CINXE.COM

Search results for: winkler model (beam on elastic foundation)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: winkler model (beam on elastic foundation)</title> <meta name="description" content="Search results for: winkler model (beam on elastic foundation)"> <meta name="keywords" content="winkler model (beam on elastic foundation)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="winkler model (beam on elastic foundation)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="winkler model (beam on elastic foundation)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18942</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: winkler model (beam on elastic foundation)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18942</span> Using the Nonlocal Theory of Free Vibrations Nanobeam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Oveysi%20Sarabi">Ali Oveysi Sarabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobeams" title="nanobeams">nanobeams</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20elasticity" title=" nonlocal elasticity"> nonlocal elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20foundation%20model" title=" winkler foundation model"> winkler foundation model</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasternak%20foundation%20model" title=" Pasternak foundation model"> Pasternak foundation model</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20theories" title=" beam theories "> beam theories </a> </p> <a href="https://publications.waset.org/abstracts/19886/using-the-nonlocal-theory-of-free-vibrations-nanobeam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18941</span> Forced Vibration of a Planar Curved Beam on Pasternak Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akif%20Kutlu">Akif Kutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Ermis"> Merve Ermis</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Eratl%C4%B1"> Nihal Eratlı</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20H.%20Omurtag"> Mehmet H. Omurtag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20beam" title="curved beam">curved beam</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/73716/forced-vibration-of-a-planar-curved-beam-on-pasternak-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18940</span> Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gholamhosein%20Khosravi">Gholamhosein Khosravi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Azadi"> Mohammad Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Ghezavati"> Hamidreza Ghezavati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20layers" title=" piezoelectric layers"> piezoelectric layers</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a> </p> <a href="https://publications.waset.org/abstracts/53457/vibration-control-of-a-functionally-graded-carbon-nanotube-reinforced-composites-beam-resting-on-elastic-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18939</span> C Vibration Analysis of a Beam on Elastic Foundation with Elastically Restrained Ends Using Spectral Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamioud%20Saida">Hamioud Saida</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalfallah%20Salah"> Khalfallah Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a spectral element method is employed to predict the free vibration of a Euler-Bernoulli beam resting on a Winkler foundation with elastically restrained ends. The formulation of the dynamic stiffness matrix has been established by solving the differential equation of motion, which was transformed to frequency domain. Non-dimensional natural frequencies and shape modes are obtained by solving the partial differential equations, numerically. Numerical comparisons and examples are performed to show the effectiveness of the SEM and to investigate the effects of various parameters, such as the springs at the boundaries and the elastic foundation parameter on the vibration frequencies. The obtained results demonstrate that the present method can also be applied to solve the more general problem of the dynamic analysis of structures with higher order precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastically%20supported%20Euler-Bernoulli%20beam" title="elastically supported Euler-Bernoulli beam">elastically supported Euler-Bernoulli beam</a>, <a href="https://publications.waset.org/abstracts/search?q=free-vibration" title=" free-vibration"> free-vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20element%20method" title=" spectral element method"> spectral element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation" title=" Winkler foundation"> Winkler foundation</a> </p> <a href="https://publications.waset.org/abstracts/110401/c-vibration-analysis-of-a-beam-on-elastic-foundation-with-elastically-restrained-ends-using-spectral-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18938</span> Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Seguini">M. Seguini</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nedjar"> D. Nedjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title="nonlinear analysis">nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deflection" title=" large deflection"> large deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam" title=" Timoshenko beam"> Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler-Bernoulli%20beam" title=" Euler-Bernoulli beam"> Euler-Bernoulli beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation" title=" Winkler foundation"> Winkler foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasternak%20foundation" title=" Pasternak foundation"> Pasternak foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variability" title=" spatial variability"> spatial variability</a> </p> <a href="https://publications.waset.org/abstracts/61881/nonlinear-analysis-of-shear-deformable-deep-beam-resting-on-nonlinear-two-parameter-random-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18937</span> Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desmond%20Adair">Desmond Adair</a>, <a href="https://publications.waset.org/abstracts/search?q=Kairat%20Ismailov"> Kairat