CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 61 results for author: <span class="mathjax">Patil, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Patil%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Patil, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Patil%2C+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Patil, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Patil%2C+P&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Patil%2C+P&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Patil%2C+P&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04641">arXiv:2410.04641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04641">pdf</a>, <a href="https://arxiv.org/format/2410.04641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Measuring the ISM Content of Nearby, Luminous, Type 1 and Type 2 QSOs through CO and [C II] </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Luo%2C+Y">Yuanze Luo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petric%2C+A+O">A. O. Petric</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Janssen%2C+R+M+J">R. M. J. Janssen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fadda%2C+D">D. Fadda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flagey%2C+N">N. Flagey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Omont%2C+A">A. Omont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jacob%2C+A+M">A. M. Jacob</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rowlands%2C+K">K. Rowlands</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alatalo%2C+K">K. Alatalo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Billot%2C+N">N. Billot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heckman%2C+T">T. Heckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Husemann%2C+B">B. Husemann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kakkad%2C+D">D. Kakkad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacy%2C+M">M. Lacy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marshall%2C+J">J. Marshall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minchin%2C+R">R. Minchin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minsley%2C+R">R. Minsley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nesvadba%2C+N">N. Nesvadba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Otter%2C+J+A">J. A. Otter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Urrutia%2C+T">T. Urrutia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04641v1-abstract-short" style="display: inline;"> We present observations of CO(1--0) and CO(2--1) lines from the Institut de radioastronomie millim茅trique (IRAM) 30m telescope toward 20 nearby, optically luminous type 2 quasars (QSO2s) and observations of [C II] 158$渭$m line from the Stratospheric Observatory For Infrared Astronomy (SOFIA) for 5 QSO2s in the CO sample and 5 type 1 quasars (QSO1s). In the traditional evolutionary scenario explain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04641v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04641v1-abstract-full" style="display: none;"> We present observations of CO(1--0) and CO(2--1) lines from the Institut de radioastronomie millim茅trique (IRAM) 30m telescope toward 20 nearby, optically luminous type 2 quasars (QSO2s) and observations of [C II] 158$渭$m line from the Stratospheric Observatory For Infrared Astronomy (SOFIA) for 5 QSO2s in the CO sample and 5 type 1 quasars (QSO1s). In the traditional evolutionary scenario explaining different types of QSOs, obscured QSO2s emerge from gas-rich mergers observed as luminous infrared galaxies (LIRGs) and then turn into unobscured QSO1s as the black holes clear out the obscuring material in a blow-out phase. We test the validity of this theoretical prediction by comparing the gas fractions and star formation efficiencies among LIRGs and QSOs. We find that CO luminosity, CO-derived gas masses and gas fractions in QSO1s are consistent with those estimated for QSO2s, while LIRGs exhibit a closer resemblance to QSO2s in terms of CO-derived gas masses and gas fractions, and [C II] luminosity. However, comparisons between [C II] luminosity and star formation tracers such as the CO and infrared luminosity imply additional sources of [C II] emission in QSO1s likely tracing neutral atomic or ionized gas. All three types of galaxies have statistically indistinguishable distributions of star formation efficiency. Our results are consistent with part of the evolutionary scenario where nearby QSO2s could emerge from LIRGs, but they are unlikely to be the precursors of nearby QSO1s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04641v1-abstract-full').style.display = 'none'; document.getElementById('2410.04641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 10 figures, 7 tables; the complete set of Figure 1 is appended to the end of document. Under review (revisions submitted) by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17319">arXiv:2409.17319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17319">pdf</a>, <a href="https://arxiv.org/format/2409.17319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Pulling back the curtain on shocks and star-formation in NGC 1266 with Gemini-NIFS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Otter%2C+J+A">Justin Atsushi Otter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alatalo%2C+K">Katherine Alatalo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rowlands%2C+K">Kate Rowlands</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McDermid%2C+R+M">Richard M. McDermid</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davis%2C+T+A">Timothy A. Davis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=French%2C+K+D">K. Decker French</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heckman%2C+T">Timothy Heckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ogle%2C+P">Patrick Ogle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kakkad%2C+D">Darshan Kakkad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luo%2C+Y">Yuanze Luo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K">Kristina Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tripathi%2C+A">Akshat Tripathi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Pallavi Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petric%2C+A">Andreea Petric</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smercina%2C+A">Adam Smercina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skarbinski%2C+M">Maya Skarbinski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lanz%2C+L">Lauranne Lanz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larson%2C+K">Kristin Larson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appleton%2C+P+N">Philip N. Appleton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aalto%2C+S">Susanne Aalto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olander%2C+G">Gustav Olander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sazonova%2C+E">Elizaveta Sazonova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+J+D+T">J. D. T. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17319v1-abstract-short" style="display: inline;"> We present Gemini near-infrared integral field spectrograph (NIFS) K-band observations of the central 400 pc of NGC 1266, a nearby (D$\approx$30 Mpc) post-starburst galaxy with a powerful multi-phase outflow and a shocked ISM. We detect 7 H$_2$ ro-vibrational emission lines excited thermally to $T$$\sim$2000 K, and weak Br$纬$ emission, consistent with a fast C-shock. With these bright H$_2$ lines,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17319v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17319v1-abstract-full" style="display: none;"> We present Gemini near-infrared integral field spectrograph (NIFS) K-band observations of the central 400 pc of NGC 1266, a nearby (D$\approx$30 Mpc) post-starburst galaxy with a powerful multi-phase outflow and a shocked ISM. We detect 7 H$_2$ ro-vibrational emission lines excited thermally to $T$$\sim$2000 K, and weak Br$纬$ emission, consistent with a fast C-shock. With these bright H$_2$ lines, we observe the spatial structure of the shock with an unambiguous tracer for the first time. The Br$纬$ emission is concentrated in the central $\lesssim$100 pc, indicating that any remaining star-formation in NGC 1266 is in the nucleus while the surrounding cold molecular gas has little on-going star-formation. Though it is unclear what fraction of this Br$纬$ emission is from star-formation or the AGN, assuming it is entirely due to star-formation we measure an instantaneous star-formation rate of 0.7 M$_\odot$ yr$^{-1}$, though the star-formation rate may be significantly higher in the presence of additional extinction. NGC 1266 provides a unique laboratory to study the complex interactions between AGN, outflows, shocks, and star-formation, all of which are necessary to unravel the evolution of the post-starburst phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17319v1-abstract-full').style.display = 'none'; document.getElementById('2409.17319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09116">arXiv:2409.09116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09116">pdf</a>, <a href="https://arxiv.org/format/2409.09116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Characterizing the Molecular Gas in Infrared Bright Galaxies with CARMA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Alatalo%2C+K">Katherine Alatalo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petric%2C+A+O">Andreea O. Petric</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lanz%2C+L">Lauranne Lanz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rowlands%2C+K">Kate Rowlands</a>, <a href="/search/astro-ph?searchtype=author&amp;query=U%2C+V">Vivian U</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larson%2C+K+L">Kirsten L. Larson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armus%2C+L">Lee Armus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barcos-Mu%C3%B1oz%2C+L">Loreto Barcos-Mu帽oz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+A+S">Aaron S. