CINXE.COM

Search results for: Maximilian Jakobs

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Maximilian Jakobs</title> <meta name="description" content="Search results for: Maximilian Jakobs"> <meta name="keywords" content="Maximilian Jakobs"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Maximilian Jakobs" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Maximilian Jakobs"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Maximilian Jakobs</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Current Methods for Drug Property Prediction in the Real World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Green">Jacob Green</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Cabrera"> Cecilia Cabrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Jakobs"> Maximilian Jakobs</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Dimitracopoulos"> Andrea Dimitracopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20van%20der%20Wilk"> Mark van der Wilk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Greenhalgh"> Ryan Greenhalgh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20%28QSAR%29" title="activity (QSAR)">activity (QSAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=ADMET" title=" ADMET"> ADMET</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20methods" title=" classical methods"> classical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20property%20prediction" title=" drug property prediction"> drug property prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20study" title=" empirical study"> empirical study</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/169980/current-methods-for-drug-property-prediction-in-the-real-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Determining a Suitable Maintenance Measure for Gentelligent Components Using Case-Based Reasoning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Winkens">Maximilian Winkens</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Nyhuis"> Peter Nyhuis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Components with sensory properties such as gentelligent components developed at the Collaborative Research Center 653 offer a new angle on the full utilization of the remaining service life in case of a preventive maintenance. The developed methodology of component status driven maintenance analyses the stress data obtained during the component's useful life and on the basis of this knowledge assesses the type of maintenance called for in this case. The procedure is derived from the case-based reasoning method and will be elucidated in detail. The method's functionality is demonstrated with real-life data obtained during test runs of a racing car prototype. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gentelligent%20component" title="gentelligent component">gentelligent component</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=case-based%20reasoning" title=" case-based reasoning"> case-based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a> </p> <a href="https://publications.waset.org/abstracts/13606/determining-a-suitable-maintenance-measure-for-gentelligent-components-using-case-based-reasoning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Use of Life Cycle Data for State-Oriented Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Winkens">Maximilian Winkens</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Goerke"> Matthias Goerke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state-oriented maintenance enables the preventive intervention before the failure of a component and guarantees avoidance of expensive breakdowns. Because the timing of the maintenance is defined by the component’s state, the remaining service life can be exhausted to the limit. The basic requirement for the state-oriented maintenance is the ability to define the component’s state. New potential for this is offered by gentelligent components. They are developed at the Corporative Research Centre 653 of the German Research Foundation (DFG). Because of their sensory ability they enable the registration of stresses during the component’s use. The data is gathered and evaluated. The methodology developed determines the current state of the gentelligent component based on the gathered data. This article presents this methodology as well as current research. The main focus of the current scientific work is to improve the quality of the state determination based on the life-cycle data analysis. The methodology developed until now evaluates the data of the usage phase and based on it predicts the timing of the gentelligent component’s failure. The real failure timing though, deviate from the predicted one because the effects from the production phase aren’t considered. The goal of the current research is to develop a methodology for state determination which considers both production and usage data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=state-oriented%20maintenance" title="state-oriented maintenance">state-oriented maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=life-cycle%20data" title=" life-cycle data"> life-cycle data</a>, <a href="https://publications.waset.org/abstracts/search?q=gentelligent%20component" title=" gentelligent component"> gentelligent component</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20intervention" title=" preventive intervention"> preventive intervention</a> </p> <a href="https://publications.waset.org/abstracts/18302/use-of-life-cycle-data-for-state-oriented-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Competitiveness of a Share Autonomous Electrical Vehicle Fleet Compared to Traditional Means of Transport: A Case Study for Transportation Network Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Richter">Maximilian Richter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementing shared autonomous electric vehicles (SAEVs) has many advantages. The main advantages are achieved when SAEVs are offered as on-demand services by a fleet operator. However, autonomous mobility on demand (AMoD) will be distributed nationwide only if a fleet operation is economically profitable for the operator. This paper proposes a microscopic approach to modeling two implementation scenarios of an AMoD fleet. The city of Zurich is used as a case study, with the results and findings being generalizable to other similar European and North American cities. The data are based on the traffic model of the canton of Zurich (Gesamtverkehrsmodell des Kantons Zürich (GVM-ZH)). To determine financial profitability, demand is based on the simulation results and combined with analyzing the costs of a SAEV per kilometer. The results demonstrate that depending on the scenario; journeys can be offered