CINXE.COM
Search results for: uncertainty model
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: uncertainty model</title> <meta name="description" content="Search results for: uncertainty model"> <meta name="keywords" content="uncertainty model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="uncertainty model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="uncertainty model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17385</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: uncertainty model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17385</span> Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Queen%20Suraajini%20Rajendran">Queen Suraajini Rajendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Hung%20Cheung"> Sai Hung Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20downscaling" title="statistical downscaling">statistical downscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20climate%20model" title=" global climate model"> global climate model</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/18056/statistical-classification-downscaling-and-uncertainty-assessment-for-global-climate-model-outputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17384</span> Epistemic Uncertainty Analysis of Queue with Vacations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baya%20Takhedmit">Baya Takhedmit</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Abbas"> Karim Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Ouazine"> Sofiane Ouazine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vacations queues are often employed to model many real situations such as computer systems, communication networks, manufacturing and production systems, transportation systems and so forth. These queueing models are solved at fixed parameters values. However, the parameter values themselves are determined from a finite number of observations and hence have uncertainty associated with them (epistemic uncertainty). In this paper, we consider the M/G/1/N queue with server vacation and exhaustive discipline where we assume that the vacation parameter values have uncertainty. We use the Taylor series expansions approach to estimate the expectation and variance of model output, due to epistemic uncertainties in the model input parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epistemic%20uncertainty" title="epistemic uncertainty">epistemic uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=M%2FG%2F1%2FN%20queue%20with%20vacations" title=" M/G/1/N queue with vacations"> M/G/1/N queue with vacations</a>, <a href="https://publications.waset.org/abstracts/search?q=non-parametric%20sensitivity%20analysis" title=" non-parametric sensitivity analysis"> non-parametric sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20series%20expansion" title=" Taylor series expansion"> Taylor series expansion</a> </p> <a href="https://publications.waset.org/abstracts/63375/epistemic-uncertainty-analysis-of-queue-with-vacations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17383</span> Uncertainty in Risk Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mueller%20Jann">Mueller Jann</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoffmann%20Christian%20Hugo"> Hoffmann Christian Hugo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional quantitative risk management in banking is a risk factor of its own, because it rests on assumptions such as independence and availability of data which do not hold when rare events of extreme consequences are involved. There is a growing recognition of the need for alternative risk measures that do not make these assumptions. We propose a novel method for modeling the risk associated with investment products, in particular derivatives, by using a formal language for specifying financial contracts. Expressions in this language are interpreted in the category of values annotated with (a formal representation of) uncertainty. The choice of uncertainty formalism thus becomes a parameter of the model, so it can be adapted to the particular application and it is not constrained to classical probabilities. We demonstrate our approach using a simple logic-based uncertainty model and a case study in which we assess the risk of counter party default in a portfolio of collateralized loans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk%20model" title="risk model">risk model</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20monad" title=" uncertainty monad"> uncertainty monad</a>, <a href="https://publications.waset.org/abstracts/search?q=derivatives" title=" derivatives"> derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=contract%20algebra" title=" contract algebra"> contract algebra</a> </p> <a href="https://publications.waset.org/abstracts/28143/uncertainty-in-risk-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17382</span> Uncertainty and Optimization Analysis Using PETREL RE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Sachan">Ankur Sachan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to make quick yet intelligent and value-added decisions to develop new fields has always been of great significance. In situations where the capital expenses and subsurface risk are high, carefully analyzing the inherent uncertainties in the reservoir and how they impact the predicted hydrocarbon accumulation and production becomes a daunting task. The problem is compounded in offshore environments, especially in the presence of heavy oils and disconnected sands where the margin for error is small. Uncertainty refers to the degree to which the data set may be in error or stray from the predicted values. To understand and quantify the uncertainties in reservoir model is important when estimating the reserves. Uncertainty parameters can be geophysical, geological, petrophysical etc. Identification of these parameters is necessary to carry out the uncertainty analysis. With so many uncertainties working at different scales, it becomes essential to have a consistent and efficient way of incorporating them into our analysis. Ranking the uncertainties based on their impact on reserves helps to prioritize/ guide future data gathering and uncertainty reduction efforts. Assigning probabilistic ranges to key uncertainties also enables the computation of probabilistic reserves. With this in mind, this paper, with the help the uncertainty and optimization process in petrel RE shows how the most influential uncertainties can be determined efficiently and how much impact so they have on the reservoir model thus helping in determining a cost effective and accurate model of the reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title="uncertainty">uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20model" title=" reservoir model"> reservoir model</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20analysis" title=" optimization analysis"> optimization analysis</a> </p> <a href="https://publications.waset.org/abstracts/21057/uncertainty-and-optimization-analysis-using-petrel-re" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">652</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17381</span> A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Y.