12078">arXiv:2008.12078</a> <span> [<a href="https://arxiv.org/pdf/2008.12078">pdf</a>, <a href="https://arxiv.org/format/2008.12078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2021)218">10.1007/JHEP02(2021)218 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exceptional nonrelativistic effective field theories with enhanced symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12078v2-abstract-short" style="display: inline;"> We initiate the classification of nonrelativistic effective field theories (EFTs) for Nambu-Goldstone (NG) bosons, possessing a set of redundant, coordinate-dependent symmetries. Similarly to the relativistic case, such EFTs are natural candidates for "exceptional" theories, whose scattering amplitudes feature an enhanced soft limit, that is, scale with a higher power of momentum at long wavelengt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12078v2-abstract-full').style.display = 'inline'; document.getElementById('2008.12078v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12078v2-abstract-full" style="display: none;"> We initiate the classification of nonrelativistic effective field theories (EFTs) for Nambu-Goldstone (NG) bosons, possessing a set of redundant, coordinate-dependent symmetries. Similarly to the relativistic case, such EFTs are natural candidates for "exceptional" theories, whose scattering amplitudes feature an enhanced soft limit, that is, scale with a higher power of momentum at long wavelengths than expected based on the mere presence of Adler's zero. The starting point of our framework is the assumption of invariance under spacetime translations and spatial rotations. The setup is nevertheless general enough to accommodate a variety of nontrivial kinematical algebras, including the Poincare, Galilei (or Bargmann) and Carroll algebras. Our main result is an explicit construction of the nonrelativistic versions of two infinite classes of exceptional theories: the multi-Galileon and the multi-flavor Dirac-Born-Infeld (DBI) theories. In both cases, we uncover novel Wess-Zumino terms, not present in their relativistic counterparts, realizing nontrivially the shift symmetries acting on the NG fields. We demonstrate how the symmetries of the Galileon and DBI theories can be made compatible with a nonrelativistic, quadratic dispersion relation of (some of) the NG modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12078v2-abstract-full').style.display = 'none'; document.getElementById('2008.12078v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+40 pages, 1 figure; v2: updated reference list, matches version published in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 02 (2021) 218 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.12224">arXiv:1910.12224</a> <span> [<a href="https://arxiv.org/pdf/1910.12224">pdf</a>, <a href="https://arxiv.org/ps/1910.12224">ps</a>, <a href="https://arxiv.org/format/1910.12224">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1402-4896/ab50a5">10.1088/1402-4896/ab50a5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noether currents of locally equivalent symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.12224v1-abstract-short" style="display: inline;"> Local symmetry transformations play an important role for establishing the existence and form of a conserved (Noether) current in systems with a global continuous symmetry. We explain how this fact leads to the existence of linear relations between Noether currents of distinct global symmetries that coincide on the local level, thus generalizing the well-known relationship… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.12224v1-abstract-full').style.display = 'inline'; document.getElementById('1910.12224v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.12224v1-abstract-full" style="display: none;"> Local symmetry transformations play an important role for establishing the existence and form of a conserved (Noether) current in systems with a global continuous symmetry. We explain how this fact leads to the existence of linear relations between Noether currents of distinct global symmetries that coincide on the local level, thus generalizing the well-known relationship $\vec L=\vec r\times\vec p$ between momentum $\vec p$ and angular momentum $\vec L$. As a byproduct, we find a natural interpretation for the discrepancy between the canonical and metric energy-momentum tensors in theories of particles with spin. A symmetric energy-momentum tensor can thus be obtained from the Noether procedure without adding any ad hoc corrections or imposing additional constraints such as gauge invariance in Maxwell's electrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.12224v1-abstract-full').style.display = 'none'; document.getElementById('1910.12224v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages; pedagogical exposition of aspects of the Noether theorem in classical field theory; Author's Original of a paper to be published in Physica Scripta</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Scr. 95 (2020) 035004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.11409">arXiv:1905.11409</a> <span> [<a href="https://arxiv.org/pdf/1905.11409">pdf</a>, <a href="https://arxiv.org/format/1905.11409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2019)029">10.1007/JHEP12(2019)029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral soliton lattice in QCD-like theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Filios%2C+G">Georgios Filios</a>, <a href="/search/hep-th?searchtype=author&query=Kole%C5%A1ov%C3%A1%2C+H">Helena Kole拧ov谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.11409v2-abstract-short" style="display: inline;"> Recently, it has been shown that the ground state of quantum chromodynamics (QCD) in sufficiently strong magnetic fields and at moderate baryon number chemical potential carries a crystalline condensate of neutral pions: the chiral soliton lattice (CSL). While the result was obtained in a model-independent manner using effective field theory techniques, its realization from first principles using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11409v2-abstract-full').style.display = 'inline'; document.getElementById('1905.11409v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.11409v2-abstract-full" style="display: none;"> Recently, it has been shown that the ground state of quantum chromodynamics (QCD) in sufficiently strong magnetic fields and at moderate baryon number chemical potential carries a crystalline condensate of neutral pions: the chiral soliton lattice (CSL). While the result was obtained in a model-independent manner using effective field theory techniques, its realization from first principles using lattice Monte Carlo simulation is hampered by the infamous sign problem. Here we show that CSL, or a similar inhomogeneous phase, also appears in the phase diagram of a class of vector-like gauge theories that do not suffer from the sign problem even in the presence of a baryon chemical potential and external magnetic field. We also show that the onset of nonuniform order manifests itself already in the adjacent homogeneous Bose-Einstein-condensation phase through a characteristic roton-like minimum in the dispersion relation of the lowest-lying quasiparticle mode. Last but not least, our work gives a class of explicit counterexamples to the long-standing conjecture that positivity of the determinant of the Dirac operator (that is, absence of the sign problem) in a vector-like gauge theory precludes spontaneous breaking of translational invariance, and thus implies the absence of inhomogeneous phases in the phase diagram of the theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11409v2-abstract-full').style.display = 'none'; document.getElementById('1905.11409v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+26 pages; v2 matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP12(2019)029 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07522">arXiv:1902.07522</a> <span> [<a href="https://arxiv.org/pdf/1902.07522">pdf</a>, <a href="https://arxiv.org/format/1902.07522">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.012001">10.1103/PhysRevLett.123.012001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomaly-Induced Inhomogeneous Phase in Quark Matter without the Sign Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Filios%2C+G">Georgios Filios</a>, <a href="/search/hep-th?searchtype=author&query=Kole%C5%A1ov%C3%A1%2C+H">Helena Kole拧ov谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07522v2-abstract-short" style="display: inline;"> We demonstrate the existence of an anomaly-induced inhomogeneous phase in a class of vector-like gauge theories without sign problem, thus disproving the long-standing conjecture that the absence of sign problem precludes spontaneous breaking of translational invariance. The presence of the phase in the two-color modification of quantum chromodynamics can be tested by an independent nonperturbativ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07522v2-abstract-full').style.display = 'inline'; document.getElementById('1902.07522v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07522v2-abstract-full" style="display: none;"> We demonstrate the existence of an anomaly-induced inhomogeneous phase in a class of vector-like gauge theories without sign problem, thus disproving the long-standing conjecture that the absence of sign problem precludes spontaneous breaking of translational invariance. The presence of the phase in the two-color modification of quantum chromodynamics can be tested by an independent nonperturbative evaluation of the neutral pion decay constant as a function of external magnetic field. Our results provide a benchmark for future lattice studies of inhomogeneous phases in dense quark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07522v2-abstract-full').style.display = 'none'; document.getElementById('1902.07522v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures; v2: matches text to appear in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 012001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.05310">arXiv:1809.05310</a> <span> [<a href="https://arxiv.org/pdf/1809.05310">pdf</a>, <a href="https://arxiv.org/format/1809.05310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2019.114676">10.1016/j.nuclphysb.2019.114676 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gauged Wess-Zumino terms for a general coset space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Kolesova%2C+H">Helena Kolesova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.05310v3-abstract-short" style="display: inline;"> The low-energy physics of systems with spontaneously broken continuous symmetry is dominated by the ensuing Nambu-Goldstone bosons. It has been known for half a century how to construct invariant Lagrangian densities for the low-energy effective theory of Nambu-Goldstone bosons. Contributions, invariant only up to a surface term -- also known as the Wess-Zumino (WZ) terms -- are more subtle, and a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.05310v3-abstract-full').style.display = 'inline'; document.getElementById('1809.05310v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.05310v3-abstract-full" style="display: none;"> The low-energy physics of systems with spontaneously broken continuous symmetry is dominated by the ensuing Nambu-Goldstone bosons. It has been known for half a century how to construct invariant Lagrangian densities for the low-energy effective theory of Nambu-Goldstone bosons. Contributions, invariant only up to a surface term -- also known as the Wess-Zumino (WZ) terms -- are more subtle, and as a rule are topological in nature. Although WZ terms have been studied intensively in theoretically oriented literature, explicit expressions do not seem to be available in sufficient generality in a form suitable for practical applications. Here we construct the WZ terms in $d=1,2,3,4$ spacetime dimensions for an arbitrary compact, semisimple and simply connected symmetry group $G$ and its arbitrary connected unbroken subgroup $H$, provided that the $d$-th homotopy group of the coset space $G/H$ is trivial. Coupling to gauge fields for the whole group $G$ is included throughout the construction. We list a number of explicit matrix expressions for the WZ terms in four spacetime dimensions, including those for QCD-like theories, that is vector-like gauge theories with fermions in a complex, real or pseudoreal representation of the gauge group. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.05310v3-abstract-full').style.display = 'none'; document.getElementById('1809.05310v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages; v2: the examples section substantially rewritten (a critical error corrected and a new example added), matches text published in Nucl. Phys. B; v3: the statement about de Rham cohomology of U(N)/U(N-1) coset spaces in footnote 8 corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Phys. B945 (2019) 114676 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.10441">arXiv:1806.10441</a> <span> [<a href="https://arxiv.org/pdf/1806.10441">pdf</a>, <a href="https://arxiv.org/format/1806.10441">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.214506">10.1103/PhysRevB.99.214506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Helical spin texture in a thin film of superfluid ${}^3$He </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Moroz%2C+S">Sergej Moroz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.10441v2-abstract-short" style="display: inline;"> We consider a thin film of superfluid ${}^3$He under conditions that stabilize the A-phase. We show that in the presence of a uniform superflow and an external magnetic field perpendicular to the film, the spin degrees of freedom develop a nonuniform, helical texture. Our prediction is robust and relies solely on Galilei invariance and other symmetries of ${}^3$He, which induce a coupling of the o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10441v2-abstract-full').style.display = 'inline'; document.getElementById('1806.10441v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.10441v2-abstract-full" style="display: none;"> We consider a thin film of superfluid ${}^3$He under conditions that stabilize the A-phase. We show that in the presence of a uniform superflow and an external magnetic field perpendicular to the film, the spin degrees of freedom develop a nonuniform, helical texture. Our prediction is robust and relies solely on Galilei invariance and other symmetries of ${}^3$He, which induce a coupling of the orbital and spin degrees of freedom. The length scale of the helical order can be tuned by varying the velocity of the superflow and the magnetic field, and may be in reach of near-future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10441v2-abstract-full').style.display = 'none'; document.getElementById('1806.10441v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure; v2: matches text to appear in PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 214506 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.05359">arXiv:1803.05359</a> <span> [<a href="https://arxiv.org/pdf/1803.05359">pdf</a>, <a href="https://arxiv.org/format/1803.05359">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2018)076">10.1007/JHEP05(2018)076 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lie-algebraic