CINXE.COM

Search results for: UV ultraviolet

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: UV ultraviolet</title> <meta name="description" content="Search results for: UV ultraviolet"> <meta name="keywords" content="UV ultraviolet"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="UV ultraviolet" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="UV ultraviolet"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 223</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: UV ultraviolet</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Reflector Arrangement Effect on Ultraviolet Lamp Performance by CFX Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Sidharta">William Sidharta</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Tu%20Lu"> Chin-Tu Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent ultraviolet lamp generates ultraviolet light which is commonly used in industrial field with certain purposes especially for curing process. Due to the value of inefficiency, there are changes in energy from electrical energy to the heat energy and this would make a defect on the industrial product caused by high temperature of lamp tube during ultraviolet light emission. The condition of industrial scale is further worsening, since commonly using dozens of fluorescent ultraviolet lamps to support huge production process and then it will generates much more heat energy. The maximum temperature of fluorescent ultraviolet lamp will get affected by arranging the lamp tube reflector and this study presents CFX simulation results of the maximum lamp tube temperature with some different reflector arrangements on purely natural convection phenomena. There exists certain spaces value of the reflector and the lamp tube to obtaining lower maximum temperature of the fluorescent ultraviolet lamp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFX%20simulation" title="CFX simulation">CFX simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20UV%20lamp" title=" fluorescent UV lamp"> fluorescent UV lamp</a>, <a href="https://publications.waset.org/abstracts/search?q=lamp%20tube%20reflector" title=" lamp tube reflector"> lamp tube reflector</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20light" title=" UV light "> UV light </a> </p> <a href="https://publications.waset.org/abstracts/25442/reflector-arrangement-effect-on-ultraviolet-lamp-performance-by-cfx-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Evcin">A. Evcin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20%C3%87i%C3%A7ek%20Bezir"> N. Çiçek Bezir</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Duman"> R. Duman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Duman"> N. Duman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 &deg;C for 2 h in air and carbonized at 750 &deg;C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber" title=" carbon nanofiber"> carbon nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20radiation" title=" ultraviolet radiation"> ultraviolet radiation</a> </p> <a href="https://publications.waset.org/abstracts/83495/uv-resistibility-of-a-carbon-nanofiber-reinforced-polymer-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Chromosomal Damage in Human Lymphocytes by Ultraviolet Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Osorio%20Ospina">Felipe Osorio Ospina</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Adelaida%20Mejia%20Arango"> Maria Adelaida Mejia Arango</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20On%C3%A9simo%20Vallejo%20Agudelo"> Esteban Onésimo Vallejo Agudelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Luc%C3%ADa%20D%C3%A1vila%20Osorio"> Victoria Lucía Dávila Osorio</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Vargas%20Grisales"> Natalia Vargas Grisales</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Mar%C3%ADa%20Mart%C3%ADnez%20Sanchez"> Lina María Martínez Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Andr%C3%A9s%20Agudelo%20V%C3%A9lez"> Camilo Andrés Agudelo Vélez</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81ngela%20Maria%20Londo%C3%B1o%20Garc%C3%ADa"> Ángela Maria Londoño García</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Cristina%20Ortiz%20Trujillo"> Isabel Cristina Ortiz Trujillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios States and skin cancers. Objective: Identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for a groups 1 to 3 seconds (p<0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20rays" title="ultraviolet rays">ultraviolet rays</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocytes" title=" lymphocytes"> lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20breakpoints" title=" chromosome breakpoints"> chromosome breakpoints</a>, <a href="https://publications.waset.org/abstracts/search?q=photodamage" title=" photodamage"> photodamage</a> </p> <a href="https://publications.waset.org/abstracts/14162/chromosomal-damage-in-human-lymphocytes-by-ultraviolet-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Ultraviolet Radiation and Chromosomal Damage in Human Lymphocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Osorio%20Ospina">Felipe Osorio Ospina</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Adelaida%20Mejia%20Arango"> Maria Adelaida Mejia Arango</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20On%C3%A9simo%20Vallejo%20Agudelo"> Esteban Onésimo Vallejo Agudelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Luc%C3%ADa%20D%C3%A1vila%20Osorio"> Victoria Lucía Dávila Osorio</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Vargas%20Grisales"> Natalia Vargas Grisales</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Mar%C3%ADa%20Mart%C3%ADnez%20Sanchez"> Lina María Martínez Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Andr%C3%A9s%20Agudelo%20V%C3%A9lez"> Camilo Andrés Agudelo Vélez</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81ngela%20Maria%20Londo%C3%B1o%20Garc%C3%ADa"> Ángela Maria Londoño García</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Cristina%20Ortiz%20Trujillo"> Isabel Cristina Ortiz Trujillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios states and skin cancers. Objective: To identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from the heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin, and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for groups 1 to 3 seconds (p < 0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome%20breakpoints" title="chromosome breakpoints">chromosome breakpoints</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocytes" title=" lymphocytes"> lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=photodamage" title=" photodamage"> photodamage</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20rays" title=" ultraviolet rays"> ultraviolet rays</a> </p> <a href="https://publications.waset.org/abstracts/26760/ultraviolet-radiation-and-chromosomal-damage-in-human-lymphocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Active Space Debris Removal by Extreme Ultraviolet Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Anandha%20Selvan">A. Anandha Selvan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Malarvizhi"> B. Malarvizhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent year the problem of space debris have become very serious. The mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now most of space debris object orbiting in LEO region about 97%. The catastrophic collision can be mostly occurred in LEO region, where this collision generate the new debris. Thus, we propose a concept for cleaning the space debris in the region of thermosphere by passing the Extreme Ultraviolet (EUV) radiation to in front of space debris object from the re-orbiter. So in our