Ismailov</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Jaeger"> Martin Jaeger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam&rsquo;s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model&rsquo;s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam" title="Timoshenko beam">Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method" title=" variational iteration method"> variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=two-parameter%20elastic%20foundation%20model" title=" two-parameter elastic foundation model"> two-parameter elastic foundation model</a> </p> <a href="https://publications.waset.org/abstracts/95779/vibration-of-a-beam-on-an-elastic-foundation-using-the-variational-iteration-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18936</span> Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somnath%20Karmakar">Somnath Karmakar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chakraverty"> S. Chakraverty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam" title="Timoshenko beam">Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Eringen%27s%20nonlocal%20theory" title=" Eringen&#039;s nonlocal theory"> Eringen&#039;s nonlocal theory</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20quadrature%20method" title=" differential quadrature method"> differential quadrature method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonhomogeneous%20nanobeam" title=" nonhomogeneous nanobeam"> nonhomogeneous nanobeam</a> </p> <a href="https://publications.waset.org/abstracts/153025/vibration-of-nonhomogeneous-timoshenko-nanobeam-resting-on-winkler-pasternak-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18935</span> Vibration Analysis of Functionally Graded Engesser-Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Karami%20Khorramabadi">M. Karami Khorramabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Nezamabadi"> A. R. Nezamabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20beam" title="functionally graded beam">functionally graded beam</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=Engesser-Timoshenko%20beam%20theory" title=" Engesser-Timoshenko beam theory"> Engesser-Timoshenko beam theory</a> </p> <a href="https://publications.waset.org/abstracts/15081/vibration-analysis-of-functionally-graded-engesser-timoshenko-beams-subjected-to-axial-load-located-on-a-continuous-elastic-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18934</span> Deep Foundations: Analysis of the Lateral Response of Closed Ended Steel Tubular Piles Embedded in Sandy Soil Using P-Y Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameer%20A.%20Jebur">Ameer A. Jebur</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Atherton"> William Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20M.%20Alkhaddar"> Rafid M. Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Loffill"> Edward Loffill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the behaviour of the piles under the action of the independent lateral loads and the precise prediction of the capacity of piles subjected to different lateral loads are vital topics in foundation design and analysis. Moreover, the laterally loaded behaviour of deep foundations penetrated in cohesive and non-cohesive soils is basically analysed by the Winkler Model (beam on elastic foundation), in which the interaction between the pile embedded depth and contacted soil is simulated by nonlinear p–y curves. The presence of many approaches to interpret the behaviour of soil-pile interaction has resulted in numerous outputs and indicates that no general approach has yet been adopted. The current study presents the result of numerical modelling of the behaviour of steel tubular piles (25.4mm) outside diameter with various embedment depth-to-diameter ratios (L/d) embedded in a sand calibrated chamber of known relative density. The study revealed that the shear strength parameters of the sand specimens and the (L/d) ratios are the most significant factor influencing the response of the pile and its capacity while taking into consideration the complex interaction between the pile and soil. Good agreement has been achieved when comparing the application of this modelling approach with experimental physical modelling carried out by another researcher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundations" title="deep foundations">deep foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=slenderness%20ratio" title=" slenderness ratio"> slenderness ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-pile%20interaction" title=" soil-pile interaction"> soil-pile interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29" title=" winkler model (beam on elastic foundation)"> winkler model (beam on elastic foundation)</a>, <a href="https://publications.waset.org/abstracts/search?q=non-cohesive%20soil" title=" non-cohesive soil"> non-cohesive soil</a> </p> <a href="https://publications.waset.org/abstracts/46589/deep-foundations-analysis-of-the-lateral-response-of-closed-ended-steel-tubular-piles-embedded-in-sandy-soil-using-p-y-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18933</span> Transverse Vibration of Elastic Beam Resting on Variable Elastic Foundation Subjected to moving Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idowu%20Ibikunle%20Albert">Idowu Ibikunle Albert</a>, <a href="https://publications.waset.org/abstracts/search?q=Atilade%20Adesanya%20Oluwafemi"> Atilade Adesanya Oluwafemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Okedeyi%20Abiodun%20Sikiru"> Okedeyi Abiodun Sikiru</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Rilwan%20Adewale"> Mustapha Rilwan Adewale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These present-day all areas of transport have experienced large advances characterized by increases in the speeds and weight of vehicles. As a result, this paper considered the Transverse Vibration of an Elastic Beam Resting on a Variable Elastic Foundation Subjected to a moving Load. The beam is presumed to be uniformly distributed and has simple support at both ends. The moving distributed moving