classification of effective theories with enhanced soft limits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Bogers%2C+M+P">Mark P. Bogers</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.05359v2-abstract-short" style="display: inline;"> A great deal of effort has recently been invested in developing methods of calculating scattering amplitudes that bypass the traditional construction based on Lagrangians and Feynman rules. Motivated by this progress, we investigate the long-wavelength behavior of scattering amplitudes of massless scalar particles: Nambu-Goldstone (NG) bosons. The low-energy dynamics of NG bosons is governed by th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.05359v2-abstract-full').style.display = 'inline'; document.getElementById('1803.05359v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.05359v2-abstract-full" style="display: none;"> A great deal of effort has recently been invested in developing methods of calculating scattering amplitudes that bypass the traditional construction based on Lagrangians and Feynman rules. Motivated by this progress, we investigate the long-wavelength behavior of scattering amplitudes of massless scalar particles: Nambu-Goldstone (NG) bosons. The low-energy dynamics of NG bosons is governed by the underlying spontaneously broken symmetry, which likewise allows one to bypass the Lagrangian and connect the scaling of the scattering amplitudes directly to the Lie algebra of the symmetry generators. We focus on theories with enhanced soft limits, where the scattering amplitudes scale with a higher power of momentum than expected based on the mere existence of Adler's zero. Our approach is complementary to that developed recently by Cheung et al., and in the first step we reproduce their result. That is, as far as Lorentz-invariant theories with a single physical NG boson are concerned, we find no other nontrivial theories featuring enhanced soft limits beyond the already well-known ones: the Galileon and the Dirac-Born-Infeld (DBI) scalar. Next, we show that in a certain sense, these theories do not admit a nontrivial generalization to non-Abelian internal symmetries. Namely, for compact internal symmetry groups, all NG bosons featuring enhanced soft limits necessarily belong to the center of the group. For noncompact symmetry groups such as the ISO($n$) group featured by some multi-Galileon theories, these NG bosons then necessarily belong to an Abelian normal subgroup. The Lie-algebraic consistency constraints admit two infinite classes of solutions, generalizing the known multi-Galileon and multi-flavor DBI theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.05359v2-abstract-full').style.display = 'none'; document.getElementById('1803.05359v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+48 pages; v2: minor changes and some references added, matches version published in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP05(2018)076 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.08107">arXiv:1802.08107</a> <span> [<a href="https://arxiv.org/pdf/1802.08107">pdf</a>, <a href="https://arxiv.org/format/1802.08107">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.171602">10.1103/PhysRevLett.121.171602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometry of Multi-Flavor Galileon-Like Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Bogers%2C+M+P">Mark P. Bogers</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.08107v2-abstract-short" style="display: inline;"> We use Lie-algebraic arguments to classify Lorentz-invariant theories of massless interacting scalars that feature coordinate-dependent redundant symmetries of the Galileon type. We show that such theories are determined, up to a set of low-energy effective couplings, by specifying an affine representation of the Lie algebra of physical, non-redundant internal symmetries and an invariant metric on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08107v2-abstract-full').style.display = 'inline'; document.getElementById('1802.08107v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.08107v2-abstract-full" style="display: none;"> We use Lie-algebraic arguments to classify Lorentz-invariant theories of massless interacting scalars that feature coordinate-dependent redundant symmetries of the Galileon type. We show that such theories are determined, up to a set of low-energy effective couplings, by specifying an affine representation of the Lie algebra of physical, non-redundant internal symmetries and an invariant metric on its target space. This creates an infinite catalog of theories relevant for both cosmology and high-energy physics thanks to their special properties such as enhanced scaling of scattering amplitudes in the soft limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08107v2-abstract-full').style.display = 'none'; document.getElementById('1802.08107v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages; v2: substantially rewritten and extended, matches version to appear in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 171602 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.01251">arXiv:1709.01251</a> <span> [<a href="https://arxiv.org/pdf/1709.01251">pdf</a>, <a href="https://arxiv.org/format/1709.01251">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.025021">10.1103/PhysRevD.97.025021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scattering amplitudes of massive Nambu-Goldstone bosons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Jakobsen%2C+M+F">Martin F. Jakobsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.01251v2-abstract-short" style="display: inline;"> Massive Nambu-Goldstone (mNG) bosons are quasiparticles whose gap is determined exactly by symmetry. They appear whenever a symmetry is broken spontaneously in the ground state of a quantum many-body system, and at the same time explicitly by the system's chemical potential. In this paper, we revisit mNG bosons and show that apart from their gap, symmetry also protects their scattering amplitudes.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01251v2-abstract-full').style.display = 'inline'; document.getElementById('1709.01251v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.01251v2-abstract-full" style="display: none;"> Massive Nambu-Goldstone (mNG) bosons are quasiparticles whose gap is determined exactly by symmetry. They appear whenever a symmetry is broken spontaneously in the ground state of a quantum many-body system, and at the same time explicitly by the system's chemical potential. In this paper, we revisit mNG bosons and show that apart from their gap, symmetry also protects their scattering amplitudes. Just like for ordinary gapless NG bosons, the scattering amplitudes of mNG bosons vanish in the long-wavelength limit. Unlike for gapless NG bosons, this statement holds for any scattering process involving one or more external mNG states; there are no kinematic singularities associated with the radiation of a soft mNG boson from an on-shell initial or final state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01251v2-abstract-full').style.display = 'none'; document.getElementById('1709.01251v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages; v2: added discussion of the double-soft limit in response to the referee report; matches version published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 025021 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.04538">arXiv:1706.04538</a> <span> [<a href="https://arxiv.org/pdf/1706.04538">pdf</a>, <a href="https://arxiv.org/format/1706.04538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.aop.2017.08.030">10.1016/j.aop.2017.08.030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-loop