CINXE.COM
Search results for: grounding material
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: grounding material</title> <meta name="description" content="Search results for: grounding material"> <meta name="keywords" content="grounding material"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="grounding material" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="grounding material"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6725</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: grounding material</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6725</span> Optimal Analysis of Grounding System Design for Distribution Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thong%20Lantharthong">Thong Lantharthong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nattchote%20Rugthaicharoencheep"> Nattchote Rugthaicharoencheep</a>, <a href="https://publications.waset.org/abstracts/search?q=Att%20Phayomhom"> Att Phayomhom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grounding%20system" title="grounding system">grounding system</a>, <a href="https://publications.waset.org/abstracts/search?q=touch%20voltage" title=" touch voltage"> touch voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20voltage" title=" step voltage"> step voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20criteria" title=" safety criteria"> safety criteria</a> </p> <a href="https://publications.waset.org/abstracts/14242/optimal-analysis-of-grounding-system-design-for-distribution-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6724</span> Optimal Design of Substation Grounding Grid Based on Genetic Algorithm Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Z.%20Gabr">Ahmed Z. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Helal"> Ahmed A. Helal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20E.%20Said"> Hussein E. Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the incessant increase of power systems capacity and voltage grade, the safety of grounding grid becomes more and more prominent. In this paper, the designing substation grounding grid is presented by means of genetic algorithm (GA). This approach purposes to control the grounding cost of the power system with the aid of controlling grounding rod number and conductor lengths under the same safety limitations. The proposed technique is used for the design of the substation grounding grid in Khalda Petroleum Company “El-Qasr” power plant and the design was simulated by using CYMGRD software for results verification. The result of the design is highly complying with IEEE 80-2000 standard requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20grounding%20grid%20design" title=" optimum grounding grid design"> optimum grounding grid design</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20analysis" title=" power system analysis"> power system analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20protection" title=" power system protection"> power system protection</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20layer%20model" title=" single layer model"> single layer model</a>, <a href="https://publications.waset.org/abstracts/search?q=substation" title=" substation"> substation</a> </p> <a href="https://publications.waset.org/abstracts/51818/optimal-design-of-substation-grounding-grid-based-on-genetic-algorithm-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6723</span> A Proper Design of Wind Turbine Grounding Systems under Lightning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abd-Allah">M. A. Abd-Allah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20N.%20Ali"> Mahmoud N. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Said"> A. Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning Protection Systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must be taken into account. This paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WTs" title="WTs">WTs</a>, <a href="https://publications.waset.org/abstracts/search?q=Lightning%20Protection%20Systems%20%28LPS%29" title=" Lightning Protection Systems (LPS)"> Lightning Protection Systems (LPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20system" title=" grounding system"> grounding system</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigating%20techniques" title=" mitigating techniques"> mitigating techniques</a> </p> <a href="https://publications.waset.org/abstracts/16300/a-proper-design-of-wind-turbine-grounding-systems-under-lightning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6722</span> Conductivity and Selection of Copper Clad Steel Wires for Grounding Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Eduful">George Eduful</a>, <a href="https://publications.waset.org/abstracts/search?q=Kingsford%20J.%20A.%20Atanga"> Kingsford J. A. Atanga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper clad steel wire (CCS) is primarily used for grounding applications to reduce the high incidence of copper ground conductor theft in electrical installations. The cross sectional area of the CCS is selected by relating the diameter equivalence to a copper conductor. The main difficulty is how to use a simple analytical relation to determine the right conductivity of CCS for a particular application. The use of Eddy-Current instrument for measuring conductivity is known but in most cases, the instrument is not readily available. The paper presents a simplified approach on how to size and determine CCS conductivity for a given application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20clad%20steel%20wire" title="copper clad steel wire">copper clad steel wire</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding" title=" grounding"> grounding</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20effect" title=" skin effect"> skin effect</a> </p> <a href="https://publications.waset.org/abstracts/70671/conductivity-and-selection-of-copper-clad-steel-wires-for-grounding-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6721</span> Framework for Implementation of National Electrical Safety Grounding Standards for Communication Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atif%20Mahmood">Atif Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Inayatullah%20Khan%20Babar"> Mohammad Inayatullah Khan Babar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communication infrastructure has been installed, operated, and maintained all over the world according to defined electrical safety standards for separate or joint structures. These safety standards have been set for the safeguard of public, utility workers (employees and contractors), utility facilities, electrical communication equipment’s connected to