mass is assumed to move with constant velocity. The governing equations, which are fourth-order partial differential equations, were reduced to second-order partial differential equations using an analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). Results show that an increase in the values of beam parameters, moving Mass M, and k-stiffness K, significantly reduces the deflection profile of the vibrating beam. In the results, it was equally found that moving mass is greater than moving force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20beam" title="elastic beam">elastic beam</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20load" title=" moving load"> moving load</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20of%20structure" title=" response of structure"> response of structure</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20elastic%20foundation" title=" variable elastic foundation"> variable elastic foundation</a> </p> <a href="https://publications.waset.org/abstracts/159577/transverse-vibration-of-elastic-beam-resting-on-variable-elastic-foundation-subjected-to-moving-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18932</span> Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameer%20A.%20Jebur">Ameer A. Jebur</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Atherton"> William Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20M.%20Alkhaddar"> Rafid M. Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Loffill"> Edward Loffill </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc&frasl;d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20&deg; as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slenderness%20ratio" title="slenderness ratio">slenderness ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-pile%20interaction" title=" soil-pile interaction"> soil-pile interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29" title=" winkler model (beam on elastic foundation)"> winkler model (beam on elastic foundation)</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20capacity" title=" pull-out capacity"> pull-out capacity</a> </p> <a href="https://publications.waset.org/abstracts/49411/simulation-of-soil-pile-interaction-of-steel-batter-piles-penetrated-in-sandy-soil-subjected-to-pull-out-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18931</span> Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20V.%20Chavan">Ashwini V. Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhanand%20S.%20Bhosale"> Sukhanand S. Bhosale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20foundation" title=" reinforced foundation"> reinforced foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a> </p> <a href="https://publications.waset.org/abstracts/140460/soil-structure-interaction-models-for-the-reinforced-foundation-system-a-state-of-the-art-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18930</span> Effect of Hybridization of Composite Material on Buckling Analysis with Elastic Foundation Using the High Order Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benselama%20Khadidja">Benselama Khadidja</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Meiche%20Noureddine"> El Meiche Noureddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effect of hybridization material on the variation of non-dimensional critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the Principle of Virtual Displacement; the formulation is based on a new function of shear deformation theory taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress-free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20cross-ply%20laminates" title=" hybrid cross-ply laminates"> hybrid cross-ply laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20and%20Pasternak" title=" Winkler and Pasternak"> Winkler and Pasternak</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20variables%20plate%20theory" title=" two variables plate theory"> two variables plate theory</a> </p> <a href="https://publications.waset.org/abstracts/20046/effect-of-hybridization-of-composite-material-on-buckling-analysis-with-elastic-foundation-using-the-high-order-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18929</span> Influence of Pile Radius on Inertial Response of Pile Group in Fundamental Frequency of Homogeneous Soil Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faghihnia%20Torshizi%20Mostafa">Faghihnia Torshizi Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Saitoh%20Masato"> Saitoh Masato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient method is developed for the response of a group of vertical, cylindrical fixed-head, finite length piles embedded in a homogeneous elastic stratum, subjected to harmonic force atop the pile group cap. Pile to pile interaction is represented through simplified beam-on-dynamic-Winkler-foundation (BDWF) with realistic frequency-dependent springs and dashpots. Pile group effect is considered through interaction factors. New closed-form expressions for interaction factors and curvature ratios atop the pile are extended by considering different boundary conditions at the tip of the piles (fixed, hinged). In order to investigate the fundamental characteristics of inertial bending strains in pile groups, inertial bending strains at the head of each pile are expressed in terms of slenderness ratio. The results of parametric study give valuable insight in understanding the behavior of fixed head pile groups in fundamental natural frequency of soil stratum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Winkler-foundation" title="Winkler-foundation">Winkler-foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental%20frequency%20of%20soil%20stratum" title=" fundamental frequency of soil stratum"> fundamental frequency of soil stratum</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20inertial%20bending%20strain" title=" normalized inertial bending strain"> normalized inertial bending strain</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20excitation" title=" harmonic excitation"> harmonic excitation</a> </p> <a href="https://publications.waset.org/abstracts/66823/influence-of-pile-radius-on-inertial-response-of-pile-group-in-fundamental-frequency-of-homogeneous-soil-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18928</span> Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samvel%20H.