CINXE.COM

Stress–energy tensor - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Stress–energy tensor - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"78a1a564-14dc-45ab-a6a0-038d5dc5cb18","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Stress–energy_tensor","wgTitle":"Stress–energy tensor","wgCurRevisionId":1274318016,"wgRevisionId":1274318016,"wgArticleId":70671,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Use American English from January 2019","All Wikipedia articles written in American English","All articles with unsourced statements","Articles with unsourced statements from December 2024","Tensor physical quantities","Density"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Stress–energy_tensor","wgRelevantArticleId":70671,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q876346","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/StressEnergyTensor_contravariant.svg/1200px-StressEnergyTensor_contravariant.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="727"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/StressEnergyTensor_contravariant.svg/800px-StressEnergyTensor_contravariant.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="485"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/StressEnergyTensor_contravariant.svg/640px-StressEnergyTensor_contravariant.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="388"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Stress–energy tensor - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Stress%E2%80%93energy_tensor"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Stress%E2%80%93energy_tensor"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Stress–energy_tensor rootpage-Stress–energy_tensor skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Stress%E2%80%93energy+tensor" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Stress%E2%80%93energy+tensor" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Stress%E2%80%93energy+tensor" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Stress%E2%80%93energy+tensor" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Components" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Components"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Components</span> </div> </a> <button aria-controls="toc-Components-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Components subsection</span> </button> <ul id="toc-Components-sublist" class="vector-toc-list"> <li id="toc-Covariant_and_mixed_forms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Covariant_and_mixed_forms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Covariant and mixed forms</span> </div> </a> <ul id="toc-Covariant_and_mixed_forms-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Conservation_law" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Conservation_law"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Conservation law</span> </div> </a> <button aria-controls="toc-Conservation_law-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Conservation law subsection</span> </button> <ul id="toc-Conservation_law-sublist" class="vector-toc-list"> <li id="toc-In_special_relativity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_special_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>In special relativity</span> </div> </a> <ul id="toc-In_special_relativity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_general_relativity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_general_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>In general relativity</span> </div> </a> <ul id="toc-In_general_relativity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-In_special_relativity_2" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_special_relativity_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>In special relativity</span> </div> </a> <button aria-controls="toc-In_special_relativity_2-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle In special relativity subsection</span> </button> <ul id="toc-In_special_relativity_2-sublist" class="vector-toc-list"> <li id="toc-Trace" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Trace"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Trace</span> </div> </a> <ul id="toc-Trace-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-In_general_relativity_2" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_general_relativity_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>In general relativity</span> </div> </a> <button aria-controls="toc-In_general_relativity_2-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle In general relativity subsection</span> </button> <ul id="toc-In_general_relativity_2-sublist" class="vector-toc-list"> <li id="toc-Einstein_field_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Einstein_field_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Einstein field equations</span> </div> </a> <ul id="toc-Einstein_field_equations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Stress–energy_in_special_situations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Stress–energy_in_special_situations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Stress–energy in special situations</span> </div> </a> <button aria-controls="toc-Stress–energy_in_special_situations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Stress–energy in special situations subsection</span> </button> <ul id="toc-Stress–energy_in_special_situations-sublist" class="vector-toc-list"> <li id="toc-Isolated_particle" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isolated_particle"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Isolated particle</span> </div> </a> <ul id="toc-Isolated_particle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stress–energy_of_a_fluid_in_equilibrium" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stress–energy_of_a_fluid_in_equilibrium"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Stress–energy of a fluid in equilibrium</span> </div> </a> <ul id="toc-Stress–energy_of_a_fluid_in_equilibrium-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electromagnetic_stress–energy_tensor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electromagnetic_stress–energy_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Electromagnetic stress–energy tensor</span> </div> </a> <ul id="toc-Electromagnetic_stress–energy_tensor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Scalar_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Scalar_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Scalar field</span> </div> </a> <ul id="toc-Scalar_field-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Variant_definitions_of_stress–energy" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Variant_definitions_of_stress–energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Variant definitions of stress–energy</span> </div> </a> <button aria-controls="toc-Variant_definitions_of_stress–energy-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Variant definitions of stress–energy subsection</span> </button> <ul id="toc-Variant_definitions_of_stress–energy-sublist" class="vector-toc-list"> <li id="toc-Hilbert_stress–energy_tensor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hilbert_stress–energy_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Hilbert stress–energy tensor</span> </div> </a> <ul id="toc-Hilbert_stress–energy_tensor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Canonical_stress–energy_tensor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Canonical_stress–energy_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Canonical stress–energy tensor</span> </div> </a> <ul id="toc-Canonical_stress–energy_tensor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Belinfante–Rosenfeld_stress–energy_tensor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Belinfante–Rosenfeld_stress–energy_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Belinfante–Rosenfeld stress–energy tensor</span> </div> </a> <ul id="toc-Belinfante–Rosenfeld_stress–energy_tensor-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Gravitational_stress–energy" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Gravitational_stress–energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Gravitational stress–energy</span> </div> </a> <ul id="toc-Gravitational_stress–energy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Stress–energy tensor</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 29 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-29" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">29 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D9%88%D8%AA%D8%B1_%D8%A7%D9%84%D8%A5%D8%AC%D9%87%D8%A7%D8%AF_%D9%88%D8%A7%D9%84%D8%B7%D8%A7%D9%82%D8%A9" title="موتر الإجهاد والطاقة – Arabic" lang="ar" hreflang="ar" data-title="موتر الإجهاد والطاقة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Tensor_d%27energia-moment" title="Tensor d&#039;energia-moment – Catalan" lang="ca" hreflang="ca" data-title="Tensor d&#039;energia-moment" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Tenzor_energie_a_hybnosti" title="Tenzor energie a hybnosti – Czech" lang="cs" hreflang="cs" data-title="Tenzor energie a hybnosti" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Energie-Impuls-Tensor" title="Energie-Impuls-Tensor – German" lang="de" hreflang="de" data-title="Energie-Impuls-Tensor" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Tensor_de_energ%C3%ADa-impulso" title="Tensor de energía-impulso – Spanish" lang="es" hreflang="es" data-title="Tensor de energía-impulso" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Energia-momentu_tentsore" title="Energia-momentu tentsore – Basque" lang="eu" hreflang="eu" data-title="Energia-momentu tentsore" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D9%86%D8%B3%D9%88%D8%B1_%D8%AA%D9%86%D8%B4%E2%80%93%D8%A7%D9%86%D8%B1%DA%98%DB%8C" title="تانسور تنش–انرژی – Persian" lang="fa" hreflang="fa" data-title="تانسور تنش–انرژی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Tenseur_%C3%A9nergie-impulsion" title="Tenseur énergie-impulsion – French" lang="fr" hreflang="fr" data-title="Tenseur énergie-impulsion" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%97%90%EB%84%88%EC%A7%80-%EC%9A%B4%EB%8F%99%EB%9F%89_%ED%85%90%EC%84%9C" title="에너지-운동량 텐서 – Korean" lang="ko" hreflang="ko" data-title="에너지-운동량 텐서" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B7%D5%B6%D5%A5%D6%80%D5%A3%D5%AB%D5%A1-%D5%AB%D5%B4%D5%BA%D5%B8%D6%82%D5%AC%D5%BD%D5%AB_%D5%A9%D5%A5%D5%B6%D5%A6%D5%B8%D6%80" title="Էներգիա-իմպուլսի թենզոր – Armenian" lang="hy" hreflang="hy" data-title="Էներգիա-իմպուլսի թենզոր" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Tensor_tegangan%E2%80%93energi" title="Tensor tegangan–energi – Indonesian" lang="id" hreflang="id" data-title="Tensor tegangan–energi" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Tensore_energia_impulso" title="Tensore energia impulso – Italian" lang="it" hreflang="it" data-title="Tensore energia impulso" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%AD%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F-%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81_%D1%82%D0%B5%D0%BD%D0%B7%D0%BE%D1%80%D1%8B" title="Энергия-импульс тензоры – Kazakh" lang="kk" hreflang="kk" data-title="Энергия-импульс тензоры" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%A4%E0%A4%BE%E0%A4%A0%E0%A4%B0%E0%A4%A4%E0%A4%BE-%E0%A4%8A%E0%A4%B0%E0%A5%8D%E0%A4%9C%E0%A4%BE_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%A6%E0%A4%BF%E0%A4%B6" title="ताठरता-ऊर्जा प्रदिश – Marathi" lang="mr" hreflang="mr" data-title="ताठरता-ऊर्जा प्रदिश" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Energie-impuls-tensor" title="Energie-impuls-tensor – Dutch" lang="nl" hreflang="nl" data-title="Energie-impuls-tensor" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC%E3%83%BB%E9%81%8B%E5%8B%95%E9%87%8F%E3%83%86%E3%83%B3%E3%82%BD%E3%83%AB" title="エネルギー・運動量テンソル – Japanese" lang="ja" hreflang="ja" data-title="エネルギー・運動量テンソル" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A8%9F%E0%A9%8D%E0%A8%B0%E0%A9%88%E0%A9%B1%E0%A8%B8-%E0%A8%90%E0%A8%A8%E0%A8%B0%E0%A8%9C%E0%A9%80_%E0%A8%9F%E0%A9%88%E0%A8%82%E0%A8%B8%E0%A8%B0" title="ਸਟ੍ਰੈੱਸ-ਐਨਰਜੀ ਟੈਂਸਰ – Punjabi" lang="pa" hreflang="pa" data-title="ਸਟ੍ਰੈੱਸ-ਐਨਰਜੀ ਟੈਂਸਰ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Tensor_napi%C4%99%C4%87-energii" title="Tensor napięć-energii – Polish" lang="pl" hreflang="pl" data-title="Tensor napięć-energii" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Tensor_de_energia-momento" title="Tensor de energia-momento – Portuguese" lang="pt" hreflang="pt" data-title="Tensor de energia-momento" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Tensorul_energie-impuls" title="Tensorul energie-impuls – Romanian" lang="ro" hreflang="ro" data-title="Tensorul energie-impuls" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8-%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D0%B0" title="Тензор энергии-импульса – Russian" lang="ru" hreflang="ru" data-title="Тензор энергии-импульса" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Stressenergitensor" title="Stressenergitensor – Swedish" lang="sv" hreflang="sv" data-title="Stressenergitensor" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl badge-Q70893996 mw-list-item" title=""><a href="https://tl.wikipedia.org/wiki/Tensor_na_stress-enerhiya" title="Tensor na stress-enerhiya – Tagalog" lang="tl" hreflang="tl" data-title="Tensor na stress-enerhiya" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%AD%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F-%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D0%BD%D1%8B%D2%A3_%D1%82%D0%B5%D0%BD%D0%B7%D0%BE%D1%80%D1%8B" title="Энергия-импульсның тензоры – Tatar" lang="tt" hreflang="tt" data-title="Энергия-импульсның тензоры" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Stres-enerji_tens%C3%B6r%C3%BC" title="Stres-enerji tensörü – Turkish" lang="tr" hreflang="tr" data-title="Stres-enerji tensörü" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D1%96%D1%97-%D1%96%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D1%83" title="Тензор енергії-імпульсу – Ukrainian" lang="uk" hreflang="uk" data-title="Тензор енергії-імпульсу" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AA%D9%86%D8%A7%D8%A4_%D8%AA%D9%88%D8%A7%D9%86%D8%A7%D8%A6%DB%8C_%D9%85%D9%88%D8%AA%D8%B1%DB%81" title="تناؤ توانائی موترہ – Urdu" lang="ur" hreflang="ur" data-title="تناؤ توانائی موترہ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Tenx%C6%A1_%E1%BB%A9ng_su%E1%BA%A5t%E2%80%93n%C4%83ng_l%C6%B0%E1%BB%A3ng" title="Tenxơ ứng suất–năng lượng – Vietnamese" lang="vi" hreflang="vi" data-title="Tenxơ ứng suất–năng lượng" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%87%89%E5%8A%9B-%E8%83%BD%E9%87%8F%E5%BC%B5%E9%87%8F" title="應力-能量張量 – Chinese" lang="zh" hreflang="zh" data-title="應力-能量張量" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q876346#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Stress%E2%80%93energy_tensor" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Stress%E2%80%93energy_tensor" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Stress%E2%80%93energy_tensor"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Stress%E2%80%93energy_tensor"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Stress%E2%80%93energy_tensor" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Stress%E2%80%93energy_tensor" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;oldid=1274318016" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Stress%E2%80%93energy_tensor&amp;id=1274318016&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStress%25E2%2580%2593energy_tensor"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStress%25E2%2580%2593energy_tensor"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Stress%E2%80%93energy_tensor&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q876346" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Tensor describing energy momentum density in spacetime</div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:StressEnergyTensor_contravariant.