CINXE.COM
Search results for: fertilizer production
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fertilizer production</title> <meta name="description" content="Search results for: fertilizer production"> <meta name="keywords" content="fertilizer production"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fertilizer production" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fertilizer production"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7624</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fertilizer production</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7624</span> Increasing Participation of KUD (Rural Unit Cooperative) Through 'Kemal Propuri' System to Independence Farmers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikrima%20Zaleda%20Zia">Ikrima Zaleda Zia</a>, <a href="https://publications.waset.org/abstracts/search?q=Devi%20Fitri%20Kumalasari"> Devi Fitri Kumalasari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosita%20Khusna"> Rosita Khusna</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Hidayati"> Farah Hidayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Fajrul%20Haq"> Ilham Fajrul Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Yusuf%20Efendi"> Amin Yusuf Efendi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fertilizer is one of the production factors that are important to agriculture. Fertilizers contribution to the agricultural sector improvement is quite high. Fertilizers scarcity on the society are giving effect to agricultural sector, that is decreasing farmers production. Through a system called Kemal Propuri, society will be taught how to be independent, especially in terms of supplying the fertilizer and how to earn extra income besides of relying on the agriculture production. This research aims to determine implementation measures of Kemal Propuri in realizing farmers independence. This research was designed to use descriptive research with a qualitative approach. In this case, writers are trying to make an illustration of the increasing role of KUD (rural unit cooperative) through Kemal Propuri system (Independence System Through Individual Fertilizer Production) towards farmer independence. It can be concluded that Kemal Propuri system can contribute in order to achieve farmers independence. Independence fertilizer production will overcome farmers dependence of the subsidized fertilizer from the government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Propuri" title="Kemal Propuri">Kemal Propuri</a>, <a href="https://publications.waset.org/abstracts/search?q=KUD%20%28Rural%20Unit%20Cooperative%29" title=" KUD (Rural Unit Cooperative)"> KUD (Rural Unit Cooperative)</a>, <a href="https://publications.waset.org/abstracts/search?q=independence%20farmers" title=" independence farmers"> independence farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20production" title=" fertilizer production"> fertilizer production</a> </p> <a href="https://publications.waset.org/abstracts/54169/increasing-participation-of-kud-rural-unit-cooperative-through-kemal-propuri-system-to-independence-farmers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7623</span> Nitrogen, Phosphorus, Potassium (NPK) Hydroxyapatite Nano-Hybrid Slow Release Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tinomuvonga%20Manenji%20Zhou">Tinomuvonga Manenji Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Eubert%20Mahofa"> Eubert Mahofa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatenda%20Crispen%20Madzokere"> Tatenda Crispen Madzokere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanostructured formulation can increase fertilizer efficacy and uptake ratio of the soil nutrients in agriculture production and save fertilizer resources. Controlled release modes have properties of both release rate and release pattern of nutrients, for fertilizers that are soluble in water might be correctly controlled. Nanoparticles can reduce the rate at which fertilizer nutrients are in the soil by leaching. A slow release NPK-hydroxyapatite nano hybrid fertilizer was synthesized using exfoliated bentonite as filler material. A simple, scalable method was used to synthesize the nitrogen-phosphorus hydroxyapatite nano fertilizer, where calcium hydroxide, phosphoric acid, and urea were used as precursor material, followed by the incorporation of potassium through a liquid grinding method. The product obtained was an NPK-hydroxyapatite nano hybrid fertilizer. A quantitative analysis was done to determine the percentage of nitrogen, phosphorus, and potassium in the hybrid fertilizer. AAS was used to determine the percentage of potassium in the fertilizer. An accelerated water test was conducted to compare the nutrient release behavior of nutrients between the synthesized NPK-hydroxyapatite nano hybrid fertilizer and commercial NPK fertilizer. The rate of release of Nitrogen, phosphorus, and potassium was significantly lower in the synthesized NPK hydroxyapatite nano hybrid fertilizer than in the convectional NPK fertilizer. The synthesized fertilizer was characterized using XRD. NPK hydroxyapatite nano hybrid fertilizer encapsulated in exfoliated bentonite thus prepared can be used as an environmentally friendly fertilizer formulation which could be extended to solve one of the major problems faced in the global fertilization of low nitrogen, phosphorus, and potassium use efficiency in agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NPK%20hydroxyapatite%20nano%20hybrid%20fertilizer" title="NPK hydroxyapatite nano hybrid fertilizer">NPK hydroxyapatite nano hybrid fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20release" title=" low release"> low release</a> </p> <a href="https://publications.waset.org/abstracts/163701/nitrogen-phosphorus-potassium-npk-hydroxyapatite-nano-hybrid-slow-release-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7622</span> Increasing Yam Production as a Means of Solving the Problem of Hunger in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samual%20Ayeni">Samual Ayeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Akinbani"> A. S. Akinbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present when the price of petroleum is going down beyond bearable level, there is a need to diversify the economy towards arable crop production since Nigeria is an agrarian country. Yam plays prominent role in solving the problem of hunger in Nigeria. There is scarcity of information on the effect of fertilizers in increasing the yield of yam and maintaining soil properties in South Western Nigeria. This study was therefore set up to determine fertilizer effect on properties and yield of yam. The experiment was conducted at Adeyemi College of Education Teaching and Research Farm to compare the effect of organic, Organomineral and mineral fertilizers on yield of yam. Ten treatments were used 10t/ha Wood Ash, 10t/ha Cattle Dung, 10t/ha Poultry Manure, 10t/ha Manufactured Organic, 10t/ha Organomineral Fertilizer, 400kg/ha NPK, 400kg/ha SSP, 400kg/ha Urea and control with treatment. The treatments were laid out in a Randomized Complete Block Design (RCBD) and replicated three times. Compared with control, Organomineral fertilizer significantly (P < 0.05) increased the soil moisture content, poultry manure, wood ash significantly decreased (< 0.05) the bulk density. Application of 10t/ha Organomineral fertilizer recorded the highest increase in the yield of yam among the treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organomineral%20fertilizer" title="organomineral fertilizer">organomineral fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=SSP" title=" SSP"> SSP</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title=" bulk density"> bulk density</a> </p> <a href="https://publications.waset.org/abstracts/51321/increasing-yam-production-as-a-means-of-solving-the-problem-of-hunger-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7621</span> Utilization of Sugar Factory Waste as an Organic Fertilizer on Growth and Production of Baby Corn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marliana%20S.