%20Sargsyan">Samvel H. Sargsyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-continual" title=" discrete-continual"> discrete-continual</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic" title=" elastic"> elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar" title=" micropolar"> micropolar</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a>, <a href="https://publications.waset.org/abstracts/search?q=shell" title=" shell"> shell</a> </p> <a href="https://publications.waset.org/abstracts/82214/application-of-the-micropolar-beam-theory-for-the-construction-of-the-discrete-continual-model-of-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18927</span> Dynamic Analysis of Turbo Machinery Foundation for Different Rotating Speed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungyani%20Tripathy">Sungyani Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Desai"> Atul Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbo machinery Frame Foundation is very important for power generation, gas, steam, hydro, geothermal and nuclear power plants. The Turbo machinery Foundation system was simulated in SAP: 2000 software and dynamic response of foundation was analysed. In this paper, the detailed study of turbo machinery foundation with different running speed has considered. The different revolution per minute considered in this study is 4000 rpm, 6000 rpm, 8000 rpm, 1000 rpm and 12000 rpm. The above analysis has been carried out considering Winkler spring soil model, solid finite element modelling and dynamic analysis of Turbo machinery foundations. The comparison of frequency and time periods at various mode shapes are addressed in this study. Current work investigates the effect of damping on the response spectra curve at the foundation top deck, considering the dynamic machine load. It has been found that turbo generator foundation with haunches remains more elastic during seismic action for different running speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbo%20machinery" title="turbo machinery">turbo machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP%3A%202000" title=" SAP: 2000"> SAP: 2000</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20spectra" title=" response spectra"> response spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=running%20speeds" title=" running speeds"> running speeds</a> </p> <a href="https://publications.waset.org/abstracts/59715/dynamic-analysis-of-turbo-machinery-foundation-for-different-rotating-speed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18926</span> Comprehensive Critical Review for Static and Dynamic Soil-Structure Interaction Between Winkler, Pasternak and Three-Dimensional Method of Buried Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20E.Sam">N. E.Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.Singh"> S. R.Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pipeline infrastructure are a valuable asset to the country that help in transporting fluid and gas from one place to another and contribute in keeping the country functioning both physically and economically. During seismic activity, additional loads are acted on the buried pipelines becoming a salient parameter to be studied in soil pipe interaction. Winkler Beam Theory is a commonly used approach for design of underground buried structures however this theory does not take into account shear and dynamic loading parameters in consideration. Shear can be addressed in Pasternak Theory – an improved model of Winkler Theory. However dynamic loading condition and horizontal displacement is not considered in either method. A comprehensive critical review between Winkler Beam Method, Pasternak Method and Three-Dimensional Method in finite element analysis is to be done in this paper for seismic forces. Study of the influence of depth and displacement of soil in correspondence to stiffness value and influence of horizontal displacement for design of underground structures is considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=pasternak%20theory" title=" pasternak theory"> pasternak theory</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20theory" title=" three-dimensional theory"> three-dimensional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20theory" title=" winkler theory"> winkler theory</a> </p> <a href="https://publications.waset.org/abstracts/165830/comprehensive-critical-review-for-static-and-dynamic-soil-structure-interaction-between-winkler-pasternak-and-three-dimensional-method-of-buried-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18925</span> Non-Linear Free Vibration Analysis of Laminated Composite Beams Resting on Non-Linear Pasternak Elastic Foundation: A Homogenization Procedure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merrimi%20El%20Bekkaye">Merrimi El Bekkaye</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Bikri%20Khalid"> El Bikri Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Benamar%20Rhali"> Benamar Rhali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, the problem of geometrically non-linear free vibration of symmetrically and asymmetrically laminated composite beams (LCB) resting on nonlinear Pasternak elastic Foundation with immovable ends is studied. A homogenization procedure has been performed to reduce the problem under consideration to that of the isotropic homogeneous beams with effective bending stiffness and axial stiffness parameters. This simple formulation is developed using the governing axial equation of the beam in which the axial inertia and damping are ignored. The theoretical model is based on Hamilton’s principle and spectral analysis. Iterative form solutions are presented to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the LCB has been studied. The non-dimensional curvatures associated to the fundamental mode are also given in the case of clamped-clamped