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/StressEnergyTensor_contravariant.svg/250px-StressEnergyTensor_contravariant.svg.png" decoding="async" width="236" height="143" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/StressEnergyTensor_contravariant.svg/500px-StressEnergyTensor_contravariant.svg.png 1.5x" data-file-width="805" data-file-height="488" /></a><figcaption>Contravariant components of the stress–energy tensor.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title"><a href="/wiki/General_relativity" title="General relativity">General relativity</a></th></tr><tr><td class="sidebar-image"><span class="notpageimage" typeof="mw:File"><a href="/wiki/File:Spacetime_lattice_analogy.svg" class="mw-file-description" title="Spacetime curvature schematic"><img alt="Spacetime curvature schematic" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Spacetime_lattice_analogy.svg/220px-Spacetime_lattice_analogy.svg.png" decoding="async" width="220" height="82" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Spacetime_lattice_analogy.svg/330px-Spacetime_lattice_analogy.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/63/Spacetime_lattice_analogy.svg/440px-Spacetime_lattice_analogy.svg.png 2x" data-file-width="1260" data-file-height="469" /></a></span><div class="sidebar-caption" style="padding:0.5em 0.2em 0.6em;border-bottom:1px solid #aaa; display:block;margin-bottom:0.1em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3ba;<!-- κ --></mi> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/124ab80fcb17e2733cc17ff6f93da5e52f355c77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.468ex; height:2.843ex;" alt="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}" /></span></div></td></tr><tr><td class="sidebar-content" style="padding-bottom:0.75em;"> <ul><li><a href="/wiki/Introduction_to_general_relativity" title="Introduction to general relativity">Introduction</a></li> <li><div class="hlist"><ul><li><a href="/wiki/History_of_general_relativity" title="History of general relativity">History</a></li><li><a href="/wiki/Timeline_of_gravitational_physics_and_relativity" title="Timeline of gravitational physics and relativity">Timeline</a></li><li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">Tests</a></li></ul></div></li> <li><a href="/wiki/Mathematics_of_general_relativity" title="Mathematics of general relativity">Mathematical formulation</a></li></ul></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c">Fundamental concepts</div></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Equivalence_principle" title="Equivalence principle">Equivalence principle</a></li> <li><a href="/wiki/Special_relativity" title="Special relativity">Special relativity</a></li> <li><a href="/wiki/World_line" title="World line">World line</a></li> <li><a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">Pseudo-Riemannian manifold</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c">Phenomena</div></div><div class="sidebar-list-content mw-collapsible-content hlist"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base, #202122 ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Two-body_problem_in_general_relativity" title="Two-body problem in general relativity">Kepler problem</a></li> <li><a href="/wiki/Gravitational_lens" title="Gravitational lens">Gravitational lensing</a></li> <li><a href="/wiki/Gravitational_redshift" title="Gravitational redshift">Gravitational redshift</a></li> <li><a href="/wiki/Gravitational_time_dilation" title="Gravitational time dilation">Gravitational time dilation</a></li> <li><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational waves</a></li> <li><a href="/wiki/Frame-dragging" title="Frame-dragging">Frame-dragging</a></li> <li><a href="/wiki/Geodetic_effect" title="Geodetic effect">Geodetic effect</a></li> <li><a href="/wiki/Event_horizon" title="Event horizon">Event horizon</a></li> <li><a href="/wiki/Gravitational_singularity" title="Gravitational singularity">Singularity</a></li> <li><a href="/wiki/Black_hole" title="Black hole">Black hole</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#ececff; font-style:italic;font-weight:normal;"> <a href="/wiki/Spacetime" title="Spacetime">Spacetime</a></th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Spacetime_diagram" title="Spacetime diagram">Spacetime diagrams</a></li> <li><a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski spacetime</a></li> <li><a href="/wiki/Wormhole" title="Wormhole">Einstein–Rosen bridge</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c"><div class="hlist"><ul><li>Equations</li><li>Formalisms</li></ul></div></div></div><div class="sidebar-list-content mw-collapsible-content hlist"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base, #202122 ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none;padding-bottom:0;margin-bottom:0;"><tbody><tr><th class="sidebar-heading" style="font-style:italic;font-weight:normal;padding-bottom:0;"> Equations</th></tr><tr><td class="sidebar-content" style="padding-top:0;"> <ul><li><a href="/wiki/Linearized_gravity" title="Linearized gravity">Linearized gravity</a></li> <li><a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a></li> <li><a href="/wiki/Friedmann_equations" title="Friedmann equations">Friedmann</a></li> <li><a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">Geodesics</a></li> <li><a href="/wiki/Mathisson%E2%80%93Papapetrou%E2%80%93Dixon_equations" title="Mathisson–Papapetrou–Dixon equations">Mathisson–Papapetrou–Dixon</a></li> <li><a href="/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Einstein_equation" title="Hamilton–Jacobi–Einstein equation">Hamilton–Jacobi–Einstein</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="font-style:italic;font-weight:normal;padding-bottom:0;"> Formalisms</th></tr><tr><td class="sidebar-content" style="padding-top:0;"> <ul><li><a href="/wiki/ADM_formalism" title="ADM formalism">ADM</a></li> <li><a href="/wiki/BSSN_formalism" title="BSSN formalism">BSSN</a></li> <li><a href="/wiki/Parameterized_post-Newtonian_formalism" title="Parameterized post-Newtonian formalism">Post-Newtonian</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="font-style:italic;font-weight:normal;padding-bottom:0;"> Advanced theory</th></tr><tr><td class="sidebar-content" style="padding-top:0;"> <ul><li><a href="/wiki/Kaluza%E2%80%93Klein_theory" title="Kaluza–Klein theory">Kaluza–Klein theory</a></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c"><a href="/wiki/Exact_solutions_in_general_relativity" title="Exact solutions in general relativity">Solutions</a></div></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Schwarzschild_metric" title="Schwarzschild metric">Schwarzschild</a> (<a href="/wiki/Interior_Schwarzschild_metric" title="Interior Schwarzschild metric">interior</a>)</li> <li><a href="/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric" title="Reissner–Nordström metric">Reissner–Nordström</a></li> <li><a href="/wiki/Einstein%E2%80%93Rosen_metric" title="Einstein–Rosen metric">Einstein–Rosen waves</a></li> <li><a href="/wiki/Wormhole" title="Wormhole">Wormhole</a></li> <li><a href="/wiki/G%C3%B6del_metric" title="Gödel metric">Gödel</a></li> <li><a href="/wiki/Kerr_metric" title="Kerr metric">Kerr</a></li> <li><a href="/wiki/Kerr%E2%80%93Newman_metric" title="Kerr–Newman metric">Kerr–Newman</a></li> <li><a href="/wiki/Kerr%E2%80%93Newman%E2%80%93de%E2%80%93Sitter_metric" title="Kerr–Newman–de–Sitter metric">Kerr–Newman–de Sitter</a></li> <li><a href="/wiki/Kasner_metric" title="Kasner metric">Kasner</a></li> <li><a href="/wiki/Lema%C3%AEtre%E2%80%93Tolman_metric" title="Lemaître–Tolman metric">Lemaître–Tolman</a></li> <li><a href="/wiki/Taub%E2%80%93NUT_space" title="Taub–NUT space">Taub–NUT</a></li> <li><a href="/wiki/Milne_model" title="Milne model">Milne</a></li> <li><a href="/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric" title="Friedmann–Lemaître–Robertson–Walker metric">Robertson–Walker</a></li> <li><a href="/wiki/Oppenheimer%E2%80%93Snyder_model" title="Oppenheimer–Snyder model">Oppenheimer–Snyder</a></li> <li><a href="/wiki/Pp-wave_spacetime" title="Pp-wave spacetime">pp-wave</a></li> <li><a href="/wiki/Van_Stockum_dust" title="Van Stockum dust">van Stockum dust</a></li> <li><a href="/wiki/Weyl%E2%80%93Lewis%E2%80%93Papapetrou_coordinates" title="Weyl–Lewis–Papapetrou coordinates">Weyl−Lewis−Papapetrou</a></li> <li><a href="/wiki/Hartle%E2%80%93Thorne_metric" title="Hartle–Thorne metric">Hartle–Thorne</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c">Scientists</div></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li> <li><a href="/wiki/Karl_Schwarzschild" title="Karl Schwarzschild">Schwarzschild</a></li> <li><a href="/wiki/Willem_de_Sitter" title="Willem de Sitter">de Sitter</a></li> <li><a href="/wiki/Hans_Reissner" title="Hans Reissner">Reissner</a></li> <li><a href="/wiki/Gunnar_Nordstr%C3%B6m" title="Gunnar Nordström">Nordström</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a></li> <li><a href="/wiki/Arthur_Eddington" title="Arthur Eddington">Eddington</a></li> <li><a href="/wiki/Alexander_Friedmann" title="Alexander Friedmann">Friedmann</a></li> <li><a href="/wiki/Edward_Arthur_Milne" title="Edward Arthur Milne">Milne</a></li> <li><a href="/wiki/Fritz_Zwicky" title="Fritz Zwicky">Zwicky</a></li> <li><a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître">Lemaître</a></li> <li><a href="/wiki/J._Robert_Oppenheimer" title="J. Robert Oppenheimer">Oppenheimer</a></li> <li><a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Gödel</a></li> <li><a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler</a></li> <li><a href="/wiki/Howard_P._Robertson" title="Howard P. Robertson">Robertson</a></li> <li><a href="/wiki/James_M._Bardeen" title="James M. Bardeen">Bardeen</a></li> <li><a href="/wiki/Arthur_Geoffrey_Walker" title="Arthur Geoffrey Walker">Walker</a></li> <li><a href="/wiki/Roy_Kerr" title="Roy Kerr">Kerr</a></li> <li><a href="/wiki/Subrahmanyan_Chandrasekhar" title="Subrahmanyan Chandrasekhar">Chandrasekhar</a></li> <li><a href="/wiki/J%C3%BCrgen_Ehlers" title="Jürgen Ehlers">Ehlers</a></li> <li><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose</a></li> <li><a href="/wiki/Stephen_Hawking" title="Stephen Hawking">Hawking</a></li> <li><a href="/wiki/Amal_Kumar_Raychaudhuri" title="Amal Kumar Raychaudhuri">Raychaudhuri</a></li> <li><a href="/wiki/Joseph_Hooton_Taylor_Jr." title="Joseph Hooton Taylor Jr.">Taylor</a></li> <li><a href="/wiki/Russell_Alan_Hulse" title="Russell Alan Hulse">Hulse</a></li> <li><a href="/wiki/Willem_Jacob_van_Stockum" title="Willem Jacob van Stockum">van Stockum</a></li> <li><a href="/wiki/Abraham_H._Taub" title="Abraham H. Taub">Taub</a></li> <li><a href="/wiki/Ezra_T._Newman" title="Ezra T. Newman">Newman</a></li> <li><a href="/wiki/Shing-Tung_Yau" title="Shing-Tung Yau">Yau</a></li> <li><a href="/wiki/Kip_Thorne" title="Kip Thorne">Thorne</a></li> <li><a href="/wiki/List_of_contributors_to_general_relativity" title="List of contributors to general relativity"><i>others</i></a></li></ul></div></div></td> </tr><tr><td class="sidebar-below hlist" style="background-color: transparent; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/20px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="13" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/40px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics&#32;portal</a></span></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span>&#160;<a href="/wiki/Category:General_relativity" title="Category:General relativity">Category</a></span></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:General_relativity_sidebar" title="Template:General relativity sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:General_relativity_sidebar" title="Template talk:General relativity sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:General_relativity_sidebar" title="Special:EditPage/Template:General relativity sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409" /> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/40px-Wikiversity_logo_2017.svg.png" decoding="async" width="40" height="33" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/60px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/80px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span></div> <div class="side-box-text plainlist">Wikiversity has learning resources about <i><b><a href="https://en.wikiversity.org/wiki/Gravitational_stress-energy_tensor" class="extiw" title="v:Gravitational stress-energy tensor">Gravitational stress-energy tensor</a></b></i></div></div> </div> <p>The <b>stress–energy tensor</b>, sometimes called the <b>stress–energy–momentum tensor</b> or the <b>energy–momentum tensor</b>, is a <a href="/wiki/Tensor" title="Tensor">tensor</a> <a href="/wiki/Physical_quantity" title="Physical quantity">physical quantity</a> that describes the <a href="/wiki/Volume-specific_quantity" class="mw-redirect" title="Volume-specific quantity">density</a> and <a