%20Palad">Marliana S. Palad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research purpose is to view and know the influence of giving blotong against growth and production of baby corn. The research was arranged as a factorial experiment in completely randomized block design (RBD) with three replications. The first is fertilizer type: blotong (B1), blotong+EM4 (B2) and bokashi blotong (B3), while of the blotong dose assigned as the second factor: blotong 5 ton ha -1 (D1), blotong 10 ton ha-1 (D2) and blotong 15 ton ha-1 (D3). The research result indicated that bokashi blotong gives the best influence compare to blotong+EM4 against all parameters. Interaction between fertilizers does 10 ton ha-1 to the bokashi. Blotong gives the best influence to the baby corn production 4.41 ton ha-1, bokasi blotong best anyway influence on baby corn vegetative growth, that is: plant height 113.00 cm, leaves number 8 (eight) pieces and stem diameter 6.02 cm. Results of analysis of variance showed that giving of bokashi blotong (B3) showed a better effect on the growth and production of baby corn and highly significant for plant height age of 60 days after planting, leaf number aged 60 days after planting, cob length cornhusk and without cornhusk, diameter stems and cobs, cob weight with cornhusk and without cornhusk and production are converted into ton ha-1. This is due to bokashi blotong has organic content of C, N, P, and K totalling more than the maximum treatment blotong (B1) and the blotong+EM4 (B2). Based on the research result, it can be summarised that sugar factory waste called blotong can be used to make bokashi as organic fertilizer, so the baby corn can growth and production better. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blotong" title="blotong">blotong</a>, <a href="https://publications.waset.org/abstracts/search?q=bokashi" title=" bokashi"> bokashi</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20factory%20waste" title=" sugar factory waste"> sugar factory waste</a> </p> <a href="https://publications.waset.org/abstracts/36186/utilization-of-sugar-factory-waste-as-an-organic-fertilizer-on-growth-and-production-of-baby-corn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7620</span> Energy Analysis of Sugarcane Production: A Case Study in Metehara Sugar Factory in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wasihun%20Girma%20Hailemariam">Wasihun Girma Hailemariam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy is one of the key elements required for every agricultural activity, especially for large scale agricultural production such as sugarcane cultivation which mostly is used to produce sugar and bioethanol from sugarcane. In such kinds of resource (energy) intensive activities, energy analysis of the production system and looking for other alternatives which can reduce energy inputs of the sugarcane production process are steps forward for resource management. The purpose of this study was to determine input energy (direct and indirect) per hectare of sugarcane production sector of Metehara sugar factory in Ethiopia. Total energy consumption of the production system was 61,642 MJ/ha-yr. This total input energy is a cumulative value of different inputs (direct and indirect inputs) in the production system. The contribution of these different inputs is discussed and a scenario of substituting the most influential input by other alternative input which can replace the original input in its nutrient content was discussed. In this study the most influential input for increased energy consumption was application of organic fertilizer which accounted for 50 % of the total energy consumption. Filter cake which is a residue from the sugar production in the factory was used to substitute the organic fertilizer and the reduction in the energy consumption of the sugarcane production was discussed <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title="energy analysis">energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20management" title=" resource management"> resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title=" sugarcane"> sugarcane</a> </p> <a href="https://publications.waset.org/abstracts/112638/energy-analysis-of-sugarcane-production-a-case-study-in-metehara-sugar-factory-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7619</span> Production of a Sustainable Slow-Release Urea Fertilizer Using Starch and Poly-Vinyl Alcohol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20H.%20Shokry">A. M. H. Shokry</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20M.%20El-Tayeb"> N. S. M. El-Tayeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impacts caused by fertilizers call for the adaptation of more sustainable technologies in order to increase agricultural production and reduce pollution due to high nutrient emissions. One particular technique has been to coat urea fertilizer granules with less-soluble chemicals that permit the gradual release of nutrients in a slow and controlled manner. The aim of this research is to develop a biodegradable slow-release fertilizer (SRF) with materials that come from sustainable sources; starch and polyvinyl alcohol (PVA). The slow-release behavior and water retention capacity of the coated granules were determined. In addition, the aqueous release and absorbency rates were also tested. Results confirmed that the release rate from coated granules was slower than through plain membranes; and that the water absorption capacity of the coated urea decreased as PVA content increased. The SRF was also tested and gave positive results that confirmed the integrity of the product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title="biodegradability">biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen-use%20efficiency" title=" nitrogen-use efficiency"> nitrogen-use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-vinyl%20alcohol" title=" poly-vinyl alcohol"> poly-vinyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=slow-release%20fertilizer" title=" slow-release fertilizer"> slow-release fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/139377/production-of-a-sustainable-slow-release-urea-fertilizer-using-starch-and-poly-vinyl-alcohol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7618</span> Systems of Liquid Organic Fertilizer Application with Respect to Environmental Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hidayatul%20Fitri">Hidayatul Fitri</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20%C5%A0a%C5%99ec"> Petr Šařec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of organic fertilizer is increasing nowadays, and the application must be conducted accurately to provide the right benefits for plants and maintain soil health. Improper application of fertilizers can cause problems for both plants and the environment. This study investigated the liquid organic fertilizer application, particularly digestate, varied into different application doses concerning mitigation of adverse environmental impacts, improving water infiltration ability, and crop yields. The experiment was established into eight variants with different digestate doses, conducted on emission monitoring and soil physical properties. As a result, the digestate application with shallow injection (5 cm in depth) was confirmed as an appropriate technique for applying liquid fertilizer into the soil. Gas emissions resulted in low concentration and declined gradually over time, obviously proved from the experiment conducted under two measurements immediately after application and the next day. Applied various doses of liquid digestate fertilizer affected the emission concentrations of NH3 volatilization, differing significantly and decreasing about 40% from the first to second measurement. In this study, winter wheat crop production