the utility facilities and other facilities or premise adjacent to utility facilities. Different communication utilities in Pakistan use standards of different countries due to the absence of Common National Electrical Safety Standards of Pakistan. It is really important to devise a framework for implementation of a uniform standard for strict compliance. In this context, it is important to explore the compliance of safety standards for communication conductors and equipment for separate or joint structures for which NESC standards are taken as reference. Specific reference to grounding techniques including grounding AC/DC systems and its frames, leaving Fences, Messenger wires and special circuits used for the protection for lightning etc, ungrounded so recommendations are also given after in-depth analysis of current technical practices for the installation and maintenance of communication infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=utility%20facilities" title="utility facilities">utility facilities</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20electrodes" title=" grounding electrodes"> grounding electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20circuits" title=" special circuits"> special circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20conductor" title=" grounding conductor"> grounding conductor</a> </p> <a href="https://publications.waset.org/abstracts/50493/framework-for-implementation-of-national-electrical-safety-grounding-standards-for-communication-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6720</span> Reduction of the Microbial Load of Biocontaminated Bovine Milk Using Grounding with Copper Wire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudivan%20Costa%20de%20Lima">Claudivan Costa de Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelo%20da%20Silva%20Monteiro"> Angelo da Silva Monteiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the aim of evaluating the effects of grounding with copper wire on the reduction of the microbial load of biocontaminated milk samples and on their acidification over time, two complementary experiments were carried out. In the first, the treatments consisted of: i) raw milk sample (control), ii) slow pasteurization, iii) grounding with copper wire and, iv) contact with copper ring. Analyzes of total, thermoresistant and mesophilic coliforms were performed 30 minutes after the application of these treatments. In the second experiment, under the same conditions as the first, measurements of pH and Dornic acidity were performed at 0, 0.5, 2, 4, 8, 12, and 24 h from the installation of the experiment. Pasteurization eliminated almost all groups of bacteria present in the milk samples while grounding only allowed reductions in the population of thermotolerant coliforms and mesophiles, both greater than 95%, maintaining, however, unchanged the amounts of total coliforms. The copper ring, in turn, had no effect on the microbiological parameters studied. The reduction in the population of mesophiles in grounded milk samples, contrary to what happened with pasteurized milk, was not enough to inhibit the acidification process over the experimental period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pasteurization" title="pasteurization">pasteurization</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20frequency%20electric%20current" title=" low frequency electric current"> low frequency electric current</a>, <a href="https://publications.waset.org/abstracts/search?q=thermotolerant%20coliforms" title=" thermotolerant coliforms"> thermotolerant coliforms</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophiles%20in%20bovine%20milk" title=" mesophiles in bovine milk"> mesophiles in bovine milk</a> </p> <a href="https://publications.waset.org/abstracts/161087/reduction-of-the-microbial-load-of-biocontaminated-bovine-milk-using-grounding-with-copper-wire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6719</span> Using Tyre Ash as Ground Resistance Improvement Material-Health and Environmental Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Eduful">George Eduful</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Yeboah"> Dominic Yeboah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kingsford%20Joseph%20A.%20Atanga"> Kingsford Joseph A. Atanga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of tyre ash as backfill material for ground electrode has been found to provide ultra-low and stable ground resistance value for grounding systems. However, health and environmental concerns have been expressed regarding its application. To address these concerns, the paper investigates chemical contents of the tyre ash and compares them to levels considered non-hazardous to health and the environment. It was found that the levels of the pollutant agents in the tyre ash were within the recommended safety margins. The rate of ground electrode corrosion in tyre ash material was also investigated. It was found that the effect of corrosion and the life of electrode can be extended if the tyre ash is mixed with cement. For best results, a ratio of 10 portions of tyre ash to 1 portion of cement is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tyre%20ash" title="tyre ash">tyre ash</a>, <a href="https://publications.waset.org/abstracts/search?q=scrapped%20tyre" title=" scrapped tyre"> scrapped tyre</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20resistance%20reducing%20agent" title=" ground resistance reducing agent"> ground resistance reducing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20corrosion" title=" rate of corrosion"> rate of corrosion</a> </p> <a href="https://publications.waset.org/abstracts/45917/using-tyre-ash-as-ground-resistance-improvement-material-health-and-environmental-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6718</span> A Study on the Improvement of Mobile Device Call Buzz Noise Caused by Audio Frequency Ground Bounce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jangje%20Park">Jangje Park</a>, <a href="https://publications.waset.org/abstracts/search?q=So%20Young%20Kim"> So Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The market demand for audio quality in mobile devices continues to increase, and audible buzz noise generated in time division communication is a chronic problem that goes against the market demand. In the case of time division type communication, the RF Power Amplifier (RF PA) is driven at the audio frequency cycle, and it makes various influences on the audio signal. In this paper, we measured the ground bounce noise generated by the peak current flowing through the ground network in the RF PA with the audio frequency; it was confirmed that the noise is the cause of the audible buzz noise during a call. In addition, a grounding method of the microphone device that can improve the buzzing noise was proposed. Considering that the level of the audio signal generated by the microphone device is -38dBV based on 94dB Sound Pressure Level (SPL), even ground bounce noise of several hundred uV will fall within the range of audible noise if it is induced by the audio amplifier. Through the grounding method of the microphone device proposed in this paper, it was confirmed that the audible buzz noise power density at the RF PA driving frequency was improved by more than 5dB under the conditions of the Printed Circuit Board (PCB) used in the experiment. A fundamental improvement method was presented regarding the buzzing noise during a mobile phone call. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audio%20frequency" title="audio frequency">audio frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=buzz%20noise" title=" buzz noise"> buzz noise</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20bounce" title=" ground bounce"> ground bounce</a>, <a href="https://publications.waset.org/abstracts/search?q=microphone%20grounding" title=" microphone grounding"> microphone grounding</a> </p> <a href="https://publications.waset.org/abstracts/150713/a-study-on-the-improvement-of-mobile-device-call-buzz-noise-caused-by-audio-frequency-ground-bounce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6717</span> An Investigation to Study the Moisture Dependency of Ground Enhancement Compound </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunima%20Shukla">Arunima Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Almadi"> Vikas Almadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Devesh%20Jaiswal"> Devesh Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Saini"> Sunil Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhusan%20S.%20Patil"> Bhusan S. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backfill%20material" title="backfill material">backfill material</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20material" title=" grounding material"> grounding material</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20resistivity" title=" low resistivity"> low resistivity</a> </p> <a href="https://publications.waset.org/abstracts/134378/an-investigation-to-study-the-moisture-dependency-of-ground-enhancement-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6716</span> Statistical Description of Counterpoise Effective Length Based on Regressive Formulas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petar%20Sarajcev">Petar Sarajcev</a>, <a href="https://publications.waset.org/abstracts/search?q=Josip%20Vasilj"> Josip Vasilj</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Jakus"> Damir Jakus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counterpoise" title="counterpoise">counterpoise</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20conductor" title=" grounding conductor"> grounding conductor</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20length" title=" effective length"> effective length</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title=" Monte Carlo method"> Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20distribution" title=" statistical distribution"> statistical distribution</a> </p> <a href="https://publications.waset.org/abstracts/16716/statistical-description-of-counterpoise-effective-length-based-on-regressive-formulas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6715</span> Scheduled Maintenance and Downtime Cost in Aircraft Maintenance Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Saltoglu">Remzi Saltoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazmia%20Humaira"> Nazmia Humaira</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Inalhan"> Gokhan Inalhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During aircraft maintenance scheduling, operator calculates the budget of the maintenance. Usually, this calculation includes only the costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. However, in some of those, downtime cost is neglected claiming that grounding is a natural fact of maintenance; therefore, it is not considered as part of the analytical decision-making process. Based on the normalized data, we introduce downtime cost with its monetary value and add its seasonal character. We envision that the rest of the model, which works together with the downtime cost, could be checked with the real life cases, through the review of MRO cost and airline spending in the particular and scheduled maintenance events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20maintenance" title="aircraft maintenance">aircraft maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=downtime" title=" downtime"> downtime</a>, <a href="https://publications.waset.org/abstracts/search?q=downtime%20cost" title=" downtime cost"> downtime cost</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20cost" title=" maintenance cost"> maintenance cost</a> </p> <a href="https://publications.waset.org/abstracts/47046/scheduled-maintenance-and-downtime-cost-in-aircraft-maintenance-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6714</span> 2D Numerical Modeling for Induced Current Distribution in Soil under Lightning Impulse Discharge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawwaz%20Eniola%20Fajingbesi">Fawwaz Eniola Fajingbesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Shahida%20Midia"> Nur Shahida Midia</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsheikh%20M.%20A.%20Elsheikh"> Elsheikh M. A. Elsheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Hajar%20Yusoff"> Siti Hajar Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Empirical analysis of lightning related phenomena in real time is extremely dangerous due to the relatively high electric discharge involved. Hence, design and optimization of efficient grounding systems depending on real time empirical methods are impeded. Using numerical methods, the dynamics of complex systems could be modeled hence solved as sets of linear and non-linear systems . In this work, the induced current distribution as lightning strike traverses the soil have been numerically modeled in a 2D axial-symmetry and solved using finite element method (FEM) in COMSOL Multiphysics 5.2 AC/DC module. Stratified and non- stratified electrode system were considered in the solved model and soil conductivity (σ) varied between 10 – 58 mS/m. The result discussed therein were the electric field distribution, current distribution and soil ionization phenomena. It can be concluded that the electric field and current distribution