CINXE.COM
Search results for: Masonry infills
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Masonry infills</title> <meta name="description" content="Search results for: Masonry infills"> <meta name="keywords" content="Masonry infills"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Masonry infills" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Masonry infills"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 146</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Masonry infills</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> The Effect of Masonry Infills on the Seismic Response of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Ameri">Mohammad Reza Ameri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Massumi"> Ali Massumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Mahboubi"> Behnam Mahboubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of masonry infilled frames during the past earthquakes shows that the infill panels play a major role as earthquake-resistant elements. The present study examines the influence of infill panels on seismic behavior of RC frame structures. For this purpose, several low- and mid-rise RC frames (two-, four-, seven-, and ten story) were numerically investigated. Reinforced masonry infill panels were then placed within the frames and the models were subjected to several nonlinear incremental static and dynamic analyses. The results of analyses showed that the use of reinforced masonry infill panels in RC frame structures can have beneficial effects on structural performance. It was confirmed that the use of masonry infill panels results in an increment in strength and stiffness of the framed buildings, followed by a reduction in displacement demand for the structural systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20masonry%20infill%20panels" title="reinforced masonry infill panels">reinforced masonry infill panels</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20static%20analysis" title=" nonlinear static analysis"> nonlinear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20dynamic%20analysis" title=" incremental dynamic analysis"> incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=low-rise%20reinforced%20concrete%20frames" title=" low-rise reinforced concrete frames"> low-rise reinforced concrete frames</a>, <a href="https://publications.waset.org/abstracts/search?q=mid-rise%20reinforced%20concrete%20frames" title=" mid-rise reinforced concrete frames"> mid-rise reinforced concrete frames</a> </p> <a href="https://publications.waset.org/abstracts/14413/the-effect-of-masonry-infills-on-the-seismic-response-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Seismic Performance Assessment of Pre-70 RC Frame Buildings with FEMA P-58 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Cardone">D. Cardone </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Past earthquakes have shown that seismic events may incur large economic losses in buildings. FEMA P-58 provides engineers a practical tool for the performance seismic assessment of buildings. In this study, FEMA P-58 is applied to two typical Italian pre-1970 reinforced concrete frame buildings, characterized by plain rebars as steel reinforcement and masonry infills and partitions. Given that suitable tools for these buildings are missing in FEMA P- 58, specific fragility curves and loss functions are first developed. Next, building performance is evaluated following a time-based assessment approach. Finally, expected annual losses for the selected buildings are derived and compared with past applications to old RC frame buildings representative of the US building stock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEMA%20P-58" title="FEMA P-58">FEMA P-58</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frame%20buildings" title=" RC frame buildings"> RC frame buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20rebars" title=" plain rebars"> plain rebars</a>, <a href="https://publications.waset.org/abstracts/search?q=Masonry%20infills" title=" Masonry infills"> Masonry infills</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20functions" title=" fragility functions"> fragility functions</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20functions" title=" loss functions"> loss functions</a>, <a href="https://publications.waset.org/abstracts/search?q=expected%20annual%20loss" title=" expected annual loss"> expected annual loss</a> </p> <a href="https://publications.waset.org/abstracts/51136/seismic-performance-assessment-of-pre-70-rc-frame-buildings-with-fema-p-58" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> The Necessity of Retrofitting for Masonry Buildings in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20G%C3%BCler">Soner Güler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a>, <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel"> Eylem Güzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry buildings constitute major part of building stock in Turkey. Masonry buildings were built up especially in rural areas and underdeveloped regions due to economic reasons. Almost all of these masonry buildings are not designed and detailed according to any design guidelines by designers. As a result of this, masonry buildings were totally collapsed or heavily damaged when subjected to destructive earthquake effects. Thus, these masonry buildings that were built up in our country must be retrofitted to improve their seismic performance. In this study, new seismic retrofitting techniques that is easy to apply and low-cost are summarized and the importance of seismic retrofitting is also emphasized for existing masonry buildings in Turkey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20buildings" title="masonry buildings">masonry buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20effects" title=" earthquake effects"> earthquake effects</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofitting%20techniques" title=" seismic retrofitting techniques"> seismic retrofitting techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/31789/the-necessity-of-retrofitting-for-masonry-buildings-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Design Guidelines for URM Infills and Effect of Construction Sequence on Seismic Performance of Code Compliant RC Frame Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Putul%20Haldar">Putul Haldar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogendra%20Singh"> Yogendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Paul"> D. K. Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Un-Reinforced Masonry (URM) infilled RC framed buildings are the most common construction practice for modern multi-storey buildings in India like many other parts of the world. Although the behavior and failure pattern of the global structure changes significantly due to infill-frame interaction, the general design practice is to treat them as non-structural elements and their stiffness, strength and interaction with frame is often ignored, as it is difficult to simulate. Indian Standard, like many other major national codes, does not provide any explicit guideline for modeling of infills. This paper takes a stock of controlling design provisions in some of the major national seismic design codes (BIS 2002; CEN 2004; NZS-4230 2004; ASCE-41 2007) to ensure the desired seismic performance of infilled frame. Most of the national codes on seismic design of buildings still lack in adequate guidelines on modeling and design of URM infilled frames results in variable assumption in analysis and design. This paper, using nonlinear pushover analysis, also presents the effect of one of such assumptions of conventional ‘simultaneous’ analysis procedure of infilled frame on the seismic performance of URM infilled RC frame buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=URM%20infills" title="URM infills">URM infills</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frame" title=" RC frame"> RC frame</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design%20codes" title=" seismic design codes"> seismic design codes</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20sequence%20of%20infilled%20frame" title=" construction sequence of infilled frame"> construction sequence of infilled frame</a> </p> <a href="https://publications.waset.org/abstracts/4380/design-guidelines-for-urm-infills-and-effect-of-construction-sequence-on-seismic-performance-of-code-compliant-rc-frame-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Observed Damages to Adobe Masonry Buildings after 2011 Van Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel">Eylem Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20G%C3%BCler"> Soner Güler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry is the oldest building materials since ancient times. Adobe, stone, brick are the most widespread materials used in the construction of masonry buildings. Masonry buildings compose of a large part of building stock especially in rural areas and underdeveloped regions of Turkey. The seismic performance of adobe masonry buildings is vulnerable against earthquake effects. In this study, after 2011 Van earthquake with magnitude 7.2 Mw, damages occurred in existing adobe masonry buildings in Van city is investigated. The observed damages and reasons of adobe masonry buildings in design and construction phase are specified and evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adobe%20masonry%20buildings" title="adobe masonry buildings">adobe masonry buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20effects" title=" earthquake effects"> earthquake effects</a>, <a href="https://publications.waset.org/abstracts/search?q=damages" title=" damages"> damages</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/31790/observed-damages-to-adobe-masonry-buildings-after-2011-van-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Better Knowledge and Understanding of the Behavior of Masonry Buildings in Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Mirzaee">A. R. Mirzaee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khajehpour"> M. Khajehpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to Simple Design, reasonable cost and easy implementation most people are reluctant to build buildings with masonry construction. Masonry Structures performance at earthquake are so limited. Of most earthquakes occurred in Iran and other countries, we can easily see that most of the damages are for masonry constructions and this is the evidence that we lack proper understanding of the performance of masonry buildings in earthquake. In this paper, according to field studies, conducted in past earthquakes. To evaluate the strengths and weaknesses points of the masonry constructions and also provide a solution to prevent such damage should be presented, and also program Examples of the correct bearing wall and tie-column design with the valid regulations (MSJC-08 (ASD)) will be explained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masonry%20constructions" title="Masonry constructions">Masonry constructions</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20at%20earthquake" title=" performance at earthquake"> performance at earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=MSJC-08%20%28ASD%29" title=" MSJC-08 (ASD)"> MSJC-08 (ASD)</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20wall" title=" bearing wall"> bearing wall</a>, <a href="https://publications.waset.org/abstracts/search?q=tie-column" title=" tie-column"> tie-column</a> </p> <a href="https://publications.waset.org/abstracts/18015/better-knowledge-and-understanding-of-the-behavior-of-masonry-buildings-in-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Sensitivity and Reliability Analysis of Masonry Infilled Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avadhoot%20Bhosale">Avadhoot Bhosale</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20Davis%20P."> Robin Davis P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradip%20Sarkar"> Pradip Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title="fragility curve">fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20index" title=" reliability index"> reliability index</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frames" title=" RC frames"> RC frames</a> </p> <a href="https://publications.waset.org/abstracts/55890/sensitivity-and-reliability-analysis-of-masonry-infilled-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Analytical and Experimental Evaluation of Effects of Nonstructural Brick Walls on Earthquake Response of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Husnu%20Korkmaz">Hasan Husnu Korkmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Serra%20Zerrin%20Korkmaz"> Serra Zerrin Korkmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reinforced concrete (RC) framed structures composed of beams, columns, shear walls and the slabs. The other members are assumed to be nonstructural. Especially the brick infill walls which are used to separate the rooms or spaces are just handled as dead loads. On the other hand, if these infills are constructed within the frame bays, they also have higher shear and compression capacities. It is a well-known fact that, brick infills increase the lateral rigidity of the structure and thought to be a reserve capacity in the design. But, brick infills can create unfavorable failure or damage modes in the earthquake action such as soft story or short columns. The increase in the lateral rigidity also causes an over estimation of natural period of the structure and the corresponding earthquake loads in the design are less than the actual ones. In order to obtain accurate and realistic design results, the infills must be modelled in the structural design and their capacities must be included. Unfortunately, in Turkish Earthquake Code, there is no design methodology for the engineers. In this paper, finite element modelling of infilled reinforced concrete structures are studied. The proposed or used method is compared with the experimental results of a previous study. The effect of infills on the structural response is expressed within the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20loading" title="seismic loading">seismic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=brick%20infills" title=" brick