significantly increases under digestate application with additional N fertilizer. This study suggested the long-term application of digestate to obtain more alteration of soil properties such as bulk density, penetration resistance, and hydraulic conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20organic%20fertilizer" title="liquid organic fertilizer">liquid organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=digestate" title=" digestate"> digestate</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a> </p> <a href="https://publications.waset.org/abstracts/157208/systems-of-liquid-organic-fertilizer-application-with-respect-to-environmental-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7617</span> The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mojaddam">M. Mojaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Araei"> M. Araei</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Saki%20Nejad"> T. Saki Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Soltani%20Howyzeh"> M. Soltani Howyzeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications.) The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plan height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20phosphate%20fertilizer%20%28fertile%202%29" title="biological phosphate fertilizer (fertile 2)">biological phosphate fertilizer (fertile 2)</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20super%20phosphate" title=" triple super phosphate"> triple super phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20traits" title=" morphological traits"> morphological traits</a> </p> <a href="https://publications.waset.org/abstracts/31865/the-effect-of-application-of-biological-phosphate-fertilizer-fertile-2-and-triple-super-phosphate-chemical-fertilizers-on-some-morphological-traits-of-corn-sc704" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7616</span> Perceptions of Farmers against Liquid Fertilizer Benefits of Beef Cattle Urine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sitti%20Nurani%20Sirajuddin">Sitti Nurani Sirajuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikrar%20Moh.%20Saleh"> Ikrar Moh. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasmiyati%20Kasim"> Kasmiyati Kasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to know the perception of livestock farmers on the use of liquid organic fertilizer from urine of cattle at Sinjai Regency, South Sulawesi Province. The choice of location for a farmer group manufactures and markets liquid organic fertilizer from cattle urine. This research was conducted in May to July 2013.The population were all livestock farmers who use organic liquid fertilizer from cattle urine samples while livestock farmers who are directly involved in the manufacture of liquid organic fertilizer totaled 42 people. Data were collected through observation and interview. Data were analyzed descriptively. The results showed that the perception of livestock farmers of using liquid organic fertilizer from cattle urine provide additional revenue benefits, cost minimization farming, reducing environmental pollution which not contrary to the customs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20organic%20fertilizer" title="liquid organic fertilizer">liquid organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptions" title=" perceptions"> perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=beef%20cattle" title=" beef cattle"> beef cattle</a> </p> <a href="https://publications.waset.org/abstracts/34105/perceptions-of-farmers-against-liquid-fertilizer-benefits-of-beef-cattle-urine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7615</span> Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20AghaAlikhani">Majid AghaAlikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Hojati"> Mostafa Hojati</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Satari-Yuzbashkandi"> Saeid Satari-Yuzbashkandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cobbe%20Douglas%20function" title="Cobbe Douglas function">Cobbe Douglas function</a>, <a href="https://publications.waset.org/abstracts/search?q=economical%20analysis" title=" economical analysis"> economical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20use%20patterns" title=" energy use patterns"> energy use patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/84586/energy-use-and-econometric-models-of-soybean-production-in-mazandaran-province-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7614</span> Residual Affects of Humic Matter from Sub-Bituminous in Binding Aluminium at Oxisol to Increase Production of Upland Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herviyanti">Herviyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gusnidar"> Gusnidar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Harianti"> M. Harianti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research were: a) using low-rank coal (subbituminous) as main humate material sources because this material will not be anthracite, and cannot using to be an energy sources b) to examine residual effects of humic matter from subbituminous which was combined with P fertilizers to adsorp Al and Fe metal, improving soil fertility, and increasing P fertilizing efficiency and Oxisol productivity. Therefore, optimalization crop productivity of upland rice can be achieved. The experiment was designed using a 3 x 4 factorial with 3 replications in randomly groups design. The 1st factor was 3 ways incubating humate material with P-fertilizer, which are: I1 = Incubation of humate material 1 week, then incubation P-fertilizers 1 week; I2 = Incubation of humate materials and P fertilizers directly into the soil for 2 weeks; and I3 = humate material and P fertilizer mixed for 1 week, then incubation to the soil for 1 week. The 2nd factor was residual effects of humate material and P-fertilizer combination which are 4 doses H1 = 400 ppm (0.8 Mg/ha) + 100% R; H2 = 400 ppm + 75% R; H3 = 800 ppm (1.6 Mg/ha) + 100% R,; and H4 = 800 ppm + 75% R. The 2nd year research results showed that the best treatment was founded residue effect of 800 ppm humate material and 100% R P-fertilizer doses in I3 way incubation that is equal to 6.19 t ha-1 upland rice yield. However, this result is almost the same as residual effects of 800 ppm humate material + 75% R P-fertilizer doses and upland rice yield the 1st year. It was concluded that addition of humate material can given the efficiency of P-fertilizer using up to 25% until the 2nd season planted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humate%20materials" title="humate materials">humate materials</a>, <a href="https://publications.waset.org/abstracts/search?q=P-fertilizer" title=" P-fertilizer"> P-fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=subbituminous" title=" subbituminous"> subbituminous</a>, <a href="https://publications.waset.org/abstracts/search?q=upland%20rice" title=" upland rice"> upland rice</a> </p> <a href="https://publications.waset.org/abstracts/23706/residual-affects-of-humic-matter-from-sub-bituminous-in-binding-aluminium-at-oxisol-to-increase-production-of-upland-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7613</span> Utilization of Silicon for Sustainable Rice Yield Improvement in Acid Sulfate Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bunjirtluk%20Jintaridth">Bunjirtluk Jintaridth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilization of silicon for sustainable rice cultivation in acid sulfate soils was studied for 2 years. The study was conducted on Rungsit soils in Amphoe Tanyaburi, Pathumtani Province. The objectives of this study were to assess the effect of high quality organic fertilizer in combination with silicon and chemical fertilizer on rice yield, chemical soil properties after using soil amendments, and also to assess the economic return. A Randomized Complete Block Design (RCBD) with 10 treatments and 3 replications were employed. The treatments were as follows: 