CINXE.COM
Search results for: horizontal cyclic load
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: horizontal cyclic load</title> <meta name="description" content="Search results for: horizontal cyclic load"> <meta name="keywords" content="horizontal cyclic load"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="horizontal cyclic load" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="horizontal cyclic load"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3913</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: horizontal cyclic load</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3913</span> Hysteretic Behavior of the Precast Concrete Column with Head Splice Sleeve Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seo%20Soo-Yeon">Seo Soo-Yeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Sang-Ku"> Kim Sang-Ku</a>, <a href="https://publications.waset.org/abstracts/search?q=Noh%20Sang-Hyun"> Noh Sang-Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ji-Eun"> Lee Ji-Eun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Seol-Ki"> Kim Seol-Ki</a>, <a href="https://publications.waset.org/abstracts/search?q=Lim%20Jong-Wook"> Lim Jong-Wook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a test result to find the structural capacity of Hollow-Precast Concrete (HPC) column with Head-Splice Sleeve (HSS) for the connection of bars under horizontal cyclic load. Two Half-scaled HPC column specimens were made with the consideration of construction process in site. The difference between the HPC specimens is the location of HSS for bar connection. The location of the first one is on the bottom slab or foundation while the other is above the bottom slab or foundation. Reinforced concrete (RC) column was also made for the comparison. In order to evaluate the hysteretic behavior of the specimens, horizontal cyclic load was applied to the top of specimen under constant axial load. From the test, it is confirmed that the HPC columns with HSS have enough structural capacity that can be emulated to RC column. This means that the HPC column with HSS can be used in the moment resisting frame system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20capacity" title="structural capacity">structural capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow-precast%20concrete%20column" title=" hollow-precast concrete column"> hollow-precast concrete column</a>, <a href="https://publications.waset.org/abstracts/search?q=head-splice%20sleeve" title=" head-splice sleeve"> head-splice sleeve</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load" title=" horizontal cyclic load"> horizontal cyclic load</a> </p> <a href="https://publications.waset.org/abstracts/54811/hysteretic-behavior-of-the-precast-concrete-column-with-head-splice-sleeve-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3912</span> Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshinori%20Kitsutaka">Yoshinori Kitsutaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumiya%20Ikedo"> Fumiya Ikedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gypsum%20board" title="gypsum board">gypsum board</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor" title=" anchor"> anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20test" title=" shear test"> shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=load-unload%20curve" title=" load-unload curve"> load-unload curve</a> </p> <a href="https://publications.waset.org/abstracts/61469/mechanical-model-of-gypsum-board-anchors-subjected-cyclic-shear-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3911</span> Finite Element Analysis of Reinforced Structural Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mintesinot%20Teshome%20Mengsha">Mintesinot Teshome Mengsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete structural walls are provided in structures to decrease horizontal displacements under seismic loads. The cyclic lateral load resistance capacity of a structural wall is controlled by two parameters, the strength and the ductility; it is better to have the shear strength somewhat greater than the compression to prevent shear failure, which is brittle, sudden and of serious consequence. Due to architectural and functional reasons, small openings are provided in this important structural part. The main objective of this study is to investigate the finite element of RC structural walls with small openings subjected to cyclic load using the finite element approach. The experimental results in terms of load capacity, failure mode, crack pattern, flexural strength, shear strength, and deformation capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20openings" title=" small openings"> small openings</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structural%20walls" title=" reinforced concrete structural walls"> reinforced concrete structural walls</a> </p> <a href="https://publications.waset.org/abstracts/186309/finite-element-analysis-of-reinforced-structural-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3910</span> Behavior of A Vertical Pile Under the Effect of an Inclined Load in Loose Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Mohamed%20Abdrabbo">Fathi Mohamed Abdrabbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Esayed%20Gaaver"> Khaled Esayed Gaaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Musab%20Musa%20Eldooma"> Musab Musa Eldooma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements of pile head, as well as the deformation profiles along the pile and the pile stiffness, are significantly affected by α. It was observed that the P-Y curves of the pile-soil system are independent of α. Also, the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal load component of the applied load on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundation" title="deep foundation">deep foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20load" title=" inclined load"> inclined load</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20deformations" title=" pile deformations"> pile deformations</a> </p> <a href="https://publications.waset.org/abstracts/145277/behavior-of-a-vertical-pile-under-the-effect-of-an-inclined-load-in-loose-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3909</span> Effect of Adding Horizontal Steel Bracing System to Ordinary Moment Steel Frames Subjected to Wind Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Al-Qaryouti">Yousef Al-Qaryouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Besan%20Alagawani"> Besan Alagawani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main concern of this study is to evaluate the effect of adding horizontal steel bracing system to ordinary moment resisting steel frames subjected to wind load. Similar frames without bracing systems are also to be compared. A general analytical study was carried out to obtain the influence of such system in resisting wind load. Linear static analysis has been carried out using ETABS software by applying fixed wind load defined according to ASCE7-10 for three-, six-, nine-, and twelve-story ordinary moment steel frame buildings including and not including horizontal steel bracing system. The results showed that the lateral drift due to wind load decreased by adding horizontal bracing system. Also, the results show that effect of such system is more efficient to low-rise buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system" title="horizontal bracing system">horizontal bracing system</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20moment%20frames" title=" steel moment frames"> steel moment frames</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20load%20resisting%20system" title=" wind load resisting system"> wind load resisting system</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20static%20analysis" title=" linear static analysis"> linear static analysis</a> </p> <a href="https://publications.waset.org/abstracts/52051/effect-of-adding-horizontal-steel-bracing-system-to-ordinary-moment-steel-frames-subjected-to-wind-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3908</span> Cyclic Liquefaction Resistance of Reinforced Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini">S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Eftekhari"> Z. Eftekhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquefaction phenomenon in sand is nowadays a classical soil mechanics subject. Using a cyclic triaxial test apparatus, we use non-woven geotextile reinforcement to improve the liquefaction resistance of sand. The layer configurations used are zero, one, two and three horizontal reinforcing layers in a triaxial test sample. The influences of the number of geotextile layers, and cyclic stress ratio (CSR) were studied and described. The results illustrated that the geotextile inclusion increases liquefaction resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction%20resistance" title="liquefaction resistance">liquefaction resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile" title=" geotextile"> geotextile</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20triaxial%20test" title=" cyclic triaxial test"> cyclic triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20stress%20ratio" title=" cyclic stress ratio"> cyclic stress ratio</a> </p> <a href="https://publications.waset.org/abstracts/8513/cyclic-liquefaction-resistance-of-reinforced-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3907</span> Behavior of a Vertical Pile under the Effect of an Inclined Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Mohamed%20Abdrabbo">Fathi Mohamed Abdrabbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Elsayed%20Gaaver"> Khaled Elsayed Gaaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Musab%20Musa%20Eldooma"> Musab Musa Eldooma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements, as well as the deformation profiles along with the pile and the pile stiffness, are significantly affected by α. Whereas P-Y curves of the pile are independent of α., also the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal component on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundations" title="deep foundations">deep foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20load" title=" inclined load"> inclined load</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20deformations" title=" pile deformations"> pile deformations</a> </p> <a href="https://publications.waset.org/abstracts/145253/behavior-of-a-vertical-pile-under-the-effect-of-an-inclined-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3906</span> Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raquib%20Ahsan">Raquib Ahsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Mahir%20Asif"> Md. Mahir Asif</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zahidul%20Alam"> Md. Zahidul Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20compression" title="cyclic compression">cyclic compression</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrocement" title=" ferrocement"> ferrocement</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20wall" title=" masonry wall"> masonry wall</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20reversed%20cyclic%20load" title=" partially reversed cyclic load"> partially reversed cyclic load</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofitting" title=" retrofitting"> retrofitting</a> </p> <a