is influenced by the injected electric potential and the non-linearity in soil conductivity. The result from numerical calculation also agrees with previously laboratory scale empirical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=current%20distribution" title="current distribution">current distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20systems" title=" grounding systems"> grounding systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20discharge" title=" lightning discharge"> lightning discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20conductivity" title=" soil conductivity"> soil conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20ionization" title=" soil ionization"> soil ionization</a> </p> <a href="https://publications.waset.org/abstracts/89250/2d-numerical-modeling-for-induced-current-distribution-in-soil-under-lightning-impulse-discharge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6713</span> Ground Grid Design at the Egyptian Side of the Proposed High Voltage Direct Current Link Tying Egypt and Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samar%20Akef">Samar Akef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahdab%20M.%20K.%20El-Morshedy"> Ahdab M. K. El-Morshedy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Samy"> Mohamed M. Samy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Emam"> Ahmed M. Emam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a safe and realistic design for the proposed high voltage direct current grounding grid for the converter station at Badr City in Egypt. The outcomes show that the estimated results for touch and step voltages are below the safe limits for humans in monopolar operation and fault conditions. The cross-section area of earthing conductor is computed using IEC TS 62344. The results show that touch voltage in monopolar and fault conditions are 46.6 V and 167.68 V, respectively. The optimum number of required earthing rods is obtained by an analytical method. The step voltages are 12.9 and 43 V in monopolar operation and fault conditions. In addition, this paper presents an experimental case study to verify the simulation work executed using CYMGrd software (finite element method based). The percentage error between the measured and simulated surface potential is below 15.9%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grounding" title="grounding">grounding</a>, <a href="https://publications.waset.org/abstracts/search?q=monopolar" title=" monopolar"> monopolar</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20conditions" title=" fault conditions"> fault conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20potential" title=" step potential"> step potential</a>, <a href="https://publications.waset.org/abstracts/search?q=touch%20potential" title=" touch potential"> touch potential</a>, <a href="https://publications.waset.org/abstracts/search?q=CYMGrd" title=" CYMGrd"> CYMGrd</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20case%20study" title=" experimental case study"> experimental case study</a> </p> <a href="https://publications.waset.org/abstracts/171058/ground-grid-design-at-the-egyptian-side-of-the-proposed-high-voltage-direct-current-link-tying-egypt-and-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6712</span> Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oibar%20Martinez">Oibar Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Clara%20Oliver"> Clara Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Miguel%20Miranda"> Jose Miguel Miranda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grounding%20improvements" title="grounding improvements">grounding improvements</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20scientific%20instrument" title=" large scale scientific instrument"> large scale scientific instrument</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20risk%20assessment" title=" lightning risk assessment"> lightning risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20standards" title=" lightning standards"> lightning standards</a> </p> <a href="https://publications.waset.org/abstracts/109485/strategies-for-the-optimization-of-ground-resistance-in-large-scale-foundations-for-optimum-lightning-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6711</span> The Effect of Cassava Starch on Compressive Strength and Tear Strength of Alginate Impression Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of problem. Alginate impression material is an imported material and a dentist always used this material to make impression of teeth and oral cavity tissues. Purpose. The aim of this study was to compare about compressive strength and tear strength of alginate impression material and alginate impression material combined with cassava. Material and methods.Property measured included compressive strength and tear strength. Results.The compressive strength and tear strength of the impression materials tested of a comparable ANSI/ADA standard no.18.The compressive strength and tear strength alginate impression material combined with cassava have lower than the compressive strength and tear strength alginate impression material. The alginate impression material combined with cassava has more water and silica content more decrease than alginate impression material. Conclusions.We concluded that compressive strength and tear strength of alginate impression material combined with cassava has lower than alginate impression material without cassava starch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20strength" title=" tear strength"> tear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassava%20starch" title=" Cassava starch"> Cassava starch</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a> </p> <a href="https://publications.waset.org/abstracts/64938/the-effect-of-cassava-starch-on-compressive-strength-and-tear-strength-of-alginate-impression-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6710</span> An Assessment of Existing Material Management Process in Building Construction Projects in Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Neupane">Uttam Neupane</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Budha"> Narendra Budha</a>, <a href="https://publications.waset.org/abstracts/search?q=Subash%20Kumar%20Bhattarai"> Subash Kumar Bhattarai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Material management is an essential part in construction project management. There are a number of material management problems in the Nepalese construction industry, which contribute to an inefficient material management system. Ineffective material management can cause waste of time and money thus increasing the problem of time