concept the Extreme Ultraviolet (EUV) radiation will create the thermosphere expansion by reacting with atmospheric gas particles. So the drag is produced in front of the space debris object by thermosphere expansion. This drag force is high enough to slow down the space debris object’s relative velocity. Therefore the space debris object gradually reducing the altitude and finally enter into the earth’s atmosphere. After the first target is removed, the re-orbiter can be goes into next target. This method remove the space debris object without catching debris object. Thus it can be applied to a wide range of debris object without regard to their shapes or rotation. This paper discusses the operation of re-orbiter for removing the space debris in thermosphere region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20space%20debris%20removal" title="active space debris removal">active space debris removal</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20debris" title=" space debris"> space debris</a>, <a href="https://publications.waset.org/abstracts/search?q=LEO" title=" LEO"> LEO</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20ultraviolet" title=" extreme ultraviolet"> extreme ultraviolet</a>, <a href="https://publications.waset.org/abstracts/search?q=re-orbiter" title=" re-orbiter"> re-orbiter</a>, <a href="https://publications.waset.org/abstracts/search?q=thermosphere" title=" thermosphere"> thermosphere</a> </p> <a href="https://publications.waset.org/abstracts/20478/active-space-debris-removal-by-extreme-ultraviolet-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Sunglasses Frame: UV Protection beyond Lens Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Augusto%20P.%20Andrade">Augusto P. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20L.%20Guedes"> Pedro L. Guedes</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20T.%20Da%20Silva"> Pedro T. Da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliane%20Ventura"> Liliane Ventura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study evaluates the contribution of sunglasses frames as additional eye safety for ultraviolet backscatter light. Current sunglasses standards establish safe limits regarding lens transmittance in the 280 nm to 380 nm range. However, frames are additionally relevant in protecting the eyes from ultraviolet exposure. This study involves the use of a prototype that simulates backscattered light environments and quantifies the contribution of the frame as a function of the light that reaches the eye when wearing sunglasses. The prototype consists of an LED illuminated sphere, a mannequin head with optical sensors, and baseline and measurements are performed. A set of 29 samples was tested, and results show the variation of light blocking presented by different types of frames, ranging from 68% to 80%. This is still ongoing research. Prototype improvements for allowing albedo simulation, as well as the six types of sky simulation, are being implemented to show the intensity of UV light reaching the eye for several environments worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sunglasses%20standards" title="sunglasses standards">sunglasses standards</a>, <a href="https://publications.waset.org/abstracts/search?q=sunglasses%20frame" title=" sunglasses frame"> sunglasses frame</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20protection" title=" ultraviolet protection"> ultraviolet protection</a>, <a href="https://publications.waset.org/abstracts/search?q=albedo" title=" albedo"> albedo</a> </p> <a href="https://publications.waset.org/abstracts/163501/sunglasses-frame-uv-protection-beyond-lens-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishakha%20Parihar">Vishakha Parihar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-particles%20iron%20dope" title=" nano-particles iron dope"> nano-particles iron dope</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Congo%20red%20dye" title=" Congo red dye"> Congo red dye</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20process" title=" sol-gel process"> sol-gel process</a> </p> <a href="https://publications.waset.org/abstracts/129520/characterization-of-iron-doped-titanium-dioxide-nanoparticles-and-its-photocatalytic-degradation-ability-for-congo-red-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Effect of Mutagenic Compounds on the Yield of Cultivated Pleurotus Pulmonarius </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simbiat%20O.%20Ayilara-Akande">Simbiat O. Ayilara-Akande</a>, <a href="https://publications.waset.org/abstracts/search?q=Soji%20Fakoya"> Soji Fakoya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quality and yield are always the target of farmers, including mushroom farmers. This study investigated how better Pleurotus pulmonarius can be obtained with the induction of mutagens into the process of spawn production in order to improve both the quality and the yield. Mushroom spawns were treated with ultraviolet radiation (UV) and hydroxylamine hydrochloride (HA) at different exposure times (2, 6, and 10 minutes) and different concentrations (10, 30, and 50Mm), respectively. The treated spawns were used to cultivate mushrooms on five substrates in the family of Gramineae viz: sorghum, rice, bamboo, sugarcane, and corn straws. Matured fruit bodies were harvested after a few weeks, and their parameters were taken and recorded. This study reveals a significant yield increase in mushroom grown on all the substrates when treated with ultraviolet radiation (UV) for 10 minutes and 6 minutes, respectively. Mushroom spawns treated with hydroxylamine hydrochloride showed a negative correlation in the yield with an increased in mutagen concentration. Hence, Ultraviolet light could be employed to enhance the quality and yield of mushroom production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mushroom" title="mushroom">mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=mutagens" title=" mutagens"> mutagens</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/130332/effect-of-mutagenic-compounds-on-the-yield-of-cultivated-pleurotus-pulmonarius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kawan">Anil Kawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon%20Jae%20Yu"> Soon Jae Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Park"> Jong Min Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction%20efficiency" title="extraction efficiency">extraction efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20emitting%20diodes" title=" light emitting diodes"> light emitting diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=n-GaN%20thinning" title=" n-GaN thinning"> n-GaN thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/61185/n-type-gan-thinning-for-enhancing-light-extraction-efficiency-in-gan-based-thin-film-flip-chip-ultraviolet-uv-light-emitting-diodes-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Design of UV Based Unicycle Robot to Disinfect Germs and Communicate With Multi-Robot System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Koduru">Charles Koduru</a>, <a href="https://publications.waset.org/abstracts/search?q=Parth%20Patel"> Parth Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hassan%20Tanveer"> M. Hassan Tanveer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the communication between a team of robots is used to sanitize an environment with germs is proposed. We introduce capabilities from a team of robots (most likely heterogeneous), a wheeled robot named ROSbot 2.0 that consists of a mounted LiDAR and Kinect sensor, and a modified prototype design of a unicycle-drive Roomba robot called the UV robot. The UV robot consists of ultrasonic sensors to avoid obstacles and is equipped with an