href="https://publications.waset.org/abstracts/81308/performance-analysis-of-ferrocement-retrofitted-masonry-wall-units-under-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3905</span> Behaviour of Rc Column under Biaxial Cyclic Loading-State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Pavithra">L. Pavithra</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharmila"> R. Sharmila</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivani%20Sridhar"> Shivani Sridhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Columns severe structural damage needs proportioning a significant portion of earthquake energy can be dissipated yielding in the beams. Presence of axial load along with cyclic loading has a significant influence on column. The objective of this paper is to present the analytical results of columns subjected to biaxial cyclic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20column" title="RC column">RC column</a>, <a href="https://publications.waset.org/abstracts/search?q=Seismic%20behaviour" title=" Seismic behaviour"> Seismic behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20behaviour" title=" cyclic behaviour"> cyclic behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial%20testing" title=" biaxial testing"> biaxial testing</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20behaviour" title=" ductile behaviour"> ductile behaviour</a> </p> <a href="https://publications.waset.org/abstracts/26015/behaviour-of-rc-column-under-biaxial-cyclic-loading-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3904</span> Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aarabzadeh">A. Aarabzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hizaji"> R. Hizaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20beam" title="deep beam">deep beam</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20load" title=" cyclic load"> cyclic load</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-ended" title=" fixed-ended"> fixed-ended</a> </p> <a href="https://publications.waset.org/abstracts/56504/failure-mechanism-in-fixed-ended-reinforced-concrete-deep-beams-under-cyclic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3903</span> Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ghanbari%20Alamouty"> E. Ghanbari Alamouty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20ratio" title="area ratio">area ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation%20behavior" title=" consolidation behavior"> consolidation behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20load" title=" cyclic load"> cyclic load</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-cement%20column" title=" soil-cement column"> soil-cement column</a> </p> <a href="https://publications.waset.org/abstracts/96360/numerical-investigation-of-soft-clayey-soil-improved-by-soil-cement-columns-under-harmonic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3902</span> Understanding Seismic Behavior of Masonry Buildings in Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mirzaee">Alireza Mirzaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soosan%20Abdollahi"> Soosan Abdollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abdollahi"> Mohammad Abdollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20constructions" title="masonry constructions">masonry constructions</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20at%20earthquake" title=" performance at earthquake"> performance at earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=MSJC-08%20%28ASD%29" title=" MSJC-08 (ASD)"> MSJC-08 (ASD)</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20wall" title=" bearing wall"> bearing wall</a>, <a href="https://publications.waset.org/abstracts/search?q=tie-column" title=" tie-column"> tie-column</a> </p> <a href="https://publications.waset.org/abstracts/53817/understanding-seismic-behavior-of-masonry-buildings-in-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3901</span> Comparative Study of Isothermal and Cyclic Oxidation on Titanium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Yadav">Poonam Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Bok%20Lee"> Dong Bok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Isothermal oxidation at 800°C for 50h and Cyclic oxidation at 600°C and 800°C for 40h of Pure Ti and Ti64 were performed in a muffle furnace. In Cyclic oxidation, massive scale spallation occurred, and the oxide scale cracks and peels off were observed at high temperature, it represents oxide scale that formed during cyclic oxidation was spalled out owing to stresses due to thermal shock generated during repetitive oxidation and subsequent cooling. The thickness of scale is larger in cyclic oxidation than the isothermal case. This is due to inward diffusion of oxygen through oxide scales and/or pores and cracks in cyclic oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic" title="cyclic">cyclic</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal" title=" isothermal"> isothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic" title=" cyclic"> cyclic</a> </p> <a href="https://publications.waset.org/abstracts/19120/comparative-study-of-isothermal-and-cyclic-oxidation-on-titanium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">919</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3900</span> Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaegu%20Choi">Jaegu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungwoo%20Moon"> Byungwoo Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20cyclic%20loading" title="reverse cyclic loading">reverse cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=j-r%20curve" title=" j-r curve"> j-r curve</a>, <a href="https://publications.waset.org/abstracts/search?q=ESG%20specimen" title=" ESG