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koda%2C+J">Jin Koda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luo%2C+Y">Yuanze Luo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Medling%2C+A+M">Anne M. Medling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K+E">Kristina E. Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Otter%2C+J+A">Justin A. Otter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Pallavi Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pe%C3%B1aloza%2C+F">Fernando Pe帽aloza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salim%2C+D">Diane Salim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sanders%2C+D+B">David B. Sanders</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sazonova%2C+E">Elizaveta Sazonova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skarbinski%2C+M">Maya Skarbinski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Song%2C+Y">Yiqing Song</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Treister%2C+E">Ezequiel Treister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Urry%2C+C+M">C. Meg Urry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09116v1-abstract-short" style="display: inline;"> We present the CO(1-0) maps of 28 infrared-bright galaxies from the Great Observatories All-Sky Luminous Infrared Galaxy Survey (GOALS) taken with the Combined Array for Research in Millimeter Astronomy (CARMA). We detect 100GHz continuum in 16 of 28 galaxies, which trace both active galactic nuclei (AGNs) and compact star-forming cores. The GOALS galaxies show a variety of molecular gas morpholog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09116v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09116v1-abstract-full" style="display: none;"> We present the CO(1-0) maps of 28 infrared-bright galaxies from the Great Observatories All-Sky Luminous Infrared Galaxy Survey (GOALS) taken with the Combined Array for Research in Millimeter Astronomy (CARMA). We detect 100GHz continuum in 16 of 28 galaxies, which trace both active galactic nuclei (AGNs) and compact star-forming cores. The GOALS galaxies show a variety of molecular gas morphologies, though in the majority of cases, the average velocity fields show a gradient consistent with rotation. We fit the full continuum SEDs of each of the source using either MAGPHYS or SED3FIT (if there are signs of an AGN) to derive the total stellar mass, dust mass, and star formation rates of each object. We adopt a value determined from luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) of $伪_{\rm CO}=1.5^{+1.3}_{-0.8}~M_\odot$ (K km s$^{-1}$ pc$^2)^{-1}$, which leads to more physical values for $f_{\rm mol}$ and the gas-to-dust ratio. Mergers tend to have the highest gas-to-dust ratios. We assume the cospatiality of the molecular gas and star formation, and plot the sample on the Schmidt-Kennicutt relation, we find that they preferentially lie above the line set by normal star-forming galaxies. This hyper-efficiency is likely due to the increased turbulence in these systems, which decreases the freefall time compared to star-forming galaxies, leading to &#34;enhanced&#34; star formation efficiency. Line wings are present in a non-negligible subsample (11/28) of the CARMA GOALS sources and are likely due to outflows driven by AGNs or star formation, gas inflows, or additional decoupled gas components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09116v1-abstract-full').style.display = 'none'; document.getElementById('2409.09116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 tables, 11 figures, Accepted by the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16806">arXiv:2403.16806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16806">pdf</a>, <a href="https://arxiv.org/ps/2403.16806">ps</a>, <a href="https://arxiv.org/format/2403.16806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Hadamard Regularization of the Graviton Stress Tensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Negro%2C+A">Anna Negro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16806v1-abstract-short" style="display: inline;"> We present the details for the covariant renormalization of the stress tensor for vacuum tensor perturbations at the level of the effective action, adopting Hadamard regularization techniques to isolate short distance divergences and gauge fixing via the Faddeev-Popov procedure. The subsequently derived renormalized stress tensor can be related to more familiar forms reliant upon an averaging pres&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16806v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16806v1-abstract-full" style="display: none;"> We present the details for the covariant renormalization of the stress tensor for vacuum tensor perturbations at the level of the effective action, adopting Hadamard regularization techniques to isolate short distance divergences and gauge fixing via the Faddeev-Popov procedure. The subsequently derived renormalized stress tensor can be related to more familiar forms reliant upon an averaging prescription, such as the Isaacson or Misner-Thorne-Wheeler forms. The latter, however, are premised on a prior scale separation (beyond which the averaging is invoked) and therefore unsuited for the purposes of renormalization. This can lead to potentially unphysical conclusions when taken as a starting point for the computation of any observable that needs regularization, such as the energy density associated to a stochastic background. Any averaging prescription, if needed, should only be invoked at the end of the renormalization procedure. The latter necessarily involves the imposition of renormalization conditions via a physical measurement at some fixed scale, which we retrace for primordial gravitational waves sourced from vacuum fluctuations through direct or indirect observation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16806v1-abstract-full').style.display = 'none'; document.getElementById('2403.16806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10008">arXiv:2402.10008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10008">pdf</a>, <a href="https://arxiv.org/format/2402.10008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s40766-024-00053-0">10.1007/s40766-024-00053-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An 脡tude on the Regularization and Renormalization of Divergences in Primordial Observables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Negro%2C+A">Anna Negro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10008v3-abstract-short" style="display: inline;"> Many cosmological observables of interest derive from primordial vacuum fluctuations evolved to late times. These observables represent statistical draws from some underlying quantum or statistical field theoretic framework where infinities arise and require regularization. After subtracting divergences, renormalization conditions must be imposed by measurements or observations at some scale, mind&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10008v3-abstract-full').style.display = 'inline'; document.getElementById('2402.10008v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10008v3-abstract-full" style="display: none;"> Many cosmological observables of interest derive from primordial vacuum fluctuations evolved to late times. These observables represent statistical draws from some underlying quantum or statistical field theoretic framework where infinities arise and require regularization. After subtracting divergences, renormalization conditions must be imposed by measurements or observations at some scale, mindful of scheme and background dependence. We review this process on backgrounds that transition from finite duration inflation to radiation domination, and show how in spite of the ubiquity of scaleless integrals, UV divergences can still be meaningfully extracted from quantities that nominally vanish when dimensionally regularized. In this way, one can contextualize calculations with hard cutoffs, distinguishing between UV and IR scales corresponding to the beginning and end of inflation from UV and IR scales corresponding the unknown completion of the theory and its observables. This distinction has significance as observable quantities cannot depend on the latter although they will certainly depend on the former. One can also explicitly show the scheme independence of the coefficients of UV divergent logarithms. Furthermore, certain IR divergences can be shown to be an artifact of the de Sitter limit and are cured for finite duration inflation. For gravitational wave observables, we stress the need to regularize stress tensors that do not presume a prior scale separation in their construction (as with the standard Isaacson form), deriving an improved stress tensor fit to purpose. We conclude by highlighting the inextricable connection between inferring $N_{\rm eff}$ bounds from vacuum tensor perturbations and the process of background renormalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10008v3-abstract-full').style.display = 'none'; document.getElementById('2402.10008v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 appendices, 4 figures; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Riv. Nuovo