and cost overrun. An assessment of material management system with gap and solution was carried out on 20 construction projects implemented by the Federal Level Project Implementation Unit (FPIU); Kaski district of Nepal. To improve the material management process, the respondents have provided possible solutions to overcome the gaps seen in the current material management process. The possible solutions are preparation of material schedule in line with the construction schedule for material requirement planning, verifications of material and locating of source, purchasing of the required material in advance before commencement of work, classifying the materials, and managing the inventory based on their usage value and eliminating and reduction in wastages during the overall material management process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=material%20management" title="material management">material management</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20site" title=" construction site"> construction site</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20project" title=" construction project"> construction project</a> </p> <a href="https://publications.waset.org/abstracts/181880/an-assessment-of-existing-material-management-process-in-building-construction-projects-in-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6709</span> Analysis of the Touch and Step Potential Characteristics of an Earthing System Based on Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkwa%20Agbor%20Etobi%20Arreneke">Nkwa Agbor Etobi Arreneke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A well-designed earthing/grounding system will not only provide an effective path for direct dissipation of faulty currents into the earth/soil, but also ensure the safety of personnels withing and around its immediate surrounding perimeter is free from the possibility of fatal electric shock. In order to achieve the latter, it is of paramount importance to ensuring that both the step and touch potentials are kept within the allowable tolerance set by standards IEEE Std-80-2000. In this article, the step and touch potentials of an earthing system are simulated and conformity verified using the Finite Element Method (FEM), and has been found to be 242.4V and 194.80V respectively. The effect of injection current position is also analyzed to observe its effect on a person within or in contact with any active part of the earthing system of the substation. The values obtained closely matches those of other published works which made using different numerical methods and/or simulations Genetic Algorithm (GA). This current study is aimed at throwing more light to the dangers of step and touch potential of earthing systems of substation and electrical facilities as a whole, and the need for further in-dept analysis of these parameters. Observations made on this current paper shows that, the position of contact with an energize earthing system is of paramount important in determining its effect on living organisms in contact with any energized part of the earthing systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthing%2Fgrounding%20systems" title="earthing/grounding systems">earthing/grounding systems</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28fem%29" title=" finite element method (fem)"> finite element method (fem)</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%2Fearth%20resistance" title=" ground/earth resistance"> ground/earth resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=touch%20and%20step%20potentials" title=" touch and step potentials"> touch and step potentials</a>, <a href="https://publications.waset.org/abstracts/search?q=generic%20algorithm" title=" generic algorithm"> generic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/170779/analysis-of-the-touch-and-step-potential-characteristics-of-an-earthing-system-based-on-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6708</span> Noise Mitigation Techniques to Minimize Electromagnetic Interference/Electrostatic Discharge Effects for the Lunar Mission Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vabya%20Kumar%20Pandit">Vabya Kumar Pandit</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudit%20Mittal"> Mudit Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Prahlad%20Rao"> N. Prahlad Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramnath%20Babu"> Ramnath Babu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TeamIndus is the only Indian team competing for the Google Lunar XPRIZE(GLXP). The GLXP is a global competition to challenge the private entities to soft land a rover on the moon, travel minimum 500 meters and transmit high definition images and videos to Earth. Towards this goal, the TeamIndus strategy is to design and developed lunar lander that will deliver a rover onto the surface of the moon which will accomplish GLXP mission objectives. This paper showcases the various system level noise control techniques adopted by Electrical Distribution System (EDS), to achieve the required Electromagnetic Compatibility (EMC) of the spacecraft. The design guidelines followed to control Electromagnetic Interference by proper electronic package design, grounding, shielding, filtering, and cable routing within the stipulated mass budget, are explained. The paper also deals with the challenges of achieving Electromagnetic Cleanliness in presence of various Commercial Off-The-Shelf (COTS) and In-House developed components. The methods of minimizing Electrostatic Discharge (ESD) by identifying the potential noise sources, susceptible areas for charge accumulation and the methodology to prevent arcing inside spacecraft are explained. The paper then provides the EMC requirements matrix derived from the mission requirements to meet the overall Electromagnetic compatibility of the Spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20compatibility" title="electromagnetic compatibility">electromagnetic compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20discharge" title=" electrostatic discharge"> electrostatic discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20systems" title=" electrical distribution systems"> electrical distribution systems</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20schemes" title=" grounding schemes"> grounding schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20weight%20harnessing" title=" light weight harnessing"> light weight harnessing</a> </p> <a href="https://publications.waset.org/abstracts/71198/noise-mitigation-techniques-to-minimize-electromagnetic-interferenceelectrostatic-discharge-effects-for-the-lunar-mission-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6707</span> Improving