specimen"> ESG specimen</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20plastic%20displacement" title=" incremental plastic displacement"> incremental plastic displacement</a> </p> <a href="https://publications.waset.org/abstracts/52074/study-on-effect-of-reverse-cyclic-loading-on-fracture-resistance-curve-of-equivalent-stress-gradient-esg-specimen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3899</span> Skew Cyclic Codes over Fq+uFq+…+uk-1Fq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Li">Jing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuli%20Li"> Xiuli Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a special class of linear codes, called skew cyclic codes, over the ring <em>R</em>= <em>F<sub>q</sub></em>+<em>uF<sub>q</sub></em>+…+<em>u<sup>k-</sup></em><sup>1</sup><em>F<sub>q</sub></em>, where <em>q</em> is a prime power. A Gray map <em>ɸ</em> from <em>R</em> to <em>F<sub>q</sub></em> and a Gray map <em>ɸ'</em> from <em>R<sup>n</sup></em> to <em>F<sup>n</sup><sub>q</sub></em> are defined, as well as an automorphism <em>Θ</em> over <em>R</em>. It is proved that the images of skew cyclic codes over <em>R</em> under map <em>ɸ'</em> and <em>Θ</em> are cyclic codes over <em>F<sub>q</sub></em>, and they still keep the dual relation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skew%20cyclic%20code" title="skew cyclic code">skew cyclic code</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20map" title=" gray map"> gray map</a>, <a href="https://publications.waset.org/abstracts/search?q=automorphism" title=" automorphism"> automorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20code" title=" cyclic code"> cyclic code</a> </p> <a href="https://publications.waset.org/abstracts/70707/skew-cyclic-codes-over-fqufquk-1fq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3898</span> Pull-Out Behavior of Mechanical Anchor Bolts by Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshinori%20Kitsutaka">Yoshinori Kitsutaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusumi%20Shingo"> Kusumi Shingo</a>, <a href="https://publications.waset.org/abstracts/search?q=Matsuzawa%20Koichi"> Matsuzawa Koichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunieda%20Yoichiro"> Kunieda Yoichiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Yagisawa%20Yasuei"> Yagisawa Yasuei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the pull-out properties of various mechanical anchor bolts embedded in concrete were investigated. Five kinds of mechanical anchor bolts were selected which were ordinarily used for concrete anchoring. Tensile tests for mechanical anchor bolts embedded in φ300mm x 100mm size concrete were conducted to measure the load - load displacement curves. The loading conditions were a monotonous loading and a repeating loading. The fracture energy for each mechanical anchor bolts was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the types of mechanical anchor bolts on the pull-out properties of concrete subjected in monotonous loading and a repeating loading was cleared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20anchor%20bolt" title=" mechanical anchor bolt"> mechanical anchor bolt</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20strength" title=" pull-out strength"> pull-out strength</a> </p> <a href="https://publications.waset.org/abstracts/73038/pull-out-behavior-of-mechanical-anchor-bolts-by-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3897</span> Kinematic Behavior of Geogrid Reinforcements during Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hosny%20Abdel-Rahman">Ahmed Hosny Abdel-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdel-Moneim"> Mohamed Abdel-Moneim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geogrid" title="geogrid">geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=pullout" title=" pullout"> pullout</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20testing" title=" large scale testing"> large scale testing</a> </p> <a href="https://publications.waset.org/abstracts/30799/kinematic-behavior-of-geogrid-reinforcements-during-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3896</span> A Characterization of Skew Cyclic Code with Complementary Dual</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eusebio%20Jr.%20Lina">Eusebio Jr. Lina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ederlina%20Nocon"> Ederlina Nocon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclic codes are a fundamental subclass of linear codes that enjoy a very interesting algebraic structure. The class of skew cyclic codes (or θ-cyclic codes) is a generalization of the notion of cyclic codes. This a very large class of linear codes which can be used to systematically search for codes with good properties. A linear code with complementary dual (LCD code) is a linear code C satisfying C ∩ C^⊥ = {0}. This subclass of linear codes provides an optimum linear coding solution for a two-user binary adder channel and plays an important role in countermeasures to passive and active side-channel analyses on embedded cryptosystems. This paper aims to identify LCD codes from the class of skew cyclic codes. Let F_q be a finite field of order q, and θ be an automorphism of F_q. Some conditions for a skew cyclic code to be LCD were given. To this end, the properties of a noncommutative skew polynomial ring F_q[x, θ] of automorphism type were revisited, and the algebraic structure of skew cyclic code using its skew polynomial representation was examined. Using the result that skew cyclic codes are left ideals of the ring F_q[x, θ]/〈x^n-1〉, a characterization of a skew cyclic LCD code of length n was derived. A necessary condition for a skew cyclic code to be LCD was