free energy of three-dimensional antiferromagnets in external magnetic and staggered fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Hofmann%2C+C+P">Christoph P. Hofmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.04538v1-abstract-short" style="display: inline;"> Using a model-independent low-energy effective field theory, we calculate the free energy of three-dimensional antiferromagnets in a combination of mutually perpendicular external magnetic and staggered fields at the next-to-next-to-leading, two-loop order. Renormalization is carried out analytically, and the renormalization group invariance of the result is checked explicitly. The free energy is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04538v1-abstract-full').style.display = 'inline'; document.getElementById('1706.04538v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.04538v1-abstract-full" style="display: none;"> Using a model-independent low-energy effective field theory, we calculate the free energy of three-dimensional antiferromagnets in a combination of mutually perpendicular external magnetic and staggered fields at the next-to-next-to-leading, two-loop order. Renormalization is carried out analytically, and the renormalization group invariance of the result is checked explicitly. The free energy is thus expressed solely in terms of temperature, the external fields, and a set of low-energy coupling constants, to be determined by experiment or by matching to the microscopic model of a given concrete material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04538v1-abstract-full').style.display = 'none'; document.getElementById('1706.04538v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Ann. Phys. 386 (2017) 178-198 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.04514">arXiv:1706.04514</a> <span> [<a href="https://arxiv.org/pdf/1706.04514">pdf</a>, <a href="https://arxiv.org/format/1706.04514">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2017)103">10.1007/JHEP11(2017)103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous low-temperature thermodynamics of QCD in strong magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Kadam%2C+S">Saurabh Kadam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.04514v2-abstract-short" style="display: inline;"> The thermodynamics of quantum chromodynamics at low temperatures and in sufficiently strong magnetic fields is governed by neutral pions. We analyze the interacting system of neutral pions and photons at zero baryon chemical potential using effective field theory. As a consequence of the axial anomaly and the external magnetic field, the pions and photons mix with one another. The resulting spectr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04514v2-abstract-full').style.display = 'inline'; document.getElementById('1706.04514v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.04514v2-abstract-full" style="display: none;"> The thermodynamics of quantum chromodynamics at low temperatures and in sufficiently strong magnetic fields is governed by neutral pions. We analyze the interacting system of neutral pions and photons at zero baryon chemical potential using effective field theory. As a consequence of the axial anomaly and the external magnetic field, the pions and photons mix with one another. The resulting spectrum contains one usual, relativistic photon state, and two nonrelativistic modes, one of which is gapless and the other gapped. Furthermore, we calculate the leading, one-loop contribution to the pressure of the system. In the chiral limit, a closed analytic expression for the pressure exists, which features an unusual scaling with temperature and magnetic field, $T^3B/f_蟺$, at low temperatures, $T\ll B/f_蟺$. Finally, we determine the pion decay rate as a function of the magnetic field at the tree level. The result is affected by a competition of the anisotropic kinematics and the enlarged phase space due to the anomalous mass of the neutral pion. In the chiral limit, the decay rate scales as $B^3/f_蟺^5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04514v2-abstract-full').style.display = 'none'; document.getElementById('1706.04514v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+19 pages, v2: matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP11(2017)103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.06793">arXiv:1701.06793</a> <span> [<a href="https://arxiv.org/pdf/1701.06793">pdf</a>, <a href="https://arxiv.org/format/1701.06793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2017)015">10.1007/JHEP03(2017)015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous electrodynamics of neutral pion matter in strong magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Kadam%2C+S">Saurabh Kadam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.06793v1-abstract-short" style="display: inline;"> The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06793v1-abstract-full').style.display = 'inline'; document.getElementById('1701.06793v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.06793v1-abstract-full" style="display: none;"> The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as $T^{5/2}(B/f_蟺)^{3/2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06793v1-abstract-full').style.display = 'none'; document.getElementById('1701.06793v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+22 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 03 (2017) 015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.00426">arXiv:1610.00426</a> <span> [<a href="https://arxiv.org/pdf/1610.00426">pdf</a>, <a href="https://arxiv.org/format/1610.00426">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.094003">10.1103/PhysRevD.94.094003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vector meson condensation in a pion superfluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Huang%2C+X">Xu-Guang Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.00426v2-abstract-short" style="display: inline;"> We revisit the suggestion that charged rho-mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that rho-meson condensation is either avoided or postponed to isospin chemical potentials much higher than the rho-meson mass as a consequence of the repulsive interaction with the preformed pion condensate. I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00426v2-abstract-full').style.display = 'inline'; document.getElementById('1610.00426v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.00426v2-abstract-full" style="display: none;"> We revisit the suggestion that charged rho-mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that rho-meson condensation is either avoided or postponed to isospin chemical potentials much higher than the rho-meson mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support our numerical results, we work out a linear sigma model for pions and rho-mesons, showing that the two models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be satisfied for a quantitative agreement between the models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00426v2-abstract-full').style.display = 'none'; document.getElementById('1610.00426v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures; v2: added references, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 094003 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.05213">arXiv:1609.05213</a> <span> [<a href="https://arxiv.org/pdf/1609.05213">pdf</a>, <a href="https://arxiv.org/format/1609.05213">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2017)132">10.1007/JHEP04(2017)132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Soliton Lattice and Charged Pion Condensation in