1) control 2) chemical fertilizer (recommended by Land Development Department, LDD 3) silicon 312 kg/ha 4) high quality organic fertilizer at 1875 kg/ha (the recommendation rate by LDD) 5) silicon 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 6) silicon at the 312 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 7) silicon 156 kg/ha in combination with chemical fertilizer 8) silicon at the 312 kg/ha in combination with chemical fertilizer 9) silicon 156 kg/ha in combination with ½ chemical fertilizer rate, and 10) silicon 312 kg/ha in combination with ½ chemical fertilizer rate. The results of 2 years indicated the treatment tended to increase soil pH (from 5.1 to 4.7-5.5), percentage of organic matter (from 2.43 to 2.54 - 2.94%); avail. P (from 7.5 to 7-21 mg kg-1 P; ext. K (from 616 to 451-572 mg kg-1 K), ext Ca (from 1962 to 2042.3-4339.7 mg kg-1 Ca); ext Mg (from 1586 to 808.7-900 mg kg-1 Mg); but decrease the ext. Al (from 2.56 to 0.89-2.54 cmol kg-1 Al. Two years average of rice yield, the highest yield was obtained from silicon 156 kg/ha application in combination with high quality organic fertilizer 300 kg/rai (3770 kg/ha), or using silicon at the 312 kg/ha combination with high quality organic fertilizer 300 kg/rai. (3,750 kg/ha). It was noted that chemical fertilizer application with 156 and 312 kg/ha silicon gave only 3,260 และ 3,133 kg/ha, respectively. On the other hand, half rate of chemical fertilizer with 156 and 312 kg/ha with silicon gave the yield of 2,934 และ 3,218 kg/ha, respectively. While high quality organic fertilizer only can produce 3,318 kg/ha as compare to rice yield of 2,812 kg/ha from control. It was noted that the highest economic return was obtained from chemical fertilizer treated plots (886 dollars/ha). Silicon application at the rate of 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha gave the economic return of 846 dollars/ha, while 312 kg/ha of silicon with chemical fertilizer gave the lowest economic return (697 dollars/ha). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20quality%20organic%20fertilizer" title=" high quality organic fertilizer"> high quality organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20sulfate%20soil" title=" acid sulfate soil"> acid sulfate soil</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a> </p> <a href="https://publications.waset.org/abstracts/104606/utilization-of-silicon-for-sustainable-rice-yield-improvement-in-acid-sulfate-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7612</span> Reducing The Frequency of Flooding Accompanied by Low pH Wastewater In 100/200 Unit of Phosphate Fertilizer 1 Plant by Implementing The 3R Program (Reduce, Reuse and Recycle)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradipta%20Risang%20Ratna%20Sambawa">Pradipta Risang Ratna Sambawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Driya%20Herseta"> Driya Herseta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Fajri%20Nugraha"> Mahendra Fajri Nugraha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2020, PT Petrokimia Gresik implemented a program to increase the ROP (Run Of Pile) production rate at the Phosphate Fertilizer 1 plant, causing an increase in scrubbing water consumption in the 100/200 area unit. This increase in water consumption causes a higher discharge of wastewater, which can further cause local flooding, especially during the rainy season. The 100/200 area of the Phosphate Fertilizer 1 plant is close to the warehouse and is often a passing area for trucks transporting raw materials. This causes the pH in the wastewater to become acidic (the worst point is up to pH 1). The problem of flooding and exposure to acidic wastewater in the 100/200 area of Phosphate Fertilizer Plant 1 was then resolved by PT Petrokimia Gresik through wastewater optimization steps called the 3R program (Reduce, Reuse, and Recycle). The 3R (Reduce, reuse, and recycle) program consists of an air consumption reduction program by considering the liquid/gas ratio in scrubbing unit of 100/200 Phosphate Fertilizer 1 plant, creating a wastewater interconnection line so that wastewater from unit 100/200 can be used as scrubbing water in the Phonska 1, Phonska 2, Phonska 3 and unit 300 Phosphate Fertilizer 1 plant and increasing scrubbing effectiveness through scrubbing effectiveness simulations. Through a series of wastewater optimization programs, PT Petrokimia Gresik has succeeded in reducing NaOH consumption for neutralization up to 2,880 kg/day or equivalent in saving up to 314,359.76 dollars/year and reducing process water consumption up to 600 m3/day or equivalent in saving up to 63,739.62 dollars/year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title="fertilizer">fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20fertilizer" title=" phosphate fertilizer"> phosphate fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a> </p> <a href="https://publications.waset.org/abstracts/188842/reducing-the-frequency-of-flooding-accompanied-by-low-ph-wastewater-in-100200-unit-of-phosphate-fertilizer-1-plant-by-implementing-the-3r-program-reduce-reuse-and-recycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7611</span> Effect of Organic Manure on Production of Potato (Solanum tuberosum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Behrooz">R. Behrooz</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Jahanfar"> D. Jahanfar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Reza"> D. Reza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic farming is a fundamental principle in sustainable agriculture. Preventing excessive contamination of water and soil with pesticides and chemical fertilizers is important in order to produce healthy food. For this purpose, two potato cultivars (Sante and Marfona) and seven levels of fertilizer (non-fertilizer, chemical fertilizer, granulated chicken manure, common manure, compost, vermicompost and tea compost) were evaluated by factorial experiment based on randomized complete block design (RCBD) with three replications. According to the results, the effect of different manure was significant on number of tubers per plant, tuber weight per plant and tuber yield. The highest value of these traits was obtained by using of chicken manure which was significantly superior to other treatments. However, there was no significant difference between the two varieties. According to the results, the use of chicken manure has produced the highest potato yield even in comparison with the use of chemical fertilizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20manure" title=" organic manure"> organic manure</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=tuber%20yield" title=" tuber yield"> tuber yield</a> </p> <a href="https://publications.waset.org/abstracts/95085/effect-of-organic-manure-on-production-of-potato-solanum-tuberosum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7610</span> The Effect of Biological Fertilizers on Yield and Yield Components of Maize with Different Levels of Chemical Fertilizers in Normal and Difficit Irrigation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felora%20Rafiei">Felora Rafiei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Shoaei"> Shahram Shoaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this studies was to evaluate effect of nitroxin, super nitro plus and biophosphorus on yield and yield components of maize (Zea mays) under different levels of chemical fertilizers in the condition of normal and difficiet irrigation. Experiment laid out as split plot factorial based on randomized complete block design with three replications. Main plots includes two irrigation treatments of 70 (I1), 120(I2) mm evaporation from class A pan. Sub plots were biological fertilizer and chemical fertilizer as factorial biological fertilizer consisting of nitroxin: Azospirillium lipoferum, Azospirillium brasilens, Azotobacter chroococcum Azotobacter agilis (108 CFU ml-1) (B1), super nitro plus (Azospirillium spp, + Pseudomonas fluorescence + Bacillus subtilis (108 CFU ml-1) + biological fungicide) (B2), biophosphorus (Pseudomonas spp + Bacillus spp (107 CFU ml-1) (B3), and chemical fertilizer consisting of NPK (C1), N5oP5oK5o (C2) and NoPoKo (C3).The results showed that usage of biological fertilizer have positive effects on chemical fertilizers use efficiency and tolerance to drought stress in maize. Also with use of biological fertilizer can decrease usage of chemical fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20fertilizer" title="biological fertilizer">biological fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20component" title=" yield component"> yield component</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a> </p> <a href="https://publications.waset.org/abstracts/33467/the-effect-of-biological-fertilizers-on-yield-and-yield-components-of-maize-with-different-levels-of-chemical-fertilizers-in-normal-and-difficit-irrigation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7609</span> Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Properties of Lowland Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20A.