also given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LCD%20cyclic%20codes" title="LCD cyclic codes">LCD cyclic codes</a>, <a href="https://publications.waset.org/abstracts/search?q=skew%20cyclic%20LCD%20codes" title=" skew cyclic LCD codes"> skew cyclic LCD codes</a>, <a href="https://publications.waset.org/abstracts/search?q=skew%20cyclic%20complementary%20dual%20codes" title=" skew cyclic complementary dual codes"> skew cyclic complementary dual codes</a>, <a href="https://publications.waset.org/abstracts/search?q=theta-cyclic%20codes%20with%20complementary%20duals" title=" theta-cyclic codes with complementary duals"> theta-cyclic codes with complementary duals</a> </p> <a href="https://publications.waset.org/abstracts/56575/a-characterization-of-skew-cyclic-code-with-complementary-dual" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3895</span> Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Siva">A. Siva</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bala%20Subramanian"> K. Bala Subramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinson%20Prabu"> Kinson Prabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20fiber%20reinforced%20concrete" title=" high performance fiber reinforced concrete"> high performance fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a> </p> <a href="https://publications.waset.org/abstracts/53590/study-on-high-performance-fiber-reinforced-concrete-hpfrc-beams-on-subjected-to-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3894</span> Displacement Fields in Footing-Sand Interactions under Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Joseph%20Antony">S. Joseph Antony</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20K.%20Jahanger"> Z. K. Jahanger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=DPIV" title=" DPIV"> DPIV</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interactions" title=" soil-structure interactions"> soil-structure interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20footing" title=" strip footing"> strip footing</a> </p> <a href="https://publications.waset.org/abstracts/99457/displacement-fields-in-footing-sand-interactions-under-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3893</span> Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mezigheche%20Nawel">Mezigheche Nawel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gouasmia%20Abdelhacine"> Gouasmia Abdelhacine</a>, <a href="https://publications.waset.org/abstracts/search?q=Athmani%20Allaeddine"> Athmani Allaeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Merzoud%20Mouloud"> Merzoud Mouloud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry infill walls are inevitable in the self-supporting structures, but their contribution in the resistance of earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of the behavior of masonry infill walls in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D finite element analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load: The finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, so we can conclude that the filling brings an additional rigidity to the structure not to be neglected. It is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20infill%20walls" title=" masonry infill walls"> masonry infill walls</a>, <a href="https://publications.waset.org/abstracts/search?q=rigidity%20of%20the%20masonry" title=" rigidity of the masonry"> rigidity of the masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=tended%20diagonal" title=" tended diagonal"> tended diagonal</a> </p> <a href="https://publications.waset.org/abstracts/30454/behavior-of-the-masonry-infill-in-structures-subjected-to-the-horizontal-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3892</span> Development of a Large-Scale Cyclic Shear Testing Machine Under Constant Normal Stiffness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mahdi%20Niktabara">S. M. Mahdi Niktabara</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Seshagiri%20Raob"> K. Seshagiri Raob</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar%20Shrivastavac"> Amit Kumar Shrivastavac</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20%C5%A0%C4%8Du%C4%8Dkaa"> Jiří Ščučkaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of the discontinuity in the form of joints is one of the most significant factors causing instability in the rock mass. On the other hand, dynamic loads, including earthquake and blasting induce cyclic shear loads along the joints in rock masses; therefore, failure of rock mass exacerbates along the joints due to changing shear resistance. Joints are under constant normal load (CNL) and constant normal stiffness (CNS) conditions. Normal stiffness increases on the joints with increasing depth, and it can affect shear resistance. For correct assessment of joint shear resistance under varying normal stiffness and number of cycles, advanced laboratory shear machine is essential for the shear test. Conventional direct shear equipment has limitations such as boundary conditions, working under monotonic movements only, or cyclic shear loads with constant frequency and amplitude of shear loads. Hence, a large-scale servo-controlled direct shear testing machine was designed and fabricated to perform shear test under the both CNL and CNS conditions with varying normal stiffness at different frequencies and amplitudes of shear loads. In this study, laboratory cyclic shear tests were conducted on non-planar joints under varying normal stiffness. In addition, the effects of different frequencies and amplitudes of shear loads were investigated. The test results indicate that shear resistance increases with increasing normal stiffness at the first cycle, but the influence