symmetrically and asymmetrically laminated composite beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20vibration%20amplitudes" title="large vibration amplitudes">large vibration amplitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20composite%20beam" title=" laminated composite beam"> laminated composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasternak%20foundation" title=" Pasternak foundation"> Pasternak foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20beams" title=" composite beams"> composite beams</a> </p> <a href="https://publications.waset.org/abstracts/19481/non-linear-free-vibration-analysis-of-laminated-composite-beams-resting-on-non-linear-pasternak-elastic-foundation-a-homogenization-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18924</span> Solution for Thick Plate Resting on Winkler Foundation by Symplectic Geometry Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei-Jie%20Xu">Mei-Jie Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong"> Yang Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the symplectic geometry method, the theory of Hamilton system can be applied in the analysis of problem solved using the theory of elasticity and in the solution of elliptic partial differential equations. With this technique, this paper derives the theoretical solution for a thick rectangular plate with four free edges supported on a Winkler foundation by variable separation method. In this method, the governing equation of thick plate was first transformed into state equations in the Hamilton space. The theoretical solution of this problem was next obtained by applying the method of variable separation based on the Hamilton system. Compared with traditional theoretical solutions for rectangular plates, this method has the advantage of not having to assume the form of deflection functions in the solution process. Numerical examples are presented to verify the validity of the proposed solution method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=symplectic%20geometry%20method" title="symplectic geometry method">symplectic geometry method</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation" title=" Winkler foundation"> Winkler foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20rectangular%20plate" title=" thick rectangular plate"> thick rectangular plate</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20separation%20method" title=" variable separation method"> variable separation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamilton%20system" title=" Hamilton system "> Hamilton system </a> </p> <a href="https://publications.waset.org/abstracts/6000/solution-for-thick-plate-resting-on-winkler-foundation-by-symplectic-geometry-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18923</span> A Study on Application of Elastic Theory for Computing Flexural Stresses in Preflex Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasiri%20Ahmadullah">Nasiri Ahmadullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimozato%20Tetsuhiro"> Shimozato Tetsuhiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Tai"> Masayuki Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the step-by-step procedure for using Elastic Theory to calculate the internal stresses in composite bridge girders prestressed by the Preflexing Technology, called Prebeam in Japan and Preflex beam worldwide. Elastic Theory approaches preflex beams the same way as it does the conventional composite girders. Since preflex beam undergoes different stages of construction, calculations are made using different sectional and material properties. Stresses are calculated in every stage using the properties of the specific section. Stress accumulation gives the available stress in a section of interest. Concrete presence in the section implies prestress loss due to creep and shrinkage, however; more work is required to be done in this field. In addition to the graphical presentation of this application, this paper further discusses important notes of graphical comparison between the results of an experimental-only research carried out on a preflex beam, with the results of simulation based on the elastic theory approach, for an identical beam using Finite Element Modeling (FEM) by the author. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20girder" title="composite girder">composite girder</a>, <a href="https://publications.waset.org/abstracts/search?q=Elastic%20Theory" title=" Elastic Theory"> Elastic Theory</a>, <a href="https://publications.waset.org/abstracts/search?q=preflex%20beam" title=" preflex beam"> preflex beam</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressing" title=" prestressing"> prestressing</a> </p> <a href="https://publications.waset.org/abstracts/64680/a-study-on-application-of-elastic-theory-for-computing-flexural-stresses-in-preflex-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18922</span> Influence of P-Y Curves on Buckling Capacity of Pile Foundation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Huded">Praveen Huded</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Dash"> Suresh Dash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile foundations are one of the most preferred deep foundation system for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Recent centrifuge and shake table experiments on two layered soil system have credibly shown that failure of pile foundation can occur because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However the buckling capacity depends on largely on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient method to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, different author have proposed different types of p-y curves for the liquefiable soil. In the present paper the influence two such p-y curves on the buckling capacity of pile foundation is studied considering initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. Significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile diameter, pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on buckling capacity of pile foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pile%20foundation" title="Pile foundation ">Pile foundation </a>, <a href="https://publications.waset.org/abstracts/search?q=Liquefaction" title=" Liquefaction"> Liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Buckling%20load" title=" Buckling load"> Buckling load</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20py%20curve" title=" non-linear py curve"> non-linear py curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Opensees" title=" Opensees"> Opensees</a> </p> <a href="https://publications.waset.org/abstracts/130562/influence-of-p-y-curves-on-buckling-capacity-of-pile-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18921</span> The Continuously Supported Infinity Rail Subjected to a Moving Complex Bogie System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Stojanovi%C4%87">Vladimir Stojanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20D.