ultraviolet light system to disinfect and kill germs, such as bacteria and viruses. In addition, the UV robot is equipped with disinfectant spray to target hidden objects that ultraviolet light is unable to reach. Using the sensors from the ROSbot 2.0, the robot will create a 3-D model of the environment which will be used to factor how the ultraviolet robot will disinfect the environment. Together this proposed system is known as the RME assistive robot device or RME system, which communicates between a navigation robot and a germ disinfecting robot operated by a user. The RME system includes a human-machine interface that allows the user to control certain features of each robot in the RME assistive robot device. This method allows the cleaning process to be done at a more rapid and efficient pace as the UV robot disinfects areas just by moving around in the environment while using the ultraviolet light system to kills germs. The RME system can be used in many applications including, public offices, stores, airports, hospitals, and schools. The RME system will be beneficial even after the COVID-19 pandemic. The Kennesaw State University will continue the research in the field of robotics, engineering, and technology and play its role to serve humanity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi%20robot%20system" title="multi robot system">multi robot system</a>, <a href="https://publications.waset.org/abstracts/search?q=assistive%20robots" title=" assistive robots"> assistive robots</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19%20pandemic" title=" COVID-19 pandemic"> COVID-19 pandemic</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolent%20technology" title=" ultraviolent technology"> ultraviolent technology</a> </p> <a href="https://publications.waset.org/abstracts/136605/design-of-uv-based-unicycle-robot-to-disinfect-germs-and-communicate-with-multi-robot-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Comparing Measurements of UV Radiation in Winter and Summer in Finland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20P%C3%A4%C3%A4kk%C3%B6nen">R. Pääkkönen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Korpinen"> L. Korpinen</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Gobba"> F. Gobba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of our study is to investigate UV exposure in Finland through sample measurements as a typical case study in summer and winter. We measured UV-BC weighted radiation and calculated a daily dose, which is about 100&ndash;150 times the Finnish exposure limit value in summer and 1&ndash;6 times in winter. The measured ultraviolet indices varied from 0 to 7 (scale 0&ndash;18), which is less than the values obtained in countries that are located farther south from Tampere latitude of 61 degrees. In wintertime, the UV exposure was modest compared to summertime, 50&ndash;150 mW/m<sup>2</sup> and about 1&ndash;5 mW/m<sup>2</sup> in summer and winter, respectively. However, technical means to manage UV exposure in Scandinavia are also needed in summer- and springtime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20radiation" title="ultraviolet radiation">ultraviolet radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=winter" title=" winter"> winter</a>, <a href="https://publications.waset.org/abstracts/search?q=summer" title=" summer"> summer</a> </p> <a href="https://publications.waset.org/abstracts/88284/comparing-measurements-of-uv-radiation-in-winter-and-summer-in-finland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Scientific Investigation for an Ancient Egyptian Polychrome Wooden Stele </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdrabou">Ahmed Abdrabou</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20Abdalla"> Medhat Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studied stele dates back to Third Intermediate Period (1075-664) B.C in an ancient Egypt. It is made of wood and covered with painted gesso layers. This study aims to use a combination of multi spectral imaging {visible, infrared (IR), Visible-induced infrared luminescence (VIL), Visible-induced ultraviolet luminescence (UVL) and ultraviolet reflected (UVR)}, along with portable x-ray fluorescence in order to map and identify the pigments as well as to provide a deeper understanding of the painting techniques. Moreover; the authors were significantly interested in the identification of wood species. Multispectral imaging acquired in 3 spectral bands, ultraviolet (360-400 nm), visible (400-780 nm) and infrared (780-1100 nm) using (UV Ultraviolet-induced luminescence (UVL), UV Reflected (UVR), Visible (VIS), Visible-induced infrared luminescence (VIL) and Infrared photography. False color images are made by digitally editing the VIS with IR or UV images using Adobe Photoshop. Optical Microscopy (OM), potable X-ray fluorescence spectroscopy (p-XRF) and Fourier Transform Infrared Spectroscopy (FTIR) were used in this study. Mapping and imaging techniques provided useful information about the spatial distribution of pigments, in particular visible-induced luminescence (VIL) which allowed the spatial distribution of Egyptian blue pigment to be mapped and every region containing Egyptian blue, even down to single crystals in some instances, is clearly visible as a bright white area; however complete characterization of the pigments requires the use of p. XRF spectroscopy. Based on the elemental analysis found by P.XRF, we conclude that the artists used mixtures of the basic mineral pigments to achieve a wider palette of hues. Identification of wood species Microscopic identification indicated that the wood used was Sycamore Fig (Ficus sycomorus L.) which is recorded as being native to Egypt and was used to make wooden artifacts since at least the Fifth Dynasty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polychrome%20wooden%20stele" title="polychrome wooden stele">polychrome wooden stele</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral%20imaging" title=" multispectral imaging"> multispectral imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20luminescence" title=" IR luminescence"> IR luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Wood%20identification" title=" Wood identification"> Wood identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Sycamore%20Fig" title=" Sycamore Fig"> Sycamore Fig</a>, <a href="https://publications.waset.org/abstracts/search?q=p-XRF" title=" p-XRF "> p-XRF </a> </p> <a href="https://publications.waset.org/abstracts/58954/scientific-investigation-for-an-ancient-egyptian-polychrome-wooden-stele" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Effect of Carbon Nanotubes on Ultraviolet and Immersion Stability of Diglycidyl Ether of Bisphenol A Epoxy Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemova%20Anastasiia">Artemova Anastasiia</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen%20Zexiang"> Shen Zexiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Savilov%20Serguei"> Savilov Serguei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The marine environment is very aggressive for a number of factors, such as moisture, temperature, winds, ultraviolet radiation, chloride ion concentration, oxygen concentration, pollution, and biofouling, all contributing to marine corrosion. Protective organic coatings provide protection either by a barrier action from the layer, which is limited due to permeability to water and oxygen or from active corrosion inhibition and cathodic protection due to the pigments in the coating. Carbon nanotubes can play not only barrier effect but also passivation effect via adsorbing molecular species of oxygen, hydroxyl, chloride and sulphate anions. Multiwall carbon nanotubes composite provide