of normal stiffness significantly decreases with an increase in the number of shear cycles. The frequency of shear load influences on shear resistance, i.e. shear resistance increases with increasing frequency. However, at low shear amplitude the number of cycles does not affect shear resistance on the joints, but it decreases with higher amplitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20shear%20load" title="cyclic shear load">cyclic shear load</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20of%20load" title=" frequency of load"> frequency of load</a>, <a href="https://publications.waset.org/abstracts/search?q=amplitude%20of%20displacement" title=" amplitude of displacement"> amplitude of displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20stiffness" title=" normal stiffness"> normal stiffness</a> </p> <a href="https://publications.waset.org/abstracts/153114/development-of-a-large-scale-cyclic-shear-testing-machine-under-constant-normal-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3891</span> Experimental Investigation on Performance of Beam Column Frames with Column Kickers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saiada%20Fuadi%20Fancy">Saiada Fuadi Fancy</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahim%20Ahmed"> Fahim Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shofiq%20Ahmed"> Shofiq Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquib%20Ahsan"> Raquib Ahsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The worldwide use of reinforced concrete construction stems from the wide availability of reinforcing steel as well as concrete ingredients. However, concrete construction requires a certain level of technology, expertise, and workmanship, particularly, in the field during construction. As a supporting technology for a concrete column or wall construction, kicker is cast as part of the slab or foundation to provide a convenient starting point for a wall or column ensuring integrity at this important junction. For that reason, a comprehensive study was carried out here to investigate the behavior of reinforced concrete frame with different kicker parameters. To achieve this objective, six half-scale specimens of portal reinforced concrete frame with kickers and one portal frame without kicker were constructed according to common practice in the industry and subjected to cyclic incremental horizontal loading with sustained gravity load. In this study, the experimental data, obtained in four deflections controlled cycle, were used to evaluate the behavior of kickers. Load-displacement characteristics were obtained; maximum loads and deflections were measured and assessed. Finally, the test results of frames constructed with three different types of kicker thickness were compared with the kickerless frame. Similar crack patterns were observed for all the specimens. From this investigation, specimens with kicker thickness 3″ were shown better results than specimens with kicker thickness 1.5″, which was specified by maximum load, stiffness, initiation of first crack and residual displacement. Despite of better performance, it could not be firmly concluded that 4.5″ kicker thickness is the most appropriate one. Because, during the test of that specimen, separation of dial gauge was needed. Finally, comparing with kickerless specimen, it was observed that performance of kickerless specimen was relatively better than kicker specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack" title="crack">crack</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic" title=" cyclic"> cyclic</a>, <a href="https://publications.waset.org/abstracts/search?q=kicker" title=" kicker"> kicker</a>, <a href="https://publications.waset.org/abstracts/search?q=load-displacement" title=" load-displacement"> load-displacement</a> </p> <a href="https://publications.waset.org/abstracts/66460/experimental-investigation-on-performance-of-beam-column-frames-with-column-kickers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3890</span> A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsukasa%20Ogawa">Tsukasa Ogawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitsuhiro%20Okayasu"> Mitsuhiro Okayasu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20generation" title="electric power generation">electric power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20ceramic" title=" piezoelectric ceramic"> piezoelectric ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20zirconate%20titanate%20ceramic" title=" lead zirconate titanate ceramic"> lead zirconate titanate ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=loading%20conditions" title=" loading conditions"> loading conditions</a> </p> <a href="https://publications.waset.org/abstracts/107843/a-study-of-electric-generation-characteristics-for-thin-film-piezoelectric-pbzrtio3-ceramic-plate-during-the-static-and-cyclic-loading-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3889</span> Synthesis and Characterization of Cyclic PNC-28 Peptide, Residues 17–26 (ETFSDLWKLL), A Binding Domain of p53</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepshikha%20Verma">Deepshikha Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Rajasekharan%20Pillai"> V. N. Rajasekharan Pillai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study reports the synthesis of cyclic PNC-28 peptides with solid-phase peptide synthesis method. In the first step, we synthesize the linear PNC-28 Peptide and in the second step, we cyclize (N-to-C or head-to-tail cyclization) the linear PNC-28 peptide. The molecular formula of cyclic PNC-28 peptide is C64H88N12O16 and its m/z mass is ≈1233.64. Elemental analysis of cyclic PNC-28 is C, 59.99; H, 6.92; N, 13.12; O, 19.98. The