%20Badiee">Mohammad Y. Badiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Golestani"> Saeed Golestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Saman%20Pishvaee"> Mir Saman Pishvaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=closed-loop%20supply%20chain" title=" closed-loop supply chain"> closed-loop supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=goal%20programming" title=" goal programming"> goal programming</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20optimization" title=" robust optimization"> robust optimization</a> </p> <a href="https://publications.waset.org/abstracts/39139/a-robust-optimization-model-for-multi-objective-closed-loop-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17380</span> Mind Your Product-Market Strategy on Selecting Marketing Inputs: An Uncertainty Approach in Indian Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Ghosh">Susmita Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaskar%20Bhowmick"> Bhaskar Bhowmick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Market is an important factor for start-ups to look into during decision-making in product development and related areas. Emerging country markets are more uncertain in terms of information availability and institutional supports. The literature review of market uncertainty reveals the need for identifying factors representing the market uncertainty. This paper identifies factors for market uncertainty using Exploratory Factor Analysis (EFA) and confirms the number of factor retention using an alternative factor retention criterion, ‘Parallel Analysis’. 500 entrepreneurs, engaged in start-ups from all over India participated in the study. This paper concludes with the factor structure of ‘market uncertainty’ having dimensions of uncertainty in industry orientation, uncertainty in customer orientation and uncertainty in marketing orientation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title="uncertainty">uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=market" title=" market"> market</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=competitor" title=" competitor"> competitor</a>, <a href="https://publications.waset.org/abstracts/search?q=demand" title=" demand "> demand </a> </p> <a href="https://publications.waset.org/abstracts/24877/mind-your-product-market-strategy-on-selecting-marketing-inputs-an-uncertainty-approach-in-indian-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17379</span> Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Q.%20Yuan">L. Q. Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Yang"> J. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siddiqui"> A. Siddiqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CHF%20experiment" title="CHF experiment">CHF experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=CHF%20correlation" title=" CHF correlation"> CHF correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20uncertainty" title=" regression uncertainty"> regression uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20Method" title=" Monte Carlo Method"> Monte Carlo Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20Series%20Method" title=" Taylor Series Method"> Taylor Series Method</a> </p> <a href="https://publications.waset.org/abstracts/77556/establishment-of-the-regression-uncertainty-of-the-critical-heat-flux-power-correlation-for-an-advanced-fuel-bundle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17378</span> Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajai%20Singh">Ajai Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SWAT" title="SWAT">SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=RBNN" title=" RBNN"> RBNN</a>, <a href="https://publications.waset.org/abstracts/search?q=SUFI%202" title=" SUFI 2"> SUFI 2</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrap%20technique" title=" bootstrap technique"> bootstrap technique</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20flow" title=" stream flow"> stream flow</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/21788/modeling-stream-flow-with-prediction-uncertainty-by-using-swat-hydrologic-and-rbnn-neural-network-models-for-agricultural-watershed-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17377</span> A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Gulam%20Kibria">M. Gulam Kibria</a>, <a href="https://publications.waset.org/abstracts/search?q=Shourav%20Ahmed"> Shourav Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kais%20Zaman"> Kais Zaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aleatory%20uncertainty" title="aleatory uncertainty">aleatory uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=epistemic%20uncertainty" title=" epistemic uncertainty"> epistemic uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order%20error%20analysis" title=" first order error analysis"> first order error analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=percentile-based%20optimization" title=" percentile-based optimization"> percentile-based optimization</a> </p> <a href="https://publications.waset.org/abstracts/90749/a-comparative-study-of-sampling-based-uncertainty-propagation-with-first-order-error-analysis-and-percentile-based-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17376</span> Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watcharin%20Sangma">Watcharin Sangma</a>, <a href="https://publications.waset.org/abstracts/search?q=Onsiri%20Chanmuang"> Onsiri Chanmuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitsanu%20Tongkhow"> Pitsanu