profitably to customers for CHF 0.3 up to CHF 0.4 per kilometer. While larger fleets allowed for lower price levels and increased profits in the long term, smaller fleets exhibit elevated efficiency levels and profit opportunities per day. The paper concludes with recommendations for how fleet operators can prepare themselves to maximize profit in the autonomous future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicle" title="autonomous vehicle">autonomous vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20on%20demand" title=" mobility on demand"> mobility on demand</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fleet%20provider" title=" fleet provider"> fleet provider</a> </p> <a href="https://publications.waset.org/abstracts/132565/competitiveness-of-a-share-autonomous-electrical-vehicle-fleet-compared-to-traditional-means-of-transport-a-case-study-for-transportation-network-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Impact of Autonomous Driving on Cities of the Future: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20A.%20Richter">Maximilian A. Richter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The public authority needs to understand the role and impacts of autonomous vehicle (AV) on the mobility system. At present, however, research shows that the impact of AV on cities varies. As a consequence, it is difficult to make recommendations to policymakers on how they should prepare for the future when so much remains unknown about this technology. The study aims to provide an overview of the literature on how autonomous vehicles will affect the cities and traffic of the future. To this purpose, the most important studies are first selected, and their results summarized. Further on, it will be clarified which advantages AV have for cities and how it can lead to an improvement in the current problems/challenges of cities. To achieve the research aim and objectives, this paper approaches a literature review. For this purpose, in a first step, the most important studies are extracted. This is limited to studies that are peer-reviewed and have been published in high-ranked journals such as the Journal of Transportation: Part A. In step 2, the most important key performance indicator (KPIs) (such as traffic volume or energy consumption) are selected from the literature research. Due to the fact that different terms are used in the literature for similar statements/KPIs, these must first be clustered. Furthermore, for each cluster, the changes from the respective studies are compiled, as well as their survey methodology. In step 3, a sensitivity analysis per cluster is made. Here, it will be analyzed how the different studies come to their findings and on which assumptions, scenarios, and methods these calculations are based. From the results of the sensitivity analysis, the success factors for the implementation of autonomous vehicles are drawn, and statements are made under which conditions AVs can be successful. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=city%20of%20the%20future" title=" city of the future"> city of the future</a>, <a href="https://publications.waset.org/abstracts/search?q=literature%20review" title=" literature review"> literature review</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulations" title=" traffic simulations"> traffic simulations</a> </p> <a href="https://publications.waset.org/abstracts/121061/the-impact-of-autonomous-driving-on-cities-of-the-future-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20H%C2%A8ausl">Martin H¨ausl</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Auch"> Maximilian Auch</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Forster"> Johannes Forster</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Mandl"> Peter Mandl</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Schill"> Alexander Schill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company&rsquo;s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=idea%20ontology" title="idea ontology">idea ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20management" title=" innovation management"> innovation management</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20search" title=" semantic search"> semantic search</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20information%20extraction" title=" open information extraction"> open information extraction</a> </p> <a href="https://publications.waset.org/abstracts/71424/social-media-idea-ontology-a-concept-for-semantic-search-of-product-ideas-in-customer-knowledge-through-user-centered-metrics-and-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Clean Sky 2 Project LiBAT: Light Battery Pack for High Power Applications in Aviation – Simulation Methods in Early Stage Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Dahlhaus">Jan Dahlhaus</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Cardenas%20Miranda"> Alejandro Cardenas Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederik%20Scholer"> Frederik Scholer</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Leonhardt"> Maximilian Leonhardt</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Moullion"> Matthias Moullion</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Beutenmuller"> Frank Beutenmuller</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Eckhardt"> Julia Eckhardt</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Wasner"> Josef Wasner</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Nittel"> Frank Nittel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Stoll"> Sebastian Stoll</a>, <a href="https://publications.waset.org/abstracts/search?q=Devin%0D%0AAtukalp"> Devin Atukalp</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Folgmann"> Daniel Folgmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Mayer"> Tobias Mayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Obrad%20Dordevic"> Obrad Dordevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Riley"> Paul Riley</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marc%20Le%20Peuvedic"> Jean-Marc Le Peuvedic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical and hybrid aerospace technologies pose very challenging demands on the battery pack – especially with respect to weight and power. In the Clean Sky 2 research project LiBAT (funded by the EU), the consortium is currently building an ambitious prototype with state-of-the art cells that shows the potential of an intelligent pack design with a high level of integration, especially with respect to thermal management and power electronics. For the latter, innovative multi-level-inverter technology is used to realize the required power converting functions with reduced equipment. In this talk the key approaches and methods of the LiBat project will be presented and central results shown. Special focus will be set on the simulative methods used to support the early design and development stages from an overall system perspective. The applied methods can efficiently handle multiple domains and deal with different time and length scales, thus allowing the analysis and optimization of overall- or sub-system behavior. It will be shown how these simulations provide valuable information and insights for the efficient evaluation of concepts. As a result, the construction and iteration of hardware prototypes has been reduced and development cycles shortened. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20aircraft" title="electric aircraft">electric aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-ion" title=" Li-ion"> Li-ion</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-level-inverter" title=" multi-level-inverter"> multi-level-inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=Novec" title=" Novec"> Novec</a> </p> <a href="https://publications.waset.org/abstracts/127279/clean-sky-2-project-libat-light-battery-pack-for-high-power-applications-in-aviation-simulation-methods-in-early-stage-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Proactive Competence Management for Employees: A Bottom-up Process Model for Developing Target Competence Profiles Based on the Employee&#039;s Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Cedzich">Maximilian Cedzich</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingo%20Dietz%20Von%20Bayer"> Ingo Dietz Von Bayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Jochem"> Roland Jochem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order for industrial companies to continue to succeed in dynamic, globalized markets, they must be able to train their employees in an agile manner and at short notice in line with the exogenous conditions that arise. For this purpose, it is indispensable to operate a proactive competence management system for employees that recognizes qualification needs timely in order to be able to address them promptly through qualification measures. However, there are hardly any approaches to be found in the literature that includes systematic, proactive competence management. In order to help close this gap, this publication presents a process model that systematically develops bottom-up, future-oriented target competence profiles based on the tasks of the employees. Concretely, in the first step, the tasks of the individual employees are examined for assumed future conditions. In other words, qualitative scenarios are considered for the individual tasks to determine how they are likely to change. In a second step, these scenario-based future tasks are translated into individual future-related target competencies of the employee using a matrix of generic task properties. The final step pursues the goal of validating the target competence profiles formed in this way within the framework of a management workshop. This process model provides industrial companies with a tool that they can use to determine the competencies required by their own employees in the future and compare them with the actual prevailing competencies. If gaps are identified between the target and the actual, these qualification requirements can be closed in the short term by means of qualification measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20globalized%20markets" title="dynamic globalized markets">dynamic globalized markets</a>, <a href="https://publications.waset.org/abstracts/search?q=employee%20competence%20management" title=" employee competence management"> employee competence management</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20companies" title=" industrial companies"> industrial companies</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title=" knowledge management"> knowledge management</a> </p> <a href="https://publications.waset.org/abstracts/136460/proactive-competence-management-for-employees-a-bottom-up-process-model-for-developing-target-competence-profiles-based-on-the-employees-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manfred%20Szerencsits">Manfred Szerencsits</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Weinberger"> Christine Weinberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Kuderna"> Maximilian Kuderna</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Feichtinger"> Franz Feichtinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Erhart"> Eva Erhart</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Maier"> Stephan Maier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m&sup3; methane (CH<sub>4</sub>) ha<sup>-1</sup> can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m&sup3; CH<sub>4</sub> ha<sup>-1</sup> is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH<sub>4</sub> produced from cover crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=cover%20crops" title=" cover crops"> cover crops</a>, <a href="https://publications.waset.org/abstracts/search?q=catch%20crops" title=" catch crops"> catch crops</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20competition" title=" land use competition"> land use competition</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a> </p> <a href="https://publications.waset.org/abstracts/20329/biogas-from-cover-crops-and-field-residues-effects-on-soil-water-climate-and-ecological-footprint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> DOG1 Expression Is in Common Human Tumors: A Tissue Microarray Study on More than 15,000 Tissue Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Jansen">Kristina Jansen</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Lennartz"> Maximilian Lennartz</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Lebok"> Patrick Lebok</a>, <a href="https://publications.waset.org/abstracts/search?q=Guido%20Sauter"> Guido Sauter</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Simon"> Ronald Simon</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Dum"> David Dum</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Steurer"> Stefan Steurer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. DOG1 immunostaining was found in 67 tumor types, including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n=1,002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). High DOG1 expression was linked to estrogen receptor expression in breast cancer (p<0.0001) and the absence of HPV infection in squamous cell carcinomas (p=0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarker" title="biomarker">biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=DOG1" title=" DOG1"> DOG1</a>, <a