very important properties such as mechanical strength, non-cytotoxicity, outstanding thermal and electrical conductivity, and very strong absorption of ultraviolet radiation. The samples of stainless steel (316L) coated by epoxy resin with carbon nanotubes-based pigments were exposed to UV irradiation (340nm), and immersion to the sodium chloride solution for 1000h and corrosion behavior in 3.5 wt% sodium chloride (NaCl) solution was investigated. Experimental results showed that corrosion current significantly decreased in the presence of carbon nanotube-based materials, especially nitrogen-doped ones, in the composite coating. Importance of the structure and composition of the pigment materials and its composition was established, and the mechanism of the protection was described. Finally, the effect of nitrogen doping on the corrosion behavior was investigated. The pigment-polymer crosslinking improves the coating performance and the corrosion rate decreases in comparison with pure epoxy coating from 5.7E-05 to 1.4E-05mm/yr for the coating without any degradation; in more than 6 times for the coating after ultraviolet degradation; and more than 16% for the coatings after immersion degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/112005/effect-of-carbon-nanotubes-on-ultraviolet-and-immersion-stability-of-diglycidyl-ether-of-bisphenol-a-epoxy-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Rearrangement and Depletion of Human Skin Folate after UVA Exposure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luai%20Z.%20Hasoun">Luai Z. Hasoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20W.%20Bailey"> Steven W. Bailey</a>, <a href="https://publications.waset.org/abstracts/search?q=Kitti%20K.%20Outlaw"> Kitti K. Outlaw</a>, <a href="https://publications.waset.org/abstracts/search?q=June%20E.%20Ayling"> June E. Ayling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human skin color is thought to have evolved to balance sufficient photochemical synthesis of vitamin D versus the need to protect not only DNA but also folate from degradation by ultraviolet light (UV). Although the risk of DNA damage and subsequent skin cancer is related to light skin color, the effect of UV on skin folate of any species is unknown. Here we show that UVA irradiation at 13 mW/cm2 for a total exposure of 187 J/cm2 (similar to a maximal daily equatorial dose) induced a significant loss of total folate in epidermis of ex vivo white skin. No loss was observed in black skin samples, or in the dermis of either color. Interestingly, while the concentration of 5 methyltetrahydrofolate (5-MTHF) fell in white epidermis, a concomitant increase of tetrahydrofolic acid was found, though not enough to maintain the total pool. These results demonstrate that UVA indeed not only decreases folate in skin, but also rearranges the pool components. This could be due in part to the reported increase of NADPH oxidase activity upon UV irradiation, which in turn depletes the NADPH needed for 5-MTHF biosynthesis by 5,10-methylenetetrahydrofolate reductase. The increased tetrahydrofolic acid might further support production of the nucleotide bases needed for DNA repair. However, total folate was lost at a rate that could, with strong or continuous enough exposure to ultraviolet radiation, substantially deplete light colored skin locally, and also put pressure on total body stores for individuals with low intake of folate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depletion" title="depletion">depletion</a>, <a href="https://publications.waset.org/abstracts/search?q=folate" title=" folate"> folate</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20skin" title=" human skin"> human skin</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/40764/rearrangement-and-depletion-of-human-skin-folate-after-uva-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Ultraviolet Lasing from Vertically-Aligned ZnO Nanowall Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Takahashi">Masahiro Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosuke%20Harada"> Kosuke Harada</a>, <a href="https://publications.waset.org/abstracts/search?q=Shihomi%20Nakao"> Shihomi Nakao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitsuhiro%20Higashihata"> Mitsuhiro Higashihata</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Ikenoue"> Hiroshi Ikenoue</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisuke%20Nakamura"> Daisuke Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatsuo%20Okada"> Tatsuo Okada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide (ZnO) is one of the light emitting materials in ultraviolet (UV) region. In addition, ZnO nanostructures are also attracting increasing research interest as building blocks for UV optoelectronic applications. We have succeeded in synthesizing vertically-aligned ZnO nanostructures by laser interference patterning, which is catalyst-free and non-contact technique. In this study, vertically-aligned ZnO nanowall arrays were synthesized using two-beam interference. The maximum height and average thickness of the ZnO nanowalls were about 4.5 µm and 200 nm, respectively. UV lasing from a piece of the ZnO nanowall was obtained under the third harmonic of a Q-switched Nd:YAG laser excitation, and the estimated threshold power density for lasing was about 150 kW/cm2. Furthermore, UV lasing from the vertically-aligned ZnO nanowall was also achieved. The results indicate that ZnO nanowalls can be applied to random laser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowall" title=" nanowall"> nanowall</a>, <a href="https://publications.waset.org/abstracts/search?q=interference%20laser" title=" interference laser"> interference laser</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20lasing" title=" UV lasing"> UV lasing</a> </p> <a href="https://publications.waset.org/abstracts/23913/ultraviolet-lasing-from-vertically-aligned-zno-nanowall-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> DNA and DNA-Complexes Modified with Electromagnetic Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewelina%20Nowak">Ewelina Nowak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Wisla-Swider"> Anna Wisla-Swider</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Danel"> Krzysztof Danel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aqueous suspensions of DNA were illuminated with linearly polarized visible light and ultraviolet for 5, 15, 20 and 40 h. In order to check the nature of modification, DNA interactions were characterized by FTIR spectroscopy. For each illuminated sample, weight average molecular weight and hydrodynamic radius were measured by high pressure size exclusion chromatography. Resulting optical changes for illuminated DNA were investigated using UV-Vis spectra and photoluminescent. Optical properties show potential application in sensors based on modified DNA. Then selected DNA-surfactant complexes were illuminated with electromagnetic radiation for 5h. Molecular structure, optical characteristic were examinated for obtained complexes. Illumination led to changes of complexes physicochemical properties as compared with native DNA. Observed changes were induced by rearrangement of the molecular structure of DNA chains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymers" title="biopolymers">biopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=deoxyribonucleic%20acid" title=" deoxyribonucleic acid"> deoxyribonucleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=linearly%20polarized%20visible%20light" title=" linearly polarized visible light"> linearly polarized visible light</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/85130/dna-and-dna-complexes-modified-with-electromagnetic-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Calculation of Solar Ultraviolet Irradiant Exposure of the Cornea through Sunglasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Masili">Mauro Masili</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20O.