%20Petkovi%C4%87"> Marko D. Petković</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vibration of a complex bogie system that moves on along the high order shear deformable beam on a viscoelastic foundation is studied. The complex bogie system has been modeled by elastically connected rigid bars on an identical supports. Elastic coupling between bars is introduced to simulate rigidly or flexibly (transversal or/and rotational) connection. Identical supports are modeled as a system of attached spring and dashpot to the bar on one side and interact with the beam through the concentrated mass on the other side. It is assumed that the masses and the beam are always in contact. New analytically determined critical velocity of the system is presented. It is analyzed the case when the complex bogie system exceeds the minimum phase velocity of waves in the beam when the vibration of the system may become unstable. Effect of an elastic coupling between bars on the stability of the system has been analyzed. The instability regions are found for the complex bogie system by applying the principle of the argument and D-decomposition method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reddy-Bickford%20beam" title="Reddy-Bickford beam">Reddy-Bickford beam</a>, <a href="https://publications.waset.org/abstracts/search?q=D-decomposition%20method" title=" D-decomposition method"> D-decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=principle%20of%20argument" title=" principle of argument"> principle of argument</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20velocity" title=" critical velocity"> critical velocity</a> </p> <a href="https://publications.waset.org/abstracts/60948/the-continuously-supported-infinity-rail-subjected-to-a-moving-complex-bogie-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18920</span> Analysis of Simply Supported Beams Using Elastic Beam Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Dce">M. K. Dce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to investigate the behavior of simply supported beams having rectangular section and subjected to uniformly distributed load (UDL). In this study five beams of span 5m, 6m, 7m and 8m have been considered. The width of all the beams is 400 mm and span to depth ratio has been taken as 12. The superimposed live load has been increased from 10 kN/m to 25 kN/m at the interval of 5 kN/m. The analysis of the beams has been carried out using the elastic beam theory. On the basis of present study it has been concluded that the maximum bending moment as well as deflection occurs at the mid-span of simply supported beam and its magnitude increases in proportion to magnitude of UDL. Moreover, the study suggests that the maximum moment is proportional to square of span and maximum deflection is proportional to fourth power of span. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam" title="beam">beam</a>, <a href="https://publications.waset.org/abstracts/search?q=UDL" title=" UDL"> UDL</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title=" bending moment"> bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20beam%20theory" title=" elastic beam theory"> elastic beam theory</a> </p> <a href="https://publications.waset.org/abstracts/31751/analysis-of-simply-supported-beams-using-elastic-beam-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18919</span> A Mixed Finite Element Formulation for Functionally Graded Micro-Beam Resting on Two-Parameter Elastic Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cagri%20%20Mollamahmutoglu">Cagri Mollamahmutoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aykut%20%20Levent"> Aykut Levent</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mercan"> Ali Mercan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-beams are one of the most common components of Nano-Electromechanical Systems (NEMS) and Micro Electromechanical Systems (MEMS). For this reason, static bending, buckling, and free vibration analysis of micro-beams have been the subject of many studies. In addition, micro-beams restrained with elastic type foundations have been of particular interest. In the analysis of microstructures, closed-form solutions are proposed when available, but most of the time solutions are based on numerical methods due to the complex nature of the resulting differential equations. Thus, a robust and efficient solution method has great importance. In this study, a mixed finite element formulation is obtained for a functionally graded Timoshenko micro-beam resting on two-parameter elastic foundation. In the formulation modified couple stress theory is utilized for the micro-scale effects. The equation of motion and boundary conditions are derived according to Hamilton’s principle. A functional, derived through a scientific procedure based on Gateaux Differential, is proposed for the bending and buckling analysis which is equivalent to the governing equations and boundary conditions. Most important advantage of the formulation is that the mixed finite element formulation allows usage of C₀ type continuous shape functions. Thus shear-locking is avoided in a built-in manner. Also, element matrices are sparsely populated and can be