%20S.%20Gamage">D. A. S. Gamage</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20F.%20A.%20Basnayake"> B. F. A. Basnayake</a>, <a href="https://publications.waset.org/abstracts/search?q=W.A.J.M.%20De%20Costa"> W.A.J.M. De Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice is the staple food of Sri Lankans thus; rice cultivation is the major agricultural activity of the country. The application of inorganic fertilizer has become a burden to the country. The excessive application of organic and inorganic fertilizers can potentially lead to deterioration of the quality of water. In mixing both urea and rice husk charcoal and rice straw compost in soils causes a slow release of nitrogen fertilizer, thus reducing the cost of importations of nitrogen based fertilizers per unit area of cultivation. Objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N,P, K, organic matter in soil and yield of rice production. Five treatments were used for twenty pots (pot size 30 cm diameter and 45 cm height) each replicated four times as: inorganic fertilizer only (Urea, TSP and MOP) (Treatment 1); rice husk charcoal coated urea, TSP and MOP (Treatment 2); inorganic fertilizer (Urea, TSP and MOP) with rice straw compost only (Treatment 3); rice husk charcoal urea, TSP and MOP with rice straw compost (Treatment 4); and no fertilizer as the control (Treatment 5). Rice grain yield was significantly higher in treatment 4 where rice husk charcoal coated urea, TSP and MOP with rice straw compost. The lowest yield was observed in control (treatment 5). The lower the value of the nitrogen to phosphorous ratio in soil, it indicates higher uptake of phosphorous. Charcoal can be used as a soil amendment and organic fertilizer, but adjustment of pH was required at high application rates. K content of soil of treatment 3 and 4 were the highest with compared to the treatment 1. Rice husk charcoal coated urea can potentially be used as a slow releasing nitrogen fertilizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charcoal" title="charcoal">charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20to%20phosphorous%20ratio" title=" nitrogen to phosphorous ratio"> nitrogen to phosphorous ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20amendment" title=" soil amendment"> soil amendment</a> </p> <a href="https://publications.waset.org/abstracts/35609/effects-of-application-of-rice-husk-charcoal-coated-urea-and-rice-straw-compost-on-growth-yield-and-properties-of-lowland-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7608</span> The Potential of Fly Ash Wastes to Improve Nutrient Levels in Agricultural Soils: A Material Flow Analysis Case Study from Riau District, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Basri%20Jumin">Hasan Basri Jumin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fly ash sewage of pulp and paper industries when processed with suitable process and true management may possibly be used fertilizer agriculture purposes. The objective of works is to evaluate re-cycling possibility of fly ash waste to be applied as a fertilizer for agriculture use. Fly ash sewage was applied to maize with 28 g/plant could be increased significantly the average of dry weigh from dry weigh of seed increase from 6.7 g/plant into 10.3 g/plant, and net assimilation rates could be increased from 14.5 mg.m-2.day-1 into 35.4 mg.m-2 day-1. Therefore, production per hectare was reached 3.2 ton/ha. The chemical analyses of fly ash waste indicated that, there are no exceed threshold content of dangerous metals and biology effects. Mercury, arsenic, cadmium, chromium, cobalt, lead, and molybdenum contents as heavy metal are lower than the threshold of human healthy tolerance. Therefore, it has no syndrome effect to human health. This experiment indicated that fly ash sewage in lower doses until 28 g/plant could be applied as substitution fertilizer for agriculture use and it could be eliminate the environment pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly-ash" title="fly-ash">fly-ash</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge-sewage%20pollutant" title=" sludge-sewage pollutant"> sludge-sewage pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/35991/the-potential-of-fly-ash-wastes-to-improve-nutrient-levels-in-agricultural-soils-a-material-flow-analysis-case-study-from-riau-district-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7607</span> Analysis of Pollution Caused by the Animal Feed Industry and the Fertilizer Industry Using Rock Magnetic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kharina%20Budiman">Kharina Budiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Adinda%20Syifa%20Azhari"> Adinda Syifa Azhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Agustine"> Eleonora Agustine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial activities get increase in this globalization era, one of the major impacts of industrial activities is a problem to the environment. This can happen because at the industrial production term will bring out pollutant in the shape of solid, liquid or gas. Normally this pollutant came from some dangerous materials for environment. However not every industry produces the same amount of pollutant, every industry produces different kind of pollution. To compare the pollution impact of industrial activities, soil sample has been taken around the animal feed industry and the fertilizer industry. This study applied the rock magnetic method and used Bartington MS2B to measured magnetic susceptibility (χ) as the physical parameter. This study tested soil samples using the value of susceptibility low frequency (χ lf) and Frequency Dependent (χ FD). Samples only taken in the soil surface with 0-5 cm depth and sampling interval was 20 cm. The animal feed factory has susceptibility low frequency (χ lf) = 111,9 – 325,7 and Frequency Dependent (χ FD) = 0,8 – 3,57 %. And the fertilizer factory has susceptibility low frequency (χ lf) = 187,1 – 494,8 and Frequency Dependent (χ FD) = 1,37 – 2,46 %. Based on the results, the highest value of susceptibility low frequency (χ lf) is the fertilizer factory, but the highest value of Frequency Dependent (FD) is the animal feed factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial" title="industrial">industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20susceptibility" title=" magnetic susceptibility"> magnetic susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=%CF%87lf" title=" χlf"> χlf</a>, <a href="https://publications.waset.org/abstracts/search?q=%CF%87fd" title=" χfd"> χfd</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20feed%20industry%20and%20fertilizer%20industry" title=" animal feed industry and fertilizer industry"> animal feed industry and fertilizer industry</a> </p> <a href="https://publications.waset.org/abstracts/65665/analysis-of-pollution-caused-by-the-animal-feed-industry-and-the-fertilizer-industry-using-rock-magnetic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7606</span> Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reda%20Abdel-Aziz">Reda Abdel-Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizers" title=" chemical fertilizers"> chemical fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20production" title=" corn production"> corn production</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/7349/impact-of-compost-application-with-different-rates-of-chemical-fertilizers-on-corn-growth-and-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7605</span> Examination of the Water and Nutrient Utilization of Maize Hybrids on Chernozem Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20G.