href="https://publications.waset.org/abstracts/search?q=immunohistochemistry" title=" immunohistochemistry"> immunohistochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20microarray" title=" tissue microarray"> tissue microarray</a> </p> <a href="https://publications.waset.org/abstracts/138403/dog1-expression-is-in-common-human-tumors-a-tissue-microarray-study-on-more-than-15000-tissue-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> A Metric to Evaluate Conventional and Electrified Vehicles in Terms of Customer-Oriented Driving Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Schiffer">Stephan Schiffer</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Kain"> Andreas Kain</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Wilde"> Philipp Wilde</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Helbing"> Maximilian Helbing</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20B%C3%A4ker"> Bernard Bäker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automobile manufacturers progressively focus on a downsizing strategy to meet the EU's CO2 requirements concerning type-approval consumption cycles. The reduction in naturally aspirated engine power is compensated by increased levels of turbocharging. By downsizing conventional engines, CO2 emissions are reduced. However, it also implicates major challenges regarding longitudinal dynamic characteristics. An example of this circumstance is the delayed turbocharger-induced torque reaction which leads to a partially poor response behavior of the vehicle during acceleration operations. That is why it is important to focus conventional drive train design on real customer driving again. The currently considered dynamic maneuvers like the acceleration time 0-100 km/h discussed by journals and car manufacturers describe longitudinal dynamics experienced by a driver inadequately. For that reason we present the realization and evaluation of a comprehensive proband study. Subjects are provided with different vehicle concepts (electrified vehicles, vehicles with naturally aspired engines and vehicles with different concepts of turbochargers etc.) in order to find out which dynamic criteria are decisive for a subjectively strong acceleration and response behavior of a vehicle. Subsequently, realistic acceleration criteria are derived. By weighing the criteria an evaluation metric is developed to objectify customer-oriented transient dynamics. Fully-electrified vehicles are the benchmark in terms of customer-oriented longitudinal dynamics. The electric machine provides the desired torque almost without delay. This advantage compared to combustion engines is especially noticeable at low engine speeds. In conclusion, we will show the degree to which extent customer-relevant longitudinal dynamics of conventional vehicles can be approximated to electrified vehicle concepts. Therefore, various technical measures (turbocharger concepts, 48V electrical chargers etc.) and drive train designs (e.g. varying the final drive) are presented and evaluated in order to strengthen the vehicle’s customer-relevant transient dynamics. As a rating size the newly developed evaluation metric will be used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=48V" title="48V">48V</a>, <a href="https://publications.waset.org/abstracts/search?q=customer-oriented%20driving%20dynamics" title=" customer-oriented driving dynamics"> customer-oriented driving dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20charger" title=" electric charger"> electric charger</a>, <a href="https://publications.waset.org/abstracts/search?q=electrified%20vehicles" title=" electrified vehicles"> electrified vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20concepts" title=" vehicle concepts"> vehicle concepts</a> </p> <a href="https://publications.waset.org/abstracts/66580/a-metric-to-evaluate-conventional-and-electrified-vehicles-in-terms-of-customer-oriented-driving-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Huber">Michael Huber</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20J.%20Poller"> Maximilian J. Poller</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Tochtermann"> Jens Tochtermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Korth"> Wolfgang Korth</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Jess"> Andreas Jess</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakob%20Albert"> Jakob Albert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidative%20reaction%20pathway" title="oxidative reaction pathway">oxidative reaction pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrogenation%20of%20fuels" title=" denitrogenation of fuels"> denitrogenation of fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20catalysis" title=" molecular catalysis"> molecular catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=polyoxometalate" title=" polyoxometalate"> polyoxometalate</a> </p> <a href="https://publications.waset.org/abstracts/168057/revealing-the-nitrogen-reaction-pathway-for-the-catalytic-oxidative-denitrification-of-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> An Exploratory Factor and Cluster Analysis of the Willingness to Pay for Last Mile Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Engelhardt">Maximilian Engelhardt</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Seeck"> Stephan Seeck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic is accelerating the already growing field of e-commerce. The resulting urban freight transport volume leads to traffic and negative environmental impact. Furthermore, the service level of parcel logistics service provider is lacking far behind the expectations of consumer. These challenges can be solved by radically reorganize the urban last mile distribution structure: parcels could be consolidated in a micro hub within the inner city and delivered within time windows by cargo bike. This approach leads to a significant improvement of consumer satisfaction with their overall delivery experience. However, this approach also leads to significantly increased costs per parcel. While there is a relevant share of online shoppers that are willing to pay for such a delivery service there are no deeper insights about this target group available in the literature. Being aware of the importance of knowing target groups for businesses, the aim of this paper is to elaborate the most important factors that determine the willingness to pay for sustainable and service-oriented parcel delivery (factor analysis) and to derive customer segments (cluster analysis). In order to answer those questions, a data set is analyzed using quantitative methods of multivariate statistics. The data set was generated via an online survey in September and October 2020 within the five largest cities in Germany (n = 1.071). The data