href="/wiki/Flux" title="Flux">flux</a> of <a href="/wiki/Energy" title="Energy">energy</a> and <a href="/wiki/Momentum" title="Momentum">momentum</a> in <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>, generalizing the <a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">stress tensor</a> of <a href="/wiki/Newtonian_physics" class="mw-redirect" title="Newtonian physics">Newtonian physics</a>. It is an attribute of <a href="/wiki/Matter" title="Matter">matter</a>, <a href="/wiki/Radiation" title="Radiation">radiation</a>, and non-gravitational <a href="/wiki/Force_field_(physics)" title="Force field (physics)">force fields</a>. This density and flux of energy and momentum are the sources of the <a href="/wiki/Gravitational_field" title="Gravitational field">gravitational field</a> in the <a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a> of <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, just as <a href="/wiki/Mass_density" class="mw-redirect" title="Mass density">mass density</a> is the source of such a field in <a href="/wiki/Newtonian_gravity" class="mw-redirect" title="Newtonian gravity">Newtonian gravity</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The stress–energy tensor involves the use of superscripted variables (<em>not</em> exponents; see <i><a href="/wiki/Tensor_index_notation" class="mw-redirect" title="Tensor index notation">Tensor index notation</a></i> and <i><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein summation notation</a></i>). If <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> in <a href="/wiki/SI_units" class="mw-redirect" title="SI units">SI units</a> are used, then the components of the position <a href="/wiki/Four-vector" title="Four-vector">four-vector</a> <span class="texhtml mvar" style="font-style:italic;">x</span> are given by: <span class="texhtml">&#91; <i>x</i><sup>0</sup>, <i>x</i><sup>1</sup>, <i>x</i><sup>2</sup>, <i>x</i><sup>3</sup> &#93;</span>. In traditional Cartesian coordinates these are instead customarily written <span class="texhtml">&#91; <i>t</i>, <i>x</i>, <i>y</i>, <i>z</i> &#93;</span>, where <span class="texhtml"><i>t</i></span> is coordinate time, and <span class="texhtml"><i>x</i></span>, <span class="texhtml"><i>y</i></span>, and <span class="texhtml"><i>z</i></span> are coordinate distances. </p><p>The stress–energy tensor is defined as the <a href="/wiki/Tensor" title="Tensor">tensor</a> <span class="texhtml"><i>T</i><sup><i>αβ</i></sup></span> of order two that gives the <a href="/wiki/Flux" title="Flux">flux</a> of the <span class="texhtml mvar" style="font-style:italic;">α</span>th component of the <a href="/wiki/Momentum" title="Momentum">momentum</a> <a href="/wiki/Vector_(geometric)" class="mw-redirect" title="Vector (geometric)">vector</a> across a surface with constant <span class="texhtml"><i>x</i><sup><i>β</i></sup></span> <a href="/wiki/Coordinate" class="mw-redirect" title="Coordinate">coordinate</a>. In the theory of <a href="/wiki/General_relativity" title="General relativity">relativity</a>, this momentum vector is taken as the <a href="/wiki/Four-momentum" title="Four-momentum">four-momentum</a>. In general relativity, the stress–energy tensor is symmetric,<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\alpha \beta }=T^{\beta \alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\alpha \beta }=T^{\beta \alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e697e8f2ace945b07a8dc5db5ad9676e2219205c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.637ex; height:2.676ex;" alt="{\displaystyle T^{\alpha \beta }=T^{\beta \alpha }.}" /></span> </p><p>In some alternative theories like <a href="/wiki/Einstein%E2%80%93Cartan_theory" title="Einstein–Cartan theory">Einstein–Cartan theory</a>, the stress–energy tensor may not be perfectly symmetric because of a nonzero <a href="/wiki/Spin_tensor" title="Spin tensor">spin tensor</a>, which geometrically corresponds to a nonzero <a href="/wiki/Torsion_tensor" title="Torsion tensor">torsion tensor</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Components">Components</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=2" title="Edit section: Components"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Because the stress–energy tensor is of order 2, its components can be displayed in <span class="texhtml">4 × 4</span> matrix form: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\mu \nu }={\begin{pmatrix}T^{00}&amp;T^{01}&amp;T^{02}&amp;T^{03}\\T^{10}&amp;T^{11}&amp;T^{12}&amp;T^{13}\\T^{20}&amp;T^{21}&amp;T^{22}&amp;T^{23}\\T^{30}&amp;T^{31}&amp;T^{32}&amp;T^{33}\end{pmatrix}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>02</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>03</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\mu \nu }={\begin{pmatrix}T^{00}&amp;T^{01}&amp;T^{02}&amp;T^{03}\\T^{10}&amp;T^{11}&amp;T^{12}&amp;T^{13}\\T^{20}&amp;T^{21}&amp;T^{22}&amp;T^{23}\\T^{30}&amp;T^{31}&amp;T^{32}&amp;T^{33}\end{pmatrix}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a54e4cd66195f2a0afde4aee4f8475fbe0947de" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; margin-top: -0.225ex; width:34.118ex; height:12.843ex;" alt="{\displaystyle T^{\mu \nu }={\begin{pmatrix}T^{00}&amp;T^{01}&amp;T^{02}&amp;T^{03}\\T^{10}&amp;T^{11}&amp;T^{12}&amp;T^{13}\\T^{20}&amp;T^{21}&amp;T^{22}&amp;T^{23}\\T^{30}&amp;T^{31}&amp;T^{32}&amp;T^{33}\end{pmatrix}}\,,}" /></span> where the indices <span class="texhtml mvar" style="font-style:italic;">μ</span> and <span class="texhtml mvar" style="font-style:italic;">ν</span> take on the values 0, 1, 2, 3. </p><p>In the following, <span class="texhtml mvar" style="font-style:italic;">k</span> and <span class="texhtml mvar" style="font-style:italic;">ℓ</span> range from 1 through 3: </p> <div><ol style="list-style-type:lower-alpha"><li>The time–time component is the density of relativistic mass, i.e., the <a href="/wiki/Energy_density" title="Energy density">energy density</a> divided by the speed of light squared, while being in the <a href="/wiki/Proper_frame" title="Proper frame">co-moving frame of reference</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> It has a direct physical interpretation. In the case of a perfect fluid this component is <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{00}=\rho ~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msup> <mo>=</mo> <mi>&#x3c1;<!-- ρ --></mi> <mtext>&#xa0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{00}=\rho ~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d566e0a4d46ea708694ee278f4048fd2aaac8c5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.124ex; height:3.176ex;" alt="{\displaystyle T^{00}=\rho ~,}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x3c1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfe88055cce2aa2861ff06d1386e021822fad300" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\textstyle \rho }" /></span> is the <a href="/wiki/Relativistic_mass" class="mw-redirect" title="Relativistic mass">relativistic mass</a> per unit volume, and for an electromagnetic field in otherwise empty space this component is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{00}={1 \over c^{2}}\left({\frac {1}{2}}\epsilon _{0}E^{2}+{\frac {1}{2\mu _{0}}}B^{2}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>&#x3f5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>&#x3bc;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{00}={1 \over c^{2}}\left({\frac {1}{2}}\epsilon _{0}E^{2}+{\frac {1}{2\mu _{0}}}B^{2}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f7529d0d4f6813a43b7e4c37a52723d47df0751" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.392ex; height:6.176ex;" alt="{\displaystyle T^{00}={1 \over c^{2}}\left({\frac {1}{2}}\epsilon _{0}E^{2}+{\frac {1}{2\mu _{0}}}B^{2}\right),}" /></span> </p> where <span class="texhtml mvar" style="font-style:italic;">E</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are the electric and magnetic fields, respectively.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></li><li>The flux of relativistic mass across the <span class="texhtml mvar" style="font-style:italic;">x<sup>k</sup></span> surface is equivalent to the <span class="texhtml mvar" style="font-style:italic;">k</span>th component of linear <a href="/wiki/Momentum_density" class="mw-redirect" title="Momentum density">momentum density</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{0k}=T^{k0}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>k</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mn>0</mn> </mrow> </msup> <mtext>&#xa0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{0k}=T^{k0}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87825ceef5c04054bc4711c749d46b6f9a9334a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.587ex; height:2.676ex;" alt="{\displaystyle T^{0k}=T^{k0}~.}" /></span></li><li>The components <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{k\ell }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{k\ell }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4cc0cc82b4bea9862ae586e0736444a484f25a4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.494ex; height:2.676ex;" alt="{\displaystyle T^{k\ell }}" /></span> represent flux of <span class="texhtml mvar" style="font-style:italic;">k</span>th component of linear momentum across the <span class="texhtml mvar" style="font-style:italic;">x<sup>ℓ</sup></span> surface. In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{kk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{kk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f987573667c118d1b1a46083d1deffb40657de85" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.665ex; height:2.676ex;" alt="{\displaystyle T^{kk}}" /></span> (not summed) represents <a href="/wiki/Tensile_stress" class="mw-redirect" title="Tensile stress">normal stress</a> in the <span class="texhtml mvar" style="font-style:italic;">k</span>th co-ordinate direction (<span class="texhtml"><i>k</i> = 1, 2, 3</span>), which is called "<a href="/wiki/Pressure" title="Pressure">pressure</a>" when it is the same in every direction, <span class="texhtml mvar" style="font-style:italic;">k</span>. The remaining components <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{k\ell }\quad k\neq \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msup> <mspace width="1em"></mspace> <mi>k</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{k\ell }\quad k\neq \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58ad08f94bc767553ee5bcbc41ee8fe51e352a48" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.096ex; height:3.176ex;" alt="{\displaystyle T^{k\ell }\quad k\neq \ell }" /></span> represent <a href="/wiki/Shear_stress" title="Shear stress">shear stress</a> (compare with the <a href="/wiki/Stress_(physics)" class="mw-redirect" title="Stress (physics)">stress tensor</a>).</li></ol></div> <p>In <a href="/wiki/Solid_state_physics" class="mw-redirect" title="Solid state physics">solid state physics</a> and <a href="/wiki/Fluid_mechanics" title="Fluid mechanics">fluid mechanics</a>, the stress tensor is defined to be the spatial components of the stress–energy tensor in the <a href="/wiki/Proper_frame" title="Proper frame">proper frame</a> of reference. In other words, the stress–energy tensor in <a href="/wiki/Engineering" title="Engineering">engineering</a> <i>differs</i> from the relativistic stress–energy tensor by a momentum-convective term. </p> <div class="mw-heading mw-heading3"><h3 id="Covariant_and_mixed_forms">Covariant and mixed forms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=3" title="Edit section: Covariant and mixed forms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Most of this article works with the contravariant form, <span class="texhtml"><i>T</i><sup><i>μν</i></sup></span> of the stress–energy tensor. However, it is often convenient to work with the covariant form, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\mu \nu }=T^{\alpha \beta }g_{\alpha \mu }g_{\beta \nu },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\mu \nu }=T^{\alpha \beta }g_{\alpha \mu }g_{\beta \nu },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9da179fce0c5e99b3343a77bde3d0e76b907e596" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.682ex; height:3.343ex;" alt="{\displaystyle T_{\mu \nu }=T^{\alpha \beta }g_{\alpha \mu }g_{\beta \nu },}" /></span> or the mixed form, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\mu }{}_{\nu }=T^{\mu \alpha }g_{\alpha \nu }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\mu }{}_{\nu }=T^{\mu \alpha }g_{\alpha \nu }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/211b8a670fdc3b9a7de51f1dbffe09ea6461e215" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.052ex; height:2.676ex;" alt="{\displaystyle T^{\mu }{}_{\nu }=T^{\mu \alpha }g_{\alpha \nu }.}" /></span> </p><p>This article uses the spacelike <a href="/wiki/Sign_convention#Metric_signature" title="Sign convention">sign convention</a> <span class="texhtml">(− + + +)</span> for the metric signature. </p> <div class="mw-heading mw-heading2"><h2 id="Conservation_law">Conservation law</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=4" title="Edit section: Conservation law"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="In_special_relativity">In special relativity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=5" title="Edit section: In special relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Relativistic_angular_momentum" title="Relativistic angular momentum">Relativistic angular momentum</a> and <a href="/wiki/Four-momentum" title="Four-momentum">Four-momentum</a></div> <p>The stress–energy tensor is the conserved <a href="/wiki/Noether%27s_theorem" title="Noether&#39;s theorem">Noether current</a> associated with <a href="/wiki/Spacetime" title="Spacetime">spacetime</a> <a href="/wiki/Translation_(physics)" class="mw-redirect" title="Translation (physics)">translations</a>. </p><p>The divergence of the non-gravitational stress–energy is zero. In other words, non-gravitational energy and momentum are conserved, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=T^{\mu \nu }{}_{;\nu }\ \equiv \ \nabla _{\nu }T^{\mu \nu }{}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mtext>&#xa0;</mtext> <mo>&#x2261;<!-- ≡ --></mo> <mtext>&#xa0;</mtext> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mtext>&#xa0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=T^{\mu \nu }{}_{;\nu }\ \equiv \ \nabla _{\nu }T^{\mu \nu }{}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60f4a5880c505f1789ed2962147b3c81d196582f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.978ex; height:3.009ex;" alt="{\displaystyle 0=T^{\mu \nu }{}_{;\nu }\ \equiv \ \nabla _{\nu }T^{\mu \nu }{}~.