CINXE.COM
Search results for: polymer reinforcement
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: polymer reinforcement</title> <meta name="description" content="Search results for: polymer reinforcement"> <meta name="keywords" content="polymer reinforcement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="polymer reinforcement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="polymer reinforcement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2145</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: polymer reinforcement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2145</span> FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talebi%20Aliasghar">Talebi Aliasghar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahimpour%20Komeleh%20Hooman"> Ebrahimpour Komeleh Hooman</a>, <a href="https://publications.waset.org/abstracts/search?q=Maghsoudi%20Ali%20Akbar"> Maghsoudi Ali Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HSC" title="HSC">HSC</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column%20connection" title=" beam-column connection"> beam-column connection</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiber%20Reinforcement%20Polymer" title=" Fiber Reinforcement Polymer"> Fiber Reinforcement Polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Modeling" title=" Finite Element Modeling"> Finite Element Modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/99896/fem-study-of-different-methods-of-fiber-reinforcement-polymer-strengthening-of-a-high-strength-concrete-beam-column-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2144</span> Investigation of Bending Behavior of Ultra High Performance Concrete with Steel and Glass Fiber Polymer Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Otuzbir">Can Otuzbir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is one of the most difficult areas of civil engineering to provide long-lasting structures with the rapid development of concrete and reinforced concrete structures. Concrete is a living material, and the structure where the concrete is located is constantly exposed to external influences. One of these effects is reinforcement corrosion. Reinforcement corrosion of reinforced concrete structures leads to a significant decrease in the carrying capacity of the structural elements, as well as reduced service life. It is undesirable that the service life should be completed sooner than expected. In recent years, advances in glass fiber technology and its use with concrete have developed rapidly. As a result of inability to protect steel reinforcements against corrosion, fiberglass reinforcements have started to be investigated as an alternative material to steel reinforcements, and researches and experimental studies are still continuing. Glass fiber reinforcements have become an alternative material to steel reinforcement because they are resistant to corrosion, lightweight and simple to install compared to steel reinforcement. Glass fiber reinforcements are not corroded and have higher tensile strength, longer life, lighter and insulating properties compared to steel reinforcement. In experimental studies, glass fiber reinforcements have been shown to show superior mechanical properties similar to beams produced with steel reinforcement. The performance of long-term use of glass fiber fibers continues with accelerated experimental studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber%20polymer%20reinforcement" title="glass fiber polymer reinforcement">glass fiber polymer reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber%20concrete" title=" steel fiber concrete"> steel fiber concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20performance%20concrete" title=" ultra high performance concrete"> ultra high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=GFRP" title=" GFRP"> GFRP</a> </p> <a href="https://publications.waset.org/abstracts/112156/investigation-of-bending-behavior-of-ultra-high-performance-concrete-with-steel-and-glass-fiber-polymer-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2143</span> Experimental Analysis of Composite Timber-Concrete Beam with CFRP Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Vlcek">O. Vlcek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with current issues in research of advanced methods to increase reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with additional concrete slab in combination with externally bonded fibre - reinforced polymer. The paper describes experimental testing of composite timber-concrete beam with FRP reinforcement and compares results with FEM analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=timber-concrete%20composite" title="timber-concrete composite">timber-concrete composite</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre-reinforced%20polymer" title=" fibre-reinforced polymer"> fibre-reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20analysis" title=" experimental analysis"> experimental analysis</a> </p> <a href="https://publications.waset.org/abstracts/15691/experimental-analysis-of-composite-timber-concrete-beam-with-cfrp-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2142</span> Carbon Nanofibers Reinforced P(VdF-HFP) Based Gel Polymer Electrolyte for Lithium-Ion Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjan%20Sil">Anjan Sil</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Sharma"> Rajni Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Ray"> Subrata Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of carbon nanofibers (CNFs) on the electrical properties of Poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP)) based