%20Duarte"> Fernanda O. Duarte</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliane%20Ventura"> Liliane Ventura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultraviolet (UV) radiation is electromagnetic waves from 100 – 400 nm wavelength. The World Health Organization and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend guidelines on the exposure of the eyes to UV radiation because it is correlated to ophthalmic diseases. Those exposure limits for an 8-h period are 1) UV radiant exposure should not exceed 30 J/m2 when irradiance is spectrally weighted using an actinic action spectrum; 2) unweighted radiant exposure in the UV-A spectral region 315 – 400 nm should not exceed 10 kJ/m2. Sunglasses play an important role in preventing eye injuries related to Sun exposure. We have calculated the direct and diffuse solar UV irradiance in a geometry that refers to an individual wearing a sunglass, in which the solar rays strike on a vertical surface. The diffuse rays are those scattered from the atmosphere and from the local environment. The calculations used the open-source SMARTS2 spectral model, in which we assumed a clear sky condition, aside from information about site location, date, time, ozone column, aerosols, and turbidity. In addition, we measured the spectral transmittance of a typical sunglasses lens and the global solar irradiance was weighted with the spectral transmittance profile of the lens. The radiant exposure incident on the eye’s surface was calculated in the UV and UV-A ranges following the ICNIRP’s recommendations for each day of the year. The tested lens failed the UV-A safe limit, while the UV limit failed to comply with this limit after the aging process. Hence, the ICNIRP safe limits should be considered in the standards to increase the protection against UV radiation on the eye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICNIRP%20safe%20limits" title="ICNIRP safe limits">ICNIRP safe limits</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO-12312-1" title=" ISO-12312-1"> ISO-12312-1</a>, <a href="https://publications.waset.org/abstracts/search?q=sunglasses" title=" sunglasses"> sunglasses</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20radiation" title=" ultraviolet radiation"> ultraviolet radiation</a> </p> <a href="https://publications.waset.org/abstracts/163507/calculation-of-solar-ultraviolet-irradiant-exposure-of-the-cornea-through-sunglasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Sol-Gel Synthesis and Photoluminescent Properties of YPO4: Pr3+ Nanophosphors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badis%20Kahouadji">Badis Kahouadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdar%20Guerbous"> Lakhdar Guerbous</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyes%20Lamiri"> Lyes Lamiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For many years, the luminescent materials were investigated principally in the infrared and visible areas, because the ultraviolet (UV) and especially in vacuum Ultraviolet (VUV) are technically more difficult to explore, especially absence of applications requiring of materials suitable to short wavelengths.Recent necessary, related to the development of certain technologies, encouraged research in these spectra domains. It is in this context that the 4Fn-4Fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies. These studies relate in particular to search for new scintillator materials used for spectroscopy and X-ray, ɤ, as well as medical imaging. The 4Fn- 4Fn-15d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggeting to study on a very specific class of inorganic scintillators that are orthophosphate doped with rare earth ions, this study focused on the Pr3+ concentration on the structural and optical properties of Pr3+ doped YPO4 (yttriumorthophosphate) with powder form prepared by the Sol Gel method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth" title="rare earth">rare earth</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillator" title=" scintillator"> scintillator</a>, <a href="https://publications.waset.org/abstracts/search?q=YPO4%3APr3%2B%20nanophosphors" title=" YPO4:Pr3+ nanophosphors"> YPO4:Pr3+ nanophosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=sol%20gel" title=" sol gel"> sol gel</a>, <a href="https://publications.waset.org/abstracts/search?q=4Fn-4Fn-15d%20transitions" title=" 4Fn-4Fn-15d transitions"> 4Fn-4Fn-15d transitions</a> </p> <a href="https://publications.waset.org/abstracts/9048/sol-gel-synthesis-and-photoluminescent-properties-of-ypo4-pr3-nanophosphors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Li">Li Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang"> Lei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenglin%20Du"> Chenglin Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengxin%20Ren"> Mengxin Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinzheng%20Zhang"> Xinzheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Cai"> Wei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjun%20Xu"> Jingjun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breathing%20mode" title="breathing mode">breathing mode</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonics" title=" plasmonics"> plasmonics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20coupling" title=" strong coupling"> strong coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/105253/ultrastrong-coupling-of-cdznszns-quantum-dots-and-breathing-plasmons-in-aluminum-metal-insulator-metal-nanocavities-in-near-ultraviolet-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> High-Frequency Modulation of Light-Emitting Diodes for New Ultraviolet Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng-Chyi%20Wu">Meng-Chyi Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bonn%20Lin"> Bonn Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Hao%20Liao"> Jyun-Hao Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chein-Ju%20Chen"> Chein-Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20Jhuang"> Yu-Cheng Jhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mau-Phon%20Houng"> Mau-Phon Houng</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang-Hsing%20Wang"> Fang-Hsing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Chu%20Liu"> Min-Chu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Fu%20Yang"> Cheng-Fu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Shong%20Hong"> Cheng-Shong Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the use of wireless communications has become critical nowadays, the available RF spectrum has become limited. Ultraviolet (UV) communication system can alleviate the spectrum constraint making UV communication system a potential alternative to future communication demands. Also, UV links can provide faster communication rate and can be used in combination with existing RF communication links, providing new communications diversity with higher user capacity. The UV region of electromagnetic spectrum has been of interest to detector, imaging and communication technologies because the stratospheric ozone layer effectively absorbs some solar UV radiation from reaching the earth surface. The wavebands where most of UV radiation is absorbed by the ozone are commonly known as the solar blind region. By operating in UV-C band (200-280 nm) the communication system can minimize the transmission power consumption since it will have less radiation noise. UV communication uses the UV ray as the medium. Electric signal is carried on this band after being modulated and then be transmitted within the atmosphere as channel. Though the background noise of UV-C communication is very low owing to the solar-blind feature, it leads to a large propagation loss. The 370 nm UV provides a much lower propagation loss than that the UV-C does and the recent device technology for UV source on this band is more mature. The fabricated 370 nm AlGaN light-emitting diodes (LEDs) with an aperture size of 45 m exhibit a modulation bandwidth of 165 MHz at 30 mA and a high power of 7 W/cm2 at 230 A/cm2. In order to solve the problem of low power in single UV LED, a UV LED array is presented in. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20%28UV%29%20communication" title="ultraviolet (UV) communication">ultraviolet (UV) communication</a>, <a href="https://publications.waset.org/abstracts/search?q=light-emitting%20diodes%20%28LEDs%29" title=" light-emitting diodes (LEDs)"> light-emitting diodes (LEDs)</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation%20bandwidth" title=" modulation bandwidth"> modulation bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=LED%20array" title=" LED array"> LED array</a>, <a href="https://publications.waset.org/abstracts/search?q=370%20nm" title=" 370 nm"> 370 nm</a> </p> <a href="https://publications.waset.org/abstracts/46357/high-frequency-modulation-of-light-emitting-diodes-for-new-ultraviolet-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Effects of Ultraviolet Treatment on Microbiological Load and Phenolic Content of Vegetable Juice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Dogan">Kubra Dogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Tornuk"> Fatih Tornuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increasing consumer demand for the high-quality food products and awareness regarding the health benefits of different nutrients in food minimal processing becomes more popular in modern food preservation. To date, heat treatment is often used for inactivation of spoilage microorganisms in foods. However, it may cause significant changes in the quality and nutritional properties of food. In order to overcome the detrimental effects of heat treatment, several alternatives of non-thermal microbial inactivation processes have been investigated. Ultraviolet (UV) inactivation is a promising and feasible method for better quality and longer shelf life as an alternative to heat treatment, which aims to inhibit spoilage and pathogenic microorganisms and to inactivate the enzymes in vegetable juice production. UV-C is a sub-class of UV treatment which shows the highest microcidal effect between 250-270 nm. The wavelength of 254 nm is used for the surface disinfection of certain liquid food products such as vegetable juice. Effects of UV-C treatment on microbiological load and quality parameter of vegetable juice which is a mix of celery, carrot, lemon and orange was investigated. Our results showed that storing of UV-C applied vegetable juice for three months, reduced the count of TMAB by 3.5 log cfu/g and yeast-mold by 2 log cfu/g compared to control sample. Total phenolic content was found to be 514.3 ± 0.6 mg gallic acid equivalent/L, and there wasn’t a significant difference compared to control. The present work suggests that UV-C treatment is an alternative method for disinfection of vegetable juice since it enables adequate microbial inactivation, longer shelf life and has minimal effect on degradation of quality parameters of vegetable juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title="heat treatment">heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20content" title=" phenolic content"> phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20%28UV-C%29" title=" ultraviolet (UV-C)"> ultraviolet (UV-C)</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20juice" title=" vegetable juice"> vegetable juice</a> </p> <a href="https://publications.waset.org/abstracts/86827/effects-of-ultraviolet-treatment-on-microbiological-load-and-phenolic-content-of-vegetable-juice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Influence of Single Source Irradiation on the Homogeneous Alignment of Liquid Crystals Molecules on Glass Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Akhtar">Sarah Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Mahmood"> Rizwan Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A detailed study of homogeneous alignment of liquid crystal molecules on a glass substrate will be presented. Thin films of polyimide were coated on several glass substrates. Various methods were employed to prepare coated surfaces to achieve desired alignment; these include traditionally rubbing the surface with a felt cloth then exposing them perpendicular to the easy axis with incandescent light (IL), linearly polarized ultraviolet (LPUVR) and un-polarized ultraviolet (UPUVR) radiation. The quality of the alignment was tested by measuring the tilt angle in the temperature range between 30°C to 55°C. Regression analysis of the data using ‘SigmaPlot’ suggests a gradual increase in tilt angle (1.1°-1.8°) for the rubbed, 0.6° to 3.6° increase for the rubbed plus IL radiated and 1.6° to 4.6° for the rubbed plus UPUVL radiated samples, respectively. However to our surprise, we found tilt angle to be decreasing from 2.4° to 1.6° for the rubbed plus LPUVL radiated samples. We hope that these findings will be helpful in the fabrication of display panels and other electro-optic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogeneous" title="homogeneous">homogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystals" title=" liquid crystals"> liquid crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=polyimide" title=" polyimide"> polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20angle" title=" tilt angle"> tilt angle</a> </p> <a href="https://publications.waset.org/abstracts/102033/influence-of-single-source-irradiation-on-the-homogeneous-alignment-of-liquid-crystals-molecules-on-glass-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Differences in Vitamin D Status in Caucasian and Asian Women Following Ultraviolet Radiation (UVR) Exposure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Hakim">O. Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Hart"> K. Hart</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20McCabe"> P. McCabe</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Berry"> J. Berry</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Rhodes"> L. E. Rhodes</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Spyrou"> N. Spyrou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alfuraih"> A. Alfuraih</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lanham-New"> S. Lanham-New</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that skin pigmentation reduces the penetration of ultraviolet radiation (UVR) and thus photosynthesis of 25(OH)D. However, the ethnic differences in 25(OH)D production remain to be fully elucidated. This study aimed to investigate the differences in vitamin D production between Asian and Caucasian postmenopausal women, in response to a defined, controlled UVB exposure. Seventeen women; nine white Caucasian (skin phototype II and III), eight South Asian women (skin phototype IV and V) participated in the study, acting as their controls. Three blood samples were taken for measurement of 25(OH)D during the run-in period (nine days, no sunbed exposure) after which all subjects underwent an identical UVR exposure protocol irrespective of skin colour (nine days, three sunbed sessions: 6, 8 and 8 minutes respectively with approximately 80% of body surface exposed). Skin tone was measured four times during the study. Both groups showed a gradual increase in 25(OH)D with final levels significantly higher than baseline (p<0.01). 