characterization of LC-MS, CD, FT-IR, and 1HNMR has been done to confirm the successful synthesis and cyclization of linear PNC-28 peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD" title="CD">CD</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=1HNMR" title=" 1HNMR"> 1HNMR</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20peptide" title=" cyclic peptide"> cyclic peptide</a> </p> <a href="https://publications.waset.org/abstracts/149263/synthesis-and-characterization-of-cyclic-pnc-28-peptide-residues-17-26-etfsdlwkll-a-binding-domain-of-p53" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3888</span> Fatigue Analysis and Life Estimation of the Helicopter Horizontal Tail under Cyclic Loading by Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defne%20Uz">Defne Uz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Horizontal Tail of helicopter is exposed to repeated oscillatory loading generated by aerodynamic and inertial loads, and bending moments depending on operating conditions and maneuvers of the helicopter. In order to ensure that maximum stress levels do not exceed certain fatigue limit of the material and to prevent damage, a numerical analysis approach can be utilized through the Finite Element Method. Therefore, in this paper, fatigue analysis of the Horizontal Tail model is studied numerically to predict high-cycle and low-cycle fatigue life related to defined loading. The analysis estimates the stress field at stress concentration regions such as around fastener holes where the maximum principal stresses are considered for each load case. Critical element identification of the main load carrying structural components of the model with rivet holes is performed as a post-process since critical regions with high-stress values are used as an input for fatigue life calculation. Once the maximum stress is obtained at the critical element and the related mean and alternating components, it is compared with the endurance limit by applying Soderberg approach. The constant life straight line provides the limit for several combinations of mean and alternating stresses. The life calculation based on S-N (Stress-Number of Cycles) curve is also applied with fully reversed loading to determine the number of cycles corresponds to the oscillatory stress with zero means. The results determine the appropriateness of the design of the model for its fatigue strength and the number of cycles that the model can withstand for the calculated stress. The effect of correctly determining the critical rivet holes is investigated by analyzing stresses at different structural parts in the model. In the case of low life prediction, alternative design solutions are developed, and flight hours can be estimated for the fatigue safe operation of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20analysis" title="fatigue analysis">fatigue analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20horizontal%20tail" title=" helicopter horizontal tail"> helicopter horizontal tail</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20prediction" title=" life prediction"> life prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a> </p> <a href="https://publications.waset.org/abstracts/109457/fatigue-analysis-and-life-estimation-of-the-helicopter-horizontal-tail-under-cyclic-loading-by-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3887</span> Investigations on the Seismic Performance of Hot-Finished Hollow Steel Sections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paola%20Pannuzzo">Paola Pannuzzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tak-Ming%20Chan"> Tak-Ming Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In seismic applications, hollow steel sections show, beyond undeniable esthetical appeal, promising structural advantages since, unlike open section counterparts, they are not susceptible to weak-axis and lateral-torsional buckling. In particular, hot-finished hollow steel sections have homogeneous material properties and favorable ductility but have been underutilized for cyclic bending. The main reason is that the parameters affecting their hysteretic behaviors are not yet well understood and, consequently, are not well exploited in existing codes of practice. Therefore, experimental investigations have been conducted on a wide range of hot-finished rectangular hollow section beams with the aim to providing basic knowledge for evaluating their seismic performance. The section geometry (width-to-thickness and depth-to-thickness ratios) and the type of loading (monotonic and cyclic) have been chosen as the key parameters to investigate the cyclic effect on the rotational capacity and to highlight the differences between monotonic and cyclic load conditions. The test results provide information on the parameters that affect the cyclic performance of hot-finished hollow steel beams and can be used to assess the design provisions stipulated in the current seismic codes of practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending" title="bending">bending</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20test" title=" cyclic test"> cyclic test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20sections" title=" hollow sections"> hollow sections</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-finished%20sections" title=" hot-finished sections"> hot-finished sections</a> </p> <a href="https://publications.waset.org/abstracts/112114/investigations-on-the-seismic-performance-of-hot-finished-hollow-steel-sections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3886</span> Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20Vaiana">Nicolò Vaiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariacristina%20Spizzuoco"> Mariacristina