gel polymer electrolytes has been investigated in the present work. The length and diameter ranges of CNFs used in the present work are 5-50 µm and 200-600 nm, respectively. The nanocomposite gel polymer electrolytes have been synthesized by solution casting technique with varying CNFs content in terms of weight percentage. Electrochemical impedance analysis demonstrates that the reinforcement of carbon nanofibers significantly enhances the ionic conductivity of the polymer electrolyte. The decrease of crystallinity of P(VdF-HFP) due the addition of CNFs has been confirmed by X-ray diffraction (XRD). The interaction of CNFs with various constituents of nanocomposite gel polymer electrolytes has been assessed by Fourier Transform Infrared (FTIR) spectroscopy. Moreover, CNFs added gel polymer electrolytes offer superior thermal stability as compared to that of CNFs free electrolytes as confirmed by Thermogravimetric analysis (TGA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolytes" title="polymer electrolytes">polymer electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=CNFs" title=" CNFs"> CNFs</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20conductivity" title=" ionic conductivity"> ionic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a> </p> <a href="https://publications.waset.org/abstracts/33161/carbon-nanofibers-reinforced-pvdf-hfp-based-gel-polymer-electrolyte-for-lithium-ion-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2141</span> Behavior of Composite Timber-Concrete Beam with CFRP Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Vlcek">O. Vlcek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with current issues in the research of advanced methods to increase the reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with the additional concrete slab in combination with externally bonded fibre-reinforced polymer. The study evaluates deflection of a selected group of timber beams with concrete slab and additional CFRP reinforcement using different calculating methods and observes differences in results from different calculating methods. An elastic calculation method and evaluation with FEM analysis software were used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=timber-concrete%20composite" title="timber-concrete composite">timber-concrete composite</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre-reinforced%20polymer" title=" fibre-reinforced polymer"> fibre-reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20analysis" title=" theoretical analysis"> theoretical analysis</a> </p> <a href="https://publications.waset.org/abstracts/1859/behavior-of-composite-timber-concrete-beam-with-cfrp-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2140</span> Behavior of Composite Reinforced Concrete Circular Columns with Glass Fiber Reinforced Polymer I-Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiba%20S.%20Ahmed">Hiba S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20A.%20Allawi"> Abbas A. Allawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Riyadh%20A.%20Hindi"> Riyadh A. Hindi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pultruded materials made of fiber-reinforced polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, and other structural sections. These FRP materials are starting to compete with steel as structural materials because of their great resistance, low self-weight, and cheap maintenance costs-especially in corrosive conditions. This study aimed to evaluate the effectiveness of Glass Fiber Reinforced Polymer (GFRP) of the hybrid columns built by combining (GFRP) profiles with concrete columns because of their low cost and high structural efficiency. To achieve the aims of this study, nine circular columns with a diameter of (150 mm) and a height of (1000mm) were cast using normal concrete with compression strength equal to (35 MPa). The research involved three different types of reinforcement: hybrid circular columns type (IG) with GFRP I-section and 1% of the reinforcement ratio of steel bars, hybrid circular columns type (IS) with steel I-section and 1% of the reinforcement ratio of steel bars, (where the cross-section area of I-section for GFRP and steel was the same), compared with reference column (R) without I-section. To investigate the ultimate capacity, axial and lateral deformation, strain in longitudinal and transverse reinforcement, and failure mode of the circular column under different loading conditions (concentric and eccentric) with eccentricities of 25 mm and 50 mm, respectively. In the second part, an analytical finite element model will be performed using ABAQUS software to validate the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=columns" title=" columns"> columns</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=GFRP" title=" GFRP"> GFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load" title=" axial load"> axial load</a> </p> <a href="https://publications.waset.org/abstracts/182853/behavior-of-composite-reinforced-concrete-circular-columns-with-glass-fiber-reinforced-polymer-i-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2139</span> Performance of Fiber-Reinforced Polymer as an Alternative Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20E.