25(OH)D concentration mean from a baseline of 43.58±19.65 to 57.80±17.11 nmol/l among Caucasian and from 27.03±23.92 to 44.73±17.74 nmol/l among Asian women. The baseline status of vitamin D was classified as deficient among the Asian women and insufficient among the Caucasian women. The percentage increase in vitamin D3 among Caucasians was 39.86% (21.02) and 207.78% (286.02) in Asian subjects respectively. This greater response to UVR exposure reflects the lower baseline levels of the Asian subjects. The mixed linear model analysis identified a significant effect of duration of UVR exposure on the production of 25(OH)D. However, the model shows no significant effect of ethnicity and skin tone on the production of 25(OH)D. These novel findings indicate that people of Asian ethnicity have the full capability to produce a similar amount of vitamin D compared to the Caucasian group; initial vitamin D concentration influences the amount of UVB needed to reach equal serum concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethnicity" title="ethnicity">ethnicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Caucasian" title=" Caucasian"> Caucasian</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Asian" title=" South Asian"> South Asian</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20D" title=" vitamin D"> vitamin D</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20radiation" title=" ultraviolet radiation"> ultraviolet radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=UVR" title=" UVR"> UVR</a> </p> <a href="https://publications.waset.org/abstracts/23996/differences-in-vitamin-d-status-in-caucasian-and-asian-women-following-ultraviolet-radiation-uvr-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Numerical Study of UV Irradiation Effect on Air Disinfection Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand">H. Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Degheh"> M. Degheh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sajadi"> B. Sajadi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sobhani"> H. Sobhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The induct ultraviolet germicidal irradiation (UVGI) systems are broadly used nowadays and their utilization is widened every day. Even though these systems are not applicable individually, they are very suitable supplements for the traditional filtration systems. The amount of inactivated microorganisms is dependent on the air velocity, lamp power, fluence rate distribution, and also germicidal susceptibility of microorganisms. In this paper, these factors are investigated utilizing an air-microorganism two-phase numerical model. The eulerian-lagrangian method was used to have more detailed information on the history of each particle. The UVGI system was modeled in three steps including: 1) modeling the air flow, 2) modeling the discrete phase of particles, 3) modeling the UV intensity field, and 4) modeling the particle inactivation. The results from modeling different lamp arrangements and powers showed that the system functions better at more homogeneous irradiation distribution. Since increasing the air flow rate of the device results in increasing of particle inactivation rate, the optimal air velocity shall be adjusted in accordance with the microorganism production rate, and the air quality requirement using the curves represented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism" title=" microorganism"> microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20germicidal%20irradiation" title=" ultraviolet germicidal irradiation"> ultraviolet germicidal irradiation</a> </p> <a href="https://publications.waset.org/abstracts/22321/numerical-study-of-uv-irradiation-effect-on-air-disinfection-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Rationale of Eye Pupillary Diameter for the UV Protection for Sunglasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liliane%20Ventura">Liliane Ventura</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Masili"> Mauro Masili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultraviolet (UV) protection is critical for sunglasses, and mydriasis, as well as miosis, are relevant parameters to consider. The literature reports that for sunglasses, ultraviolet protection is critical because sunglasses can cause the opposite effect if the lenses do not provide adequate UV protection due to the greater dilation of the pupil when wearing sunglasses. However, the scientific literature does not properly quantify to support this rationale. The reasoning may be misleading by ignoring not only the inherent absorption of UV by the sunglass lens materials but also by ignoring the absorption of the anterior structures of the eye, i.e., the cornea and aqueous humor. Therefore, we estimate the pupil diameter and calculate the solar ultraviolet influx through the pupil of the human eye for two situations of an individual wearing and not wearing sunglasses. We quantify the dilation of the pupil as a function of the luminance of the surrounding. Therefore, we calculate the influx of solar UV through the pupil of the eye for two situations for an individual wearing sunglass and for the eyes free of shade. A typical boundary condition for the calculation is an individual in an upright position wearing sunglasses, staring at the horizon as if the sun is in the zenith. The calculation was done for the latitude of the geographic center of the state of São Paulo (-22º04'11.8'' S) from sunrise to sunset. A model from the literature is used for determining the sky luminance. The initial approach is to obtain pupil diameter as a function of luminance. Therefore, as a preliminary result, we calculate the pupil diameter as a function of the time of day, as the sun moves, for a particular day of the year. The working range for luminance is daylight (10⁻⁴ – 10⁵ cd/m²). We are able to show how the pupil adjusts to brightness change (~2 - ~7.8 mm). At noon, with the sun higher, the direct incidence of light on the pupil is lower if compared to mid-morning or mid-afternoon, when the sun strikes more directly into the eye. Thus, the pupil is larger at midday. As expected, the two situations have opposite behaviors since higher luminance implies a smaller pupil. With these results, we can progress in the short term to obtain the transmittance spectra of sunglasses samples and quantify how light attenuation provided by the spectacles affects pupil diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sunglasses" title="sunglasses">sunglasses</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20protection" title=" UV protection"> UV protection</a>, <a href="https://publications.waset.org/abstracts/search?q=pupil%20diameter" title=" pupil diameter"> pupil diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20irradiance" title=" solar irradiance"> solar irradiance</a>, <a href="https://publications.waset.org/abstracts/search?q=luminance" title=" luminance"> luminance</a> </p> <a href="https://publications.waset.org/abstracts/163520/rationale-of-eye-pupillary-diameter-for-the-uv-protection-for-sunglasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Ectoine: A Compatible Solute in Radio-Halophilic Stenotrophomonas sp. WMA-LM19 Strain to Prevent Ultraviolet-Induced Protein Damage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wasim%20Sajjad">Wasim Sajjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Manzoor%20Ahmad"> Manzoor Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sundas%20Qadir"> Sundas Qadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rafiq"> Muhammad Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariha%20Hasan"> Fariha Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Tehan"> Richard Tehan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerry%20L.