easily calculated with closed-form integration. In this framework results concerning the effects of micro-scale length parameter, power-law parameter, aspect ratio and coefficients of partially or fully continuous elastic foundation over the static bending, buckling, and free vibration response of FG-micro-beam under various boundary conditions are presented and compared with existing literature. Performance characteristics of the presented formulation were evaluated concerning other numerical methods such as generalized differential quadrature method (GDQM). It is found that with less computational burden similar convergence characteristics were obtained. Moreover, formulation also includes a direct calculation of the micro-scale related contributions to the structural response as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-beam" title="micro-beam">micro-beam</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20materials" title=" functionally graded materials"> functionally graded materials</a>, <a href="https://publications.waset.org/abstracts/search?q=two-paramater%20elastic%20foundation" title=" two-paramater elastic foundation"> two-paramater elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20finite%20element%20method" title=" mixed finite element method"> mixed finite element method</a> </p> <a href="https://publications.waset.org/abstracts/113430/a-mixed-finite-element-formulation-for-functionally-graded-micro-beam-resting-on-two-parameter-elastic-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18918</span> Effect of Boundary Retaining Walls Properties on the Raft Foundations Behaviour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hussein">Mohamed Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the effect of boundary retaining walls properties on the behavior of the raft foundation. Commercial software program Sap2000 was used in this study. The soil was presented as continuous media (follows the Winkler assumption). Shell elements were employed to model the raft plate. A parametric study has been carried out to examine the effect of boundary retaining walls properties on the behavior of raft plate. These parameters namely, height of the boundary retaining walls, thickness of the boundary retaining walls, flexural rigidity of raft plate, bearing capacity of supporting soil and the earth pressure of boundary soil. The main results which were obtained from this study are positive, negative bending moment, shear stress and deflection in raft plate, where these parameters are considered the main parameters used in design of raft foundation. It was concluded that the boundary retaining walls have a significant effect on the straining actions in raft plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sap2000" title="Sap2000">Sap2000</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20retaining%20walls" title=" boundary retaining walls"> boundary retaining walls</a>, <a href="https://publications.waset.org/abstracts/search?q=raft%20foundations" title=" raft foundations"> raft foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20model" title=" Winkler model"> Winkler model</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20rigidity" title=" flexural rigidity"> flexural rigidity</a> </p> <a href="https://publications.waset.org/abstracts/87502/effect-of-boundary-retaining-walls-properties-on-the-raft-foundations-behaviour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18917</span> Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20Vega-Posada">Carlos A. Vega-Posada</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeisson%20Alejandro%20Higuita-Villa"> Jeisson Alejandro Higuita-Villa</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20C.%20Saldarriaga-Molina"> Julio C. Saldarriaga-Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20stability" title="elastic stability">elastic stability</a>, <a href="https://publications.waset.org/abstracts/search?q=second-order%20lateral%20stiffness" title=" second-order lateral stiffness"> second-order lateral stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-non-homogeneity" title=" soil-non-homogeneity"> soil-non-homogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20analysis" title=" pile analysis"> pile analysis</a> </p> <a href="https://publications.waset.org/abstracts/135463/assessing-influence-of-end-boundary-conditions-on-stability-and-second-order-lateral-stiffness-of-beam-column-elements-embedded-in-non-homogeneous-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18916</span> Numerical Study on Ultimate Capacity of Bi-Modulus Beam-Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiming%20Ye">Zhiming Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejiang%20Wang"> Dejiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiling%20Zhao"> Huiling Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of the technology demands a higher-level research on the mechanical behavior of materials. Structural members made of bi-modulus materials have different elastic modulus when they are under tension and compression. The stress and strain states of the point effect on the elastic modulus and Poisson ratio of every point in the bi-modulus material body. Accompanied by the uncertainty and nonlinearity of the elastic constitutive relation is the complicated nonlinear problem of the bi-modulus members. In this paper, the small displacement and large displacement finite element method for the bi-modulus members have been proposed. Displacement nonlinearity is considered in the elastic constitutive equation. Mechanical behavior of slender bi-modulus beam-column under different boundary conditions and loading patterns has been simulated by the proposed method. The influence factors on the ultimate bearing capacity of slender beam and columns have been studied. The results show that as the ratio of tensile modulus to compressive modulus increases, the error of the simulation employing the same elastic modulus theory exceeds the engineering permissible error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-modulus" title="bi-modulus">bi-modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20capacity" title=" ultimate