%20El-Metwally">Salah E. El-Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwan%20Abdo"> Marwan Abdo</a>, <a href="https://publications.waset.org/abstracts/search?q=Basem%20Abdel%20Wahed"> Basem Abdel Wahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber-reinforced polymer (FRP) bars have been proposed as an alternative to conventional steel bars; hence, the use of these non-corrosive and nonmetallic reinforcing bars has increased in various concrete projects. This concrete material is lightweight, has a long lifespan, and needs minor maintenance; however, its non-ductile nature and weak bond with the surrounding concrete create a significant challenge. The behavior of concrete elements reinforced with FRP bars has been the subject of several experimental investigations, even with their high cost. This study aims to numerically assess the viability of using FRP bars, as longitudinal reinforcement, in comparison with traditional steel bars, and also as prestressing tendons instead of the traditional prestressing steel. The nonlinear finite element analysis has been utilized to carry out the current study. Numerical models have been developed to examine the behavior of concrete beams reinforced with FRP bars or tendons against similar models reinforced with either conventional steel or prestressing steel. These numerical models were verified by experimental test results available in the literature. The obtained results revealed that concrete beams reinforced with FRP bars, as passive reinforcement, exhibited less ductility and less stiffness than similar beams reinforced with steel bars. On the other hand, when FRP tendons are employed in prestressing concrete beams, the results show that the performance of these beams is similar to those beams prestressed by conventional active reinforcement but with a difference caused by the two tendon materials’ moduli of elasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressed%20concrete" title=" prestressed concrete"> prestressed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20finite%20element%20analysis" title=" nonlinear finite element analysis"> nonlinear finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-reinforced%20polymer" title=" fiber-reinforced polymer"> fiber-reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/192629/performance-of-fiber-reinforced-polymer-as-an-alternative-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2138</span> Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Rahman">H. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Donchev"> T. Donchev</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Petkova"> D. Petkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20walls" title="shear walls">shear walls</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20fibre%20reinforced%20polymer%20reinforcement" title=" internal fibre reinforced polymer reinforcement"> internal fibre reinforced polymer reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20behaviour" title=" seismic behaviour"> seismic behaviour</a> </p> <a href="https://publications.waset.org/abstracts/123148/comparing-the-behaviour-of-the-frp-and-steel-reinforced-shear-walls-under-cyclic-seismic-loading-in-aspect-of-the-energy-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2137</span> Adhesion Performance According to Lateral Reinforcement Method of Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jungbhin%20You">Jungbhin You</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Kim"> Taekyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion%20performance" title="adhesion performance">adhesion performance</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20reinforcement" title=" lateral reinforcement"> lateral reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20test" title=" pull-out test"> pull-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a> </p> <a href="https://publications.waset.org/abstracts/67487/adhesion-performance-according-to-lateral-reinforcement-method-of-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2136</span> Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshit%20Agrawal">Harshit Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Muhammad"> Salman Muhammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=coated%20reinforcement" title=" coated reinforcement"> coated reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20exposure" title=" seawater exposure"> seawater exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20analysis" title=" electrochemical analysis"> electrochemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life" title=" service life"> service life</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a> </p> <a href="https://publications.waset.org/abstracts/176537/corrosion-resistance-evaluation-of-reinforcing-bars-a-comparative-study-of-fusion-bonded-epoxy-coated-cement-polymer-composite-coated-and-dual-zinc-epoxy-coated-rebar-for-application-in-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2135</span> Fatigue of Multiscale Nanoreinforced Composites: 3D Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leon%20Mishnaevsky%20Jr.">Leon Mishnaevsky Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaoming%20Dai"> Gaoming Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay reinforcement are carried out. Macro-micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement (localized in the fiber/matrix interface (fiber sizing) and distributed throughout the matrix) on the crack path, damage mechanisms and fatigue behavior is investigated in numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20mechanics" title="computational mechanics">computational mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/16741/fatigue-of-multiscale-nanoreinforced-composites-3d-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2134</span> The Effect of Geogrid Reinforcement Pre-Stressing on the Performance of Sand Bed Supporting a Strip Foundation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Eltohamy">Ahmed M. Eltohamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an experimental and numerical study was adopted to investigate the effect geogrid soil reinforcement pre-stressing on the pressure settlement relation of sand bed supporting a strip foundation. The studied parameters include foundation depth and pre-stress ratio for the cases of one and two pre-stressed reinforcement layers. The study reflected that pre-stressing of soil reinforcement resulted in a marked enhancement in reinforced bed soil stiffness compared to the reinforced soil without pre-stress. The best benefit of pre-stressing reinforcement was obtained as the overburden pressure and pre-straining ratio increase. Pre-stressing of double reinforcement topmost layers results in further enhancement of stress strain relation of bed soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geogrid%20reinforcement" title="geogrid reinforcement">geogrid reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=prestress" title=" prestress"> prestress</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20footing" title=" strip footing"> strip footing</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a> </p> <a href="https://publications.waset.org/abstracts/51543/the-effect-of-geogrid-reinforcement-pre-stressing-on-the-performance-of-sand-bed-supporting-a-strip-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2133</span> Fire Resistance Capacity of Reinforced Concrete Member Strengthened by Fiber Reinforced Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo-Yeon%20Seo">Soo-Yeon Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Wook%20Lim"> Jong-Wook Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Se-Ki%20Song"> Se-Ki Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, FRP (Fiber Reinforced Polymer) materials have been widely used for reinforcement of building structural members. However, since the FRP and the epoxy material for attaching it have very low resistance to heat, there is a problem in application where high temperature is an issue. In this paper, the resistance performance of FRP member made of carbon fiber at high temperature was investigated through experiment under temperature change. As a result, epoxy encapsulating FRP is damaged at not high temperatures, and the fibers are degraded. Therefore, when reinforcing a structure using FRP, a separate refractory heat treatment is necessary. The use of a 30 mm thick calcium silicate board as a fireproofing method can protect FRP up to 600ᵒC outside temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FRP%20%28Fiber%20Reinforced%20Polymer%29" title="FRP (Fiber Reinforced Polymer)">FRP (Fiber Reinforced Polymer)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment%20under%20temperature%20change" title=" experiment under temperature change"> experiment under temperature change</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20board" title=" calcium silicate board"> calcium silicate board</a> </p> <a href="https://publications.waset.org/abstracts/78913/fire-resistance-capacity-of-reinforced-concrete-member-strengthened-by-fiber-reinforced-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2132</span> Studying the Bond Strength of Geo-Polymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rama%20Seshu%20Doguparti">Rama Seshu Doguparti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental investigation on the bond behavior of geo polymer concrete. The bond behavior of geo polymer concrete cubes of grade M35 reinforced with 16 mm TMT rod is analyzed. The results indicate that the bond performance of reinforced geo polymer concrete is good and thus proves its application for construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geo-polymer" title="geo-polymer">geo-polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=behaviour" title=" behaviour"> behaviour</a> </p> <a href="https://publications.waset.org/abstracts/19114/studying-the-bond-strength-of-geo-polymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2131</span> Examination of the Reinforcement Forces Generated in Pseudo-Static and Dynamic Status in Retaining Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Passbakhsh">K. Passbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of reinforcement forces is one of the most important and main discussions in designing retaining walls. By determining these forces we refrain from conservative planning. By numerically modeling the reinforced soil retaining walls under dynamic loading reinforcement forces can be calculated. In this study we try to approach the gained forces by pseudo-static method according to FHWA code and gained forces from numerical modeling by finite element method, by selecting seismic horizontal coefficient for different wall height. PLAXIS software was used for numerical analysis. Then the effect of reinforcement stiffness and soil type on reinforcement forces is examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title="reinforced soil">reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS" title=" PLAXIS"> PLAXIS</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20forces" title=" reinforcement forces"> reinforcement forces</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20walls" title=" retaining walls "> retaining walls </a> </p> <a href="https://publications.waset.org/abstracts/28518/examination-of-the-reinforcement-forces-generated-in-pseudo-static-and-dynamic-status-in-retaining-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2130</span> Tensile and Flexural Behavior of Particulate