%20McPhail"> Kerry L. McPhail</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamer%20Ali%20Shah"> Aamer Ali Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: This study aims to investigate the possible radiation protective role of a compatible solute in the tolerance of radio-halophilic bacterium against stresses, like desiccation and exposure to ionizing radiation. Methods and Results: Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance for ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated that the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by high-performance liquid chromatography (HPLC). The compound was characterized as ectoine by 1H and 13C nuclear magnetic resonance (NMR), and mass spectrometry (MS). Ectoine demonstrated more efficient preventive activity (54.80%) to erythrocyte membranes and also inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000 Jm-2) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Conclusion: The results indicated that ectoine can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damage in extreme environments. Significance and Impact of the Study: This study shows that ectoine from radio-halophiles can be used as a potential source in topical creams as sunscreen. The investigation of ectoine as UV protectant also changes the prospective that radiation resistance is specific only to molecular adaptation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ectoine" title="ectoine">ectoine</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-oxidant" title=" anti-oxidant"> anti-oxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=stenotrophomonas%20sp." title=" stenotrophomonas sp."> stenotrophomonas sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20radiation" title=" ultraviolet radiation"> ultraviolet radiation</a> </p> <a href="https://publications.waset.org/abstracts/79565/ectoine-a-compatible-solute-in-radio-halophilic-stenotrophomonas-sp-wma-lm19-strain-to-prevent-ultraviolet-induced-protein-damage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Removal of Oxytetracycline Using Sonophotocatalysis: Parametric Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouafia-Chergui%20Sou%C3%A2d">Bouafia-Chergui Souâd</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabani%20Malika"> Chabani Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensmaili%20Aicha"> Bensmaili Aicha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water treatment and especially, medicament pollutants are nowadays important problems. Degradation of oxytetracycline was carried out using combined process of low-frequency ultrasound (US), ultraviolet irradiation and a catalyst. The effectiveness of the coupled processes has been evaluated by studying the effects of various operating parameters including initial OTC concentration, solution pH and catalyst mass. For the photolysis process, the monochromatic ultraviolet light wavelength utilized was 365 nm. The sonolysis experiments were performed with ultrasound at a frequency of 40 kHz. The heterogeneous photocatalysis was studied in the presence of TiO2. The processes were employed individually, and simultaneously to examine the details of the processes and to investigate the contribution of each process. Low UV intensity (12W), low pH and high mass of TiO2 conditions enhanced the sono-photocatalytic degradation of OTC. The results showed that the individual contribution sonochemical and photochemical reactions are very low, however, their coupling increases the degradation rate of 8 times compared to photolysis and 2 times compared to sonolysis. There is a synergistic effect between the two modes of radiation, UV and U.S. leading to 82.04% degradation yield. An application of these combined processes on the treatment of a real pharmaceutical wastewater was examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sonolysis" title="sonolysis">sonolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20process" title=" combined process"> combined process</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title=" antibiotic"> antibiotic</a> </p> <a href="https://publications.waset.org/abstracts/42492/removal-of-oxytetracycline-using-sonophotocatalysis-parametric-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shahid">H. Shahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=thermolysis" title=" thermolysis"> thermolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/117400/a-green-optically-active-hydrogen-and-oxygen-generation-system-employing-terrestrial-and-extra-terrestrial-ultraviolet-solar-irradiance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Singh">Neha Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UV%20protection" title="UV protection">UV protection</a>, <a href="https://publications.waset.org/abstracts/search?q=aloe%20vera" title=" aloe vera"> aloe vera</a>, <a href="https://publications.waset.org/abstracts/search?q=protective%20clothing" title=" protective clothing"> protective clothing</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dyes" title=" reactive dyes"> reactive dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=woven%20and%20knits" title=" woven and knits"> woven and knits</a> </p> <a href="https://publications.waset.org/abstracts/79095/substantiate-the-effects-of-reactive-dyes-and-aloe-vera-on-the-ultra-violet-protective-properties-on-cotton-woven-and-knitted-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Porosity and Ultraviolet Protection Ability of Woven Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polona%20Dobnik%20Dubrovski">Polona Dobnik Dubrovski</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Majumdar"> Abhijit Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing awareness of negative effects of ultraviolet radiation and regular, effective protection are actual themes in many countries. Woven fabrics as clothing items can provide convenient personal protection however not all fabrics offer sufficient UV protection. Porous structure of the material has a great effect on UPF. The paper is focused on an overview of porosity in woven fabrics, including the determination of porosity parameters on the basis of an ideal geometrical model of porous structure. Our experiment was focused on 100% cotton woven fabrics in a grey state with the same yarn fineness (14 tex) and different thread densities (to achieve relative fabric density between 59 % and 87 %) and different type of weaves (plain, 4-end twill, 5-end satin). The results of the research dealing with the modelling of UPF and the influence of volume and open porosity of tested samples on UPF are exposed. The results show that open porosity should be lower than 12 % to achieve good UV protection according to AS/NZ standard of tested samples. The results also indicate that there is no direct correlation between volume porosity and UPF, moreover, volume porosity namely depends on the type of weave and affects UPF as well. Plain fabrics did not offer any UV protection, while twill and satin fabrics offered good UV protection when volume porosity was less than 64 % and 66 %, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20engineering" title="fabric engineering">fabric engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20radiation" title=" UV radiation"> UV radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=woven%20fabric%20construction" title=" woven fabric construction"> woven fabric construction</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/45594/porosity-and-ultraviolet-protection-ability-of-woven-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10