%20Karancsi">L. G. Karancsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was set up on chernozem soil at the Látókép AGTC MÉK research area of the University of Debrecen in Hungary. We examined the yield, the yield production per 1kg NPK fertilizer and the water and nutrient utilization of hybrid PR37N01 and PR37M81 in 2013. We found that PR37N01 produced the most yield at the level of N120+P (17,476kg ha-1) while PR37M81 reached the highest yield at level N150+PK (16,754kg ha-1). Studies related to yield production per 1kg NPK indicated that the best results were achieved at level N30+PK compared to the control treatment. Yield production per 1kg NPK was17.6kg kg-1 by P37N01 and 44.2kg kg-1 by PR37M81. By comparing the water utilization of hybrids we found that the worst water utilization results were reached in the control treatment (PR37N01: 26.2kg mm-1, PR37M81: 19.5kg mm-1). The best water utilization values were produced at level N120+PK in the case of hybrid PR37N01 (32.1kg mm-1) and at N150+PK in the case of hybrid PR37M81 (30.8kg mm-1). We established the values of the nutrient reaction and the fertilizer optimum of hybrids. We discovered a strong relationship between the amount of fertilizer applied and the yield produced (r2= 0.8228–0.9515). The best nutrient response was induced by hybrid PR37N01, while the weakest results were reached by hybrid PR37M81. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid" title="hybrid">hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient" title=" nutrient"> nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20utilization" title=" water utilization"> water utilization</a> </p> <a href="https://publications.waset.org/abstracts/3689/examination-of-the-water-and-nutrient-utilization-of-maize-hybrids-on-chernozem-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7604</span> Fertilizer Procurement and Distribution in Nigeria: Assessing Policy against Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Msughter%20Gwa">Jacob Msughter Gwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhys%20Williams"> Rhys Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is widely known that food security is a major concern in Sub-Saharan Africa. In many regions, including Nigeria, this is due to an agriculture-old problem of soil erosion beyond replacement levels. It seems that the use of fertilizer would be an immediate solution as it can boost agricultural productivity, and low agricultural productivity is attributed to the low use of fertilizers in Nigeria. The Government of Nigeria has been addressing the challenges of food shortage but with limited success. The utilisation of a practical and efficient subsidy programme in addressing this issue seems to be needed. However, the problem of procurement and distribution changes from one stage of subsidy to another. This paper looks at the difference between the ideal and the actual implementation of agricultural fertilizer policies in Nigeria, as it currently runs the risk of meeting required standards on paper but missing the desired real outcomes, and recognises the need to close the gap between the paper work and the realities on the ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20productivity" title="agricultural productivity">agricultural productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20distribution" title=" fertilizer distribution"> fertilizer distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20procurement" title=" fertilizer procurement"> fertilizer procurement</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/59546/fertilizer-procurement-and-distribution-in-nigeria-assessing-policy-against-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7603</span> Factors Affecting in Soil Analysis Technique Adopted by the Southern Region Farmers, Syria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moammar%20Dayoub">Moammar Dayoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aimed to know the reality of farmers and determine the extent of adoption of the recommendations of the fertilizer and the difficulties and problems they face. The study was conducted on a random sample of farmers consist of 95 farmers who had analysed their field soil in scientific research centres in agricultural southern region through the form specially prepared for this purpose, the results showed that the rate of adoption of the fertilizer recommendations whole amounted to an average of 36.9% in the southern region, The degree of adoption was 34.7% in the region. The results showed that 41% of farmers did not implement the recommendations because of the non-convenient analysis, and 34% due to neglect, and 15% due to the weather and an environment, while 10% of them for lack of manure in the suitable time. The study also revealed that Independent factors affecting the continuing adoption of soil analysis are: farms experience, sampling method in farmer’s schools, irrigated area, and personal knowledge of farmers in analysing the soil. Also, show that the application of fertilizer recommendations led to increased production by 15-20%, this analysis emphasizes the importance of soil analysis and adherence to the recommendations of the research centres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adoption" title="adoption">adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=recommendations%20of%20the%20fertilizer" title=" recommendations of the fertilizer"> recommendations of the fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20analysis" title=" soil analysis"> soil analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=southern%20region" title=" southern region"> southern region</a> </p> <a href="https://publications.waset.org/abstracts/89289/factors-affecting-in-soil-analysis-technique-adopted-by-the-southern-region-farmers-syria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7602</span> Effects of Chemical and Biological Fertilizer on, Yield, Nitrogen Uptake and Nitrogen Harvest Index of Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azin%20Nasrollah%20Zadeh">Azin Nasrollah Zadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A factorial experiment was applied to evaluate the effect of chemical and biological fertilizer on yield, total nitrogen uptake and NHI of rice. Four biological treatments including:(M1:no fertilizer),( M2:10 ton/ha cow dung ),(M3:20 ton/ha cow dung) and (M4:5 ton/ha azolla compost) and four chemical fertilizer treatments including: (S1: no fertilizer),(S2:40 kg N /ha),(S3:60 kg N /ha) and ( S4:80 kg N /ha ) were compared. Results showed that highest rate of yield (3387 kg/ha) and total nitrogen uptake (81.4 kg/ha) were reached the highest value at M4. Among the chemical fertilizers the highest grain yield (3373 kg/ha) and total nitrogen uptake (87.7) belonged to highest nitrogen level (S4).Also biological and chemical fertilizers were no significant on Harvest index (NHI). Interaction effect of chemical × biological fertilizers didn't show significant difference between all parameters except of yield, as the most grain yield were obtained in M4S4. So it can be concluded that