Filled/Polymer Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alsaadi">M. Alsaadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Erkli%C4%9F"> A. Erkliğ</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bulut"> M. Bulut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper experimentally investigates the flexural and tensile properties of the industrial wastes sewage sludge ash (SSA) and fly ash (FA), and conventional ceramic powder silicon carbide (SiC) filled polyester composites. Four weight fractions (5, 10, 15 and 20 wt%) for each micro filler were used for production of composites. Then, test samples were produced according to ASTM. The resulting degree of particle dispersion in the polymer matrix was visualized by using scanning electron microscope (SEM). Results from this study showed that the tensile strength increased up to its maximum value at filler content 5 wt% of SSA, FA and SiC. Flexural strength increased with addition of particulate filler up to its maximum value at filler content 5 wt% of SSA and FA while for SiC decreased for all weight fractions gradually. The addition of SSA, FA and SiC fillers resulted in increase of tensile and flexural modulus for all the particulate composites. Industrial waste SSA can be used as an additive with polymer to produce composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle-reinforcement" title="particle-reinforcement">particle-reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge%20ash" title=" sewage sludge ash"> sewage sludge ash</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20matrix%20composites" title=" polymer matrix composites"> polymer matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/47026/tensile-and-flexural-behavior-of-particulate-filledpolymer-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2129</span> Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Madhu">S. Madhu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Subba%20Rao"> V. V. Subba Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the implementation of carbon nanotube reinforced polymer matrix composites in structural applications, deflection and stress analysis are important considerations. In the present study, a multi scale analysis of deflection and stress analysis of carbon nanotube (CNT) reinforced polymer composite plates is presented. A micromechanics model based on the Mori-Tanaka method is developed by introducing straight CNTs aligned in one direction. The effect of volume fraction and diameter of CNTs on plate deflection and the stresses are investigated using Classical Laminate Plate Theory (CLPT). The study is primarily conducted with the intention of observing the suitability of CNT reinforced polymer composite plates under static loading for structural applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=micromechanics" title=" micromechanics"> micromechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20plate" title=" composite plate"> composite plate</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20analysis" title=" multi-scale analysis"> multi-scale analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20laminate%20plate%20theory" title=" classical laminate plate theory"> classical laminate plate theory</a> </p> <a href="https://publications.waset.org/abstracts/5931/effect-of-carbon-nanotube-reinforcement-in-polymer-composite-plates-under-static-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2128</span> Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Vinod">B. Vinod</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jsudev"> L. Jsudev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen%20temperature" title="liquid nitrogen temperature">liquid nitrogen temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composite" title=" polymer composite"> polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20properties" title=" flexural properties"> flexural properties</a> </p> <a href="https://publications.waset.org/abstracts/36954/mechanical-behavior-of-hybrid-hempjute-fibers-reinforced-polymer-composites-at-liquid-nitrogen-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2127</span> Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fares%20Jnaid">Fares Jnaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Riyad%20Aboutaha"> Riyad Aboutaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEA" title="FEA">FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=unbond" title=" unbond"> unbond</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/26376/nonlinear-finite-element-modeling-of-unbonded-steel-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2126</span> Screening of Commonly Used Reinforcement Materials for Tomb Murals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liping%20Qiu">Liping Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Zhang"> Xiaofeng Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In its long history, precious tomb murals suffered from various diseases due to natural and man-made destruction. The key to how to protect tomb murals is how to strengthen and protect the tomb murals. In order to maximize the life of the tomb murals, the artistic, historic, and scientific values of the tomb murals can be continued. In this paper, four kinds of traditional reinforcement materials (silicone acrylic lotion, pure acrylic lotion, polyvinyl acetate lotion, and B72) are selected to reinforce the ground support layer of tomb murals, and the reinforcement effect of each reinforcement material on the ground support layer of murals is compared and analyzed, and the best protection material is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mural" title="mural">mural</a>, <a