set contains socio-demographic, living-related and value-related variables, e.g. age, income, city, living situation and willingness to pay. In a prior work of the author, the data was analyzed applying descriptive and inference statistical methods that only provided limited insights regarding the above-mentioned research questions. The analysis in an exploratory way using factor and cluster analysis promise deeper insights of relevant influencing factors and segments for user behavior of the mentioned parcel delivery concept. The analysis model is built and implemented with help of the statistical software language R. The data analysis is currently performed and will be completed in December 2021. It is expected that the results will show the most relevant factors that are determining user behavior of sustainable and service-oriented parcel deliveries (e.g. age, current service experience, willingness to pay) and give deeper insights in characteristics that describe the segments that are more or less willing to pay for a better parcel delivery service. Based on the expected results, relevant implications and conclusions can be derived for startups that are about to change the way parcels are delivered: more customer-orientated by time window-delivery and parcel consolidation, more environmental-friendly by cargo bike. The results will give detailed insights regarding their target groups of parcel recipients. Further research can be conducted by exploring alternative revenue models (beyond the parcel recipient) that could compensate the additional costs, e.g. online-shops that increase their service-level or municipalities that reduce traffic on their streets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20segmentation" title="customer segmentation">customer segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=e-commerce" title=" e-commerce"> e-commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=last%20mile%20delivery" title=" last mile delivery"> last mile delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=parcel%20service" title=" parcel service"> parcel service</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20logistics" title=" urban logistics"> urban logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=willingness-to-pay" title=" willingness-to-pay"> willingness-to-pay</a> </p> <a href="https://publications.waset.org/abstracts/137949/an-exploratory-factor-and-cluster-analysis-of-the-willingness-to-pay-for-last-mile-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Quantifying Firm-Level Environmental Innovation Performance: Determining the Sustainability Value of Patent Portfolios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Elsen">Maximilian Elsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Tietze"> Frank Tietze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development and diffusion of green technologies are crucial for achieving our ambitious climate targets. The Paris Agreement commits its members to develop strategies for achieving net zero greenhouse gas emissions by the second half of the century. Governments, executives, and academics are working on net-zero strategies and the business of rating organisations on their environmental, social and governance (ESG) performance has grown tremendously in its public interest. ESG data is now commonly integrated into traditional investment analysis and an important factor in investment decisions. Creating these metrics, however, is inherently challenging as environmental and social impacts are hard to measure and uniform requirements on ESG reporting are lacking. ESG metrics are often incomplete and inconsistent as they lack fully accepted reporting standards and are often of qualitative nature. This study explores the use of patent data for assessing the environmental performance of companies by focusing on their patented inventions in the space of climate change mitigation and adaptation technologies (CCMAT). The present study builds on the successful identification of CCMAT patents. In this context, the study adopts the Y02 patent classification, a fully cross-sectional tagging scheme that is fully incorporated in the Cooperative Patent Classification (CPC), to identify Climate Change Adaptation Technologies. The Y02 classification was jointly developed by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO) and provides means to examine technologies in the field of mitigation and adaptation to climate change across relevant technologies. This paper develops sustainability-related metrics for firm-level patent portfolios. We do so by adopting a three-step approach. First, we identify relevant CCMAT patents based on their classification as Y02 CPC patents. Second, we examine the technological strength of the identified CCMAT patents by including more traditional metrics from the field of patent analytics while considering their relevance in the space of CCMAT. Such metrics include, among others, the number of forward citations a patent receives, as well as the backward citations and the size of the focal patent family. Third, we conduct our analysis on a firm level by sector for a sample of companies from different industries and compare the derived sustainability performance metrics with the firms’ environmental and financial performance based on carbon emissions and revenue data. The main outcome of this research is the development of sustainability-related metrics for firm-level environmental performance based on patent data. This research has the potential to complement existing ESG metrics from an innovation perspective by focusing on the environmental performance of companies and putting them into perspective to conventional financial performance metrics. We further provide insights into the environmental performance of companies on a sector level. This study has implications of both academic and practical nature. Academically, it contributes to the research on eco-innovation and the literature on innovation and intellectual property (IP). Practically, the study has implications for policymakers by deriving meaningful insights into the environmental performance from an innovation and IP perspective. Such metrics are further relevant for investors and potentially complement existing ESG data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20mitigation" title="climate change mitigation">climate change mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=patent%20portfolios" title=" patent portfolios"> patent portfolios</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/160103/quantifying-firm-level-environmental-innovation-performance-determining-the-sustainability-value-of-patent-portfolios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10