using of bioilogical fertilizers at appropriate rate and type, considering plant requirement, may improve grain yield, nitrogen uptake and use efficiency in rice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azolla" title="azolla">azolla</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20uptake" title=" nitrogen uptake"> nitrogen uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/28466/effects-of-chemical-and-biological-fertilizer-on-yield-nitrogen-uptake-and-nitrogen-harvest-index-of-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7601</span> Growth, Yield, and Quality of Onion (Allium-cepl.) as Influenced by Intra-row Spacing and Nitrogen Fertilizer Levels in Gashua Sahel Savanna Region of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muazu%20A.">Muazu A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Haphazard and inappropriate plant spacing and poor soilfertility management practice are among the major factorsconstraining onion production in Gashua, Bade Locale Government Yobe State.Field experiments were conducted in 2023 dry season ar Federal University, Gashua university farm assess the influence of intra-row spacing (2.5, 5, 7.5, 10 and 12.5 cm) and nitrogen fertilizerrate (0, 41, 82 and 123kg Nha-1) growth, bulb yield and quality of onion. The experiment was laid out in a randomized complete block design (RCBD) with three replications. The main effects of nitrogen rate and intra-row spacing influenced only the plant height stand count significantly obtained from 7.5cm and 82kg Nha-1 intra-row spacing and nitrogen fertilizer respectively. The highest yield was obtained from the application of 82kg Nha-1 and plant spacing of 5.0cm and 7.5cm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=onion" title="onion">onion</a>, <a href="https://publications.waset.org/abstracts/search?q=intra-row%20spacing" title=" intra-row spacing"> intra-row spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20fertilizer" title=" nitrogen fertilizer"> nitrogen fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/190594/growth-yield-and-quality-of-onion-allium-cepl-as-influenced-by-intra-row-spacing-and-nitrogen-fertilizer-levels-in-gashua-sahel-savanna-region-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7600</span> Quality of So-Called Organic Fertilizers in Vietnam's Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoang%20Thi%20Quynh">Hoang Thi Quynh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shima%20Kazuto"> Shima Kazuto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic farming is gaining interest in Vietnam. However, organic fertilizer production is not sufficiently regulated, resulting in unknown quality. This study investigated characteristics of so-called organic fertilizers in the Vietnam’s market and their mineralization in soil-plant system. We collected 15 commercial products (11 domestic and 4 imported) which labelled 'organic fertilizer' in the market to analyze nutrients composition. A 20 day-incubation experiment was carried on with 80 g sandy-textured soil, amended with the fertilizer at a rate of 109.4 mgN.kg⁻¹soil in 150 mL glass bottle at 25℃. We categorized them according to nutrients content and mineralization rate, and then selected 8 samples for cultivation experiment. The experiment was conducted by growing Komatsuna (Brassica campestris) in sandy-textured soil using an automatic watering apparatus in a greenhouse. The fertilizers were applied to the top one-third of the soil stratum at a rate of 200 mgN.kg⁻¹ soil. Our study also analyzed material flow of coffee husk compost in Central Highland of Vietnam. Total N, P, K, Ca, Mg and C: N ratio varied greatly cross the domestic products, whereas they were quite similar among the imported materials. The proportion of inorganic-N to T-N of domestic products was higher than 25% in 8 of 11 samples. These indicate that N concentration increased dramatically in most domestic products compared with their raw materials. Additionally, most domestic products contained less P, and their proportions of Truog-P to T-P were greatly different. These imply that some manufactures were interested in adjusting P concentration, but some ones were not. Furthermore, the compost was made by mixing with chemical substances to increase nutrients content (N, P), and also added construction surplus soil to gain weight before packing product to sell in the market as 'organic fertilizer'. There was a negative correlation between C:N ratio and mineralization rate of the fertilizers. There was a significant difference in N efficiency among the fertilizer treatments. N efficiency of most domestic products was higher than chemical fertilizer and imported organic fertilizers. These results suggest regulations on organic fertilizers production needed to support organic farming that is based on internationally accepted standards in Vietnam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inorganic%20N" title="inorganic N">inorganic N</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20efficiency" title=" N efficiency"> N efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=so-called%20organic%20fertilizers" title=" so-called organic fertilizers"> so-called organic fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam%E2%80%99s%20market" title=" Vietnam’s market"> Vietnam’s market</a> </p> <a href="https://publications.waset.org/abstracts/82609/quality-of-so-called-organic-fertilizers-in-vietnams-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7599</span> Integration of Agroforestry Shrub for Diversification and Improved Smallholder Production: A Case of Cajanus cajan-Zea Mays (Pigeonpea-Maize) Production in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20O.%20Danquah">F. O. Danquah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Frimpong"> F. Frimpong</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Owusu%20Danquah"> E. Owusu Danquah</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Frimpong"> T. Frimpong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Adu"> J. Adu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Amposah"> S. K. Amposah</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Amankwaa-Yeboah"> P. Amankwaa-Yeboah</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20E.%20Amengor"> N. E. Amengor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the face of global concerns such as population increase, climate change, and limited natural resources, sustainable agriculture practices are critical for ensuring food security and environmental stewardship. The study was conducted in the Forest zones of Ghana during the major and minor seasons of 2023 cropping seasons to evaluate maize yield productivity improvement and profitability of integrating Cajanus cajan (pigeonpea) into a maize production system described as a pigeonpea-maize cropping system. This is towards an integrated soil fertility management (ISFM) with a legume shrub pigeonpea for sustainable maize production while improving smallholder farmers' resilience to climate change. A split-plot design with maize-pigeonpea (Pigeonpea-Maize intercrop – MPP and No pigeonpea/ Sole maize – NPP) and inorganic fertilizer rate (250 kg/ha of 15-15-15 N-P2O5-K2O + 250 kg/ha Sulphate of Ammonia (SoA) – Full rate (FR), 125 kg/ha of 15-15-15 N-P2O5-K2O + 125 kg/ha Sulphate of Ammonia (SoA) – Half rate (HR) and no inorganic fertilizer (NF) as control) was used as the main plot and subplot treatments respectively. The results indicated a significant interaction of the pigeonpea-maize cropping system and inorganic fertilizer rate on the growth and yield of the maize with better and similar maize productivity when HR and FR were used with pigeonpea biomass. Thus, the integration of pigeonpea and its biomass would result in the reduction of recommended fertiliser rate to half. This would improve farmers’ income and profitability for sustainable maize production in the face of climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroforestry%20tree" title="agroforestry tree">agroforestry tree</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20soil%20fertility%20management" title=" integrated soil fertility management"> integrated soil fertility management</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20use%20efficiency" title=" resource use efficiency"> resource use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/182972/integration-of-agroforestry-shrub-for-diversification-and-improved-smallholder-production-a-case-of-cajanus-cajan-zea-mays-pigeonpea-maize-production-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7598</span> Microbiological Analysis of Soil from Onu-Ebonyi Contaminated with Inorganic Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Alo">M. N. Alo</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20C.