href="https://publications.waset.org/abstracts/search?q=destruction%20cycle" title=" destruction cycle"> destruction cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20material" title=" reinforcement material"> reinforcement material</a>, <a href="https://publications.waset.org/abstracts/search?q=disease" title=" disease"> disease</a> </p> <a href="https://publications.waset.org/abstracts/157353/screening-of-commonly-used-reinforcement-materials-for-tomb-murals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2125</span> Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Zhou%20Zheng">Yu-Zhou Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Wei%20Wang"> Wen-Wei Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basalt%20fiber-reinforced%20polymer%20%28BFRP%29%20grid" title="basalt fiber-reinforced polymer (BFRP) grid">basalt fiber-reinforced polymer (BFRP) grid</a>, <a href="https://publications.waset.org/abstracts/search?q=ECC" title=" ECC"> ECC</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beams" title=" RC beams"> RC beams</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/39890/flexural-properties-of-rc-beams-strengthened-with-a-composite-reinforcement-layer-frp-grid-and-ecc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2124</span> A First Order Shear Deformation Theory Approach for the Buckling Behavior of Nanocomposite Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Pramod%20Kumar">P. Pramod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Salumari"> Madhu Salumari</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Subba%20Rao"> V. V. Subba Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to their high strength-to-weight ratio, carbon nanotube (CNTs) reinforced polymer composites are being considered as one of the most promising nanocomposites which can improve the performance when used in structural applications. The buckling behavior is one of the most important parameter needs to be considered in the design of structural members like beams and plates. In the present paper, the elastic constants of CNT reinforced polymer composites are evaluated by using Mori-Tanaka micromechanics approach. Knowing the elastic constants, an analytical study is being conducted to investigate the buckling behavior of nanocomposites for different CNT volume fractions at different boundary conditions using first-order shear deformation theory (FSDT). The effect of stacking sequence and CNT radius on the buckling of beam has also been presented. This study is being conducted primarily with an intension to find the stiffening effect of CNTs when used in polymer composites as reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT" title="CNT">CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling" title=" buckling"> buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=micromechanics" title=" micromechanics"> micromechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=FSDT" title=" FSDT"> FSDT</a> </p> <a href="https://publications.waset.org/abstracts/68803/a-first-order-shear-deformation-theory-approach-for-the-buckling-behavior-of-nanocomposite-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2123</span> Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20S.%20Vidyasagar">C. H. S. Vidyasagar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Karunakar"> D. B. Karunakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title="mechanical properties">mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=AA%202024%20matrix" title=" AA 2024 matrix"> AA 2024 matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=yttrium%20reinforcement" title=" yttrium reinforcement"> yttrium reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20compaction" title=" cold compaction"> cold compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a> </p> <a href="https://publications.waset.org/abstracts/109265/development-of-aa2024-matrix-composites-reinforced-with-micro-yttrium-through-cold-compaction-with-superior-mechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2122</span> Study of the Physical Aging of Polyvinyl Chloride (PVC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ouazene">Mohamed Ouazene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insulating properties of the polymers are widely used in electrical engineering for the production of insulators and various supports, as well as for the insulation of electric cables for medium and high voltage, etc. These polymeric materials have significant advantages both technically and economically. However, although the insulation with polymeric materials has advantages, there are also certain disadvantages such as the influence of the heat which can have a detrimental effect on these materials. Polyvinyl chloride (PVC) is one of the polymers used in a plasticized state in the cable insulation to medium and high voltage. The studied material is polyvinyl chloride (PVC 4000 M) from the Algerian national oil company whose formula is: Industrial PVC 4000 M is in the form of white powder. The test sample is a pastille of 1 mm thick and 1 cm in diameter. The consequences of increasing the temperature of a polymer are modifications; some of them are reversible and others irreversible [1]. The reversible changes do not affect the chemical composition of the polymer, or its structure. They are characterized by transitions and relaxations. The glass transition temperature is an important feature of a polymer. Physical aging of PVC is to maintain the material for a longer or shorter time to its glass transition temperature. The aim of this paper is to study this phenomenon by the method of thermally stimulated