infills"> brick infills</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20code" title=" earthquake code"> earthquake code</a> </p> <a href="https://publications.waset.org/abstracts/47735/analytical-and-experimental-evaluation-of-effects-of-nonstructural-brick-walls-on-earthquake-response-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20Bracken">W. C. Bracken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20masonry" title="concrete masonry">concrete masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20wall%20cracking" title=" masonry wall cracking"> masonry wall cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20defect" title=" structural defect"> structural defect</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage" title=" structural damage"> structural damage</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20defect" title=" construction defect"> construction defect</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20investigation" title=" forensic investigation"> forensic investigation</a> </p> <a href="https://publications.waset.org/abstracts/56999/structural-engineering-forensic-evaluation-of-misdiagnosed-concrete-masonry-wall-cracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Properties of Modified Dry Masonry Mixtures for Effective Masonry Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vyacheslav%20S.%20Semenov">Vyacheslav S. Semenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamara%20A.%20Rozovskaya"> Tamara A. Rozovskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is devoted to the problem of the development of dry light-weight mixtures with hollow ceramics microspheres (CMS) for masonry works. For the one-layer fencing structures including effective masonry units, the use of “warm” masonry mortars is necessary. The used light-weight masonry mortars do not provide the brand strength and thermal uniformity of the fencing structures because of high average density. The CMS are effective light-weight aggregate for such mortars. The influence of the dosage of CMS on the physics-and-mechanics parameters and the technological properties of the masonry mortars were studied. The optimal mixture compositions have been obtained and their main properties have been determined. The influence of an air-entraining admixture and redispersible polymer powders on the average density and physics-and-mechanics parameters of the masonry mortars were studied. The optimal compositions of light-weight dry masonry mixtures with CMS have been suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20mortar%20mixtures" title="dry mortar mixtures">dry mortar mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=light-weight%20dry%20mixtures" title=" light-weight dry mixtures"> light-weight dry mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20ceramics%20microspheres" title=" hollow ceramics microspheres"> hollow ceramics microspheres</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20mortars" title=" masonry mortars"> masonry mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%9Cwarm%E2%80%9D%20mortars" title=" “warm” mortars"> “warm” mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=air-entraining%20admixture" title=" air-entraining admixture"> air-entraining admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=redispersible%20polymer%20powders" title=" redispersible polymer powders"> redispersible polymer powders</a> </p> <a href="https://publications.waset.org/abstracts/8834/properties-of-modified-dry-masonry-mixtures-for-effective-masonry-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Development of Palm Kernel Shell Lightweight Masonry Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazeem%20K.%20Adewole">Kazeem K. Adewole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There need to construct building walls with lightweight masonry bricks/blocks and mortar to reduce the weight and cost of cooling/heating of buildings in hot/cold climates is growing partly due to legislations on energy use and global warming. In this paper, the development of Palm Kernel Shell masonry mortar (PKSMM) prepared with Portland cement and crushed PKS fine aggregate (an agricultural waste) is demonstrated. We show that PKSMM can be used as a lightweight mortar for the construction of lightweight masonry walls with good thermal insulation efficiency than the natural river sand commonly used for masonry mortar production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20walls" title="building walls">building walls</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate" title=" fine aggregate"> fine aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20masonry%20mortar" title=" lightweight masonry mortar"> lightweight masonry mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20shell" title=" palm kernel shell"> palm kernel shell</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thermal%20insulation%20efficacy" title=" wall thermal insulation efficacy"> wall thermal insulation efficacy</a> </p> <a href="https://publications.waset.org/abstracts/37213/development-of-palm-kernel-shell-lightweight-masonry-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> The Behavior of Masonry Wall Constructed Using Biaxial Interlocking Concrete Block, Solid Concrete Block and Cement Sand Brick Subjected to the Compressive Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fauziah%20Aziz">Fauziah Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.fadzil%20Arshad"> Mohd.fadzil Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazrina%20Mansor"> Hazrina Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20K%C3%B6m%C3%BCrc%C3%BC"> Sedat Kömürcü</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry is an isotropic and heterogeneous material due to the presence of the different components within the assembly process. Normally the mortar plays a significant role in the compressive behavior of the traditional masonry structures. Biaxial interlocking concrete block is a masonry unit that comes out with the interlocking concept. This masonry unit can improve the quality of the construction process, reduce the cost of labor, reduce high skill workmanship, and speeding the construction time. Normally, the interlocking concrete block masonry unit in the market place was designed in a way interlocking concept only either x or y-axis, shorter in length, and low compressive strength value. However, the biaxial interlocking concrete block is a dry-stack concept being introduced in this research, offered the specialty compared to the normal interlocking concrete available in the market place due to its length and the geometry of the groove and tongue. This material can be used as a non-load bearing wall, or load-bearing wall depends on the application of the masonry. But, there is a lack of technical data that was produced before. This paper presents a finding on the compressive resistance of the biaxial interlocking concrete block masonry wall compared to the other traditional masonry walls. Two series of biaxial interlocking concrete block masonry walls, namely M1 and M2, a series of solid concrete