Tower Grounding and Insulation Level vs. Line Surge Arresters for Protection of Subtransmission Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Eghtedarpour">Navid Eghtedarpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Hasani"> Mohammad Reza Hasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since renewable wind power plants are usually installed in mountain regions and high-level lands, they are often prone to lightning strikes and their hazardous effects. Although the transmission line is protected using guard wires in order to prevent the lightning surges to strike the phase conductors, the back-flashover may also occur due to tower footing resistance. A combination of back-flashover corrective methods, tower-footing resistance reduction, insulation level improvement, and line arrester installation, are analyzed in this paper for back-flashover rate reduction of a double-circuit 63 kV line in the south region of Fars province. The line crosses a mountain region in some sections with a moderate keraunic level, whereas tower-footing resistance is substantially high at some towers. Consequently, an exceptionally high back-flashover rate is recorded. A new method for insulation improvement is studied and employed in the current study. The method consists of using a composite-type creepage extender in the string. The effectiveness of this method for insulation improvement of the string is evaluated through the experimental test. Simulation results besides monitoring the one-year operation of the 63-kV line show that due to technical, practical, and economic restrictions in operated sub-transmission lines, a combination of corrective methods can lead to an effective solution for the protection of transmission lines against lightning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection" title="lightning protection">lightning protection</a>, <a href="https://publications.waset.org/abstracts/search?q=BF%20rate" title=" BF rate"> BF rate</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20system" title=" grounding system"> grounding system</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20level" title=" insulation level"> insulation level</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20surge%20arrester" title=" line surge arrester"> line surge arrester</a> </p> <a href="https://publications.waset.org/abstracts/149874/improving-tower-grounding-and-insulation-level-vs-line-surge-arresters-for-protection-of-subtransmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6706</span> Material Selection for Footwear Insole Using Analytical Hierarchal Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Almomani">Mohammed A. Almomani</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20W.%20Al-Qudah"> Dina W. Al-Qudah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Product performance depends on the type and quality of its building material. Successful product must be made using high quality material, and using the right methods. Many foot problems took place as a result of using poor insole material. Therefore, selecting a proper insole material is crucial to eliminate these problems. In this study, the analytical hierarchy process (AHP) is used to provide a systematic procedure for choosing the best material adequate for this application among three material alternatives (polyurethane, poron, and plastzote). Several comparison criteria are used to build the AHP model including: density, stiffness, durability, energy absorption, and ease of fabrication. Poron was selected as the best choice. Inconsistency testing indicates that the model is reasonable, and the materials alternative ranking is effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AHP" title="AHP">AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=footwear%20insole" title=" footwear insole"> footwear insole</a>, <a href="https://publications.waset.org/abstracts/search?q=insole%20material" title=" insole material"> insole material</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20selection" title=" materials selection"> materials selection</a> </p> <a href="https://publications.waset.org/abstracts/42837/material-selection-for-footwear-insole-using-analytical-hierarchal-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6705</span> Improved Traveling Wave Method Based Fault Location Algorithm for Multi-Terminal Transmission System of Wind Farm with Grounding Transformer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ke%20Zhang">Ke Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongli%20Zhu"> Yongli Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to rapid load growths in today’s highly electrified societies and the requirement for green energy sources, large-scale wind farm power transmission system is constantly developing. This system is a typical multi-terminal power supply system, whose structure of the network topology of transmission lines is complex. What’s more, it locates in the complex terrain of mountains and grasslands, thus increasing the possibility of transmission line faults and finding the fault location with difficulty after the faults and resulting in an extremely serious phenomenon of abandoning the wind. In order to solve these problems, a fault location method for multi-terminal transmission line based on wind farm characteristics and improved single-ended traveling wave positioning method is proposed. Through studying the zero sequence current characteristics by using the characteristics of the grounding transformer(GT) in the existing large-scale wind farms, it is obtained that the criterion for judging the fault interval of the multi-terminal transmission line. When a ground short-circuit fault occurs, there is only zero sequence current on the path between GT and the fault point. Therefore, the interval where the fault point exists is obtained by determining the path of the zero sequence current. After determining the fault interval, The location of the short-circuit fault point is calculated by the traveling wave method. However, this article uses an improved traveling wave method. It makes the positioning accuracy more accurate by combining the single-ended traveling wave method with double-ended electrical data. What’s more, a method of calculating the traveling wave velocity is deduced according to the above improvements (it is the actual wave velocity in theory). The improvement of the traveling wave velocity calculation method further improves the positioning accuracy. Compared with the traditional positioning method, the average positioning error of this method is reduced by 30%.This method overcomes the shortcomings of the traditional method in poor