}" /></span> When gravity is negligible and using a <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a> for spacetime, this may be expressed in terms of partial derivatives as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=T^{\mu \nu }{}_{,\nu }\ \equiv \ \partial _{\nu }T^{\mu \nu }~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mtext>&#xa0;</mtext> <mo>&#x2261;<!-- ≡ --></mo> <mtext>&#xa0;</mtext> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <mtext>&#xa0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=T^{\mu \nu }{}_{,\nu }\ \equiv \ \partial _{\nu }T^{\mu \nu }~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06f2bbe98158d4f26c1dbd77129232ff1f4aa168" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.276ex; height:3.009ex;" alt="{\displaystyle 0=T^{\mu \nu }{}_{,\nu }\ \equiv \ \partial _{\nu }T^{\mu \nu }~.}" /></span> </p><p>The integral form of the non-covariant formulation is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=\int _{\partial N}T^{\mu \nu }\mathrm {d} ^{3}s_{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <msub> <mo>&#x222b;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>N</mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=\int _{\partial N}T^{\mu \nu }\mathrm {d} ^{3}s_{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9c1e2e3eadb18abc86657d4762993c6cf8c094b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.919ex; height:5.676ex;" alt="{\displaystyle 0=\int _{\partial N}T^{\mu \nu }\mathrm {d} ^{3}s_{\nu }}" /></span> where <span class="texhtml mvar" style="font-style:italic;">N</span> is any compact four-dimensional region of spacetime; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \partial N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \partial N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baa23fe91503a9c317126532241b9f0d494ff9b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.382ex; height:2.176ex;" alt="{\textstyle \partial N}" /></span> is its boundary, a three-dimensional hypersurface; and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mathrm {d} ^{3}s_{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mathrm {d} ^{3}s_{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87ec10f9a84392b41337f58e322a0b088a1d4e00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.541ex; height:3.009ex;" alt="{\textstyle \mathrm {d} ^{3}s_{\nu }}" /></span> is an element of the boundary regarded as the outward pointing normal. </p><p>In flat spacetime and using Cartesian coordinates, if one combines this with the symmetry of the stress–energy tensor, one can show that <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a> is also conserved: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=(x^{\alpha }T^{\mu \nu }-x^{\mu }T^{\alpha \nu })_{,\nu }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=(x^{\alpha }T^{\mu \nu }-x^{\mu }T^{\alpha \nu })_{,\nu }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3b7a99980fd8dbf7ab19a04598ebad36cac55fe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.362ex; height:3.009ex;" alt="{\displaystyle 0=(x^{\alpha }T^{\mu \nu }-x^{\mu }T^{\alpha \nu })_{,\nu }\,.}" /></span> </p> <div class="mw-heading mw-heading3"><h3 id="In_general_relativity">In general relativity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=6" title="Edit section: In general relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When gravity is non-negligible or when using arbitrary coordinate systems, the divergence of the stress–energy still vanishes. But in this case, a <a href="/wiki/Divergence#Generalizations" title="Divergence">coordinate-free definition of the divergence</a> is used which incorporates the <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=\operatorname {div} T=T^{\mu \nu }{}_{;\nu }=\nabla _{\nu }T^{\mu \nu }=T^{\mu \nu }{}_{,\nu }+\Gamma ^{\mu }{}_{\sigma \nu }T^{\sigma \nu }+\Gamma ^{\nu }{}_{\sigma \nu }T^{\mu \sigma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>T</mi> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3c3;<!-- σ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3c3;<!-- σ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <mo>+</mo> <msup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3c3;<!-- σ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3c3;<!-- σ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=\operatorname {div} T=T^{\mu \nu }{}_{;\nu }=\nabla _{\nu }T^{\mu \nu }=T^{\mu \nu }{}_{,\nu }+\Gamma ^{\mu }{}_{\sigma \nu }T^{\sigma \nu }+\Gamma ^{\nu }{}_{\sigma \nu }T^{\mu \sigma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9daf2ed91d3d69d3a110c86e6a290eda57eefb3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:59ex; height:3.009ex;" alt="{\displaystyle 0=\operatorname {div} T=T^{\mu \nu }{}_{;\nu }=\nabla _{\nu }T^{\mu \nu }=T^{\mu \nu }{}_{,\nu }+\Gamma ^{\mu }{}_{\sigma \nu }T^{\sigma \nu }+\Gamma ^{\nu }{}_{\sigma \nu }T^{\mu \sigma }}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \Gamma ^{\mu }{}_{\sigma \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3c3;<!-- σ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \Gamma ^{\mu }{}_{\sigma \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/459dd972b8400b6a0f63b446d5f130dd2bbd205f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.72ex; height:2.509ex;" alt="{\textstyle \Gamma ^{\mu }{}_{\sigma \nu }}" /></span> is the <a href="/wiki/Christoffel_symbol" class="mw-redirect" title="Christoffel symbol">Christoffel symbol</a>, which is the gravitational <a href="/wiki/Force_field_(physics)" title="Force field (physics)">force field</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2024)">citation needed</span></a></i>&#93;</sup> </p><p>Consequently, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \xi ^{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>&#x3be;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \xi ^{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f570cf1828fe92643d79975b509e2625b4278503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.257ex; height:2.509ex;" alt="{\textstyle \xi ^{\mu }}" /></span> is any <a href="/wiki/Killing_vector_field" title="Killing vector field">Killing vector field</a>, then the conservation law associated with the symmetry generated by the Killing vector field may be expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=\nabla _{\nu }\left(\xi ^{\mu }T^{\nu }{}_{\mu }\right)={\frac {1}{\sqrt {-g}}}\partial _{\nu }\left({\sqrt {-g}}\ \xi ^{\mu }T_{\mu }^{\nu }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x3be;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> </msqrt> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> </msqrt> </mrow> <mtext>&#xa0;</mtext> <msup> <mi>&#x3be;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=\nabla _{\nu }\left(\xi ^{\mu }T^{\nu }{}_{\mu }\right)={\frac {1}{\sqrt {-g}}}\partial _{\nu }\left({\sqrt {-g}}\ \xi ^{\mu }T_{\mu }^{\nu }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6484ecd9a7957c5564e16c514b7963b065dbbc65" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:41.005ex; height:6.176ex;" alt="{\displaystyle 0=\nabla _{\nu }\left(\xi ^{\mu }T^{\nu }{}_{\mu }\right)={\frac {1}{\sqrt {-g}}}\partial _{\nu }\left({\sqrt {-g}}\ \xi ^{\mu }T_{\mu }^{\nu }\right)}" /></span> </p><p>The integral form of this is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=\int _{\partial N}\xi ^{\mu }T^{\nu }{}_{\mu }{\sqrt {-g}}\ \mathrm {d} ^{3}s_{\nu }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <msub> <mo>&#x222b;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>N</mi> </mrow> </msub> <msup> <mi>&#x3be;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> </msqrt> </mrow> <mtext>&#xa0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=\int _{\partial N}\xi ^{\mu }T^{\nu }{}_{\mu }{\sqrt {-g}}\ \mathrm {d} ^{3}s_{\nu }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6acd1eaa05a980116c258316a675f3f45219e773" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.271ex; height:5.676ex;" alt="{\displaystyle 0=\int _{\partial N}\xi ^{\mu }T^{\nu }{}_{\mu }{\sqrt {-g}}\ \mathrm {d} ^{3}s_{\nu }\,.}" /></span> </p> <div class="mw-heading mw-heading2"><h2 id="In_special_relativity_2">In special relativity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=7" title="Edit section: In special relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>, the stress–energy tensor contains information about the energy and momentum densities of a given system, in addition to the momentum and energy flux densities.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Given a Lagrangian density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\mathcal {L}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\mathcal {L}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e97aae95c92641d7ecba829fa92d6fe23888465" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.604ex; height:2.176ex;" alt="{\textstyle {\mathcal {L}}}" /></span> that is a function of a set of fields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \phi _{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \phi _{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85f380c1a29784e68dc82288b1d8064412d63051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.67ex; height:2.509ex;" alt="{\textstyle \phi _{\alpha }}" /></span> and their derivatives, but explicitly not of any of the spacetime coordinates, we can construct the <a href="#Canonical_stress–energy_tensor">canonical stress–energy tensor</a> by looking at the total derivative with respect to one of the generalized coordinates of the system. So, with our condition <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial {\mathcal {L}}}{\partial x^{\nu }}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial {\mathcal {L}}}{\partial x^{\nu }}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9306e35c1a2b6cc520bf189d363bd32275a26c8f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.848ex; height:5.509ex;" alt="{\displaystyle {\frac {\partial {\mathcal {L}}}{\partial x^{\nu }}}=0}" /></span> </p><p>By using the chain rule, we then have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d{\mathcal {L}}}{dx^{\nu }}}=d_{\nu }{\mathcal {L}}={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}{\frac {\partial (\partial _{\mu }\phi _{\alpha })}{\partial x^{\nu }}}+{\frac {\partial {\mathcal {L}}}{\partial \phi _{\alpha }}}{\frac {\partial \phi _{\alpha }}{\partial x^{\nu }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d{\mathcal {L}}}{dx^{\nu }}}=d_{\nu }{\mathcal {L}}={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}{\frac {\partial (\partial _{\mu }\phi _{\alpha })}{\partial x^{\nu }}}+{\frac {\partial {\mathcal {L}}}{\partial \phi _{\alpha }}}{\frac {\partial \phi _{\alpha }}{\partial x^{\nu }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb3a1079d99ba78b6adf7ddeaecdaff61628ee2c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:45.268ex; height:6.509ex;" alt="{\displaystyle {\frac {d{\mathcal {L}}}{dx^{\nu }}}=d_{\nu }{\mathcal {L}}={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}{\frac {\partial (\partial _{\mu }\phi _{\alpha })}{\partial x^{\nu }}}+{\frac {\partial {\mathcal {L}}}{\partial \phi _{\alpha }}}{\frac {\partial \phi _{\alpha }}{\partial x^{\nu }}}}" /></span> </p><p>Written in useful shorthand, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\nu }{\mathcal {L}}={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\partial _{\mu }\phi _{\alpha }+{\frac {\partial {\mathcal {L}}}{\partial \phi _{\alpha }}}\partial _{\nu }\phi _{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\nu }{\mathcal {L}}={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\partial _{\mu }\phi _{\alpha }+{\frac {\partial {\mathcal {L}}}{\partial \phi _{\alpha }}}\partial _{\nu }\phi _{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9e7326bded0ecfa96f8d8b0c7505539d02eb33f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.243ex; height:6.176ex;" alt="{\displaystyle d_{\nu }{\mathcal {L}}={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\partial _{\mu }\phi _{\alpha }+{\frac {\partial {\mathcal {L}}}{\partial \phi _{\alpha }}}\partial _{\nu }\phi _{\alpha }}" /></span> </p><p>Then, we can use the Euler–Lagrange Equation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{\mu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\right)={\frac {\partial {\mathcal {L}}}{\partial \phi _{\alpha }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{\mu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\right)={\frac {\partial {\mathcal {L}}}{\partial \phi _{\alpha }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3732e2793cb66a4ff1a60891fd9b5986aca28f89" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.279ex; height:6.343ex;" alt="{\displaystyle \partial _{\mu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\right)={\frac {\partial {\mathcal {L}}}{\partial \phi _{\alpha }}}}" /></span> </p><p>And then use the fact that partial derivatives commute so that we now have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\nu }{\mathcal {L}}={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\mu }\partial _{\nu }\phi _{\alpha }+\partial _{\mu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\right)\partial _{\nu }\phi _{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\nu }{\mathcal {L}}={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\mu }\partial _{\nu }\phi _{\alpha }+\partial _{\mu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\right)\partial _{\nu }\phi _{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63374ed9833d93b8777c01994a227471fa90d001" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:47.163ex; height:6.343ex;" alt="{\displaystyle d_{\nu }{\mathcal {L}}={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\mu }\partial _{\nu }\phi _{\alpha }+\partial _{\mu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\right)\partial _{\nu }\phi _{\alpha }}" /></span> </p><p>We can recognize the right hand side as a product rule. Writing it as the derivative of a product of functions tells us that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\nu }{\mathcal {L}}=\partial _{\mu }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\nu }{\mathcal {L}}=\partial _{\mu }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04de6ead5b6a5e59e7fb350aa1dabb9f190af850" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.413ex; height:6.343ex;" alt="{\displaystyle