block and cement sand brick walls M3, and M4 have tested the compressive resistance. M1 is the masonry wall of a hollow biaxial interlocking concrete block meanwhile; M2 is the grouted masonry wall, M3 is a solid concrete block masonry wall, and M4 is a cement sand brick masonry wall. All the samples were tested under static compressive load. The results examine that M2 is higher in compressive resistance compared to the M1, M3, and M4. It shows that the compressive strength of the concrete masonry units plays a significant role in the capacity of the masonry wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interlocking%20concrete%20block" title="interlocking concrete block">interlocking concrete block</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20resistance" title=" compressive resistance"> compressive resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20masonry%20unit" title=" concrete masonry unit"> concrete masonry unit</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry "> masonry </a> </p> <a href="https://publications.waset.org/abstracts/113746/the-behavior-of-masonry-wall-constructed-using-biaxial-interlocking-concrete-block-solid-concrete-block-and-cement-sand-brick-subjected-to-the-compressive-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Effects of Blast Load on Historic Stone Masonry Buildings in Canada: A Review and Analytical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abass%20Braimah">Abass Braimah</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Hussein%20Abdallah"> Maha Hussein Abdallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global ascendancy of terrorist attacks on building infrastructure with economic and heritage significance has increased awareness of the possibility of terrorism in Canada. Many structures in Canada that are at risk of terrorist attacks include government buildings, built many years ago of historic stone masonry construction. Although many researchers are investigating ways to retrofit masonry stone buildings to mitigate the effect of blast loadings, lack of knowledge on the dynamic behavior of historic stone masonry structures under blast loads makes it difficult to ascertain the effectiveness of the retrofitting techniques. This paper presents a review of open-source literature for the experimental and numerical stone masonry structures under blast loads. This review yielded very little information of the response of the historic stone masonry structures under blast loads. Thus, a comprehensive study is needed to understand the blast load effects on historic stone masonry buildings. The out-of-plane response of historic masonry structures to blast loads is investigated by using single-degree-of-freedom analysis. This approach presents equations that can be used effectively in the analysis of historic masonry walls to out-of-plane blast loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20loads" title="blast loads">blast loads</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20buildings" title=" historical buildings"> historical buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20structure" title=" masonry structure"> masonry structure</a>, <a href="https://publications.waset.org/abstracts/search?q=single-degree-of-freedom%20analysis" title=" single-degree-of-freedom analysis"> single-degree-of-freedom analysis</a> </p> <a href="https://publications.waset.org/abstracts/129638/effects-of-blast-load-on-historic-stone-masonry-buildings-in-canada-a-review-and-analytical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> The Review for Repair of Masonry Structures Using the Crack Stitching Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandile%20Daniel%20Ngidi">Sandile Daniel Ngidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry structures often crack due to different factors, which include differential movement of structures, thermal expansion, and seismic waves. Retrofitting is introduced to ensure that these cracks do not expand to a point of making the wall fail. Crack stitching is one of many repairing methods used to repair cracked masonry walls. It is done by stitching helical stainless steel reinforcement bars to reconnect and stabilize the wall. The basic element of this reinforcing system is the mechanical interlink between the helical stainless-steel bar and the grout, which makes it such a flexible and well-known masonry repair system. The objective of this review was to use previous experimental work done by different authors to check the efficiency and effectiveness of using the crack stitching technique to repair and stabilize masonry walls. The technique was found to be effective to rejuvenate the strength of a masonry structure to be stronger than initial strength. Different factors were investigated, which include economic features, sustainability, buildability, and suitability of this technique for application in developing communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brickforce" title="brickforce">brickforce</a>, <a href="https://publications.waset.org/abstracts/search?q=crack-stitching" title=" crack-stitching"> crack-stitching</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20concrete" title=" masonry concrete"> masonry concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20panels" title=" wall panels"> wall panels</a> </p> <a href="https://publications.waset.org/abstracts/136211/the-review-for-repair-of-masonry-structures-using-the-crack-stitching-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanita%20Rubene">Sanita Rubene</a>, <a href="https://publications.waset.org/abstracts/search?q=Martins%20Vilnitis"> Martins Vilnitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Juris%20Noviks"> Juris Noviks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerated%20concrete" title="aerated concrete">aerated concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20impedance%20spectrometry" title=" electrical impedance spectrometry"> electrical impedance spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20distribution" title=" humidity distribution"> humidity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a> </p> <a href="https://publications.waset.org/abstracts/13188/impact-of-masonry-joints-on-detection-of-humidity-distribution-in-aerated-concrete-masonry-constructions-by-electric-impedance-spectrometry-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Evaluation of Flange Effects on the Lateral In-Plane Response of Brick Masonry Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hizb%20Ullah%20Sajid">Hizb Ullah Sajid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraf"> Muhammad Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmad%20Qaisar%20Ali"> Naveed Ahmad Qaisar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sikandar%20Hayat%20Sajid"> Sikandar Hayat Sajid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research study investigates experimentally the effects of flanges (transverse walls) on the lateral in-plane response of brick masonry walls. The experimental work included lateral in-plane quasi-static cyclic tests on full-scale walls (both with & without flanges). The flanges were