Tongkhow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting%20model" title="forecasting model">forecasting model</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20demand%20uncertainty" title=" steel demand uncertainty"> steel demand uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework" title=" hierarchical Bayesian framework"> hierarchical Bayesian framework</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20smoothing%20method" title=" exponential smoothing method"> exponential smoothing method</a> </p> <a href="https://publications.waset.org/abstracts/10196/forecasting-models-for-steel-demand-uncertainty-using-bayesian-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17375</span> Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afia%20Naheed">Afia Naheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Manmohan%20Singh"> Manmohan Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Lucy"> David Lucy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infectious%20disease" title="infectious disease">infectious disease</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20acute%20respiratory%20syndrome%20%28SARS%29" title=" severe acute respiratory syndrome (SARS)"> severe acute respiratory syndrome (SARS)</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20analysis" title=" uncertainty analysis"> uncertainty analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Runge-Kutta%20methods" title=" Runge-Kutta methods"> Runge-Kutta methods</a>, <a href="https://publications.waset.org/abstracts/search?q=Levenberg-Marquardt%20method" title=" Levenberg-Marquardt method"> Levenberg-Marquardt method</a> </p> <a href="https://publications.waset.org/abstracts/8087/parameter-estimation-with-uncertainty-and-sensitivity-analysis-for-the-sars-outbreak-in-hong-kong" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17374</span> Wind Power Forecast Error Simulation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josip%20Vasilj">Josip Vasilj</a>, <a href="https://publications.waset.org/abstracts/search?q=Petar%20Sarajcev"> Petar Sarajcev</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Jakus"> Damir Jakus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title="wind power">wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20process" title=" stochastic process"> stochastic process</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/17977/wind-power-forecast-error-simulation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17373</span> Constructing a Probabilistic Ontology from a DBLP Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emna%20Hlel">Emna Hlel</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Jamousi"> Salma Jamousi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmajid%20Ben%20Hamadou"> Abdelmajid Ben Hamadou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every model for knowledge representation to model real-world applications must be able to cope with the effects of uncertain phenomena. One of main defects of classical ontology is its inability to represent and reason with uncertainty. To remedy this defect, we try to propose a method to construct probabilistic ontology for integrating uncertain information in an ontology modeling a set of basic publications DBLP (Digital Bibliography & Library Project) using a probabilistic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classical%20ontology" title="classical ontology">classical ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20ontology" title=" probabilistic ontology"> probabilistic ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20network" title=" Bayesian network"> Bayesian network</a> </p> <a href="https://publications.waset.org/abstracts/24225/constructing-a-probabilistic-ontology-from-a-dblp-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17372</span> Examining the Dynamics of FDI Inflows in Both BRICS and G7 Economies: Dissecting the Influence of Geopolitical Risk versus Economic Policy Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adelakun%20O.%20Johnson">Adelakun O. Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quest to mitigate the probable adverse effects of geopolitical risk on FDI inflows tends to result in more frequent changes in economic policies and, as a result, heightened policy uncertainty. In this regard, we extend the literature on the dynamics of FDI inflows to include the hypothesis of the possibility of geopolitical risk escalating the adverse effects of economic policy uncertainty on FDI inflows. To test the robustness of this hypothesis, we use the cases of different economic groups characterized by different levels of economic development and varying degrees of FDI confidence. Employing an ARDL-based dynamic panel data model that accounts for both non-stationarity and heterogeneity effects, we show result that suggests GPR and EPU retard the inflows of FDI in both economies but mainly in the short-run situation. In the long run, however, higher EPU not attributed to GPR is likely to boost the inflows of FDI rather than retarding, at least in the case of the G7 economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDI%20inflows" title="FDI inflows">FDI inflows</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolitical%20risk" title=" geopolitical risk"> geopolitical risk</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20policy%20uncertainty" title=" economic policy uncertainty"> economic policy uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20ARDL%20model" title=" panel ARDL model"> panel ARDL model</a> </p> <a href="https://publications.waset.org/abstracts/190114/examining-the-dynamics-of-fdi-inflows-in-both-brics-and-g7-economies-dissecting-the-influence-of-geopolitical-risk-versus-economic-policy-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17371</span> Consideration of Uncertainty in Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammadi">A. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moghimi"> M. Moghimi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammadi"> S. Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title="uncertainty">uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulated" title=" Monte Carlo simulated"> Monte Carlo simulated</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20programming" title=" stochastic programming"> stochastic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario%20method" title=" scenario method"> scenario method</a> </p> <a href="https://publications.waset.org/abstracts/7164/consideration-of-uncertainty-in-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17370</span> Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myungjin%20Lee">Myungjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Daegun%20Han"> Daegun Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongsung%20Kim"> Jongsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soojun%20Kim"> Soojun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Soo%20Kim"> Hung Soo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar%20rainfall%20ensemble" title="radar rainfall ensemble">radar rainfall ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20models" title=" rainfall-runoff models"> rainfall-runoff models</a>, <a href="https://publications.waset.org/abstracts/search?q=blending%20method" title=" blending method"> blending method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20runoff%20hydrograph" title=" optimum runoff hydrograph"> optimum runoff hydrograph</a> </p> <a href="https://publications.waset.org/abstracts/76203/simulation-of-optimal-runoff-hydrograph-using-ensemble-of-radar-rainfall-and-blending-of-runoffs-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17369</span> Agile Supply Chains and Its Dependency on Air Transport Mode: A Case Study in Amazon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabiana%20Lucena%20Oliveira">Fabiana Lucena Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Aristides%20da%20Rocha%20Oliveira%20Junior"> Aristides da Rocha Oliveira Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article discusses the dependence on air transport mode of agile supply chains. The agile supply chains are the result of the analysis of the uncertainty supply chain model, which ranks the supply chain, according to the respective product. Thus, understanding the Uncertainty Model and life cycle of products considered standard and innovative is critical to understanding these. The innovative character in the intersection of supply chains arising from the uncertainty model with its most appropriate transport mode. Consider here the variables availability, security and freight as determinants for choosing these modes. Therefore, the research problem is: How agile supply chains maintains logistics competitiveness, as these are dependent on air transport mode? A case study in Manaus Industrial Pole (MIP), an agglomeration model that includes six hundred industries from different backgrounds and billings, located in the Brazilian Amazon. The sample of companies surveyed include those companies whose products are classified in agile supply chains , as innovative and therefore live with the variable uncertainty in the demand for inputs or the supply of finished products. The results confirm the hypothesis that the dependency level of air transport mode is greater than fifty percent. It follows then, that maintain agile supply chain away from suppliers base is expensive (1) , and continuity analysis needs to be remade on each twenty four months (2) , consider that additional freight, handling and storage as members of the logistics costs (3) , and the comparison with the upcoming agile supply chains the world need to consider the location effect (4). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20model" title="uncertainty model">uncertainty model</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20transport%20mode" title=" air transport mode"> air transport mode</a>, <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title=" competitiveness"> competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics" title=" logistics "> logistics </a> </p> <a href="https://publications.waset.org/abstracts/26173/agile-supply-chains-and-its-dependency-on-air-transport-mode-a-case-study-in-amazon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17368</span> Determination of Measurement Uncertainty of the Diagnostic Meteorological Model CALMET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nina%20Miklav%C4%8Di%C4%8D">Nina Miklavčič</a>, <a href="https://publications.waset.org/abstracts/search?q=Ur%C5%A1ka%20Kugovnik"> Urška Kugovnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Galkina"> Natalia Galkina</a>, <a href="https://publications.waset.org/abstracts/search?q=Primo%C5%BE%20Ribari%C4%8D"> Primož Ribarič</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudi%20Von%C4%8Dina"> Rudi Vončina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the need for weather predictions is deeply rooted in the everyday life of people as well as it is in industry. The forecasts influence final decision-making processes in multiple areas, from agriculture and prevention of natural disasters to air traffic regulations and solutions on a national level for health, security, and economic problems. Namely, in Slovenia, alongside other existing forms of application, weather forecasts are adopted for the prognosis of electrical current transmission through powerlines. Meteorological parameters are one of the key factors which need to be considered in estimations of the reliable supply of electrical energy to consumers. And like for any other measured value, the knowledge about measurement uncertainty is also critical for the secure and reliable supply of energy. The estimation of measurement uncertainty grants us a more accurate interpretation of data, a better quality of the end results, and even a possibility of improvement of weather forecast models. In the article, we focused on the estimation of measurement uncertainty of the diagnostic microscale meteorological model CALMET. For the purposes of our research, we used a network of meteorological stations spread in the area of our interest, which enables a side-by-side comparison of measured meteorological values with the values calculated with the help of CALMET and the measurement uncertainty estimation as a final result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertancy" title="uncertancy">uncertancy</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20model" title=" meteorological model"> meteorological model</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20measurment" title=" meteorological measurment"> meteorological measurment</a>, <a