Strong Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Yamamoto%2C+N">Naoki Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.05213v2-abstract-short" style="display: inline;"> The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.05213v2-abstract-full').style.display = 'inline'; document.getElementById('1609.05213v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.05213v2-abstract-full" style="display: none;"> The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate that in strong but achievable magnetic fields, charged pions undergo Bose-Einstein condensation. Our results, based on a systematic low-energy effective theory, are model-independent and fully analytic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.05213v2-abstract-full').style.display = 'none'; document.getElementById('1609.05213v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: 19 pages, 6 figures; substantially extended version of the paper, published in JHEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.7730">arXiv:1407.7730</a> <span> [<a href="https://arxiv.org/pdf/1407.7730">pdf</a>, <a href="https://arxiv.org/format/1407.7730">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.105016">10.1103/PhysRevD.90.105016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> General coordinate invariance in quantum many-body systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Endlich%2C+S">Solomon Endlich</a>, <a href="/search/hep-th?searchtype=author&query=Monin%2C+A">Alexander Monin</a>, <a href="/search/hep-th?searchtype=author&query=Penco%2C+R">Riccardo Penco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.7730v2-abstract-short" style="display: inline;"> We extend the notion of general coordinate invariance to many-body, not necessarily relativistic, systems. As an application, we investigate nonrelativistic general covariance in Galilei-invariant systems. The peculiar transformation rules for the background metric and gauge fields, first introduced by Son and Wingate in 2005 and refined in subsequent works, follow naturally from our framework. Ou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7730v2-abstract-full').style.display = 'inline'; document.getElementById('1407.7730v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.7730v2-abstract-full" style="display: none;"> We extend the notion of general coordinate invariance to many-body, not necessarily relativistic, systems. As an application, we investigate nonrelativistic general covariance in Galilei-invariant systems. The peculiar transformation rules for the background metric and gauge fields, first introduced by Son and Wingate in 2005 and refined in subsequent works, follow naturally from our framework. Our approach makes it clear that Galilei or Poincare symmetry is by no means a necessary prerequisite for making the theory invariant under coordinate diffeomorphisms. General covariance merely expresses the freedom to choose spacetime coordinates at will, whereas the true, physical symmetries of the system can be separately implemented as "internal" symmetries within the vielbein formalism. A systematic way to implement such symmetries is provided by the coset construction. We illustrate this point by applying our formalism to nonrelativistic s-wave superfluids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7730v2-abstract-full').style.display = 'none'; document.getElementById('1407.7730v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages; v2: minor update with additional references and acknowledgments, version to appear in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 105016 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.3439">arXiv:1406.3439</a> <span> [<a href="https://arxiv.org/pdf/1406.3439">pdf</a>, <a href="https://arxiv.org/ps/1406.3439">ps</a>, <a href="https://arxiv.org/format/1406.3439">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2014)088">10.1007/JHEP08(2014)088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective Lagrangians for quantum many-body systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Andersen%2C+J+O">Jens O. Andersen</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Hofmann%2C+C+P">Christoph P. Hofmann</a>, <a href="/search/hep-th?searchtype=author&query=Vuorinen%2C+A">Aleksi Vuorinen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.3439v1-abstract-short" style="display: inline;"> The low-energy and low-momentum dynamics of systems with a spontaneously broken continuous symmetry is dominated by the ensuing Nambu-Goldstone bosons. It can be conveniently encoded in a model-independent effective field theory whose structure is fixed by symmetry up to a set of effective coupling constants. We construct the most general effective Lagrangian for the Nambu-Goldstone bosons of spon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.3439v1-abstract-full').style.display = 'inline'; document.getElementById('1406.3439v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.3439v1-abstract-full" style="display: none;"> The low-energy and low-momentum dynamics of systems with a spontaneously broken continuous symmetry is dominated by the ensuing Nambu-Goldstone bosons. It can be conveniently encoded in a model-independent effective field theory whose structure is fixed by symmetry up to a set of effective coupling constants. We construct the most general effective Lagrangian for the Nambu-Goldstone bosons of spontaneously broken global internal symmetry up to the fourth order in derivatives. Rotational invariance and spatial dimensionality of one, two or three are assumed in order to obtain compact explicit expressions, but our method is completely general and can be applied without modifications to condensed matter systems with a discrete space group as well as to higher-dimensional theories. The general low-energy effective Lagrangian for relativistic systems follows as a special case. We also discuss the effects of explicit symmetry breaking and classify the corresponding terms in the Lagrangian. Diverse examples are worked out in order to make the results accessible to a wide theoretical physics community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.3439v1-abstract-full').style.display = 'none'; document.getElementById('1406.3439v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> HIP-2014-17/TH </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP08(2014)088 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.2670">arXiv:1405.2670</a> <span> [<a href="https://arxiv.org/pdf/1405.2670">pdf</a>, <a href="https://arxiv.org/format/1405.2670">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.121701">10.1103/PhysRevD.90.121701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological interactions of Nambu-Goldstone bosons in quantum many-body systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Moroz%2C+S">Sergej Moroz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.2670v2-abstract-short" style="display: inline;"> We classify effective actions for Nambu-Goldstone (NG) bosons assuming absence of anomalies. Special attention is paid to Lagrangians invariant only up to a surface term, shown to be in a one-to-one correspondence with Chern-Simons (CS) theories for unbroken symmetry. Without making specific assumptions on spacetime symmetry, we give explicit expressions for these Lagrangians, generalizing the Ber… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2670v2-abstract-full').style.display = 'inline'; document.getElementById('1405.2670v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.2670v2-abstract-full" style="display: none;"> We classify effective actions for Nambu-Goldstone (NG) bosons assuming absence of anomalies. Special attention is paid to Lagrangians invariant