Spizzuoco</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title="base isolation">base isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title=" earthquake engineering"> earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20hysteresis%20loops" title=" experimental hysteresis loops"> experimental hysteresis loops</a>, <a href="https://publications.waset.org/abstracts/search?q=wire%20rope%20isolators" title=" wire rope isolators"> wire rope isolators</a> </p> <a href="https://publications.waset.org/abstracts/58217/influence-of-displacement-amplitude-and-vertical-load-on-the-horizontal-dynamic-and-static-behavior-of-helical-wire-rope-isolators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3885</span> Bending Moment of Flexible Batter Pile in Sands under Horizontal Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabian%20J.%20Manoppo">Fabian J. Manoppo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dody%20M.%20J.%20Sumayouw"> Dody M. J. Sumayouw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bending moment of a single free head model flexible batter piles in sand under horizontal loads is investigated. The theoretical estimate of the magnitude maximum bending moment for the piles was considering a vertical rigid pile under an inclined load and using semi-empirical relations. The length of the equivalent rigid pile was based on the relative stiffness factor of the pile. Model tests were carried out using instrumented piles of wide-ranging flexibilities. The piles were buried in loose sand at batter angles of β=±150, β=±300 and were applied to incrementally increasing lateral loads. The pile capacities and the variation of bending moment along the pile shaft were measured. The new coefficient of 0.5 was proposed to estimate the bending moment of a flexible batter pile in the sand under horizontal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batter%20pile" title="batter pile">batter pile</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title=" bending moment"> bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20loads" title=" horizontal loads"> horizontal loads</a> </p> <a href="https://publications.waset.org/abstracts/190372/bending-moment-of-flexible-batter-pile-in-sands-under-horizontal-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3884</span> Extension of the Simplified Theory of Plastic Zones for Analyzing Elastic Shakedown in a Multi-Dimensional Load Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bastian%20Vollrath">Bastian Vollrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Hartwig%20Hubel"> Hartwig Hubel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In case of over-elastic and cyclic loading, strain may accumulate due to a ratcheting mechanism until the state of shakedown is possibly achieved. Load history dependent numerical investigations by a step-by-step analysis are rather costly in terms of engineering time and numerical effort. In the case of multi-parameter loading, where various independent loadings affect the final state of shakedown, the computational effort becomes an additional challenge. Therefore, direct methods like the Simplified Theory of Plastic Zones (STPZ) are developed to solve the problem with a few linear elastic analyses. Post-shakedown quantities such as strain ranges and cyclic accumulated strains are calculated approximately by disregarding the load history. The STPZ is based on estimates of a transformed internal variable, which can be used to perform modified elastic analyses, where the elastic material parameters are modified, and initial strains are applied as modified loading, resulting in residual stresses and strains. The STPZ already turned out to work well with respect to cyclic loading between two states of loading. Usually, few linear elastic analyses are sufficient to obtain a good approximation to the post-shakedown quantities. In a multi-dimensional load domain, the approximation of the transformed internal variable transforms from a plane problem into a hyperspace problem, where time-consuming approximation methods need to be applied. Therefore, a solution restricted to structures with four stress components was developed to estimate the transformed internal variable by means of three-dimensional vector algebra. This paper presents the extension to cyclic multi-parameter loading so that an unlimited number of load cases can be taken into account. The theoretical basis and basic presumptions of the Simplified Theory of Plastic Zones are outlined for the case of elastic shakedown. The extension of the method to many load cases is explained, and a workflow of the procedure is illustrated. An example, adopting the FE-implementation of the method into ANSYS and considering multilinear hardening is given which highlights the advantages of the method compared to incremental, step-by-step analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20method" title=" direct method"> direct method</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20shakedown" title=" elastic shakedown"> elastic shakedown</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-parameter%20loading" title=" multi-parameter loading"> multi-parameter loading</a>, <a href="https://publications.waset.org/abstracts/search?q=STPZ" title=" STPZ"> STPZ</a> </p> <a href="https://publications.waset.org/abstracts/84976/extension-of-the-simplified-theory-of-plastic-zones-for-analyzing-elastic-shakedown-in-a-multi-dimensional-load-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=130">130</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=131">131</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20cyclic%20load&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>