href="https://publications.waset.org/abstracts/search?q=CALMET" title=" CALMET"> CALMET</a> </p> <a href="https://publications.waset.org/abstracts/171084/determination-of-measurement-uncertainty-of-the-diagnostic-meteorological-model-calmet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17367</span> Competition and Cooperation of Prosumers in Cournot Games with Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Heng%20Shi">Yong-Heng Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Hao"> Peng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bai-Chen%20Xie"> Bai-Chen Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar prosumers are playing increasingly prominent roles in the power system. However, its uncertainty affects the outcomes and functions of the power market, especially in the asymmetric information environment. Therefore, an important issue is how to take effective measures to reduce the impact of uncertainty on market equilibrium. We propose a two-level stochastic differential game model to explore the Cournot decision problem of prosumers. In particular, we study the impact of punishment and cooperation mechanisms on the efficiency of the Cournot game in which prosumers face uncertainty. The results show that under the penalty mechanism of fixed and variable rates, producers and consumers tend to take conservative actions to hedge risks, and the variable rates mechanism is more reasonable. Compared with non-cooperative situations, prosumers can improve the efficiency of the game through cooperation, which we attribute to the superposition of market power and uncertainty reduction. In addition, the market environment of asymmetric information intensifies the role of uncertainty. It reduces social welfare but increases the income of prosumers. For regulators, promoting alliances is an effective measure to realize the integration, optimization, and stable grid connection of producers and consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cournot%20games" title="Cournot games">Cournot games</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20market" title=" power market"> power market</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=prosumer%20cooperation" title=" prosumer cooperation"> prosumer cooperation</a> </p> <a href="https://publications.waset.org/abstracts/163232/competition-and-cooperation-of-prosumers-in-cournot-games-with-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17366</span> Asymmetries in Monetary Policy Response: The Role of Uncertainty in the Case of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elias%20Udeaja">Elias Udeaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Elijah%20Udoh"> Elijah Udoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exploring an extended SVAR model (SVAR-X), we use the case of Nigeria to hypothesize for the role of uncertainty as the underlying source of asymmetries in the response of monetary policy to output and inflation. Deciphered the empirical finding is the potential of monetary policy exhibiting greater sensitive to shocks due to output growth than they do to shocks due to inflation in recession periods, while the reverse appears to be the case for a contractionary monetary policy. We also find the asymmetric preference in the response of monetary policy to changes in output and inflation as relatively more pronounced when we control for uncertainty as the underlying source of asymmetries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetry%20response" title="asymmetry response">asymmetry response</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20economies" title=" developing economies"> developing economies</a>, <a href="https://publications.waset.org/abstracts/search?q=monetary%20policy%20shocks" title=" monetary policy shocks"> monetary policy shocks</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/124497/asymmetries-in-monetary-policy-response-the-role-of-uncertainty-in-the-case-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17365</span> Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-Time Quaternion Offset Linear Canonical Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Younus%20Bhat">Mohammad Younus Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quaternion offset linear canonical transform (QOLCT), which isa time-shifted and frequency-modulated version of the quaternion linear canonical transform (QLCT), provides a more general framework of most existing signal processing tools. For the generalized QOLCT, the classical Heisenberg’s and Lieb’s uncertainty principles have been studied recently. In this paper, we first define the short-time quaternion offset linear canonical transform (ST-QOLCT) and drive its relationship with the quaternion Fourier transform (QFT). The crux of the paper lies in the generalization of several well-known uncertainty principles for the ST-QOLCT, including Donoho-Stark’s uncertainty principle, Hardy’s uncertainty principle, Beurling’s uncertainty principle, and the logarithmic uncertainty principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform" title="Quaternion Fourier transform">Quaternion Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Quaternion%20offset%20linear%20canonical%20transform" title=" Quaternion offset linear canonical transform"> Quaternion offset linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=short-time%20quaternion%20offset%20linear%20canonical%20transform" title=" short-time quaternion offset linear canonical transform"> short-time quaternion offset linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20principle" title=" uncertainty principle"> uncertainty principle</a> </p> <a href="https://publications.waset.org/abstracts/142375/donoho-starks-and-hardys-uncertainty-principles-for-the-short-time-quaternion-offset-linear-canonical-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17364</span> The Effect of Oil Price Uncertainty on Food Price in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goodness%20C.