Cim. (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13347">arXiv:2401.13347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13347">pdf</a>, <a href="https://arxiv.org/ps/2401.13347">ps</a>, <a href="https://arxiv.org/format/2401.13347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.064062">10.1103/PhysRevD.109.064062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Penrose process in the magnetized Kerr spacetime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chakraborty%2C+C">Chandrachur Chakraborty</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Parth Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akash%2C+G">G. Akash</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13347v2-abstract-short" style="display: inline;"> Magnetic Penrose process (MPP) could be highly efficient (efficiency can even exceed $100\%$) for extracting the energy from a Kerr black hole, if it is immersed in a mG order magnetic field. Considering the exact solution of the magnetized Kerr spacetime, here we derive the exact expression of efficiency ($畏_{\rm MPP}$) for MPP, which is valid for both the Kerr black hole (BH) as well as Kerr sup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13347v2-abstract-full').style.display = 'inline'; document.getElementById('2401.13347v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13347v2-abstract-full" style="display: none;"> Magnetic Penrose process (MPP) could be highly efficient (efficiency can even exceed $100\%$) for extracting the energy from a Kerr black hole, if it is immersed in a mG order magnetic field. Considering the exact solution of the magnetized Kerr spacetime, here we derive the exact expression of efficiency ($畏_{\rm MPP}$) for MPP, which is valid for both the Kerr black hole (BH) as well as Kerr superspinar (SS), and also from the weak magnetic field to an ultra-strong magnetic field $(B)$ which can even distort the original Kerr geometry. We show that although the value of $畏_{\rm MPP}$ increases upto a certain value of ultra-strong magnetic field ($B_p$), it decreases to zero for $B &gt; B_p$, in case of the Kerr BHs. On the other hand, $畏_{\rm MPP}$ shows the opposite behavior in case of the Kerr SSs. One intriguing feature that emerges is, $畏_{\rm MPP}$ acquires the maximum value for the Kerr parameter $a_* \approx 0.786$ (unlike $a_*=1$ for the ordinary PP), decreases for $0.786 &lt; a_* \leq 1$. This indicates that the BH starts to expel the effect of magnetic field for $a_* &gt; 0.786$, and is fully expelled from the extremal Kerr BH due to the gravitational Meissner effect. As a special case of MPP, we also study the ordinary Penrose process (PP) for magnetized Kerr spacetime. We show that MPP for Kerr BHs, Kerr SSs and ordinary PP for Kerr SSs can be superefficient for the astrophysical applications to powering engines in the high-energy sources like active galactic nuclei and quasars, in the weak magnetic fields. Our strong magnetic field result of MPP could be important to the primordial BHs in the early Universe immersed in the primordial magnetic fields, and to the transmuted BHs which are formed by collapsing and/or by merging of the magnetized progenitors. It is almost impossible to extract the energy from a BH (SS) through MPP (PP) in the ultra-strong magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13347v2-abstract-full').style.display = 'none'; document.getElementById('2401.13347v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, revised version, accepted for publication in PRD, CC dedicates this paper to his mother Shree Snigdha Chakraborty</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 064062 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.02366">arXiv:2309.02366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.02366">pdf</a>, <a href="https://arxiv.org/format/2309.02366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Disentangling the primordial nature of stochastic gravitational wave backgrounds with CMB spectral distortions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cyr%2C+B">Bryce Cyr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kite%2C+T">Thomas Kite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jeong%2C+D">Donghui Jeong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharya%2C+S+K">Sandeep Kumar Acharya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.02366v1-abstract-short" style="display: inline;"> The recent detection of a stochastic gravitational wave background (SGWB) at nanohertz frequencies by pulsar timing arrays (PTAs) has sparked a flurry of interest. Beyond the standard interpretation that the progenitor is a network of supermassive black hole binaries, many exotic models have also been proposed, some of which can potentially offer a better fit to the data. We explore how the variou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02366v1-abstract-full').style.display = 'inline'; document.getElementById('2309.02366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.02366v1-abstract-full" style="display: none;"> The recent detection of a stochastic gravitational wave background (SGWB) at nanohertz frequencies by pulsar timing arrays (PTAs) has sparked a flurry of interest. Beyond the standard interpretation that the progenitor is a network of supermassive black hole binaries, many exotic models have also been proposed, some of which can potentially offer a better fit to the data. We explore how the various connections between gravitational waves and CMB spectral distortions can be leveraged to help determine whether a SGWB was generated primordially or astrophysically. To this end, we present updated $k$-space window functions which can be used for distortion parameter estimation on enhancements to the primordial scalar power spectrum. These same enhancements can also source gravitational waves (GWs) directly at second order in perturbation theory, so-called scalar-induced GWs (SIGWs), and indirectly through the formation of primordial black holes (PBHs). We perform a mapping of scalar power spectrum constraints into limits on the GW parameter space of SIGWs for $未$-function features. We highlight that broader features in the scalar spectrum can explain the PTA results while simultaneously producing a spectral distortion (SD) within reach of future experiments. We additionally update PBH constraints from $渭$- and $y$-type spectral distortions. Refined treatments of the distortion window functions widen existing SD constraints, and we find that a future CMB spectrometer could play a pivotal role in unraveling the origin of GWs imprinted at or below CMB anisotropy scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02366v1-abstract-full').style.display = 'none'; document.getElementById('2309.02366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01997">arXiv:2304.01997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01997">pdf</a>, <a href="https://arxiv.org/format/2304.01997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2023/08/031">10.1088/1475-7516/2023/08/031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Primordial black holes from single-field inflation: a fine-tuning audit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cole%2C+P+S">Philippa S. Cole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gow%2C+A+D">Andrew D. Gow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Byrnes%2C+C+T">Christian T. Byrnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01997v2-abstract-short" style="display: inline;"> All single-field inflationary models invoke varying degrees of tuning in order to account for cosmological observations. Mechanisms that generate primordial black holes (PBHs) from enhancement of primordial power at small scales posit inflationary potentials that transiently break scale invariance and possibly adiabaticity over a range of modes. This requires additional tuning on top of that requi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01997v2-abstract-full').style.display = 'inline'; document.getElementById('2304.01997v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01997v2-abstract-full" style="display: none;"> All single-field inflationary models invoke varying degrees of tuning in order to account for cosmological observations. Mechanisms that generate primordial black holes (PBHs) from enhancement of primordial power at small scales posit inflationary potentials that transiently break scale invariance and possibly adiabaticity over a range of modes. This requires additional tuning on top of that required to account for observations at scales probed by cosmic microwave background (CMB) anisotropies. In this paper we study the parametric dependence of various single-field models of inflation that enhance power at small scales and quantify the degree to which coefficients in the model construction have to be tuned in order for certain observables to lie within specified ranges. We find significant tuning: changing the parameters of the potentials by between one part in a hundred and one part in $10^8$ (depending on the model) is enough to change the power spectrum peak amplitude by an order one factor. The fine-tuning of the PBH abundance is larger still by 1-2 orders of magnitude. We highlight the challenges imposed by this tuning on any given model construction. Furthermore, polynomial potentials appear to require significant additional fine-tuning to also match the CMB observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01997v2-abstract-full').style.display = 'none'; document.getElementById('2304.01997v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages + appendices, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01569">arXiv:2207.01569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.01569">pdf</a>, <a