introduced at both ends of the in-plane wall. In particular the damage mechanism, lateral in-plane stiffness & strength, deformability and energy dissipation of the two classes of walls are compared and the differences are quantified to help understand the effects of flanges on the in-plane response of masonry walls. The available analytical models for the in-plane shear strength & deformation evaluation of masonry walls are critically analyzed. Recommendations are made for the lateral in-plane capacity assessment of brick masonry walls including the contribution of transverse walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick%20masonry" title="brick masonry">brick masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20mechanism" title=" damage mechanism"> damage mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=flanges%20effects" title=" flanges effects"> flanges effects</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane%20response" title=" in-plane response"> in-plane response</a> </p> <a href="https://publications.waset.org/abstracts/33495/evaluation-of-flange-effects-on-the-lateral-in-plane-response-of-brick-masonry-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mezigheche%20Nawel">Mezigheche Nawel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gouasmia%20Abdelhacine"> Gouasmia Abdelhacine</a>, <a href="https://publications.waset.org/abstracts/search?q=Athmani%20Allaeddine"> Athmani Allaeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Merzoud%20Mouloud"> Merzoud Mouloud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry infill walls are inevitable in the self-supporting structures, but their contribution in the resistance of earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of the behavior of masonry infill walls in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D finite element analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load: The finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, so we can conclude that the filling brings an additional rigidity to the structure not to be neglected. It is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20infill%20walls" title=" masonry infill walls"> masonry infill walls</a>, <a href="https://publications.waset.org/abstracts/search?q=rigidity%20of%20the%20masonry" title=" rigidity of the masonry"> rigidity of the masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=tended%20diagonal" title=" tended diagonal"> tended diagonal</a> </p> <a href="https://publications.waset.org/abstracts/30454/behavior-of-the-masonry-infill-in-structures-subjected-to-the-horizontal-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Effect of Masonry Infill in R.C. Framed Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallab%20Das">Pallab Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabam%20Zomleen"> Nabam Zomleen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective dissipation of lateral loads that are coming due to seismic force determines the strength, durability and safety concern of the structure. Masonry infill has high stiffness and strength capabilities which can be put into an effective utilization for lateral load dissipation by incorporating it into building construction, but masonry behaves in highly nonlinear manner, so it is highly important to find out generalized, yet a rational approach to determine its nonlinear behavior and failure mode and it’s response when it is incorporated into building. But most of the countries do not specify the procedure for design of masonry infill wall. Whereas, there are many analytical modeling method available in literature, e.g. equivalent diagonal strut method, finite element modeling etc. In this paper the masonry infill is modeled and 6-storey bare framed building and building with masonry infill is analyzed using SAP-200014 in order to find out inter-storey drift by time-history analysis and capacity curve by Pushover analysis. The analysis shows that, while, the structure is well within CP performance level for both the case, whereas, there is considerable reduction of inter-storey drift of about 28%, when the building is analyzed with masonry infill wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity%20curve" title="capacity curve">capacity curve</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20infill" title=" masonry infill"> masonry infill</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis "> time history analysis </a> </p> <a href="https://publications.waset.org/abstracts/25488/effect-of-masonry-infill-in-rc-framed-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Response of Full-Scale Room Building Against Blast Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eid%20Badshah">Eid Badshah</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Naseer"> Amjad Naseer</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraf"> Muhammad Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper full-scale brick masonry room along with the veranda of a typical school building was subjected to eight successive blast tests with increasing charge weights ranging from 0.5kg to 16.02kg at 3.66m fixed stand-off distance. Pressure-time histories were obtained by data acquisition system from pressure sensors, installed on different points of room as well as veranda columns. The resulting damage pattern of different locations was observed during each test. Weak zones of masonry room were identified. Scaled distances for different damage levels in masonry room were experimentally obtained. The results provided a basis for determining the response of masonry room building against blast loading in a specific threat scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20pressure" title="peak pressure">peak pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=composition-B" title=" composition-B"> composition-B</a>, <a href="https://publications.waset.org/abstracts/search?q=TNT" title=" TNT"> TNT</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title=" pressure sensor"> pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=scaled%20distance" title=" scaled distance"> scaled distance</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a> </p> <a href="https://publications.waset.org/abstracts/157393/response-of-full-scale-room-building-against-blast-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> A Case Study of Building Behavior Damaged during 26th Oct, 2015 Earthquake in Northern Areas of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Ali">Rahmat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Naseer"> Amjad Naseer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20A.%20Shah"> Abid A. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is an attempt to presents the performance of building observed during 26th Oct, 2015 earthquake in District Swat and Shangla region. Most of the buildings in the earthquake hit areas were built with Rubble stone masonry, dress Stone Masonry, brick masonry with and without RC column, Brick masonry with RC beams and column, Block Masonry with and without RC column. It was found that most of the buildings were built without proper supervision and without following any codes. A majority of load bearing masonry walls were highly affected during the earthquake. The load bearing walls built with rubble stone masonry were collapsed resulting huge damages and loss of property and life. Load bearing bricks masonry walls were also affected in most of the region. In some residential buildings the bricks were crushed in a single brick walls. Severe cracks were also found in double brick masonry walls. In RC frame structure beams and columns were also seriously affected. A majority of building structures were non-engineered. Some buildings designed by unskilled local consultants were also affected during the earthquake. Several architectural and structural mistakes were also found in various buildings designed by local consultant. It was found that the structures were collapsed prematurely either because of unskillful labor and using substandard materials or avoiding delicate repair, maintenance, and health monitoring activities because of lack of available sophisticated technology in our country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracks" title="cracks">cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse" title=" collapse"> collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a> </p> <a href="https://publications.waset.org/abstracts/45899/a-case-study-of-building-behavior-damaged-during-26th-oct-2015-earthquake-in-northern-areas-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camila%20Parodi">Camila Parodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Letelier"> Viviana Letelier</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Moriconi"> Giacomo Moriconi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20replacement" title="cement replacement">cement replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20residue" title=" masonry residue"> masonry residue</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20recycled%20mortars" title=" mechanical properties of recycled mortars"> mechanical properties of recycled mortars</a> </p> <a href="https://publications.waset.org/abstracts/67858/mechanical-properties-analysis-of-masonry-residue-mortar-as-cement-replacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Investigating Re-Use a Historical Masonry Arch Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Erdogan">H. A. Erdogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical masonry arch bridges built centuries ago have fulfilled their function until recent decades. However, from the beginning of 20th century, these bridges have remained inadequate as a result of increasing speed, size and capacity of the means of transport. Although new bridges have been built in many places, masonry bridges located within the city limits still need to be used. When the size and transportation loads of modern vehicles are taken into account, it is apparent that historical masonry arch bridges would be exposed to greater loads than their initial design loads. Because of that, many precautions taken either remain insufficient or damage these bridges. In this study, the history of Debbaglar Bridge, one of the historic bridges located in the city center of Aksaray/Turkey is presented and its existing condition is evaluated. Structural analysis of the bridge under present conditions and loads is explained. Moreover, the retrofit and restoration application prepared considering the analysis data is described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20re-use" title="adaptive re-use">adaptive re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksaray%20debbaglar%20bridge" title=" Aksaray debbaglar bridge"> Aksaray debbaglar bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20bridge" title=" masonry bridge"> masonry bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/30635/investigating-re-use-a-historical-masonry-arch-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Investigation of Dynamic Heat Transfer in Masonry Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joelle%20Al%20Fakhoury">Joelle Al Fakhoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Sassine"> Emilio Sassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Cherif"> Yassine Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Dgheim"> Joseph Dgheim</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Antczak"> Emmanuel Antczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hollow block masonry is the most used building technology in the Lebanese context. These blocks are manufactured in an artisanal way and have unknown thermal properties; their overall thermos-physical performance is thus unknown and also poorly investigated scientifically in both single wall and also double wall configurations. In this work, experimental measurements and numerical simulations are performed for a better understanding of the heat transfer in masonry walls. This study was realized using an experimental setup consisting of a masonry hollow block wall (0.1m x 1m x 1m) and two heat boxes, such that each covers one side of the wall. The first is a reference box having a constant interior temperature, and the other is a control box having an adjustable interior temperature. At first, the numerical model is validated using an experimental setup; then 3D numerical analyzes are held in order to investigate the effect of the air gap, the mortar joints, and the plastering on the thermal performance of masonry walls for a better understanding of the heat transfer process and the recommendation of suitable thermal improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20wall" title="masonry wall">masonry wall</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20blocks" title=" hollow blocks"> hollow blocks</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20instrumentation" title=" wall instrumentation"> wall instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20improvement" title=" thermal improvement"> thermal improvement</a> </p> <a href="https://publications.waset.org/abstracts/141822/investigation-of-dynamic-heat-transfer-in-masonry-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Floor Response Spectra of RC Frames: Influence of the Infills on the Seismic Demand on Non-Structural Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gianni%20Blasi">Gianni Blasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Perrone"> Daniele Perrone</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Antonietta%20Aiello"> Maria Antonietta Aiello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic vulnerability of non-structural components is nowadays recognized to be a key issue in performance-based earthquake engineering. Recent loss estimation studies, as well as the damage observed during past earthquakes, evidenced how non-structural damage represents the highest rate of economic loss in a building and can be in many cases crucial in a life-safety view during the post-earthquake emergency. The procedures developed to evaluate the seismic demand on non-structural components have been constantly improved and recent studies demonstrated how the existing formulations provided by main Standards generally ignore features which have a sensible influence