only up to a surface term, shown to be in a one-to-one correspondence with Chern-Simons (CS) theories for unbroken symmetry. Without making specific assumptions on spacetime symmetry, we give explicit expressions for these Lagrangians, generalizing the Berry and Hopf terms in ferromagnets. Globally well-defined matrix expressions are derived for symmetric coset spaces of broken symmetry. The CS Lagrangians exhibit special properties, on both the perturbative and the global topological level. The order-one CS term is responsible for non-invariance of canonical momentum density under internal symmetry, known as the linear momentum problem. The order-three CS term gives rise to a novel type of interaction among NG bosons. All the CS terms are robust against local variations of microscopic physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2670v2-abstract-full').style.display = 'none'; document.getElementById('1405.2670v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+2 pages; v2: substantially rewritten, version to appear as a Rapid Communication in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D90, 121701 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.5596">arXiv:1401.5596</a> <span> [<a href="https://arxiv.org/pdf/1401.5596">pdf</a>, <a href="https://arxiv.org/ps/1401.5596">ps</a>, <a href="https://arxiv.org/format/1401.5596">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.085004">10.1103/PhysRevD.89.085004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous breaking of spacetime symmetries and the inverse Higgs effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Watanabe%2C+H">Haruki Watanabe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.5596v1-abstract-short" style="display: inline;"> It has been long known that when spacetime symmetry is spontaneously broken, some of the broken generators may not give rise to independent gapless, Nambu-Goldstone excitations. We provide two complementary viewpoints of this phenomenon. On the one hand, we show that the corresponding field degrees of freedom have the same symmetry transformation properties as massive, matter fields. The "inverse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.5596v1-abstract-full').style.display = 'inline'; document.getElementById('1401.5596v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.5596v1-abstract-full" style="display: none;"> It has been long known that when spacetime symmetry is spontaneously broken, some of the broken generators may not give rise to independent gapless, Nambu-Goldstone excitations. We provide two complementary viewpoints of this phenomenon. On the one hand, we show that the corresponding field degrees of freedom have the same symmetry transformation properties as massive, matter fields. The "inverse Higgs constraints", sometimes employed to eliminate these modes from the theory, are reinterpreted as giving a field parametrization that makes these transformation properties manifest. On the other hand, relations among classical symmetry transformations generally lead to identities for the associated Noether currents that allow saturation of the Ward-Takahashi identities for all the broken symmetries with fewer gapless excitations than suggested by mere counting of broken generators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.5596v1-abstract-full').style.display = 'none'; document.getElementById('1401.5596v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 085004 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.1527">arXiv:1303.1527</a> <span> [<a href="https://arxiv.org/pdf/1303.1527">pdf</a>, <a href="https://arxiv.org/ps/1303.1527">ps</a>, <a href="https://arxiv.org/format/1303.1527">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.021601">10.1103/PhysRevLett.111.021601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Massive Nambu-Goldstone Bosons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Watanabe%2C+H">Haruki Watanabe</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Murayama%2C+H">Hitoshi Murayama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.1527v2-abstract-short" style="display: inline;"> Nicolis and Piazza have recently pointed out the existence of Nambu-Goldstone-like excitations in relativistic systems at finite density, whose gap is exactly determined by the chemical potential and the symmetry algebra. We show that the phenomenon is much more general than anticipated and demonstrate the presence of such modes in a number of systems from (anti)ferromagnets in magnetic field to s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.1527v2-abstract-full').style.display = 'inline'; document.getElementById('1303.1527v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.1527v2-abstract-full" style="display: none;"> Nicolis and Piazza have recently pointed out the existence of Nambu-Goldstone-like excitations in relativistic systems at finite density, whose gap is exactly determined by the chemical potential and the symmetry algebra. We show that the phenomenon is much more general than anticipated and demonstrate the presence of such modes in a number of systems from (anti)ferromagnets in magnetic field to superfluid phases of quantum chromodynamics. Furthermore, we prove a counting rule for these massive Nambu-Goldstone bosons and construct a low-energy effective Lagrangian that captures their dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.1527v2-abstract-full').style.display = 'none'; document.getElementById('1303.1527v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, REVTeX 4.1; v2: text length reduced upon editor's request, the effective Lagrangian section largely rewritten, other minor changes throughout the text; version accepted to PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BI-TP 2013/02, IPMU13-0056 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.111:021601(2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.3890">arXiv:1112.3890</a> <span> [<a href="https://arxiv.org/pdf/1112.3890">pdf</a>, <a href="https://arxiv.org/format/1112.3890">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.085010">10.1103/PhysRevD.85.085010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous breaking of continuous translational invariance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Watanabe%2C+H">Haruki Watanabe</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tom谩拧 Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.3890v2-abstract-short" style="display: inline;"> Unbroken continuous translational invariance is often taken as a basic assumption in discussions of spontaneous symmetry breaking (SSB), which singles out SSB of translational invariance itself as an exceptional case. We present a framework which allows us to treat translational invariance on the same footing as other symmetries. It is shown that existing theorems on SSB can be straightforwardly e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.3890v2-abstract-full').style.display = 'inline'; document.getElementById('1112.3890v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.3890v2-abstract-full" style="display: none;"> Unbroken continuous translational invariance is often taken as a basic assumption in discussions of spontaneous symmetry breaking (SSB), which singles out SSB of translational invariance itself as an exceptional case. We present a framework which allows us to treat translational invariance on the same footing as other symmetries. It is shown that existing theorems on SSB can be straightforwardly extended to this general case. As a concrete application, we analyze the Nambu-Goldstone modes in a (ferromagnetic) supersolid. We prove on the ground of the general theorems that the Bogoliubov mode stemming from a