fault location of wind farm transmission lines. In addition, it is more accurate than the traditional fixed wave velocity method in the calculation of the traveling wave velocity. It can calculate the wave velocity in real time according to the scene and solve the traveling wave velocity can’t be updated with the environment and real-time update. The method is verified in PSCAD/EMTDC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grounding%20transformer" title="grounding transformer">grounding transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-terminal%20transmission%20line" title=" multi-terminal transmission line"> multi-terminal transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20circuit%20fault%20location" title=" short circuit fault location"> short circuit fault location</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20wave%20velocity" title=" traveling wave velocity"> traveling wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20farm" title=" wind farm"> wind farm</a> </p> <a href="https://publications.waset.org/abstracts/72681/improved-traveling-wave-method-based-fault-location-algorithm-for-multi-terminal-transmission-system-of-wind-farm-with-grounding-transformer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6704</span> Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patience%20Muchini">Patience Muchini</a>, <a href="https://publications.waset.org/abstracts/search?q=Electdom%20Matandiroya"> Electdom Matandiroya</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Mashonjowa"> Emmanuel Mashonjowa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20space%20weather" title="adverse space weather">adverse space weather</a>, <a href="https://publications.waset.org/abstracts/search?q=DST%20index" title=" DST index"> DST index</a>, <a href="https://publications.waset.org/abstracts/search?q=geomagnetically%20induced%20currents" title=" geomagnetically induced currents"> geomagnetically induced currents</a>, <a href="https://publications.waset.org/abstracts/search?q=KP%20index" title=" KP index"> KP index</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a> </p> <a href="https://publications.waset.org/abstracts/163432/analysis-of-transformer-reactive-power-fluctuations-during-adverse-space-weather" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6703</span> Synthesis and Performance Study of Co3O4 as a Bi-Functional Next Generation Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shrikaant%20Kulkarni">Shrikaant Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Akshata%20Naik%20Nimbalkar"> Akshata Naik Nimbalkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this worki a method protocol has been developed for the synthesis of innovative Co3O4 material by using a method of chemical synthesis followed by calcination. The effect of calcination temperature on the morphology, structure and catalytic performance on material in question is investigated by using characterization tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy and electrochemical techniques. The SEM images reveal that the morphology of the Co3O4 material undergoes a change from the rod to a beadlike shape on calcination at temperature of 700 °C. The XRD image shows that although the morphology of synthesized Co3O4 material exhibits a cubic phase but it differs in crystallinity depending upon morphology. Similarly spherical beadlike Co3O4 material has exhibited better activity than its rodlike counterpart which is reflected from electrochemical findings. Further, its performance in terms of bifunctional nature and hlods a lot much of promise as a excellent electrode material in the next generation batteries and fuel cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifunctional" title="bifunctional">bifunctional</a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20material" title=" next generation material"> next generation material</a>, <a href="https://publications.waset.org/abstracts/search?q=Co3O4" title=" Co3O4"> Co3O4</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/16208/synthesis-and-performance-study-of-co3o4-as-a-bi-functional-next-generation-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6702</span> Mathematical Analysis of Matrix and Filler Formulation in Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20A.%20Afolabi">Olusegun A. Afolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndivhuwo%20Ndou"> Ndivhuwo Ndou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=percentage%20weight" title=" percentage weight"> percentage weight</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20fraction" title=" volume fraction"> volume fraction</a> </p> <a href="https://publications.waset.org/abstracts/182436/mathematical-analysis-of-matrix-and-filler-formulation-in-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6701</span> Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Z.%20Ramadan">Saleem Z. Ramadan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20selection" title=" material selection"> material selection</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20selection" title=" process selection"> process selection</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/42286/binary-programming-for-manufacturing-material-and-manufacturing-process-selection-using-genetic-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6700</span> “Ethical Porn” and the Right to Withdraw Consent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Elvidge">Nathan Elvidge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper offers a philosophical argument against the possibility of so-called “ethical porn,” that is, pornographic material produced in a way attempting to remain consistent with feminist principles and female empowerment. One key feature of such material is the requirement for the material to be consensual on the part of the actors or those involved in the material. However, in the contemporary pornography industry, this typically amounts to a single historic act of consent given in exchange for a lump-sum payment which grants the producer lifetime property rights over the explicit material. This paper argues that, by the lights of feminist principles, this situation is inherently unjust and that, as a consequence, the pornography industry requires a radical systematic upheaval before any material produced within it can be considered genuinely ethical. These feminist principles require that for the consumption of pornography to be genuinely ethical, the actors must consent not only to the acts recorded in the material but also to the consumption of that material. This paper argues that this consent to consumption should be treated as on par with other matters of sexual consent and, therefore, that actors should have the right to withdraw consent to the consumption of their material. From this, it is argued to follow that the system of third-party ownership of property rights over someone else’s sexually explicit material legally nullifies this right and therefore is inherently unjust. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consent" title="consent">consent</a>, <a href="https://publications.waset.org/abstracts/search?q=feminism" title=" feminism"> feminism</a>, <a href="https://publications.waset.org/abstracts/search?q=pornography" title=" pornography"> pornography</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20work" title=" sex work"> sex work</a> </p> <a href="https://publications.waset.org/abstracts/156377/ethical-porn-and-the-right-to-withdraw-consent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6699</span> The Optimization Design of Sound Absorbing for Automotive Interior Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park">Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee"> In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hyeon%20Oh"> Tae-Hyeon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Gyu%20Park"> Dae-Gyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonwoven fabric such as an automobile interior material becomes consists of several material layers required for the sound-absorbing function. Because several material layers, many experimental tuning is required to achieve the target of sound absorption. Therefore, a lot of time and money is spent in the development of the car interior materials. In this study, we present the method to predict the sound-absorbing performance of the various layers with physical properties of each material. and we will verify it with the measured value of a prototype. If the sound absorption can be estimated, it can be optimized without a number of tuning tests of the interiors. So, it can reduce the development cost and time during development <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20interior%20material" title="automotive interior material">automotive interior material</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorbing" title=" sound absorbing"> sound absorbing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20design" title=" optimization design"> optimization design</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20fabric" title=" nonwoven fabric"> nonwoven fabric</a> </p> <a href="https://publications.waset.org/abstracts/51023/the-optimization-design-of-sound-absorbing-for-automotive-interior-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">837</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6698</span> Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erhan%20%C3%87etin">Erhan Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kur%C5%9Fun"> Ali Kurşun</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eafak%20Aksoy"> Şafak Aksoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Tunay%20%C3%87etin"> Merve Tunay Çetin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The closed form study deal with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and termomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-material%20discs" title="bi-material discs">bi-material discs</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20stress%20analysis" title=" elastic stress analysis"> elastic stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20loads" title=" mechanical loads"> mechanical loads</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20discs" title=" rotating discs"> rotating discs</a> </p> <a href="https://publications.waset.org/abstracts/2633/elastic-stress-analysis-of-annular-bi-material-discs-with-variable-thickness-under-mechanical-and-thermomechanical-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6697</span> Modeling of Induced Voltage in Disconnected Grounded Conductor of Three-Phase Power Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misho%20Matsankov">Misho Matsankov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stoyan%20Petrov"> Stoyan Petrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the methodology and the obtained mathematical models for determining the value of the grounding resistance of a disconnected conductor in a three-phase power line, for which the contact voltage is safe, by taking into account the potentials, induced by the non-disconnected phase conductors. The mathematical models have been obtained by implementing the experimental design techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20voltage" title="contact voltage">contact voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20design" title=" experimental design"> experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20voltage" title=" induced voltage"> induced voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/137892/modeling-of-induced-voltage-in-disconnected-grounded-conductor-of-three-phase-power-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6696</span> Development of Standard Evaluation Technique for Car Carpet Floor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee">In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park"> Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hyeon%20Oh"> Tae-Hyeon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Gyu%20Park"> Dae-Gyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statistical Energy Analysis is to be the most effective CAE Method for air-born noise analysis in the Automotive area. This study deals with a method to predict the noise level inside of the car under the steady-state condition using the SEA model of car for air-born noise analysis. We can identify weakened part due to the acoustic material properties using it. Therefore, it is useful for the material structural design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-born%20noise" title="air-born noise">air-born noise</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20structural%20design" title=" material structural design"> material structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20material%20properties" title=" acoustic material properties"> acoustic material properties</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbing" title=" absorbing"> absorbing</a> </p> <a href="https://publications.waset.org/abstracts/51024/development-of-standard-evaluation-technique-for-car-carpet-floor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=224">224</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=225">225</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grounding%20material&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>