on the definition of the seismic acceleration/displacements subjecting non-structural components. Since the influence of the infills on the dynamic behaviour of RC structures has already been evidenced by many authors, it is worth to be noted that the evaluation of the seismic demand on non-structural components should consider the presence of the infills as well as their mechanical properties. This study focuses on the evaluation of time-history floor acceleration in RC buildings; which is a useful mean to perform seismic vulnerability analyses of non-structural components through the well-known cascade method. Dynamic analyses are performed on an 8-storey RC frame, taking into account the presence of the infills; the influence of the elastic modulus of the panel on the results is investigated as well as the presence of openings. Floor accelerations obtained from the analyses are used to evaluate the floor response spectra, in order to define the demand on non-structural components depending on the properties of the infills. Finally, the results are compared with formulations provided by main International Standards, in order to assess the accuracy and eventually define the improvements required according to the results of the present research work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floor%20spectra" title="floor spectra">floor spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=infilled%20RC%20frames" title=" infilled RC frames"> infilled RC frames</a>, <a href="https://publications.waset.org/abstracts/search?q=non-structural%20components" title=" non-structural components"> non-structural components</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20demand" title=" seismic demand"> seismic demand</a> </p> <a href="https://publications.waset.org/abstracts/82707/floor-response-spectra-of-rc-frames-influence-of-the-infills-on-the-seismic-demand-on-non-structural-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> An Investigation into the Interaction of Concrete Frames and Infilled Masonry Walls with Emphasis on the Connections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Fazlollahi">Hamid Fazlollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Rafezy"> Behzad Rafezy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Afshin"> Hassan Afshin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There masonry infill increases the stiffness of reinforced concrete frames, thus increasing the force of the earthquake also the interaction between the frame and infill, which can have devastating effects on structures. In contrast presence of infill to increase the structural strength and stability. What is seen in the construction and design of structures has largely ignored the effects of infill and regardless infill structure and its positive and negative effects analyzes and designs, that it is not economically justified and the positive effects of positive infill to be increased and almost all of the useful capacity of moment frames used for infill. In this paper, by using ABAQUS software, reinforced concrete frame with masonry infill will be modeled, then add a mechanical rubber element to modify the interaction between the frame and infill and thus reduce the losses caused by the presence of infill explains. Finally, by comparing the analytical curves, benefits of this approach we will study and to present the results of the interaction between the frame and infill masonry needs modification and methods it will provide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20infill" title="masonry infill">masonry infill</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20rubber" title=" mechanical rubber"> mechanical rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20frame" title=" reinforced concrete frame"> reinforced concrete frame</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/16441/an-investigation-into-the-interaction-of-concrete-frames-and-infilled-masonry-walls-with-emphasis-on-the-connections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Madan">Alok Madan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20K.%20Hashmi"> Arshad K. Hashmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20infilled%20frame" title="masonry infilled frame">masonry infilled frame</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20methods" title=" energy methods"> energy methods</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20ground%20motions" title=" near-fault ground motions"> near-fault ground motions</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamic%20analysis" title=" nonlinear dynamic analysis"> nonlinear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20demand" title=" seismic demand"> seismic demand</a> </p> <a href="https://publications.waset.org/abstracts/10308/performance-based-design-of-masonry-infilled-reinforced-concrete-frames-for-near-field-earthquakes-using-energy-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> A Study of Mortars with Granulated Blast Furnace Slag as Fine Aggregate and Its Influence on Properties of Burnt Clay Brick Masonry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vibha%20Venkataramu">Vibha Venkataramu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Venkatarama%20Reddy"> B. V. Venkatarama Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural river sand is the most preferred choice as fine aggregate in masonry mortars. Uncontrolled mining of sand from riverbeds for several decades has had detrimental effects on the environment. Several countries across the world have put strict restrictions on sand mining from riverbeds. However, in countries like India, the huge infrastructural boom has made the local construction industry to look for alternative materials to sand. This study aims at understanding the suitability of granulated blast furnace slag (GBS) as fine aggregates in masonry mortars. Apart from characterising the material properties of GBS, such as particle size distribution, pH, chemical composition, etc., of GBS, tests were performed on the mortars with GBS as fine aggregate. Additionally, the properties of five brick tall, stack bonded masonry prisms with various types of GBS mortars were studied. The mortars with mix proportions 1: 0: 6 (cement: lime: fine aggregate), 1: 1: 6, and 1: 0: 3 were considered for the study. Fresh and hardened properties of mortar, such as flow and compressive strength, were studied. To understand the behaviour of GBS mortars on masonry, tests such as compressive strength and flexure bond strength were performed on masonry prisms made with a different type of GBS mortars. Furthermore, the elastic properties of masonry with GBS mortars were also studied under compression. For comparison purposes, the properties of corresponding control mortars with natural sand as fine aggregate and masonry prisms with sand mortars were also studied under similar testing conditions. From the study, it was observed the addition of GBS negatively influenced the flow of mortars and positively influenced the compressive strength. The GBS mortars showed 20 to 25 % higher compressive strength at 28 days of age, compared to corresponding control