d_{\nu }{\mathcal {L}}=\partial _{\mu }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }\right]}" /></span> </p><p>Now, in flat space, one can write <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle d_{\nu }{\mathcal {L}}=\partial _{\mu }[\delta _{\nu }^{\mu }{\mathcal {L}}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mo stretchy="false">[</mo> <msubsup> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle d_{\nu }{\mathcal {L}}=\partial _{\mu }[\delta _{\nu }^{\mu }{\mathcal {L}}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36ff16b72d69afddc5f6e7638b0eb358610f28b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.647ex; height:3.176ex;" alt="{\textstyle d_{\nu }{\mathcal {L}}=\partial _{\mu }[\delta _{\nu }^{\mu }{\mathcal {L}}]}" /></span>. Doing this and moving it to the other side of the equation tells us that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{\mu }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }\right]-\partial _{\mu }\left(\delta _{\nu }^{\mu }{\mathcal {L}}\right)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{\mu }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }\right]-\partial _{\mu }\left(\delta _{\nu }^{\mu }{\mathcal {L}}\right)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/827fb653406aee49bfece1067a6dea2b4757b1ae" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.355ex; height:6.343ex;" alt="{\displaystyle \partial _{\mu }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }\right]-\partial _{\mu }\left(\delta _{\nu }^{\mu }{\mathcal {L}}\right)=0}" /></span> </p><p>And upon regrouping terms, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{\mu }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }-\delta _{\nu }^{\mu }{\mathcal {L}}\right]=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{\mu }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }-\delta _{\nu }^{\mu }{\mathcal {L}}\right]=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3c36307d65f93dff5a0b1f6562c04ecbfe131e0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:30.381ex; height:6.343ex;" alt="{\displaystyle \partial _{\mu }\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }-\delta _{\nu }^{\mu }{\mathcal {L}}\right]=0}" /></span> </p><p>This is to say that the divergence of the tensor in the brackets is 0. Indeed, with this, we define the stress–energy tensor: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\mu }{}_{\nu }\equiv {\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }-\delta _{\nu }^{\mu }{\mathcal {L}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\mu }{}_{\nu }\equiv {\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }-\delta _{\nu }^{\mu }{\mathcal {L}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59b252709e56405d2bfd19d1861750921510bff2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.965ex; height:6.176ex;" alt="{\displaystyle T^{\mu }{}_{\nu }\equiv {\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\nu }\phi _{\alpha }-\delta _{\nu }^{\mu }{\mathcal {L}}}" /></span> </p><p>By construction it has the property that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{\mu }T^{\mu }{}_{\nu }=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{\mu }T^{\mu }{}_{\nu }=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fb2364124900c917e60c3196589c2703dd48a73" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.766ex; height:3.009ex;" alt="{\displaystyle \partial _{\mu }T^{\mu }{}_{\nu }=0}" /></span> </p><p>Note that this divergenceless property of this tensor is equivalent to four <a href="/wiki/Continuity_equations" class="mw-redirect" title="Continuity equations">continuity equations</a>. That is, fields have at least four sets of quantities that obey the continuity equation. As an example, it can be seen that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle T^{0}{}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle T^{0}{}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05793925b91e815d35860b82b6a4e5c9d2d99c66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.828ex; height:2.843ex;" alt="{\textstyle T^{0}{}_{0}}" /></span> is the energy density of the system and that it is thus possible to obtain the Hamiltonian density from the stress–energy tensor. </p><p>Indeed, since this is the case, observing that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \partial _{\mu }T^{\mu }{}_{0}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \partial _{\mu }T^{\mu }{}_{0}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f0cd74ab1b1c4c9ac9206eb9d334f40d4aa44cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.716ex; height:2.843ex;" alt="{\textstyle \partial _{\mu }T^{\mu }{}_{0}=0}" /></span>, we then have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial {\mathcal {H}}}{\partial t}}+\nabla \cdot \left({\frac {\partial {\mathcal {L}}}{\partial \nabla \phi _{\alpha }}}{\dot {\phi }}_{\alpha }\right)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial {\mathcal {H}}}{\partial t}}+\nabla \cdot \left({\frac {\partial {\mathcal {L}}}{\partial \nabla \phi _{\alpha }}}{\dot {\phi }}_{\alpha }\right)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eb88bf0dc7aaf6e511ee6d8b71693afeb2553fe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.767ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial {\mathcal {H}}}{\partial t}}+\nabla \cdot \left({\frac {\partial {\mathcal {L}}}{\partial \nabla \phi _{\alpha }}}{\dot {\phi }}_{\alpha }\right)=0}" /></span> </p><p>We can then conclude that the terms of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\partial {\mathcal {L}}}{\partial \nabla \phi _{\alpha }}}{\dot {\phi }}_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\partial {\mathcal {L}}}{\partial \nabla \phi _{\alpha }}}{\dot {\phi }}_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76acf487faaf9552cab36d33c5830bed7fc5d84f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:7.886ex; height:4.176ex;" alt="{\textstyle {\frac {\partial {\mathcal {L}}}{\partial \nabla \phi _{\alpha }}}{\dot {\phi }}_{\alpha }}" /></span> represent the energy flux density of the system. </p> <div class="mw-heading mw-heading3"><h3 id="Trace">Trace</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=8" title="Edit section: Trace"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The trace of the stress–energy tensor is defined to be <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\mu }{}_{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\mu }{}_{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b89dfd010054de56e7e23fc6f73cd1ee367f6932" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.167ex; height:3.009ex;" alt="{\displaystyle T^{\mu }{}_{\mu }}" /></span>&#8288;</span>, so <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\mu }{}_{\mu }={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\mu }\phi _{\alpha }-\delta _{\mu }^{\mu }{\mathcal {L}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\mu }{}_{\mu }={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\mu }\phi _{\alpha }-\delta _{\mu }^{\mu }{\mathcal {L}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a2e26e1baa9f7e399e612d71e5310faedb61a91" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.852ex; height:6.176ex;" alt="{\displaystyle T^{\mu }{}_{\mu }={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\mu }\phi _{\alpha }-\delta _{\mu }^{\mu }{\mathcal {L}}.}" /></span> </p><p>Since <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{\mu }^{\mu }=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msubsup> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{\mu }^{\mu }=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08dff3bafe9307374dc0f827e00950f0e848674a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.538ex; height:3.176ex;" alt="{\displaystyle \delta _{\mu }^{\mu }=4}" /></span>&#8288;</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\mu }{}_{\mu }={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\mu }\phi _{\alpha }-4{\mathcal {L}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msub> <msub> <mi>&#x3d5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\mu }{}_{\mu }={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\mu }\phi _{\alpha }-4{\mathcal {L}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1622418454dce0afdf18fc1746e75ef59d9a3514" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.737ex; height:6.176ex;" alt="{\displaystyle T^{\mu }{}_{\mu }={\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }\phi _{\alpha })}}\partial _{\mu }\phi _{\alpha }-4{\mathcal {L}}.}" /></span> </p> <div class="mw-heading mw-heading2"><h2 id="In_general_relativity_2">In general relativity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=9" title="Edit section: In general relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, the <a href="/wiki/Symmetric" class="mw-redirect" title="Symmetric">symmetric</a> stress–energy tensor acts as the source of spacetime <a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">curvature</a>, and is the current density associated with <a href="/wiki/Gauge_transformation" class="mw-redirect" title="Gauge transformation">gauge transformations</a> of gravity which are general curvilinear <a href="/wiki/Coordinate_transformation" class="mw-redirect" title="Coordinate transformation">coordinate transformations</a>. (If there is <a href="/wiki/Torsion_tensor" title="Torsion tensor">torsion</a>, then the tensor is no longer symmetric. This corresponds to the case with a nonzero <a href="/wiki/Spin_tensor" title="Spin tensor">spin tensor</a> in <a href="/wiki/Einstein%E2%80%93Cartan_theory" title="Einstein–Cartan theory">Einstein–Cartan gravity theory</a>.) </p><p>In general relativity, the <a href="/wiki/Partial_derivatives" class="mw-redirect" title="Partial derivatives">partial derivatives</a> used in special relativity are replaced by <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivatives</a>. What this means is that the continuity equation no longer implies that the non-gravitational energy and momentum expressed by the tensor are absolutely conserved, i.e. the gravitational field can do work on matter and vice versa. In the classical limit of <a href="/wiki/Newtonian_gravity" class="mw-redirect" title="Newtonian gravity">Newtonian gravity</a>, this has a simple interpretation: kinetic energy is being exchanged with <a href="/wiki/Gravitational_energy" title="Gravitational energy">gravitational potential energy</a>, which is not included in the tensor, and momentum is being transferred through the field to other bodies. In general relativity the <a href="/wiki/Stress%E2%80%93energy%E2%80%93momentum_pseudotensor#Landau–Lifshitz_pseudotensor" title="Stress–energy–momentum pseudotensor">Landau–Lifshitz pseudotensor</a> is a unique way to define the <i>gravitational</i> field energy and momentum densities. Any such <a href="/wiki/Stress%E2%80%93energy%E2%80%93momentum_pseudotensor" title="Stress–energy–momentum pseudotensor">stress–energy pseudotensor</a> can be made to vanish locally by a coordinate transformation. </p><p>In curved spacetime, the spacelike <a href="/wiki/Integral" title="Integral">integral</a> now depends on the spacelike slice, in general. There is in fact no way to define a global energy–momentum vector in a general curved spacetime. </p> <div class="mw-heading mw-heading3"><h3 id="Einstein_field_equations">Einstein field equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=10" title="Edit section: Einstein field equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a></div> <p>In general relativity, the stress–energy tensor is studied in the context of the Einstein field equations which are often written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }=\kappa T_{\mu \nu },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mi>&#x3ba;<!-- κ --></mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }=\kappa T_{\mu \nu },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af02c490b2f4c2a53af6cb41e344ec514a7b1f5f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.115ex; height:2.843ex;" alt="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }=\kappa T_{\mu \nu },}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle G_{\mu \nu }=R_{\mu \nu }-{\tfrac {1}{2}}R\,g_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>R</mi> <mspace width="thinmathspace"></mspace> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle G_{\mu \nu }=R_{\mu \nu }-{\tfrac {1}{2}}R\,g_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f31522fac66036e07b844fb11d1266f44253bb49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:20.732ex; height:3.509ex;" alt="{\textstyle G_{\mu \nu }=R_{\mu \nu }-{\tfrac {1}{2}}R\,g_{\mu \nu }}" /></span> is the <a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle R_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle R_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/931e73a851e3a512ec5bea8f17112d5be125bc1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.859ex; height:2.843ex;" alt="{\textstyle R_{\mu \nu }}" /></span> is the <a href="/wiki/Ricci_tensor" class="mw-redirect" title="Ricci tensor">Ricci tensor</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle R=g^{\alpha \beta }R_{\alpha \beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle R=g^{\alpha \beta }R_{\alpha \beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d8c2ef9e4befa2c7735475eb8d3575e4254373f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.197ex; height:3.343ex;" alt="{\textstyle R=g^{\alpha \beta }R_{\alpha \beta }}" /></span> is the <a href="/wiki/Scalar_curvature" title="Scalar curvature">scalar curvature</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle g_{\mu \nu }\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle g_{\mu \nu }\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/802bc86d6d4c03e5b4c85b59643291bfb000efdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.591ex; height:2.343ex;" alt="{\textstyle g_{\mu \nu }\,}" /></span> is the <a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">metric tensor</a>, <span class="texhtml">Λ</span> is the <a href="/wiki/Cosmological_constant" title="Cosmological constant">cosmological constant</a> (negligible at the scale of a galaxy or smaller), and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \kappa =8\pi G/c^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x3ba;<!-- κ --></mi> <mo>=</mo> <mn>8</mn> <mi>&#x3c0;<!