capacity"> ultimate capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column" title=" beam-column"> beam-column</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinearity" title=" nonlinearity"> nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/66426/numerical-study-on-ultimate-capacity-of-bi-modulus-beam-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18915</span> Numerical Study of Elastic Performances of Sandwich Beam with Carbon-Fibre Reinforced Skins </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soukaina%20Ounss">Soukaina Ounss</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mounir"> Hamid Mounir</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20El%20Marjani"> Abdellatif El Marjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandwich materials with composite reinforced skins are mostly required in advanced construction applications with a view to ensure resistant structures. Their lightweight, their high flexural stiffness and their optimal thermal insulation make them a suitable solution to obtain efficient structures with performing rigidity and optimal energy safety. In this paper, the mechanical behavior of a sandwich beam with composite skins reinforced by unidirectional carbon fibers is investigated numerically through analyzing the impact of reinforcements specifications on the longitudinal elastic modulus in order to select the adequate sandwich configuration that has an interesting rigidity and an accurate convergence to the analytical approach which is proposed to verify performed numerical simulations. Therefore, concerned study starts by testing flexion performances of skins with various fibers orientations and volume fractions to determine those to use in sandwich beam. For that, the combination of a reinforcement inclination of 30° and a volume ratio of 60% is selected with the one with 60° of fibers orientation and 40% of volume fraction, this last guarantees to chosen skins an important rigidity with an optimal fibers concentration and a great enhance in convergence to analytical results in the sandwich model for the reason of the crucial core role as transverse shear absorber. Thus, a resistant sandwich beam is elaborated from a face-sheet constituted from two layers of previous skins with fibers oriented in 60° and an epoxy core; concerned beam has a longitudinal elastic modulus of 54 Gpa (gigapascal) that equals to the analytical value by a negligible error of 2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibers%20orientation" title="fibers orientation">fibers orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=fibers%20volume%20ratio" title=" fibers volume ratio"> fibers volume ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20elastic%20modulus" title=" longitudinal elastic modulus"> longitudinal elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20beam" title=" sandwich beam"> sandwich beam</a> </p> <a href="https://publications.waset.org/abstracts/128431/numerical-study-of-elastic-performances-of-sandwich-beam-with-carbon-fibre-reinforced-skins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18914</span> Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20Tunay%20%C3%87etin">Merve Tunay Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kur%C5%9Fun"> Ali Kurşun</a>, <a href="https://publications.waset.org/abstracts/search?q=Erhan%20%C3%87etin"> Erhan Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Aykul"> Halil Aykul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene is put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3 min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever%20beam" title="cantilever beam">cantilever beam</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20stress%20analysis" title=" elastic stress analysis"> elastic stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation%20angle" title=" orientation angle"> orientation angle</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title=" thermoplastic "> thermoplastic </a> </p> <a href="https://publications.waset.org/abstracts/2632/elastic-stress-analysis-of-composite-cantilever-beam-loaded-uniformly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18913</span> Application of Double Side Approach Method on Super Elliptical Winkler Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiang-Wen%20Tang">Hsiang-Wen Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Ying%20Lo"> Cheng-Ying Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the static behavior of super elliptical Winkler plate is analyzed by applying the double side approach method. The lack of information about super elliptical Winkler plates is the motivation of this study and we use the double side approach method to solve this problem because of its superior ability on efficiently treating problems with complex boundary shape. The double side approach method has the advantages of high accuracy, easy calculation procedure and less calculation load required. Most important of all, it can give the error bound of the approximate solution. The numerical results not only show that the double side approach method works well on this problem but also provide us the knowledge of static behavior of super elliptical Winkler plate in practical use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20elliptical%20winkler%20plate" title="super elliptical winkler plate">super elliptical winkler plate</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20side%20approach%20method" title=" double side approach method"> double side approach method</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20bound" title=" error bound"> error bound</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic" title=" mechanic"> mechanic</a> </p> <a href="https://publications.waset.org/abstracts/12635/application-of-double-side-approach-method-on-super-elliptical-winkler-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=631">631</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=632">632</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10