%20Aye">Goodness C. Aye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the effect of the volatility of oil prices on food price in South Africa using monthly data covering the period 2002:01 to 2014:09. Food price is measured by the South African consumer price index for food while oil price is proxied by the Brent crude oil. The study employs the GARCH-in-mean VAR model, which allows the investigation of the effect of a negative and positive shock in oil price volatility on food price. The model also allows the oil price uncertainty to be measured as the conditional standard deviation of a one-step-ahead forecast error of the change in oil price. The results show that oil price uncertainty has a positive and significant effect on food price in South Africa. The responses of food price to a positive and negative oil price shocks is asymmetric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20price%20volatility" title="oil price volatility">oil price volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20price" title=" food price"> food price</a>, <a href="https://publications.waset.org/abstracts/search?q=bivariate" title=" bivariate"> bivariate</a>, <a href="https://publications.waset.org/abstracts/search?q=GARCH-in-mean%20VAR" title=" GARCH-in-mean VAR"> GARCH-in-mean VAR</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric" title=" asymmetric"> asymmetric</a> </p> <a href="https://publications.waset.org/abstracts/28399/the-effect-of-oil-price-uncertainty-on-food-price-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17363</span> Modelling Mode Choice Behaviour Using Cloud Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leah%20Wright">Leah Wright</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Townsend"> Trevor Townsend</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cloud%20theory" title="Cloud theory">Cloud theory</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making" title=" decision-making"> decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20choice%20models" title=" mode choice models"> mode choice models</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20behaviour" title=" travel behaviour"> travel behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/56507/modelling-mode-choice-behaviour-using-cloud-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17362</span> Exploring Time-Series Phosphoproteomic Datasets in the Context of Network Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kaur">Sandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Vuong"> Jenny Vuong</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Julliard"> Marcel Julliard</a>, <a href="https://publications.waset.org/abstracts/search?q=Sean%20O%27Donoghue"> Sean O'Donoghue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time-series data are useful for modelling as they can enable model-evaluation. However, when reconstructing models from phosphoproteomic data, often non-exact methods are utilised, as the knowledge regarding the network structure, such as, which kinases and phosphatases lead to the observed phosphorylation state, is incomplete. Thus, such reactions are often hypothesised, which gives rise to uncertainty. Here, we propose a framework, implemented via a web-based tool (as an extension to Minardo), which given time-series phosphoproteomic datasets, can generate κ models. The incompleteness and uncertainty in the generated model and reactions are clearly presented to the user via the visual method. Furthermore, we demonstrate, via a toy EGF signalling model, the use of algorithmic verification to verify κ models. Manually formulated requirements were evaluated with regards to the model, leading to the highlighting of the nodes causing unsatisfiability (i.e. error causing nodes). We aim to integrate such methods into our web-based tool and demonstrate how the identified erroneous nodes can be presented to the user via the visual method. Thus, in this research we present a framework, to enable a user to explore phosphorylation proteomic time-series data in the context of models. The observer can visualise which reactions in the model are highly uncertain, and which nodes cause incorrect simulation outputs. A tool such as this enables an end-user to determine the empirical analysis to perform, to reduce uncertainty in the presented model - thus enabling a better understanding of the underlying system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%BA-models" title="κ-models">κ-models</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20verification" title=" model verification"> model verification</a>, <a href="https://publications.waset.org/abstracts/search?q=time-series%20phosphoproteomic%20datasets" title=" time-series phosphoproteomic datasets"> time-series phosphoproteomic datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20and%20error%20visualisation" title=" uncertainty and error visualisation"> uncertainty and error visualisation</a> </p> <a href="https://publications.waset.org/abstracts/60772/exploring-time-series-phosphoproteomic-datasets-in-the-context-of-network-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17361</span> Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badreddine%20Chemali">Badreddine Chemali</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Tiliouine"> Boualem Tiliouine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlated%20random%20damping" title="correlated random damping">correlated random damping</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20statistical%20model" title=" linear statistical model"> linear statistical model</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20of%20dynamic%20response" title=" uncertainty of dynamic response"> uncertainty of dynamic response</a> </p> <a href="https://publications.waset.org/abstracts/37599/second-order-statistics-of-dynamic-response-of-structures-using-gamma-distributed-damping-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17360</span> Inter Laboratory Comparison with Coordinate Measuring Machine and Uncertainty Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugrul%20%20Torun">Tugrul Torun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20A.%20Yuksel"> Ihsan A. Yuksel</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%CC%87nem%20On%20Aktan"> Si̇nem On Aktan</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20K.