-- π --></mi> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \kappa =8\pi G/c^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf40e42722957224627e14c276d49c0426ca5c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.982ex; height:3.009ex;" alt="{\textstyle \kappa =8\pi G/c^{4}}" /></span> is the <a href="/wiki/Einstein_gravitational_constant" class="mw-redirect" title="Einstein gravitational constant">Einstein gravitational constant</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Stress–energy_in_special_situations"><span id="Stress.E2.80.93energy_in_special_situations"></span>Stress–energy in special situations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=11" title="Edit section: Stress–energy in special situations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Isolated_particle">Isolated particle</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=12" title="Edit section: Isolated particle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In special relativity, the stress–energy of a non-interacting particle with rest mass <span class="texhtml mvar" style="font-style:italic;">m</span> and trajectory <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mathbf {x} _{\text{p}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>p</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mathbf {x} _{\text{p}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8ea29143e337be03c4de26731b3c216c3446b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.206ex; height:3.009ex;" alt="{\textstyle \mathbf {x} _{\text{p}}(t)}" /></span> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\alpha \beta }(\mathbf {x} ,t)={\frac {m\,v^{\alpha }(t)v^{\beta }(t)}{\sqrt {1-(v/c)^{2}}}}\;\,\delta \left(\mathbf {x} -\mathbf {x} _{\text{p}}(t)\right)={\frac {E}{c^{2}}}\;v^{\alpha }(t)v^{\beta }(t)\;\,\delta (\mathbf {x} -\mathbf {x} _{\text{p}}(t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mspace width="thinmathspace"></mspace> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="thickmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>&#x3b4;<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>p</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thickmathspace"></mspace> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>&#x3b4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>p</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\alpha \beta }(\mathbf {x} ,t)={\frac {m\,v^{\alpha }(t)v^{\beta }(t)}{\sqrt {1-(v/c)^{2}}}}\;\,\delta \left(\mathbf {x} -\mathbf {x} _{\text{p}}(t)\right)={\frac {E}{c^{2}}}\;v^{\alpha }(t)v^{\beta }(t)\;\,\delta (\mathbf {x} -\mathbf {x} _{\text{p}}(t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a941e94824b28857620a7f1a2b4ec2b73513088" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:69.196ex; height:7.176ex;" alt="{\displaystyle T^{\alpha \beta }(\mathbf {x} ,t)={\frac {m\,v^{\alpha }(t)v^{\beta }(t)}{\sqrt {1-(v/c)^{2}}}}\;\,\delta \left(\mathbf {x} -\mathbf {x} _{\text{p}}(t)\right)={\frac {E}{c^{2}}}\;v^{\alpha }(t)v^{\beta }(t)\;\,\delta (\mathbf {x} -\mathbf {x} _{\text{p}}(t))}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle v^{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle v^{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55fcf7e05ece486ab2fa46c6dca354b92f90ae8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.412ex; height:2.176ex;" alt="{\textstyle v^{\alpha }}" /></span> is the velocity vector (which should not be confused with <a href="/wiki/Four-velocity" title="Four-velocity">four-velocity</a>, since it is missing a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/079fa214f0d7f7dcf92af4c520c95aa7ca787d1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\textstyle \gamma }" /></span>) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v^{\alpha }=\left(1,{\frac {d\mathbf {x} _{\text{p}}}{dt}}(t)\right)\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>p</mtext> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v^{\alpha }=\left(1,{\frac {d\mathbf {x} _{\text{p}}}{dt}}(t)\right)\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c5e631c9aa6aff8e2b271662746ce4112a28511" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.807ex; height:6.176ex;" alt="{\displaystyle v^{\alpha }=\left(1,{\frac {d\mathbf {x} _{\text{p}}}{dt}}(t)\right)\,,}" /></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x3b4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec578ebbf0a029f13dca70687f072742277a87ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\textstyle \delta }" /></span> is the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle E={\sqrt {p^{2}c^{2}+m^{2}c^{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle E={\sqrt {p^{2}c^{2}+m^{2}c^{4}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cccacbfef8f89af5699c9aaa305d3c75307966e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.479ex; height:3.509ex;" alt="{\textstyle E={\sqrt {p^{2}c^{2}+m^{2}c^{4}}}}" /></span> is the <a href="/wiki/Energy" title="Energy">energy</a> of the particle. </p><p>Written in the language of classical physics, the stress–energy tensor would be (relativistic mass, momentum, the <a href="/wiki/Dyadic_product" class="mw-redirect" title="Dyadic product">dyadic product</a> of momentum and velocity) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {E}{c^{2}}},\,\mathbf {p} ,\,\mathbf {p} \,\mathbf {v} \right)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {E}{c^{2}}},\,\mathbf {p} ,\,\mathbf {p} \,\mathbf {v} \right)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d814ece877ed63d80c781b798d2a509ad4ce3cf6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.35ex; height:6.176ex;" alt="{\displaystyle \left({\frac {E}{c^{2}}},\,\mathbf {p} ,\,\mathbf {p} \,\mathbf {v} \right)\,.}" /></span> </p> <div class="mw-heading mw-heading3"><h3 id="Stress–energy_of_a_fluid_in_equilibrium"><span id="Stress.E2.80.93energy_of_a_fluid_in_equilibrium"></span>Stress–energy of a fluid in equilibrium</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=13" title="Edit section: Stress–energy of a fluid in equilibrium"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a <a href="/wiki/Perfect_fluid" title="Perfect fluid">perfect fluid</a> in <a href="/wiki/Thermodynamic_equilibrium" title="Thermodynamic equilibrium">thermodynamic equilibrium</a>, the stress–energy tensor takes on a particularly simple form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\alpha \beta }\,=\left(\rho +{p \over c^{2}}\right)u^{\alpha }u^{\beta }+pg^{\alpha \beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>&#x3c1;<!-- ρ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mo>+</mo> <mi>p</mi> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\alpha \beta }\,=\left(\rho +{p \over c^{2}}\right)u^{\alpha }u^{\beta }+pg^{\alpha \beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dccacac5329b5e134f9335a328e6991330ee0b6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.651ex; height:6.176ex;" alt="{\displaystyle T^{\alpha \beta }\,=\left(\rho +{p \over c^{2}}\right)u^{\alpha }u^{\beta }+pg^{\alpha \beta }}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x3c1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfe88055cce2aa2861ff06d1386e021822fad300" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\textstyle \rho }" /></span> is the mass–energy density (<a href="/wiki/Kilogram" title="Kilogram">kilograms</a> per cubic meter), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad87bd7009e2a5c52bd0fb5a9bda9d8c1c23a79b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\textstyle p}" /></span> is the hydrostatic pressure (<a href="/wiki/Pascal_(unit)" title="Pascal (unit)">pascals</a>), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle u^{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle u^{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1de6119c88d171f6df48e8833027a81ba822821a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.614ex; height:2.176ex;" alt="{\textstyle u^{\alpha }}" /></span> is the fluid's <a href="/wiki/Four-velocity" title="Four-velocity">four-velocity</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle g^{\alpha \beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle g^{\alpha \beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/989d0af3d991f54a58fba9111e1c77c51137d4b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.344ex; height:3.009ex;" alt="{\textstyle g^{\alpha \beta }}" /></span> is the matrix inverse of the <a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">metric tensor</a>. Therefore, the trace is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\alpha }{}_{\,\alpha }=g_{\alpha \beta }T^{\beta \alpha }=3p-\rho c^{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace"></mspace> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <mo>=</mo> <mn>3</mn> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x3c1;<!-- ρ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\alpha }{}_{\,\alpha }=g_{\alpha \beta }T^{\beta \alpha }=3p-\rho c^{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1115bbe07339342879de65c9d29214e8fb099e3e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.623ex; height:3.343ex;" alt="{\displaystyle T^{\alpha }{}_{\,\alpha }=g_{\alpha \beta }T^{\beta \alpha }=3p-\rho c^{2}\,.}" /></span> </p><p>The <a href="/wiki/Four-velocity" title="Four-velocity">four-velocity</a> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u^{\alpha }u^{\beta }g_{\alpha \beta }=-c^{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u^{\alpha }u^{\beta }g_{\alpha \beta }=-c^{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54dfb0dae403cde941b3e2fdf58381c20702f63" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.454ex; height:3.343ex;" alt="{\displaystyle u^{\alpha }u^{\beta }g_{\alpha \beta }=-c^{2}\,.}" /></span> </p><p>In an <a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">inertial frame of reference</a> comoving with the fluid, better known as the fluid's <a href="/wiki/Proper_frame" title="Proper frame">proper frame</a> of reference, the four-velocity is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u^{\alpha }=(1,0,0,0)\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u^{\alpha }=(1,0,0,0)\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/587820468f4145c453f69bc67e2928668209327d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.307ex; height:2.843ex;" alt="{\displaystyle u^{\alpha }=(1,0,0,0)\,,}" /></span> </p><p>the matrix inverse of the metric tensor is simply <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g^{\alpha \beta }\,=\left({\begin{matrix}-{\frac {1}{c^{2}}}&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;1&amp;0\\0&amp;0&amp;0&amp;1\end{matrix}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g^{\alpha \beta }\,=\left({\begin{matrix}-{\frac {1}{c^{2}}}&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;1&amp;0\\0&amp;0&amp;0&amp;1\end{matrix}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3da2838d84915ece60448c1ad9ff4b7b02d1289a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:26.291ex; height:13.509ex;" alt="{\displaystyle g^{\alpha \beta }\,=\left({\begin{matrix}-{\frac {1}{c^{2}}}&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;1&amp;0\\0&amp;0&amp;0&amp;1\end{matrix}}\right)}" /></span> and the stress–energy tensor is a diagonal matrix <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\alpha \beta }=\left({\begin{matrix}\rho &amp;0&amp;0&amp;0\\0&amp;p&amp;0&amp;0\\0&amp;0&amp;p&amp;0\\0&amp;0&amp;0&amp;p\end{matrix}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x3c1;<!-- ρ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>p</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>p</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\alpha \beta }=\left({\begin{matrix}\rho &amp;0&amp;0&amp;0\\0&amp;p&amp;0&amp;0\\0&amp;0&amp;p&amp;0\\0&amp;0&amp;0&amp;p\end{matrix}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0099003483319a804197ee399a5489f040099715" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:24.575ex; height:12.509ex;" alt="{\displaystyle T^{\alpha \beta }=\left({\begin{matrix}\rho &amp;0&amp;0&amp;0\\0&amp;p&amp;0&amp;0\\0&amp;0&amp;p&amp;0\\0&amp;0&amp;0&amp;p\end{matrix}}\right).}" /></span> </p> <div class="mw-heading mw-heading3"><h3 id="Electromagnetic_stress–energy_tensor"><span id="Electromagnetic_stress.E2.80.93energy_tensor"></span>Electromagnetic stress–energy tensor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=14" title="Edit section: Electromagnetic stress–energy tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Electromagnetic_stress%E2%80%93energy_tensor" title="Electromagnetic stress–energy tensor">Electromagnetic stress–energy tensor</a></div> <p>The Hilbert stress–energy tensor of a source-free electromagnetic field is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\mu \nu }={\frac {1}{\mu _{0}}}\left(F^{\mu \alpha }g_{\alpha \beta }F^{\nu \beta }-{\frac {1}{4}}g^{\mu \nu }F_{\delta \gamma }F^{\delta \gamma }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>&#x3bc;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b4;<!-- δ --></mi> <mi>&#x3b3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b4;<!-- δ --></mi> <mi>&#x3b3;<!-- γ --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\mu \nu }={\frac {1}{\mu _{0}}}\left(F^{\mu \alpha }g_{\alpha \beta }F^{\nu \beta }-{\frac {1}{4}}g^{\mu \nu }F_{\delta \gamma }F^{\delta \gamma }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da82315069217bc62afd14b23d8273c563c141e5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.393ex; height:6.176ex;" alt="{\displaystyle T^{\mu \nu }={\frac {1}{\mu _{0}}}\left(F^{\mu \alpha }g_{\alpha \beta }F^{\nu \beta }-{\frac {1}{4}}g^{\mu \nu }F_{\delta \gamma }F^{\delta \gamma }\right)}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle F_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle F_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/040d265343d98b5b1e856d9cdb2a9ed24cf8e63d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.589ex; height:2.843ex;" alt="{\textstyle F_{\mu \nu }}" /></span> is the <a href="/wiki/Electromagnetic_field_tensor" class="mw-redirect" title="Electromagnetic field tensor">electromagnetic field tensor</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Scalar_field">Scalar field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=15" title="Edit section: Scalar field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon equation</a></div> <p>The stress–energy tensor for a complex scalar field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x3d5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b36dc4887c86d6f01183292a5d2f984e23318c10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\textstyle \phi }" /></span> that satisfies the Klein–Gordon equation is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\mu \nu }={\frac {\hbar ^{2}}{m}}\left(g^{\mu \alpha }g^{\nu \beta }+g^{\mu \beta }g^{\nu \alpha }-g^{\mu \nu }g^{\alpha \beta }\right)\partial _{\alpha }{\bar {\phi }}\partial _{\beta }\phi -g^{\mu \nu }mc^{2}{\bar {\phi }}\phi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210f;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>m</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <mo>+</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> <mi>&#x3b1;<!