spontaneously broken internal U(1) symmetry and the longitudinal phonon due to a crystalline order are distinct physical modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.3890v2-abstract-full').style.display = 'none'; document.getElementById('1112.3890v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 pdf/jpg figures, REVTeX 4.1; v2: section IV expanded, new appendix and references added, numerous other minor modifications throughout the text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BI-TP 2011/49 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D85:085010,2012 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.6818">arXiv:1110.6818</a> <span> [<a href="https://arxiv.org/pdf/1110.6818">pdf</a>, <a href="https://arxiv.org/ps/1110.6818">ps</a>, <a href="https://arxiv.org/format/1110.6818">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.041601">10.1103/PhysRevLett.108.041601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature Dependence of Standard Model CP Violation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Taanila%2C+O">Olli Taanila</a>, <a href="/search/hep-th?searchtype=author&query=Tranberg%2C+A">Anders Tranberg</a>, <a href="/search/hep-th?searchtype=author&query=Vuorinen%2C+A">Aleksi Vuorinen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.6818v2-abstract-short" style="display: inline;"> We analyze the temperature dependence of CP violation effects in the Standard Model by determining the effective action of its bosonic fields, obtained after integrating out the fermions from the theory and performing a covariant gradient expansion. We find non-vanishing CP violating terms starting at the sixth order of the expansion, albeit only in the C odd/P even sector, with coefficients that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6818v2-abstract-full').style.display = 'inline'; document.getElementById('1110.6818v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.6818v2-abstract-full" style="display: none;"> We analyze the temperature dependence of CP violation effects in the Standard Model by determining the effective action of its bosonic fields, obtained after integrating out the fermions from the theory and performing a covariant gradient expansion. We find non-vanishing CP violating terms starting at the sixth order of the expansion, albeit only in the C odd/P even sector, with coefficients that depend on quark masses, CKM matrix elements, temperature and the magnitude of the Higgs field. The CP violating effects are observed to decrease rapidly with temperature, which has important implications for the generation of a matter-antimatter asymmetry in the early Universe. Our results suggest that the cold electroweak baryogenesis scenario may be viable within the Standard Model, provided the electroweak transition temperature is at most of order 1 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6818v2-abstract-full').style.display = 'none'; document.getElementById('1110.6818v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures. Additional non-trivial cancellations lead to vanishing of P-odd sector also at finite temperature. Minor additional modifications and clarifications, conclusions otherwise unchanged. Published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.6327">arXiv:1109.6327</a> <span> [<a href="https://arxiv.org/pdf/1109.6327">pdf</a>, <a href="https://arxiv.org/ps/1109.6327">ps</a>, <a href="https://arxiv.org/format/1109.6327">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.125013">10.1103/PhysRevD.84.125013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the number of Nambu-Goldstone bosons and its relation to charge densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Watanabe%2C+H">Haruki Watanabe</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.6327v2-abstract-short" style="display: inline;"> The low-energy physics of systems with spontaneous symmetry breaking is governed by the associated Nambu-Goldstone (NG) bosons. While NG bosons in Lorentz-invariant systems are well understood, the precise characterization of their number and dispersion relations in a general quantum many-body system is still an open problem. An inequality relating the number of NG bosons and their dispersion rela… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.6327v2-abstract-full').style.display = 'inline'; document.getElementById('1109.6327v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.6327v2-abstract-full" style="display: none;"> The low-energy physics of systems with spontaneous symmetry breaking is governed by the associated Nambu-Goldstone (NG) bosons. While NG bosons in Lorentz-invariant systems are well understood, the precise characterization of their number and dispersion relations in a general quantum many-body system is still an open problem. An inequality relating the number of NG bosons and their dispersion relations to the number of broken symmetry generators was found by Nielsen and Chadha. In this paper, we give a presumably first example of a system in which the Nielsen-Chadha inequality is actually not saturated. We suggest that the number of NG bosons is exactly equal to the number of broken generators minus the number of pairs of broken generators whose commutator has a nonzero vacuum expectation value. This naturally leads us to a proposal for a different classification of NG bosons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.6327v2-abstract-full').style.display = 'none'; document.getElementById('1109.6327v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, REVTeX 4.1; v2: Appendix D completely rewritten, numerous other minor modifications throughout the text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D84:125013,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.2928">arXiv:1005.2928</a> <span> [<a href="https://arxiv.org/pdf/1005.2928">pdf</a>, <a href="https://arxiv.org/ps/1005.2928">ps</a>, <a href="https://arxiv.org/format/1005.2928">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2010)064">10.1007/JHEP06(2010)064 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD-like theories at nonzero temperature and density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Zhang%2C+T">Tian Zhang</a>, <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Rischke%2C+D+H">Dirk H. Rischke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.2928v2-abstract-short" style="display: inline;"> We investigate the properties of hot and/or dense matter in QCD-like theories with quarks in a (pseudo)real representation of the gauge group using the Nambu-Jona-Lasinio model. The gauge dynamics is modeled using a simple lattice spin model with nearest-neighbor interactions. We first keep our discussion as general as possible, and only later focus on theories with adjoint quarks of two or three… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.2928v2-abstract-full').style.display = 'inline'; document.getElementById('1005.2928v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.2928v2-abstract-full" style="display: none;"> We investigate the properties of hot and/or dense matter in QCD-like theories with quarks in a (pseudo)real representation of the gauge group using the Nambu-Jona-Lasinio model. The gauge dynamics is modeled using a simple lattice spin model with nearest-neighbor interactions. We first keep our discussion as general as possible, and only later focus on theories with adjoint quarks of two or three colors. Calculating the phase diagram in the plane of temperature and quark chemical potential, it is qualitatively confirmed that the critical temperature of the chiral phase transition is much higher than the deconfinement transition temperature. At a chemical potential equal to half