%20Vezi%CC%87roglu"> Taha K. Vezi̇roglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the quality control processes in some industries, the usage of CMM has increased in recent years. Consequently, the CMMs play important roles in the acceptance or rejection of manufactured parts. For parts, it’s important to be able to make decisions by performing fast measurements. According to related technical drawing and its tolerances, measurement uncertainty should also be considered during assessment. Since uncertainty calculation is difficult and time-consuming, most companies ignore the uncertainty value in their routine inspection method. Although studies on measurement uncertainty have been carried out on CMM’s in recent years, there is still no applicable method for analyzing task-specific measurement uncertainty. There are some standard series for calculating measurement uncertainty (ISO-15530); it is not possible to use it in industrial measurement because it is not a practical method for standard measurement routine. In this study, the inter-laboratory comparison test has been carried out in the ROKETSAN A.Ş. with all dimensional inspection units. The reference part that we used is traceable to the national metrology institute TUBİTAK UME. Each unit has measured reference parts according to related technical drawings, and the task-specific measuring uncertainty has been calculated with related parameters. According to measurement results and uncertainty values, the En values have been calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate%20measurement" title="coordinate measurement">coordinate measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=CMM" title=" CMM"> CMM</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/136496/inter-laboratory-comparison-with-coordinate-measuring-machine-and-uncertainty-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17359</span> Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20M.%20Rezaul%20Islam">A. B. M. Rezaul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernur%20Karadogan"> Ernur Karadogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constitutive%20models" title="constitutive models">constitutive models</a>, <a href="https://publications.waset.org/abstracts/search?q=FAST%20sensitivity%20analysis" title=" FAST sensitivity analysis"> FAST sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sobol" title=" sobol"> sobol</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20analysis" title=" uncertainty analysis"> uncertainty analysis</a> </p> <a href="https://publications.waset.org/abstracts/117933/sensitivity-and-uncertainty-analysis-of-one-dimensional-shape-memory-alloy-constitutive-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17358</span> Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouhouche">S. Bouhouche</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Drai"> R. Drai</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bast"> J. Bast</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20chain%20Monte%20Carlo" title=" Markov chain Monte Carlo"> Markov chain Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20fluorescence%20calibration%20and%20testing" title=" x-ray fluorescence calibration and testing"> x-ray fluorescence calibration and testing</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement" title=" steel content measurement"> steel content measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20measurement" title=" uncertainty measurement"> uncertainty measurement</a> </p> <a href="https://publications.waset.org/abstracts/88897/extended-kalman-filter-and-markov-chain-monte-carlo-method-for-uncertainty-estimation-application-to-x-ray-fluorescence-machine-calibration-and-metal-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17357</span> Uncertainty Assessment in Building Energy Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fally%20Titikpina">Fally Titikpina</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderafi%20Charki"> Abderafi Charki</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Caucheteux"> Antoine Caucheteux</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Bigaud"> David Bigaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building sector is one of the largest energy consumer with about 40% of the final energy consumption in the European Union. Ensuring building energy performance is of scientific, technological and sociological matter. To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared with the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of dynamic and static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the \textit{Guide to the Expression of Measurement Uncertainty (GUM)} as well as by Bayesian Statistical Theory (BST). Another choice is the use of numerical methods like Monte Carlo Simulation (MCS). In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST) is given. Therefore, an office building has been monitored and multiple sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 $m^2$. Temperature data, electrical and heating consumption, windows opening and occupancy rate are the features for our research work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20performance" title="building energy performance">building energy performance</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20evaluation" title=" uncertainty evaluation"> uncertainty evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=GUM" title=" GUM"> GUM</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20approach" title=" bayesian approach"> bayesian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=monte%20carlo%20method" title=" monte carlo method"> monte carlo method</a> </p> <a href="https://publications.waset.org/abstracts/25133/uncertainty-assessment-in-building-energy-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17356</span> A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolsalam%20Ghaderi">Abdolsalam Ghaderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=location-routing%20problem" title="location-routing problem">location-routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20optimization" title=" robust optimization"> robust optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20programming" title=" stochastic programming"> stochastic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20neighborhood%20search" title=" variable neighborhood search"> variable neighborhood search</a> </p> <a href="https://publications.waset.org/abstracts/83797/a-robust-optimization-model-for-the-single-depot-capacitated-location-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=579">579</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=580">580</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20model&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>