-- α --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\mu \nu }={\frac {\hbar ^{2}}{m}}\left(g^{\mu \alpha }g^{\nu \beta }+g^{\mu \beta }g^{\nu \alpha }-g^{\mu \nu }g^{\alpha \beta }\right)\partial _{\alpha }{\bar {\phi }}\partial _{\beta }\phi -g^{\mu \nu }mc^{2}{\bar {\phi }}\phi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/816873dee927c0d58081ba705e1a846072954c04" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:59.816ex; height:5.676ex;" alt="{\displaystyle T^{\mu \nu }={\frac {\hbar ^{2}}{m}}\left(g^{\mu \alpha }g^{\nu \beta }+g^{\mu \beta }g^{\nu \alpha }-g^{\mu \nu }g^{\alpha \beta }\right)\partial _{\alpha }{\bar {\phi }}\partial _{\beta }\phi -g^{\mu \nu }mc^{2}{\bar {\phi }}\phi ,}" /></span> and when the metric is flat (Minkowski in Cartesian coordinates) its components work out to be: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}T^{00}&amp;={\frac {\hbar ^{2}}{mc^{4}}}\left(\partial _{0}{\bar {\phi }}\partial _{0}\phi +c^{2}\partial _{k}{\bar {\phi }}\partial _{k}\phi \right)+m{\bar {\phi }}\phi ,\\T^{0i}=T^{i0}&amp;=-{\frac {\hbar ^{2}}{mc^{2}}}\left(\partial _{0}{\bar {\phi }}\partial _{i}\phi +\partial _{i}{\bar {\phi }}\partial _{0}\phi \right),\ \mathrm {and} \\T^{ij}&amp;={\frac {\hbar ^{2}}{m}}\left(\partial _{i}{\bar {\phi }}\partial _{j}\phi +\partial _{j}{\bar {\phi }}\partial _{i}\phi \right)-\delta _{ij}\left({\frac {\hbar ^{2}}{m}}\eta ^{\alpha \beta }\partial _{\alpha }{\bar {\phi }}\partial _{\beta }\phi +mc^{2}{\bar {\phi }}\phi \right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210f;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mi>i</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>0</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210f;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> <mo>+</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mtext>&#xa0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210f;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>m</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> <mo>+</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210f;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>m</mi> </mfrac> </mrow> <msup> <mi>&#x3b7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3b2;<!-- β --></mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b1;<!-- α --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b2;<!-- β --></mi> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> <mo>+</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>&#x3d5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}T^{00}&amp;={\frac {\hbar ^{2}}{mc^{4}}}\left(\partial _{0}{\bar {\phi }}\partial _{0}\phi +c^{2}\partial _{k}{\bar {\phi }}\partial _{k}\phi \right)+m{\bar {\phi }}\phi ,\\T^{0i}=T^{i0}&amp;=-{\frac {\hbar ^{2}}{mc^{2}}}\left(\partial _{0}{\bar {\phi }}\partial _{i}\phi +\partial _{i}{\bar {\phi }}\partial _{0}\phi \right),\ \mathrm {and} \\T^{ij}&amp;={\frac {\hbar ^{2}}{m}}\left(\partial _{i}{\bar {\phi }}\partial _{j}\phi +\partial _{j}{\bar {\phi }}\partial _{i}\phi \right)-\delta _{ij}\left({\frac {\hbar ^{2}}{m}}\eta ^{\alpha \beta }\partial _{\alpha }{\bar {\phi }}\partial _{\beta }\phi +mc^{2}{\bar {\phi }}\phi \right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ec564c20eabea548a0ba167bb9c6716dd730777" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.335ex; margin-bottom: -0.336ex; width:70.642ex; height:18.343ex;" alt="{\displaystyle {\begin{aligned}T^{00}&amp;={\frac {\hbar ^{2}}{mc^{4}}}\left(\partial _{0}{\bar {\phi }}\partial _{0}\phi +c^{2}\partial _{k}{\bar {\phi }}\partial _{k}\phi \right)+m{\bar {\phi }}\phi ,\\T^{0i}=T^{i0}&amp;=-{\frac {\hbar ^{2}}{mc^{2}}}\left(\partial _{0}{\bar {\phi }}\partial _{i}\phi +\partial _{i}{\bar {\phi }}\partial _{0}\phi \right),\ \mathrm {and} \\T^{ij}&amp;={\frac {\hbar ^{2}}{m}}\left(\partial _{i}{\bar {\phi }}\partial _{j}\phi +\partial _{j}{\bar {\phi }}\partial _{i}\phi \right)-\delta _{ij}\left({\frac {\hbar ^{2}}{m}}\eta ^{\alpha \beta }\partial _{\alpha }{\bar {\phi }}\partial _{\beta }\phi +mc^{2}{\bar {\phi }}\phi \right).\end{aligned}}}" /></span> </p> <div class="mw-heading mw-heading2"><h2 id="Variant_definitions_of_stress–energy"><span id="Variant_definitions_of_stress.E2.80.93energy"></span>Variant definitions of stress–energy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=16" title="Edit section: Variant definitions of stress–energy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are a number of inequivalent definitions<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> of non-gravitational stress–energy: </p> <div class="mw-heading mw-heading3"><h3 id="Hilbert_stress–energy_tensor"><span id="Hilbert_stress.E2.80.93energy_tensor"></span>Hilbert stress–energy tensor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=17" title="Edit section: Hilbert stress–energy tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Hilbert stress–energy tensor is defined as the <a href="/wiki/Functional_derivative" title="Functional derivative">functional derivative</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\mu \nu }={\frac {-2}{\sqrt {-g}}}{\frac {\delta S_{\mathrm {matter} }}{\delta g^{\mu \nu }}}={\frac {-2}{\sqrt {-g}}}{\frac {\partial \left({\sqrt {-g}}{\mathcal {L}}_{\mathrm {matter} }\right)}{\partial g^{\mu \nu }}}=-2{\frac {\partial {\mathcal {L}}_{\mathrm {matter} }}{\partial g^{\mu \nu }}}+g_{\mu \nu }{\mathcal {L}}_{\mathrm {matter} },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <msqrt> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x3b4;<!-- δ --></mi> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mi>&#x3b4;<!-- δ --></mi> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <msqrt> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> </msqrt> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> </mrow> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> </mrow> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\mu \nu }={\frac {-2}{\sqrt {-g}}}{\frac {\delta S_{\mathrm {matter} }}{\delta g^{\mu \nu }}}={\frac {-2}{\sqrt {-g}}}{\frac {\partial \left({\sqrt {-g}}{\mathcal {L}}_{\mathrm {matter} }\right)}{\partial g^{\mu \nu }}}=-2{\frac {\partial {\mathcal {L}}_{\mathrm {matter} }}{\partial g^{\mu \nu }}}+g_{\mu \nu }{\mathcal {L}}_{\mathrm {matter} },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87cc99b003adad7a372e4c308bac8825a6f5f41a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:73.596ex; height:6.843ex;" alt="{\displaystyle T_{\mu \nu }={\frac {-2}{\sqrt {-g}}}{\frac {\delta S_{\mathrm {matter} }}{\delta g^{\mu \nu }}}={\frac {-2}{\sqrt {-g}}}{\frac {\partial \left({\sqrt {-g}}{\mathcal {L}}_{\mathrm {matter} }\right)}{\partial g^{\mu \nu }}}=-2{\frac {\partial {\mathcal {L}}_{\mathrm {matter} }}{\partial g^{\mu \nu }}}+g_{\mu \nu }{\mathcal {L}}_{\mathrm {matter} },}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle S_{\mathrm {matter} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle S_{\mathrm {matter} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78d599499e6cbfdddb7a81ddc472fa646dbbf35b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.502ex; height:2.509ex;" alt="{\textstyle S_{\mathrm {matter} }}" /></span> is the nongravitational part of the <a href="/wiki/Action_(physics)" title="Action (physics)">action</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\mathcal {L}}_{\mathrm {matter} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\mathcal {L}}_{\mathrm {matter} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ea55bdfb041187490226c29bd7eec648c93169" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.681ex; height:2.509ex;" alt="{\textstyle {\mathcal {L}}_{\mathrm {matter} }}" /></span> is the nongravitational part of the <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian</a> density, and the <a href="/wiki/Euler%E2%80%93Lagrange_equation" title="Euler–Lagrange equation">Euler–Lagrange equation</a> has been used. This is symmetric and gauge-invariant. See <a href="/wiki/Einstein%E2%80%93Hilbert_action" title="Einstein–Hilbert action">Einstein–Hilbert action</a> for more information. </p> <div class="mw-heading mw-heading3"><h3 id="Canonical_stress–energy_tensor"><span id="Canonical_stress.E2.80.93energy_tensor"></span>Canonical stress–energy tensor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=18" title="Edit section: Canonical stress–energy tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Noether%27s_theorem" title="Noether&#39;s theorem">Noether's theorem</a> implies that there is a conserved current associated with translations through space and time; for details see the section above on the stress–energy tensor in special relativity. This is called the canonical stress–energy tensor. Generally, this is not symmetric and if we have some gauge theory, it may not be <a href="/wiki/Gauge_invariant" class="mw-redirect" title="Gauge invariant">gauge invariant</a> because space-dependent <a href="/wiki/Gauge_transformation" class="mw-redirect" title="Gauge transformation">gauge transformations</a> do not commute with spatial translations. </p><p>In <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, the translations are with respect to the coordinate system and as such, do not transform covariantly. See the section below on the gravitational stress–energy pseudotensor. </p> <div class="mw-heading mw-heading3"><h3 id="Belinfante–Rosenfeld_stress–energy_tensor"><span id="Belinfante.E2.80.93Rosenfeld_stress.E2.80.93energy_tensor"></span>Belinfante–Rosenfeld stress–energy tensor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=19" title="Edit section: Belinfante–Rosenfeld stress–energy tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Belinfante%E2%80%93Rosenfeld_stress%E2%80%93energy_tensor" title="Belinfante–Rosenfeld stress–energy tensor">Belinfante–Rosenfeld stress–energy tensor</a></div> <p>In the presence of spin or other intrinsic angular momentum, the canonical Noether stress–energy tensor fails to be symmetric. The Belinfante–Rosenfeld stress–energy tensor is constructed from the canonical stress–energy tensor and the spin current in such a way as to be symmetric and still conserved. In general relativity, this modified tensor agrees with the Hilbert stress–energy tensor. </p> <div class="mw-heading mw-heading2"><h2 id="Gravitational_stress–energy"><span id="Gravitational_stress.E2.80.93energy"></span>Gravitational stress–energy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=20" title="Edit section: Gravitational stress–energy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Stress%E2%80%93energy%E2%80%93momentum_pseudotensor" title="Stress–energy–momentum pseudotensor">Stress–energy–momentum pseudotensor</a></div> <p>By the <a href="/wiki/Equivalence_principle" title="Equivalence principle">equivalence principle</a>, gravitational stress–energy will always vanish locally at any chosen point in some chosen frame, therefore gravitational stress–energy cannot be expressed as a non-zero tensor; instead we have to use a <a href="/wiki/Pseudotensor" title="Pseudotensor">pseudotensor</a>. </p><p>In general relativity, there are many possible distinct definitions of the gravitational stress–energy–momentum pseudotensor. These include the Einstein pseudotensor and the <a href="/wiki/Landau%E2%80%93Lifshitz_pseudotensor" class="mw-redirect" title="Landau–Lifshitz pseudotensor">Landau–Lifshitz pseudotensor</a>. The Landau–Lifshitz pseudotensor can be reduced to zero at any event in spacetime by choosing an appropriate coordinate system. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=21" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 26em;"> <ul><li><a href="/wiki/Electromagnetic_stress%E2%80%93energy_tensor" title="Electromagnetic stress–energy tensor">Electromagnetic stress–energy tensor</a></li> <li><a href="/wiki/Energy_condition" title="Energy condition">Energy condition</a></li> <li><a href="/wiki/Energy_density#Energy_density_of_electric_and_magnetic_fields" title="Energy density">Energy density of electric and magnetic fields</a></li> <li><a href="/wiki/Maxwell_stress_tensor" title="Maxwell stress tensor">Maxwell stress tensor</a></li> <li><a href="/wiki/Poynting_vector" title="Poynting vector">Poynting vector</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Segre_classification" title="Segre classification">Segre classification</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=22" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"> "All the stress–energy tensors explored above were symmetric. That they could not have been otherwise one sees as follows." <div style="float:right;"> — <a href="/wiki/Gravitation_(book)" title="Gravitation (book)">Misner, Thorne, and Wheeler</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </div></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=23" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626" /><div class="reflist reflist-columns references-column-width" style="column-width: 25em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMisnerThorneWheeler2017" class="citation book cs1"><a href="/wiki/Charles_W._Misner" title="Charles W. Misner">Misner, C.W.</a>; <a href="/wiki/Kip_Thorne" title="Kip Thorne">Thorne, K.S.</a>; <a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler, J.A.</a> (2017) [1973]. "Symmetry of the stress–energy tensor". <i><a href="/wiki/Gravitation_(book)" title="Gravitation (book)">Gravitation</a></i> (reprint&#160;ed.). Princeton, NJ: Princeton University Press. section&#160;5.7, pp.&#160;141–142. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-6911-7779-3" title="Special:BookSources/978-0-6911-7779-3"><bdi>978-0-6911-7779-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Symmetry+of+the+stress%E2%80%93energy+tensor&amp;rft.btitle=Gravitation&amp;rft.place=Princeton%2C+NJ&amp;rft.pages=section-5.7%2C+pp.-141-142&amp;rft.edition=reprint&amp;rft.pub=Princeton+University+Press&amp;rft.date=2017&amp;rft.isbn=978-0-6911-7779-3&amp;rft.aulast=Misner&amp;rft.aufirst=C.W.