depolarization currents. Relaxations within the polymer have been recorded in the form of current peaks. We have found that the intensity decreases for more residence time in the polymer along its glass transition temperature. Furthermore, it is inferred from this work that the phenomenon of physical aging can have important consequences on the properties of the polymer. It leads to a more compact rearrangement of the material and a reconstruction or reinforcement of structural connections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depolarization%20currents" title="depolarization currents">depolarization currents</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition%20temperature" title=" glass transition temperature"> glass transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20aging" title=" physical aging"> physical aging</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20chloride%20%28PVC%29" title=" polyvinyl chloride (PVC)"> polyvinyl chloride (PVC)</a> </p> <a href="https://publications.waset.org/abstracts/19336/study-of-the-physical-aging-of-polyvinyl-chloride-pvc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2121</span> PVDF-HFP Based Nanocomposite Gel Polymer Electrolytes Dispersed with Zro2 for Li-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharma">R. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sil"> A. Sil</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ray"> S. Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites gel polymer electrolytes are gaining more and more attention among the researchers worldwide due to their possible applications in various electrochemical devices particularly in solid-state Li-ion batteries. In this work we have investigated the effect of nanofibers on the electrical properties of PVDF-HFP based gel electrolytes. The nanocomposites polymer electrolytes have been synthesized by solution casting technique with 10wt% of ZrO2. By analysis of impedance spectroscopy it has been demonstrated that the incorporation of ZrO2 into PVDF-HFP–(PC+DEC)–LiClO4 gel polymer electrolyte system significantly enhances the ionic conductivity of the electrolyte. The enhancement of ionic conductivity seems to be correlated with the fact that the dispersion of ZrO2 to PVDF-HFP prevents polymer chain reorganization due to the high aspect ratio of ZrO2, resulting in reduction in polymer crystallinity, which gives rise to an increase in ionic conductivity. The decrease of crystallinity of PVDF-HFP due the addition of ZrO2 has been confirmed by XRD. The interaction of ZrO2 with various constituents of polymer electrolytes has been studied by FTIR spectroscopy. TEM results show that the fillers (ZrO2) has distributed uniformly in the polymer electrolytes. Moreover, ZrO2 added gel polymer electrolytes offer better thermal stability as compared to that of ZrO2 free electrolytes as confirmed by TGA analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolytes" title="polymer electrolytes">polymer electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=ZrO2" title=" ZrO2"> ZrO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20conductivity" title=" ionic conductivity"> ionic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/21340/pvdf-hfp-based-nanocomposite-gel-polymer-electrolytes-dispersed-with-zro2-for-li-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2120</span> Effect of Cryogenic Treatment on Hybrid Natural Fiber Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Vinod">B. Vinod</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20Sudev"> L. J. Sudev </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers as reinforcement in polymer matrix material are gaining lot of attention in recent years. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites are gaining importance. These materials need to possess good mechanical and physical properties at cryogenic temperatures to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen%20temperature" title="liquid nitrogen temperature">liquid nitrogen temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composite" title=" polymer composite"> polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20properties" title=" flexural properties"> flexural properties</a> </p> <a href="https://publications.waset.org/abstracts/36951/effect-of-cryogenic-treatment-on-hybrid-natural-fiber-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2119</span> Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Aoki">Hiroyuki Aoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20materials" title="polymer materials">polymer materials</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20molecule" title=" single molecule"> single molecule</a>, <a href="https://publications.waset.org/abstracts/search?q=super-resolution%20techniques" title=" super-resolution techniques"> super-resolution techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=conformation" title=" conformation"> conformation</a> </p> <a href="https://publications.waset.org/abstracts/57901/single-molecule-analysis-of-structure-and-dynamics-in-polymer-materials-by-super-resolution-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2118</span> Improvement of Mechanical Properties of Recycled High-Density and Low-Density Polyethylene Blends through Extrusion, Reinforcement, and Compatibilization Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Kharmoudi">H. Kharmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Elkoun"> S. Elkoun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Robert"> M. Robert</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Diez"> C. Diez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the