href="https://arxiv.org/format/2207.01569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/10/019">10.1088/1475-7516/2022/10/019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galaxy number-count dipole and superhorizon fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dom%C3%A8nech%2C+G">Guillem Dom猫nech</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mohayaee%2C+R">Roya Mohayaee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarkar%2C+S">Subir Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01569v1-abstract-short" style="display: inline;"> In view of the growing tension between the dipole anisotropy of number counts of cosmologically distant sources and of the cosmic microwave background (CMB), we investigate the number count dipole induced by primordial perturbations with wavelength comparable to or exceeding the Hubble radius today. First, we find that neither adiabatic nor isocurvature superhorizon modes can generate an intrinsic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01569v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01569v1-abstract-full" style="display: none;"> In view of the growing tension between the dipole anisotropy of number counts of cosmologically distant sources and of the cosmic microwave background (CMB), we investigate the number count dipole induced by primordial perturbations with wavelength comparable to or exceeding the Hubble radius today. First, we find that neither adiabatic nor isocurvature superhorizon modes can generate an intrinsic number count dipole. However a superhorizon isocurvature mode does induce a relative velocity between the CMB and the (dark) matter rest frames and thereby affects the CMB dipole. We revisit the possibility that it has an intrinsic component due to such a mode, thus enabling consistency with the galaxy number count dipole if the latter is actually kinematic in origin. Although this scenario is not particularly natural, there are possible links with other anomalies and it predicts a concommitant galaxy number count quadrupole which may be measurable in future surveys. We also investigate the number count dipole induced by modes smaller than the Hubble radius, finding that subject to CMB constraints this is too small to reconcile the dipole tension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01569v1-abstract-full').style.display = 'none'; document.getElementById('2207.01569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages + 15 figures + 1 table + 8 pages of appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 10 (2022) 019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04757">arXiv:2206.04757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.04757">pdf</a>, <a href="https://arxiv.org/format/2206.04757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac874b">10.3847/1538-4357/ac874b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations and Simulations of Radio Emission and Magnetic Fields in Minkowski&#39;s Object </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nolting%2C+C">C. Nolting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacy%2C+M">M. Lacy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Croft%2C+S">S. Croft</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fragile%2C+P+C">P. C. Fragile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linden%2C+S+T">S. T. Linden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K">K. Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04757v2-abstract-short" style="display: inline;"> We combine new data from the Karl G. Jansky Very Large Array with previous radio observations to create a more complete picture of the ongoing interactions between the radio jet from galaxy NGC 541 and the star-forming system known as Minkowski&#39;s Object (MO). We then compare those observations with synthetic radio data generated from a new set of magnetohydrodynamic simulations of a jet-cloud inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04757v2-abstract-full').style.display = 'inline'; document.getElementById('2206.04757v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04757v2-abstract-full" style="display: none;"> We combine new data from the Karl G. Jansky Very Large Array with previous radio observations to create a more complete picture of the ongoing interactions between the radio jet from galaxy NGC 541 and the star-forming system known as Minkowski&#39;s Object (MO). We then compare those observations with synthetic radio data generated from a new set of magnetohydrodynamic simulations of a jet-cloud interaction specifically tailored to the parameters of MO. The combination of radio intensity, polarization, and spectral index measurements all convincingly support the interaction scenario and provide additional constraints on the local dynamical state of the intracluster medium and the time since the jet-cloud interaction first began. In particular, we show that only a simulation with a bent radio jet can reproduce the observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04757v2-abstract-full').style.display = 'none'; document.getElementById('2206.04757v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures, links to simulation movies in figure captions, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.07573">arXiv:2204.07573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.07573">pdf</a>, <a href="https://arxiv.org/format/2204.07573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/05/022">10.1088/1475-7516/2024/05/022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Smooth vs instant inflationary transitions: steepest growth re-examined and primordial black holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cole%2C+P+S">Philippa S. Cole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gow%2C+A+D">Andrew D. Gow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Byrnes%2C+C+T">Christian T. Byrnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.07573v4-abstract-short" style="display: inline;"> Primordial black holes (PBHs) can be produced by a range of mechanisms in the early universe. A particular formation channel that connects PBHs with inflationary phenomenology invokes enhanced primordial curvature perturbations at small scales. In this paper, we examine how rapidly the background can transition between different values of the parameters of the Hubble hierarchy in the context of si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07573v4-abstract-full').style.display = 'inline'; document.getElementById('2204.07573v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.07573v4-abstract-full" style="display: none;"> Primordial black holes (PBHs) can be produced by a range of mechanisms in the early universe. A particular formation channel that connects PBHs with inflationary phenomenology invokes enhanced primordial curvature perturbations at small scales. In this paper, we examine how rapidly the background can transition between different values of the parameters of the Hubble hierarchy in the context of single-clock inflation, which must ultimately derive from a consistent derivative expansion for the background inflaton field. We discuss artefacts associated with instant or very rapid transitions, and consider the impact on the steepest power spectrum growth and the formation of PBHs. In particular, we highlight the robustness of the $k^4$ steepest growth previously found for single-field inflation with conservatively smoothed transitions and limits on how much the amplitude of the power spectrum can grow, and demonstrate that the PBH mass distribution is sensitive to the artefacts, which go away when the transitions are smoothed. We also show that the mass distribution is relatively insensitive to the steepness of the growth and subsequent decay of the power spectrum, depending primarily on the peak amplitude and the presence of any plateaus that last more than an e-fold. The shape of the power spectrum can of course be constrained by other tracers, and so understanding the physical limitations on its shape remains a pertinent question. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07573v4-abstract-full').style.display = 'none'; document.getElementById('2204.07573v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures. Matches published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07349">arXiv:2201.07349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.07349">pdf</a>, <a href="https://arxiv.org/format/2201.07349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac71b0">10.3847/1538-4357/ac71b0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radio Spectra of Luminous, Heavily Obscured WISE-NVSS Selected Quasars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Pallavi Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whittle%2C+M">Mark Whittle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K">Kristina Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lonsdale%2C+C">Carol Lonsdale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacy%2C+M">Mark Lacy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kimball%2C+A+E">Amy E. Kimball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lonsdale%2C+C">Colin Lonsdale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peters%2C+W">Wendy Peters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+T+E">Tracy E. Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Efstathiou%2C+A">Andreas Efstathiou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giacintucci%2C+S">Simona Giacintucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+M">Minjin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lanz%2C+L">Lauranne Lanz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mukherjee%2C+D">Dipanjan Mukherjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Polisensky%2C+E">Emil Polisensky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07349v2-abstract-short" style="display: inline;"> We present radio spectra spanning $0.1 - 10$ GHz for the sample of heavily obscured luminous quasars with extremely red mid-infrared-optical colors and compact radio emission. The spectra are constructed from targeted 10 GHz observations and archival radio survey data, which together yield $6-11$ flux density measurements for each object. Our suite of Python tools for modeling the radio spectra is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07349v2-abstract-full').style.display = 'inline'; document.getElementById('2201.07349v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07349v2-abstract-full" style="display: none;"> We present radio spectra spanning $0.1 - 10$ GHz for the sample of heavily obscured luminous quasars with extremely red mid-infrared-optical colors and compact radio emission. The spectra are constructed from targeted 10 GHz observations and archival radio survey data, which together yield $6-11$ flux density measurements for each object. Our suite of Python tools for modeling the radio spectra is publicly available on Github. Our primary result is that most (61%) of the sample have peaked or curved radio spectra and many (36%) could be classified as Gigahertz Peaked Spectrum (GPS) sources. This indicates compact emission regions likely arising from recently triggered radio jets. Assuming synchrotron self-absorption (SSA) generates the peaks, we infer compact source sizes ($3 - 100$ pc) with strong magnetic fields ($6 - 100$ mG) and young ages ($30 - 10^4$ years). Conversely, free-free absorption (FFA) could also create peaks due to the high column densities associated with the deeply embedded nature of the sample. However, we find no correlations between the existence or frequency of the peaks and any parameters of the MIR emission. The high-frequency spectral indices are steep ($伪\approx -1$) and correlate, weakly, with the ratio of MIR photon energy density to magnetic energy density, suggesting that the spectral steepening could arise from inverse Compton scattering off the intense MIR photon field. This study provides a foundation for combining multi-frequency and mixed-resolution radio survey data for understanding the impact of young radio jets on the ISM and star formation rates of their host galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07349v2-abstract-full').style.display = 'none'; document.getElementById('2201.07349v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 17 figures, published in Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01095">arXiv:2109.01095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.01095">pdf</a>, <a href="https://arxiv.org/format/2109.01095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/02/004">10.1088/1475-7516/2022/02/004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Primordial tensor bispectra in $渭$-CMB cross-correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlando%2C+G">Giorgio Orlando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meerburg%2C+P+D">P. Daniel Meerburg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01095v3-abstract-short" style="display: inline;"> Cross-correlations between Cosmic Microwave Background (CMB) temperature and polarization anisotropies and $渭$-spectral distortions have been considered to measure (squeezed) primordial scalar bispectra in a range of scales inaccessible to primary CMB bispectra. In this work we address whether it is possible to constrain tensor non-Gaussianities with these cross-correlations. We find that only pri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01095v3-abstract-full').style.display = 'inline'; document.getElementById('2109.01095v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01095v3-abstract-full" style="display: none;"> Cross-correlations between Cosmic Microwave Background (CMB) temperature and polarization anisotropies and $渭$-spectral distortions have been considered to measure (squeezed) primordial scalar bispectra in a range of scales inaccessible to primary CMB bispectra. In this work we address whether it is possible to constrain tensor non-Gaussianities with these cross-correlations. We find that only primordial tensor bispectra with statistical anisotropies leave distinct signatures, while isotropic tensor bispectra leave either vanishing or highly suppressed signatures. We discuss how the angular dependence of squeezed bispectra in terms of the short and long momenta determine the non-zero cross-correlations. We also discuss how these non-vanishing configurations are affected by the way in which primordial bispectra transform under parity. By employing the so-called BipoSH formalism to capture the observational effects of statistical anisotropies, we make Fisher-forecasts to assess the detection prospects from $渭T$, $渭E$ and $渭B$ cross-correlations. Observing statistical anisotropies in squeezed $\langle 纬纬纬\rangle$ and $\langle 纬纬味\rangle$ bispectra is going to be challenging as the imprint of tensor perturbations on $渭$-distortions is subdominant to scalar perturbations, therefore requiring a large, independent amplification of the effect of tensor perturbations in the $渭$-epoch. In absence of such a mechanism, statistical anisotropies in squeezed $\langle 味味纬\rangle$ bispectrum are the most relevant sources of $渭T$, $渭E$ and $渭B$ cross-correlations. In particular, we point out that in anisotropic inflationary models where $\langle 味味味\rangle$ leaves potentially observable signatures in $渭T$ and $渭E$, the detection prospects of $\langle 味味纬\rangle$ from $渭B$ are enhanced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01095v3-abstract-full').style.display = 'none'; document.getElementById('2109.01095v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 6 figures. v3: Other typos corrected. Matched published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 02 (2022) 004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13351">arXiv:2107.13351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.13351">pdf</a>, <a href="https://arxiv.org/format/2107.13351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3125">10.1093/mnras/stab3125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Clarifying transfer function approximations for the large-scale gravitational wave background in $螞$CDM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kite%2C+T">Thomas Kite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravenni%2C+A">Andrea Ravenni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13351v1-abstract-short" style="display: inline;"> The primordial gravitational wave background (GWB) offers an exciting future avenue of discovery for new physics. Its information content encodes multiple eras in the early Universe&#39;s history, corresponding to many orders of magnitude in frequency and physical scale to be measured today. By numerically solving for the GW transfer functions we provide simple yet accurate formulas describing the ave&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13351v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13351v1-abstract-full" style="display: none;"> The primordial gravitational wave background (GWB) offers an exciting future avenue of discovery for new physics. Its information content encodes multiple eras in the early Universe&#39;s history, corresponding to many orders of magnitude in frequency and physical scale to be measured today. By numerically solving for the GW transfer functions we provide simple yet accurate formulas describing the average power of the large-scale energy spectrum of the GWB for arbitrary primordial tensor power spectra. In doing so we can pedagogically explain and clarify previous GWB literature, highlight the important cosmological parameters of various GWB features, and reveal multiple ways in which cancelling conceptual errors can give deceptively accurate results. The scales considered here are particularly important for CMB probes of the GWB, via $B$-modes and spectral distortions. In particular, we carefully study the effects of both neutrino damping, and the precise nature of the transition between the radiation-dominated (RD) and matter-dominated (MD) eras. A byproduct of numerically solving the problem is the ability to study the robustness of common approximations in the literature. Specifically, we show that a numerical treatment is especially important around the RD--MD transition, and for a brief moment of history where neutrino damping occurs during MD. In passing we also discuss the effects of late acceleration caused by dark energy -- showing that this can be neglected in most practical GWB applications -- and the effects of changing relativistic degrees of freedom on the GWB at very small-scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13351v1-abstract-full').style.display = 'none'; document.getElementById('2107.13351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, to be submitted to MNRAS, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01842">arXiv:2012.01842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01842">pdf</a>, <a href="https://arxiv.org/format/2012.01842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3795">10.1093/mnras/staa3795 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral Variability of Radio Sources at Low Frequencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ross%2C+K">K. Ross</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Callingham%2C+J+R">J. R. Callingham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hurley-Walker%2C+N">N. Hurley-Walker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seymour%2C+N">N. Seymour</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hancock%2C+P">P. Hancock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Franzen%2C+T+M+O">T. M. O. Franzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morgan%2C+J">J. Morgan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+S+V">S. V. White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+M+E">M. E. Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01842v1-abstract-short" style="display: inline;"> Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral variability for a large population of extragalactic radio sources are now possible. Using two epochs of observations from the GaLactic and Extragalac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01842v1-abstract-full').style.display = 'inline'; document.getElementById('2012.01842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01842v1-abstract-full" style="display: none;"> Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral variability for a large population of extragalactic radio sources are now possible. Using two epochs of observations from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey that were taken one year apart, we search for spectral variability across 100--230 MHz for 21,558 sources. We present methodologies for detecting variability in the spectrum between epochs and for classifying the type of variability: either as a change in spectral shape or as a uniform change in flux density across the bandwidth. We identify 323 sources with significant spectral variability over a year-long timescale. Of the 323 variable sources, we classify 51 of these as showing a significant change in spectral shape. Variability is more prevalent in peaked-spectrum sources, analogous to gigahertz-peaked spectrum and compact steep-spectrum sources, compared to typical radio galaxies. We discuss the viability of several potential explanations of the observed spectral variability, such as interstellar scintillation and jet evolution. Our results suggest that the radio sky in the megahertz regime is more dynamic than previously suggested. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01842v1-abstract-full').style.display = 'none'; document.getElementById('2012.01842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08872">arXiv:2011.08872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.08872">pdf</a>, <a href="https://arxiv.org/format/2011.08872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abc341">10.3847/1538-4357/abc341 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasars That Have Transitioned from Radio-quiet to Radio-loud on Decadal Timescales Revealed by VLASS and FIRST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K">Kristina Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dong%2C+D+Z">Dillon Z. Dong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Pallavi Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacy%2C+M">Mark Lacy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Velzen%2C+S">Sjoert van Velzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kimball%2C+A+E">Amy E. Kimball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarbadhicary%2C+S">Sumit Sarbadhicary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baldassare%2C+V">Vivienne Baldassare</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+T">Tracy Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goulding%2C+A+D">Andy D. Goulding</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greene%2C+J+E">Jenny E. Greene</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+A">Andrew Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kassim%2C+N">Namir Kassim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kunert-Bajraszewska%2C+M">Magdalena Kunert-Bajraszewska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mooley%2C+K">Kunal Mooley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mukherjee%2C+D">Dipanjan Mukherjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peters%2C+W">Wendy Peters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petrov%2C+L">Leonid Petrov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Polisensky%2C+E">Emil Polisensky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rujopakarn%2C+W">Wiphu Rujopakarn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whittle%2C+M">Mark Whittle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vaccari%2C+M">Mattia Vaccari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08872v1-abstract-short" style="display: inline;"> We have performed a search over 3440 deg$^2$ of Epoch 1 (2017-2019) of the Very Large Array Sky Survey to identify unobscured quasars in the optical ($0.2 &lt; z &lt; 3.2$) and obscured active galactic nuclei (AGN) in the infrared that have brightened dramatically in the radio over the past one to two decades. These sources would have been previously classified as &#34;radio-quiet&#34; quasars based on upper li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08872v1-abstract-full').style.display = 'inline'; document.getElementById('2011.08872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08872v1-abstract-full" style="display: none;"> We have performed a search over 3440 deg$^2$ of Epoch 1 (2017-2019) of the Very Large Array Sky Survey to identify unobscured quasars in the optical ($0.2 &lt; z &lt; 3.2$) and obscured active galactic nuclei (AGN) in the infrared that have brightened dramatically in the radio over the past one to two decades. These sources would have been previously classified as &#34;radio-quiet&#34; quasars based on upper limits from the Faint Images of the Radio Sky at Twenty Centimeters survey (1993-2011), but they are now consistent with &#34;radio-loud&#34; quasars ($L_{\rm 3\,GHz} = 10^{40 - 42} \,\, {\rm erg} \,{\rm s}^{-1}$). A quasi-simultaneous, multiband ($\sim1-18$ GHz) follow-up study of 14 sources with the VLA has revealed compact sources ($&lt;0.1^{\prime \prime}$ or $&lt;1$ kpc) with peaked radio spectral shapes. The high-amplitude variability over decadal timescales at 1.5 GHz (100% to $&gt;$2500%), but roughly steady fluxes over a few months at 3 GHz, are inconsistent with extrinsic variability due to propagation effects, thus favoring an intrinsic origin. We conclude that our sources are powerful quasars hosting compact/young jets. This challenges the generally accepted idea that &#34;radio-loudness&#34; is a property of the quasar/AGN population that remains fixed on human timescales. Our study suggests that frequent episodes of short-lived AGN jets that do not necessarily grow to large scales may be common at high redshift. We speculate that intermittent but powerful jets on subgalactic scales could interact with the interstellar medium, possibly driving feedback capable of influencing galaxy evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08872v1-abstract-full').style.display = 'none'; document.getElementById('2011.08872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 9 figures, accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.00040">arXiv:2010.00040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.00040">pdf</a>, <a href="https://arxiv.org/format/2010.00040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1558">10.1093/mnras/stab1558 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bridging the gap: spectral distortions meet gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kite%2C+T">Thomas Kite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravenni%2C+A">Andrea Ravenni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.00040v2-abstract-short" style="display: inline;"> Gravitational waves (GWs) have the potential to probe the entirety of cosmological history due to their nearly perfect decoupling from the thermal bath and any intervening matter after emission. In recent years, GW cosmology has evolved from merely being an exciting prospect to an actively pursued avenue for discovery, and the early results are very promising. As we highlight in this paper, spectr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00040v2-abstract-full').style.display = 'inline'; document.getElementById('2010.00040v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.00040v2-abstract-full" style="display: none;"> Gravitational waves (GWs) have the potential to probe the entirety of cosmological history due to their nearly perfect decoupling from the thermal bath and any intervening matter after emission. In recent years, GW cosmology has evolved from merely being an exciting prospect to an actively pursued avenue for discovery, and the early results are very promising. As we highlight in this paper, spectral distortions (SDs) of the cosmic microwave background (CMB) uniquely probe GWs over six decades in frequency, bridging the gap between astrophysical high- and cosmological low-frequency measurements. This means SDs will not only complement other GW observations, but will be the sole probe of physical processes at certain scales. To illustrate this point, we explore the constraining power of various proposed SD missions on a number of phenomenological scenarios: early-universe phase transitions (PTs), GW production via the dynamics of SU(2) and ultra-light U(1) axions, and cosmic string (CS) network collapse. We highlight how some regions of parameter space were already excluded with data from COBE/FIRAS, taken over two decades ago. To facilitate the implementation of SD constraints in arbitrary models we provide GW2SD. This tool calculates the window function, which