&amp;rft.au=Thorne%2C+K.S.&amp;rft.au=Wheeler%2C+J.A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStress%E2%80%93energy+tensor" class="Z3988"></span> </span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFMisnerThorneWheeler1973" class="citation book cs1">Misner, Charles W.; Thorne, Kip S.; Wheeler, John A. (1973). <i>Gravitation</i>. San&#160;Francisco, CA: W.H. Freeman and Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7167-0334-3" title="Special:BookSources/0-7167-0334-3"><bdi>0-7167-0334-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitation&amp;rft.place=San+Francisco%2C+CA&amp;rft.pub=W.H.+Freeman+and+Company&amp;rft.date=1973&amp;rft.isbn=0-7167-0334-3&amp;rft.aulast=Misner&amp;rft.aufirst=Charles+W.&amp;rft.au=Thorne%2C+Kip+S.&amp;rft.au=Wheeler%2C+John+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStress%E2%80%93energy+tensor" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFd&#39;Inverno1992" class="citation book cs1">d'Inverno, R.A. (1992). <i>Introducing Einstein's Relativity</i>. New York, NY: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-859686-8" title="Special:BookSources/978-0-19-859686-8"><bdi>978-0-19-859686-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introducing+Einstein%27s+Relativity&amp;rft.place=New+York%2C+NY&amp;rft.pub=Oxford+University+Press&amp;rft.date=1992&amp;rft.isbn=978-0-19-859686-8&amp;rft.aulast=d%27Inverno&amp;rft.aufirst=R.A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStress%E2%80%93energy+tensor" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLandauLifshitz2010" class="citation book cs1">Landau, L.D.; Lifshitz, E.M. (2010). <i>The Classical Theory of Fields</i> (4th&#160;ed.). Butterworth-Heinemann. pp.&#160;<span class="nowrap">84–</span>85. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7506-2768-9" title="Special:BookSources/978-0-7506-2768-9"><bdi>978-0-7506-2768-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Classical+Theory+of+Fields&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E84-%3C%2Fspan%3E85&amp;rft.edition=4th&amp;rft.pub=Butterworth-Heinemann&amp;rft.date=2010&amp;rft.isbn=978-0-7506-2768-9&amp;rft.aulast=Landau&amp;rft.aufirst=L.D.&amp;rft.au=Lifshitz%2C+E.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStress%E2%80%93energy+tensor" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBakerKiriushchevaKuzmin2021" class="citation journal cs1">Baker, M.R.; Kiriushcheva, N.; Kuzmin, S. (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1016/j.nuclphysb.2020.115240">"Noether and Hilbert (metric) energy–momentum tensors are not, in general, equivalent"</a>. <i>Nuclear Physics B</i>. <b>962</b> (1): 115240. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2011.10611">2011.10611</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NuPhB.96215240B">2021NuPhB.96215240B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.nuclphysb.2020.115240">10.1016/j.nuclphysb.2020.115240</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:227127490">227127490</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nuclear+Physics+B&amp;rft.atitle=Noether+and+Hilbert+%28metric%29+energy%E2%80%93momentum+tensors+are+not%2C+in+general%2C+equivalent&amp;rft.volume=962&amp;rft.issue=1&amp;rft.pages=115240&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F2011.10611&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A227127490%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.nuclphysb.2020.115240&amp;rft_id=info%3Abibcode%2F2021NuPhB.96215240B&amp;rft.aulast=Baker&amp;rft.aufirst=M.R.&amp;rft.au=Kiriushcheva%2C+N.&amp;rft.au=Kuzmin%2C+S.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%2Fj.nuclphysb.2020.115240&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStress%E2%80%93energy+tensor" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=24" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWyss2005" class="citation journal cs1">Wyss, Walter (14 July 2005). <a rel="nofollow" class="external text" href="https://www.hrpub.org/download/20040201/UJPA-18490185.pdf">"The energy–momentum tensor in classical field theory"</a> <span class="cs1-format">(PDF)</span>. <i>Universal Journal of Physics and Applications</i>. <i><span style="font-size: 85%;">Old and New</span> Concepts of Physics</i> <span style="color:gray">[prior journal name]</span>. <b>II</b> (<span class="nowrap">3–</span>4): <span class="nowrap">295–</span>310. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2331-6543">2331-6543</a>. <q>...&#160;classical field theory and in particular in the role that a divergence term plays in a lagrangian&#160;...</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Universal+Journal+of+Physics+and+Applications&amp;rft.atitle=The+energy%E2%80%93momentum+tensor+in+classical+field+theory&amp;rft.volume=II&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E3%E2%80%93%3C%2Fspan%3E4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E295-%3C%2Fspan%3E310&amp;rft.date=2005-07-14&amp;rft.issn=2331-6543&amp;rft.aulast=Wyss&amp;rft.aufirst=Walter&amp;rft_id=https%3A%2F%2Fwww.hrpub.org%2Fdownload%2F20040201%2FUJPA-18490185.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStress%E2%80%93energy+tensor" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stress%E2%80%93energy_tensor&amp;action=edit&amp;section=25" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20060430094645/http://people.hofstra.edu/faculty/Stefan_Waner/diff_geom/Sec12.html">Lecture, Stephan Waner</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140530175713/http://www.black-holes.org/numrel1.html">Caltech Tutorial on Relativity</a> &#8212; A simple discussion of the relation between the stress–energy tensor of general relativity and the metric</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Tensors176" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tensors" title="Template:Tensors"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tensors" title="Template talk:Tensors"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tensors" title="Special:EditPage/Template:Tensors"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tensors176" style="font-size:114%;margin:0 4em"><a href="/wiki/Tensor" title="Tensor">Tensors</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i><a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a></i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scope</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Dyadics" title="Dyadics">Dyadic algebra</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior calculus</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><div class="hlist"><ul><li><a href="/wiki/Physics" title="Physics">Physics</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a></li> <li><a href="/wiki/Index_notation" title="Index notation">Index notation</a></li> <li><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Tetrad_(index_notation)" class="mw-redirect" title="Tetrad (index notation)">Tetrad (index notation)</a></li> <li><a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">Van der Waerden notation</a></li> <li><a href="/wiki/Voigt_notation" title="Voigt notation">Voigt notation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tensor<br />definitions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Tensor_density" title="Tensor density">Tensor density</a></li> <li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li> <li><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed tensor</a></li> <li><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric tensor</a></li> <li><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric tensor</a></li> <li><a href="/wiki/Tensor_operator" title="Tensor operator">Tensor operator</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor bundle</a></li> <li><a href="/wiki/Two-point_tensor" title="Two-point tensor">Two-point tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Exterior_covariant_derivative" title="Exterior covariant derivative">Exterior covariant derivative</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">Exterior product</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></li> <li><a href="/wiki/Symmetrization" title="Symmetrization">Symmetrization</a></li> <li><a href="/wiki/Tensor_contraction" title="Tensor contraction">Tensor contraction</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a> (2nd-order tensors)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />abstractions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine connection</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Cartan_formalism_(physics)" class="mw-redirect" title="Cartan formalism (physics)">Cartan formalism (physics)</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Connection form</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Dimension" title="Dimension">Dimension</a></li> <li><a href="/wiki/Exterior_form" class="mw-redirect" title="Exterior form">Exterior form</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber bundle</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Pseudotensor" title="Pseudotensor">Pseudotensor</a></li> <li><a href="/wiki/Spinor" title="Spinor">Spinor</a></li> <li><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable tensors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></li> <li><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Nonmetricity_tensor" title="Nonmetricity tensor">Nonmetricity tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Weyl_tensor" title="Weyl tensor">Weyl tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Physics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment_of_inertia#Inertia_tensor" title="Moment of inertia">Moment of inertia</a></li> <li><a href="/wiki/Angular_momentum#Angular_momentum_in_relativistic_mechanics" title="Angular momentum">Angular momentum tensor</a></li> <li><a href="/wiki/Spin_tensor" title="Spin tensor">Spin tensor</a></li> <li><a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></li> <li><a class="mw-selflink selflink">stress–energy tensor</a></li> <li><a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a></li> <li><a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">EM tensor</a></li> <li><a href="/wiki/Gluon_field_strength_tensor" title="Gluon field strength tensor">Gluon field strength tensor</a></li> <li><a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">Metric tensor (GR)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematician" title="Mathematician">Mathematicians</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></li> <li><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a></li> <li><a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a></li> <li><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></li> <li><a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a></li> <li><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c6f46dcf‐fl6b5 Cached time: 20250331030408 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.500 seconds Real time usage: 0.700 seconds Preprocessor visited node count: 2943/1000000 Post‐expand include size: 84951/2097152 bytes Template argument size: 4383/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 68383/5000000 bytes Lua time usage: 0.242/10.000 seconds Lua memory usage: 6261684/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 443.968 1 -total 23.75% 105.425 1 Template:General_relativity_sidebar 23.18% 102.930 1 Template:Sidebar_with_collapsible_lists 21.77% 96.650 2 Template:Reflist 16.98% 75.396 4 Template:Cite_book 16.79% 74.545 1 Template:Short_description 11.60% 51.517 2 Template:Pagetype 6.94% 30.832 3 Template:Hlist 6.93% 30.762 3 Template:Navbox 6.92% 30.735 1 Template:Tensors --> <!-- Saved in parser cache with key enwiki:pcache:70671:|#|:idhash:canonical and timestamp 20250331030408 and revision id 1274318016. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Stress–energy_tensor&amp;oldid=1274318016">https://en.wikipedia.org/w/index.php?title=Stress–energy_tensor&amp;oldid=1274318016</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Tensor_physical_quantities" title="Category:Tensor physical quantities">Tensor physical quantities</a></li><li><a href="/wiki/Category:Density" title="Category:Density">Density</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_American_English_from_January_2019" title="Category:Use American English from January 2019">Use American English from January 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2024" title="Category:Articles with unsourced statements from December 2024">Articles with unsourced statements from December 2024</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 6 February 2025, at 17:23<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Stress%E2%80%93energy_tensor&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Stress–energy tensor</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>29 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.canary-56486f98c9-h6qcd","wgBackendResponseTime":223,"wgPageParseReport":{"limitreport":{"cputime":"0.500","walltime":"0.700","ppvisitednodes":{"value":2943,"limit":1000000},"postexpandincludesize":{"value":84951,"limit":2097152},"templateargumentsize":{"value":4383,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":68383,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 443.968 1 -total"," 23.75% 105.425 1 Template:General_relativity_sidebar"," 23.18% 102.930 1 Template:Sidebar_with_collapsible_lists"," 21.77% 96.650 2 Template:Reflist"," 16.98% 75.396 4 Template:Cite_book"," 16.79% 74.545 1 Template:Short_description"," 11.60% 51.517 2 Template:Pagetype"," 6.94% 30.832 3 Template:Hlist"," 6.93% 30.762 3 Template:Navbox"," 6.92% 30.735 1 Template:Tensors"]},"scribunto":{"limitreport-timeusage":{"value":"0.242","limit":"10.000"},"limitreport-memusage":{"value":6261684,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5c6f46dcf-fl6b5","timestamp":"20250331030408","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Stress\u2013energy tensor","url":"https:\/\/en.wikipedia.org\/wiki\/Stress%E2%80%93energy_tensor","sameAs":"http:\/\/www.wikidata.org\/entity\/Q876346","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q876346","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-08-12T05:27:58Z","dateModified":"2025-02-06T17:23:33Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/fe\/StressEnergyTensor_contravariant.svg","headline":"tensor field describing the density and flux of energy in spacetime"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10