literature, the elaboration of polymer blends based on recycled HDPE and LDPE is challenging because of the non-miscibility. Ensuring the compatibility of blends is one of the challenges; this study will discuss the different methods to be adopted to assess the compatibility of polymer blends. The first one aims to act on the extrusion process while varying the speed, flow rate, and residence time. The second method has as its purpose the use of grafted anhydride maleic elastomer chains as a compatibilizer. The results of the formulations will be characterized by means of differential scanning calorimetric (DSC) as well as mechanical tensile and bending tests to assess whether pipes made from recycled polyethylene meet the standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20HDPE" title="recycled HDPE">recycled HDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=LDPE" title=" LDPE"> LDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibilizer" title=" compatibilizer"> compatibilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20tests" title=" mechanical tests"> mechanical tests</a> </p> <a href="https://publications.waset.org/abstracts/143628/improvement-of-mechanical-properties-of-recycled-high-density-and-low-density-polyethylene-blends-through-extrusion-reinforcement-and-compatibilization-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2117</span> Effects of Polymer Adsorption and Desorption on Polymer Flooding in Waterflooded Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukruthai%20Sapniwat">Sukruthai Sapniwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Falan%20Srisuriyachai"> Falan Srisuriyachai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer Flooding is one of the most well-known methods in Enhanced Oil Recovery (EOR) technology which can be implemented after either primary or secondary recovery, resulting in favorable conditions for the displacement mechanism in order to lower the residual oil in the reservoir. Polymer substances can lower the mobility ratio of the whole process by increasing the viscosity of injected water. Therefore, polymer flooding can increase volumetric sweep efficiency, which leads to a better recovery factor. Moreover, polymer adsorption onto rock surface can help decrease reservoir permeability contrast with high heterogeneity. Due to the reduction of the absolute permeability, effective permeability to water, representing flow ability of the injected fluid, is also reduced. Once polymer is adsorbed onto rock surface, polymer molecule can be desorbed when different fluids are injected. This study is performed to evaluate the effects of the adsorption and desorption process of polymer solutions to yield benefits on the oil recovery mechanism. A reservoir model is constructed by reservoir simulation program called STAR® commercialized by the Computer Modeling Group (CMG). Various polymer concentrations, starting times of polymer flooding process and polymer injection rates were evaluated with selected values of polymer desorption degrees including 0, 25, 50, 75 and 100%. The higher the value, the more adsorbed polymer molecules to return back to flowing fluid. According to the results, polymer desorption lowers polymer consumption, especially at low concentrations. Furthermore, starting time of polymer flooding and injection rate affect the oil production. The results show that waterflooding followed by earlier polymer flooding can increase the oil recovery factor while the higher injection rate also enhances the recovery. Polymer concentration is related to polymer consumption due to the two main benefits of polymer flooding control described above. Therefore, polymer slug size should be optimized based on polymer concentration. Polymer desorption causes polymer re-employment that is previously adsorbed onto rock surface, resulting in an increase of sweep efficiency in the further period of polymer flooding process. Even though waterflooding supports polymer injectivity, water cut at the producer can prematurely terminate the oil production. The injection rate decreases polymer adsorption due to decreased retention time of polymer flooding process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery%20technology" title="enhanced oil recovery technology">enhanced oil recovery technology</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20adsorption%20and%20desorption" title=" polymer adsorption and desorption"> polymer adsorption and desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20flooding" title=" polymer flooding"> polymer flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20simulation" title=" reservoir simulation"> reservoir simulation</a> </p> <a href="https://publications.waset.org/abstracts/61704/effects-of-polymer-adsorption-and-desorption-on-polymer-flooding-in-waterflooded-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2116</span> Metareasoning Image Optimization Q-Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahasa%20Zahirnia">Mahasa Zahirnia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q-learning" title="Q-learning">Q-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20optimization" title=" image optimization"> image optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20decision%20process" title=" Markov decision process"> Markov decision process</a> </p> <a href="https://publications.waset.org/abstracts/119650/metareasoning-image-optimization-q-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=71">71</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=72">72</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>