%20C.%20Egbule"> U. C. C. Egbule</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Orji"> J. O. Orji</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Aneke"> C. J. Aneke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbiological analysis of soil from Onu-Ebonyi Izzi local government area of Ebonyi State, Nigeria contaminated with inorganic fertilizer was carried out with a view to determine the effect of the fertilizer on the microbial flora of the soil. soil samples were analyzed for microbial burden. the result showed that the following organisms were isolated with their frequency of their occurrence as follows:pseudomonas species (33.3%) and aspergillus species (54.4%) had the highest frequncy of occurence in the whole sample of batches, while streptococcus species had 6.0% and Geotrichum species (5.3%) had the least and other predominant microorganism isolated: bacillus species,staphylococcus species and vibrio species, Escherichia species, rhzizopus species, mucor species and fusaruim species. From the result, it could be concluded that the soil was contaminated and this could affect adversely the fertility of the soil . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20fertilizer" title=" inorganic fertilizer"> inorganic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=Onu-%20Ebonyi" title=" Onu- Ebonyi "> Onu- Ebonyi </a> </p> <a href="https://publications.waset.org/abstracts/15269/microbiological-analysis-of-soil-from-onu-ebonyi-contaminated-with-inorganic-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7597</span> Tenants Use Less Input on Rented Plots: Evidence from Northern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desta%20Brhanu%20Gebrehiwot">Desta Brhanu Gebrehiwot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to investigate the impact of land tenure arrangements on fertilizer use per hectare in Northern Ethiopia. Household and Plot level data are used for analysis. Land tenure contracts such as sharecropping and fixed rent arrangements have endogeneity. Different unobservable characteristics may affect renting-out decisions. Thus, the appropriate method of analysis was the instrumental variable estimation technic. Therefore, the family of instrumental variable estimation methods two-stage least-squares regression (2SLS, the generalized method of moments (GMM), Limited information maximum likelihood (LIML), and instrumental variable Tobit (IV-Tobit) was used. Besides, a method to handle a binary endogenous variable is applied, which uses a two-step estimation. In the first step probit model includes instruments, and in the second step, maximum likelihood estimation (MLE) (“etregress” command in Stata 14) was used. There was lower fertilizer use per hectare on sharecropped and fixed rented plots relative to owner-operated. The result supports the Marshallian inefficiency principle in sharecropping. The difference in fertilizer use per hectare could be explained by a lack of incentivized detailed contract forms, such as giving more proportion of the output to the tenant under sharecropping contracts, which motivates to use of more fertilizer in rented plots to maximize the production because most sharecropping arrangements share output equally between tenants and landlords. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tenure-contracts" title="tenure-contracts">tenure-contracts</a>, <a href="https://publications.waset.org/abstracts/search?q=endogeneity" title=" endogeneity"> endogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=plot-level%20data" title=" plot-level data"> plot-level data</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a> </p> <a href="https://publications.waset.org/abstracts/163031/tenants-use-less-input-on-rented-plots-evidence-from-northern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7596</span> Land Equivalent Ration of Chickpea - Barley as Affected by Mixed Cropping System and Vermicompost in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of the effect of vermin compost on yield, and Land equivalent ration (LER) of chickpea-barley mixed cropping under normal dry land condition can be useful in order to increase qualitative and quantitative performance. In this case, two factors include fertilizer (vermicompost biological fertilizer, ammonium phosphate chemical fertilizer, vermicompost + %75 chemical fertilizer) and chickpea + barley mixed cropping (sole chickpea, %75 chickpea: %25 barley, %50 chickpea: %50 barley, %25 chickpea: %75 barley, and sole barley) in RCBD in three replications in two experiments include normal and dry land conditions were studied. Result showed that total LER base on dry matter was affected by environment and mixed cropping interaction and was more than 1 in all mixed cropping treatments. In different mixed cropping rates, wet forage yield decreased by decreasing chickpea ratio as well as increasing barley ratio. Total LER mean in base on forage dry matter in mixed-, chemical-, and vermicompost fertilizer treatments were 1.12, 1.05 and 1.10 in normal condition and 1.15, 1.08 and 1.14 in dry land condition, respectively, represented the important of biological fertilizer in mixed cropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20equivalent%20ration" title="land equivalent ration">land equivalent ration</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20fertilizer" title=" biological fertilizer"> biological fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20cropping%20systems" title=" mixed cropping systems"> mixed cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/37487/land-equivalent-ration-of-chickpea-barley-as-affected-by-mixed-cropping-system-and-vermicompost-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7595</span> The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oqba%20Basal">Oqba Basal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Szab%C3%B3"> András Szabó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (<em>Glycine max</em> (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar '<em>Boglár</em>'. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha<sup>-1</sup> of N-fertilizer (35 N) and 105 kg ha<sup>-1</sup> of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with <em>Bradyrhizobium japonicum</em> inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N<sub>2</sub>-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title="drought stress">drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculation" title=" inoculation"> inoculation</a>, <a href="https://publications.waset.org/abstracts/search?q=N-fertilizer" title=" N-fertilizer"> N-fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20physiology" title=" soybean physiology"> soybean physiology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/92750/the-effects-of-drought-and-nitrogen-on-soybean-glycine-max-l-merrill-physiology-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=254">254</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=255">255</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fertilizer%20production&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>