of the diquark mass in the vacuum, a diquark Bose-Einstein condensation (BEC) phase transition occurs. In the two-color case, a Ginzburg-Landau expansion is used to study the tetracritical behavior around the intersection point of the deconfinement and BEC transition lines, which are both of second order. We obtain a compact expression for the expectation value of the Polyakov loop in an arbitrary representation of the gauge group (for any number of colors), which allows us to study Casimir scaling at both nonzero temperature and chemical potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.2928v2-abstract-full').style.display = 'none'; document.getElementById('1005.2928v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">JHEP class, 31 pages, 7 eps figures; v2: error in Eq. (3.11) fixed, two references added; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-10-018 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1006:064,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.5212">arXiv:1001.5212</a> <span> [<a href="https://arxiv.org/pdf/1001.5212">pdf</a>, <a href="https://arxiv.org/format/1001.5212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/sym2020609">10.3390/sym2020609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous Symmetry Breaking and Nambu-Goldstone Bosons in Quantum Many-Body Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.5212v2-abstract-short" style="display: inline;"> Spontaneous symmetry breaking is a general principle, that constitutes the underlying concept of a vast number of physical phenomena ranging from ferromagnetism and superconductivity in condensed matter physics to the Higgs mechanism in the standard model of elementary particles. I focus on manifestations of spontaneously broken symmetries in systems that are not Lorentz invariant, which include b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.5212v2-abstract-full').style.display = 'inline'; document.getElementById('1001.5212v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.5212v2-abstract-full" style="display: none;"> Spontaneous symmetry breaking is a general principle, that constitutes the underlying concept of a vast number of physical phenomena ranging from ferromagnetism and superconductivity in condensed matter physics to the Higgs mechanism in the standard model of elementary particles. I focus on manifestations of spontaneously broken symmetries in systems that are not Lorentz invariant, which include both, nonrelativistic systems as well as relativistic systems at nonzero density, providing a self-contained review of the properties of spontaneously broken symmetries specific to such theories. Topics covered include: (i) Introduction to the mathematics of spontaneous symmetry breaking and the Goldstone theorem. (ii) Minimization of Higgs-type potentials for higher-dimensional representations. (iii) Counting rules for Nambu-Goldstone bosons and their dispersion relations. (iv) Construction of effective Lagrangians. Specific examples in both relativistic and nonrelativistic physics are worked out in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.5212v2-abstract-full').style.display = 'none'; document.getElementById('1001.5212v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 2 pdf figures; v2: short discussion of pseudo-NG bosons and some references added + other minor corrections, version to be published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Symmetry 2: 609-657, 2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ph/0508011">arXiv:hep-ph/0508011</a> <span> [<a href="https://arxiv.org/pdf/hep-ph/0508011">pdf</a>, <a href="https://arxiv.org/ps/hep-ph/0508011">ps</a>, <a href="https://arxiv.org/format/hep-ph/0508011">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.72.076002">10.1103/PhysRevD.72.076002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Goldstone boson counting in linear sigma models with chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ph/0508011v2-abstract-short" style="display: inline;"> We analyze the effects of finite chemical potential on spontaneous breaking of internal symmetries within the class of relativistic field theories described by the linear sigma model. Special attention is paid to the emergence of ``abnormal'' Goldstone bosons with quadratic dispersion relation. We show that their presence is tightly connected to nonzero density of the Noether charges, and formul… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0508011v2-abstract-full').style.display = 'inline'; document.getElementById('hep-ph/0508011v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ph/0508011v2-abstract-full" style="display: none;"> We analyze the effects of finite chemical potential on spontaneous breaking of internal symmetries within the class of relativistic field theories described by the linear sigma model. Special attention is paid to the emergence of ``abnormal'' Goldstone bosons with quadratic dispersion relation. We show that their presence is tightly connected to nonzero density of the Noether charges, and formulate a general counting rule. The general results are demonstrated on an SU(3)xU(1) invariant model with an SU(3)-sextet scalar field, which describes one of the color-superconducting phases of QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0508011v2-abstract-full').style.display = 'none'; document.getElementById('hep-ph/0508011v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, REVTeX4, 4 eps figures, v2: general discussion in Sec. IV expanded and improved, references added, other minor corrections throughout the text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D72 (2005) 076002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ph/0407339">arXiv:hep-ph/0407339</a> <span> [<a href="https://arxiv.org/pdf/hep-ph/0407339">pdf</a>, <a href="https://arxiv.org/ps/hep-ph/0407339">ps</a>, <a href="https://arxiv.org/format/hep-ph/0407339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> A model of flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-th?searchtype=author&query=Brauner%2C+T">Tomas Brauner</a>, <a href="/search/hep-th?searchtype=author&query=Hosek%2C+J">Jiri Hosek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ph/0407339v1-abstract-short" style="display: inline;"> We argue in favor of dynamical mass generation in an SU(2)xU(1) electroweak model with two complex scalar doublets with ordinary masses. The masses of leptons and quarks are generated by ultraviolet-finite non-perturbative solutions of the Schwinger-Dyson equations for full fermion propagators with self-consistently modified scalar boson exchanges. The W and Z boson masses are expressed in terms… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0407339v1-abstract-full').style.display = 'inline'; document.getElementById('hep-ph/0407339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ph/0407339v1-abstract-full" style="display: none;"> We argue in favor of dynamical mass generation in an SU(2)xU(1) electroweak model with two complex scalar doublets with ordinary masses. The masses of leptons and quarks are generated by ultraviolet-finite non-perturbative solutions of the Schwinger-Dyson equations for full fermion propagators with self-consistently modified scalar boson exchanges. The W and Z boson masses are expressed in terms of spontaneously generated fermion proper self-energies in the form of sum rules. The model predicts two charged and four real neutral heavy scalars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0407339v1-abstract-full').style.display = 'none'; document.getElementById('hep-ph/0407339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, REVTeX4, 5 feynmp figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>