mortars. Furthermore, masonry made with GBS mortars showed nearly 10 % higher compressive strengths compared to control specimens. But, the impact of GBS on the flexural strength of masonry was marginal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate" title=" fine aggregate"> fine aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=granulated%20blast%20furnace%20slag%20in%20mortars" title=" granulated blast furnace slag in mortars"> granulated blast furnace slag in mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20properties" title=" masonry properties"> masonry properties</a> </p> <a href="https://publications.waset.org/abstracts/116432/a-study-of-mortars-with-granulated-blast-furnace-slag-as-fine-aggregate-and-its-influence-on-properties-of-burnt-clay-brick-masonry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Wook%20Mauk">Ji-Wook Mauk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Suk%20Kim"> Yu-Suk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Joon%20Kim"> Hyung-Joon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled RC frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was established for comparison. Non-linear static analyses for the studied frames were performed to investigate their structural behavior under extreme loading conditions and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled RC frames are increased and their ductility is reduced, as infilled masonry walls are higher. Especially, Reinforced concrete frames with a higher partial infilled masonry wall would experience shear failures. Non-linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frames present stable collapse mechanism while the reinforced concrete frames with a partially infilled masonry wall collapse in more brittle manner due to short-column effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fully%20infilled%20RC%20frame" title="fully infilled RC frame">fully infilled RC frame</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20infilled%20RC%20frame" title=" partially infilled RC frame"> partially infilled RC frame</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20wall" title=" masonry wall"> masonry wall</a>, <a href="https://publications.waset.org/abstracts/search?q=short-column%20effect" title=" short-column effect"> short-column effect</a> </p> <a href="https://publications.waset.org/abstracts/21654/seismic-performance-of-reinforced-concrete-frames-infilled-by-masonry-walls-with-different-heights" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Numerical Simulations on the Torsional Behavior of Multistory Concrete Masonry Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Jose%20Cordova">Alvaro Jose Cordova</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsuan%20Teh%20Hu"> Hsuan Teh Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of concrete masonry constructions in developing countries has become very frequent, especially for domestic purpose. Most of them with asymmetric wall configurations in plan resulting in significant torsional actions when subjected to seismic loads. The study consisted on the finding of a material model for hollow unreinforced concrete masonry and a validation with experimental data found in literature. Numerical simulations were performed to 20 buildings with variations in wall distributions and heights. Results were analyzed by inspection and with a non-linear static method. The findings revealed that eccentricities as well as structure rigidities have a strong influence on the overall response of concrete masonry buildings. In addition, slab rotations depicted more accurate information about the torsional behavior than maximum versus average displacement ratios. The failure modes in low buildings were characterized by high tensile strains in the first floor. Whereas in tall buildings these strains were lowered significantly by higher compression stresses due to a higher self-weight. These tall buildings developed multiple plastic hinges along the height. Finally, the non-linear static analysis exposed a brittle response for all masonry assemblies. This type of behavior is undesired in any construction and the need for a material model for reinforced masonry is pointed out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20damaged%20plasticity" title="concrete damaged plasticity">concrete damaged plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20masonry" title=" concrete masonry"> concrete masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-modeling" title=" macro-modeling"> macro-modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20static%20analysis" title=" nonlinear static analysis"> nonlinear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20capacity" title=" torsional capacity"> torsional capacity</a> </p> <a href="https://publications.waset.org/abstracts/93745/numerical-simulations-on-the-torsional-behavior-of-multistory-concrete-masonry-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> In-Plane Shear Tests of Prefabricated Masonry Panel System with Two-Component Polyurethane Adhesive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekkehard%20Fehling">Ekkehard Fehling</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Capewell"> Paul Capewell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the importance of masonry glued by polyurethane adhesive has increased. In 2021, the Institute of Structural Engineering of the University of Kassel was commissioned to carry out quasi-static in-plane shear tests on prefabricated brick masonry panel systems with 2K PUR adhesive in order to investigate the load-bearing behavior during earthquakes. In addition to the usual measurement of deformations using displacement transducers, all tests were documented using an optical measuring system (“GOM”), which was used to determine the surface strains and deformations of the test walls. To compare the results with conventional mortar walls, additional reference tests were carried out on test specimens with thin-bed mortar joints. This article summarizes the results of the test program and provides a comparison between the load-bearing behavior of masonry bonded with polyurethane adhesive and thin bed mortar in order to enable realistic non-linear modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry" title="masonry">masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20tests" title=" shear tests"> shear tests</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane" title=" in-plane"> in-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20adhesive" title=" polyurethane adhesive"> polyurethane adhesive</a> </p> <a href="https://publications.waset.org/abstracts/178809/in-plane-shear-tests-of-prefabricated-masonry-panel-system-with-two-component-polyurethane-adhesive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Masonry%20infills&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Masonry%20infills&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Masonry%20infills&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Masonry%20infills&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Masonry%20infills&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>