easily maps a GW spectrum to a SD amplitude, thus opening another portal for GW cosmology with SDs, with wide reaching implications for particle physics phenomenology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00040v2-abstract-full').style.display = 'none'; document.getElementById('2010.00040v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, published in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS, 505, 4396 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11184">arXiv:2008.11184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11184">pdf</a>, <a href="https://arxiv.org/format/2008.11184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.063519">10.1103/PhysRevD.103.063519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-messenger Probes of Inflationary Fluctuations and Primordial Black Holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Unal%2C+C">Caner Unal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kovetz%2C+E+D">Ely D. Kovetz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11184v3-abstract-short" style="display: inline;"> Next generation cosmic microwave background spectral distortion and pulsar timing array experiments have the potential to probe primordial fluctuations at small scales with remarkable sensitivity. We demonstrate the potential of these probes to either detect signatures of primordial black holes (PBHs) sourced from primordial overdensities within the standard thermal history of the universe over a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11184v3-abstract-full').style.display = 'inline'; document.getElementById('2008.11184v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11184v3-abstract-full" style="display: none;"> Next generation cosmic microwave background spectral distortion and pulsar timing array experiments have the potential to probe primordial fluctuations at small scales with remarkable sensitivity. We demonstrate the potential of these probes to either detect signatures of primordial black holes (PBHs) sourced from primordial overdensities within the standard thermal history of the universe over a 13-decade mass range ${\cal O}(0.1-10^{12})M_\odot$, or constrain their existence to a negligible abundance. Our conclusions are based only on global cosmological signals, and are robust under changes in i) the statistical properties of the primordial density fluctuations (whether Gaussian or non-Gaussian), ii) the merger and accretion history of the PBHs and assumptions about associated astrophysical processes, and iii) clustering statistics. Any positive detection of enhanced primordial fluctuations at small scales would have far-reaching implications from the content of dark matter to origin of BHs in the centers of galaxies, and to the field content of the inflation. On the other hand, their non-detection would also have important corollaries. For example, non-detection up to forecast sensitivities would tell us that PBHs larger than a fraction of a solar mass can constitute no more than a negligible fraction of dark matter. Moreover, non-detection will also rule out the scenario that PBHs generated by primordial overdensities could be the progenitors of super-massive black holes (SMBHs), of topical interest as there are only a few widely accepted proposals for the formation of SMBHs, an even more pressing question after the detection of active galactic nuclei over a billion solar masses at redshifts $z \geq 7$. Finally, non-detection sets the strongest bounds on the amplitude of small scale inflationary fluctuations for over 6 decades. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11184v3-abstract-full').style.display = 'none'; document.getElementById('2008.11184v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, no.6, 063519 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.04734">arXiv:2005.04734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.04734">pdf</a>, <a href="https://arxiv.org/format/2005.04734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1743921320001921">10.1017/S1743921320001921 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Variable Radio AGN at High Redshift Identified in the VLA Sky Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K">Kristina Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dong%2C+D">Dillon Dong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Pallavi Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacy%2C+M">Mark Lacy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kimball%2C+A">Amy Kimball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarbadhicary%2C+S">Sumit Sarbadhicary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Polisensky%2C+E">Emil Polisensky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kassim%2C+N">Namir Kassim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peters%2C+W">Wendy Peters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+T">Tracy Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mukherjee%2C+D">Dipanjan Mukherjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Velzen%2C+S">Sjoert van Velzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baldassare%2C+V">Vivienne Baldassare</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.04734v1-abstract-short" style="display: inline;"> As part of an on-going study of radio transients in Epoch 1 (2017-2019) of the Very Large Array Sky Survey (VLASS), we have discovered a sample of 0.2&lt;z&lt;3.2 active galactic nuclei (AGN) selected in the optical/infrared that have recently brightened dramatically in the radio. These sources would have previously been classified as radio-quiet based on upper limits from the Faint Images of the Radio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04734v1-abstract-full').style.display = 'inline'; document.getElementById('2005.04734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.04734v1-abstract-full" style="display: none;"> As part of an on-going study of radio transients in Epoch 1 (2017-2019) of the Very Large Array Sky Survey (VLASS), we have discovered a sample of 0.2&lt;z&lt;3.2 active galactic nuclei (AGN) selected in the optical/infrared that have recently brightened dramatically in the radio. These sources would have previously been classified as radio-quiet based on upper limits from the Faint Images of the Radio Sky at Twenty-centimeters (FIRST; 1993-2011) survey; however, they are now consistent with radio-loud quasars. We present a quasi-simultaneous, multi-band (1-18 GHz) VLA follow-up campaign of our sample of AGN with extreme radio variability. We conclude that the radio properties are most consistent with AGN that have recently launched jets within the past few decades, potentially making them among the youngest radio AGN known. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04734v1-abstract-full').style.display = 'none'; document.getElementById('2005.04734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IAU Symposium No. 359 Proceedings: Galaxy evolution and feedback across different environments</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. IAU 15 (2020) 27-32 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07914">arXiv:2004.07914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.07914">pdf</a>, <a href="https://arxiv.org/format/2004.07914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab9011">10.3847/1538-4357/ab9011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution VLA Imaging of Obscured Quasars: Young Radio Jets Caught in a Dense ISM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Pallavi Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K">Kristina Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whittle%2C+M">Mark Whittle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lonsdale%2C+C">Carol Lonsdale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacy%2C+M">Mark Lacy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lonsdale%2C+C">Colin Lonsdale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mukherjee%2C+D">Dipanjan Mukherjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trapp%2C+A+C">A. C. Trapp</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kimball%2C+A+E">Amy E. Kimball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lanz%2C+L">Lauranne Lanz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilkes%2C+B+J">Belinda J. Wilkes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blain%2C+A">Andrew Blain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harwood%2C+J+J">Jeremy J. Harwood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Efstathiou%2C+A">Andreas Efstathiou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vlahakis%2C+C">Catherine Vlahakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07914v1-abstract-short" style="display: inline;"> We present new sub-arcsecond-resolution Karl G. Jansky Very Large Array (VLA) imaging at 10 GHz of 155 ultra-luminous ($L_{\rm bol}\sim10^{11.7-14.2} L_\odot$) and heavily obscured quasars with redshifts $z \sim0.4-3$. The sample was selected to have extremely red mid-infrared (MIR)-optical color ratios based on data from Wide-Field Infrared Survey Explorer (WISE) along with a detection of bright,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07914v1-abstract-full').style.display = 'inline'; document.getElementById('2004.07914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07914v1-abstract-full" style="display: none;"> We present new sub-arcsecond-resolution Karl G. Jansky Very Large Array (VLA) imaging at 10 GHz of 155 ultra-luminous ($L_{\rm bol}\sim10^{11.7-14.2} L_\odot$) and heavily obscured quasars with redshifts $z \sim0.4-3$. The sample was selected to have extremely red mid-infrared (MIR)-optical color ratios based on data from Wide-Field Infrared Survey Explorer (WISE) along with a detection of bright, unresolved radio emission from the NRAO VLA Sky Survey (NVSS) or Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) Survey. Our high-resolution VLA observations have revealed that the majority of the sources in our sample (93 out of 155) are compact on angular scales $&lt;0.2^{\prime \prime}$ ($\leq 1.7$ kpc at $z \sim2$). The radio luminosities, linear extents, and lobe pressures of our sources are similar to young radio active galactic nuclei (AGN; e.g., Gigahertz Peaked Spectrum, GPS, and Compact Steep Spectrum, CSS, sources), but their space density is considerably lower. Application of a simple adiabatic lobe expansion model suggests relatively young dynamical ages ($\sim10^{4-7}$ years), relatively high ambient ISM densities ($\sim1-10^4$ cm$^{-3}$), and modest lobe expansion speeds ($\sim30-10,000$ km s$^{-1}$). Thus, we find our sources to be consistent with a population of newly triggered, young jets caught in a unique evolutionary stage in which they still reside within the dense gas reservoirs of their hosts. Based on their radio luminosity function and dynamical ages, we estimate only $\sim20\%$ of classical large scale FRI/II radio galaxies could have evolved directly from these objects. We speculate that the WISE-NVSS sources might first become GPS or CSS sources, of which some might ultimately evolve into larger radio galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07914v1-abstract-full').style.display = 'none'; document.getElementById('2004.07914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ, 38 pages, 14 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.01593">arXiv:1909.01593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.01593">pdf</a>, <a href="https://arxiv.org/format/1909.01593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10686-021-09729-5">10.1007/s10686-021-09729-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New Horizons in Cosmology with Spectral Distortions of the Cosmic Microwave Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">J. Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abitbol%2C+M+H">M. H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aghanim%2C+N">N. Aghanim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali-Haimoud%2C+Y">Y. Ali-Haimoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+M">M. Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+K">K. Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">B. Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burigana%2C+C">C. Burigana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">J. Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dimastrogiovanni%2C+E">E. Dimastrogiovanni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Finelli%2C+F">F. Finelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fixsen%2C+D">D. Fixsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hart%2C+L">L. Hart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hernandez-Monteagudo%2C+C">C. Hernandez-Monteagudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. C. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">A. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kohri%2C+K">K. Kohri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lesgourgues%2C+J">J. Lesgourgues</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maffei%2C+B">B. Maffei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mather%2C+J">J. Mather</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mukherjee%2C+S">S. Mukherjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">S. P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravenni%2C+A">A. Ravenni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Remazeilles%2C+M">M. Remazeilles</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.01593v1-abstract-short" style="display: inline;"> Voyage 2050 White Paper highlighting the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe. Precision spectroscopy, possible with existing technology, would provide key tests for processes expected within the cosmological standard model and open an enormous discovery&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01593v1-abstract-full').style.display = 'inline'; document.getElementById('1909.01593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.01593v1-abstract-full" style="display: none;"> Voyage 2050 White Paper highlighting the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe. Precision spectroscopy, possible with existing technology, would provide key tests for processes expected within the cosmological standard model and open an enormous discovery space to new physics. This offers unique scientific opportunities for furthering our understanding of inflation, recombination, reionization and structure formation as well as dark matter and particle physics. A dedicated experimental approach could open this new window to the early Universe in the decades to come, allowing us to turn the long-standing upper distortion limits obtained with COBE/FIRAS some 25 years ago into clear detections of the expected standard distortion signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01593v1-abstract-full').style.display = 'none'; document.getElementById('1909.01593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages + references and title page, 12 figures, extended white paper for ESA&#39;s Voyage 2050 call, some parts based on arXiv:1903.04218</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.01591">arXiv:1909.01591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.01591">pdf</a>, <a href="https://arxiv.org/format/1909.01591">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Microwave Spectro-Polarimetry of Matter and Radiation across Space and Time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">Jacques Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abitbol%2C+M+H">Maximilian H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aghanim%2C+N">Nabila Aghanim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali-Haimoud%2C+Y">Yacine Ali-Haimoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banday%2C+A+J">Anthony J. Banday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartlett%2C+J+G">James G. Bartlett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baselmans%2C+J">Jochem Baselmans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+K">Kaustuv Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Climent%2C+J+R+B">Jose Ramon Bermejo Climent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernal%2C+J+L">Jose L. Bernal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B%C3%A9thermin%2C+M">Matthieu B茅thermin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonato%2C+M">Matteo Bonato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F+R">Fran莽ois R. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burigana%2C+C">Carlo Burigana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+Z">Zhen-Yi Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Churazov%2C+E">Eugene Churazov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">Helmut Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Bernardis%2C+P">Paolo De Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Zotti%2C+G">Gianfranco De Zotti</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.01591v1-abstract-short" style="display: inline;"> This paper discusses the science case for a sensitive spectro-polarimetric survey of the microwave sky. Such a survey would provide a tomographic and dynamic census of the three-dimensional distribution of hot gas, velocity flows, early metals, dust, and mass distribution in the entire Hubble volume, exploit CMB temperature and polarisation anisotropies down to fundamental limits, and track energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01591v1-abstract-full').style.display = 'inline'; document.getElementById('1909.01591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.01591v1-abstract-full" style="display: none;"> This paper discusses the science case for a sensitive spectro-polarimetric survey of the microwave sky. Such a survey would provide a tomographic and dynamic census of the three-dimensional distribution of hot gas, velocity flows, early metals, dust, and mass distribution in the entire Hubble volume, exploit CMB temperature and polarisation anisotropies down to fundamental limits, and track energy injection and absorption into the radiation background across cosmic times by measuring spectral distortions of the CMB blackbody emission. In addition to its exceptional capability for cosmology and fundamental physics, such a survey would provide an unprecedented view of microwave emissions at sub-arcminute to few-arcminute angular resolution in hundreds of frequency channels, a data set that would be of immense legacy value for many branches of astrophysics. We propose that this survey be carried-out with a large space mission featuring a broad-band polarised imager and a moderate resolution spectro-imager at the focus of a 3.5m aperture telescope actively cooled to about 8K, complemented with absolutely-calibrated Fourier Transform Spectrometer modules observing at degree-scale angular resolution in the 10-2000 GHz frequency range. We propose two observing modes: a survey mode to map the entire sky as well as a few selected wide fields, and an observatory mode for deeper observations of regions of specific interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01591v1-abstract-full').style.display = 'none'; document.getElementById('1909.01591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, white paper submitted in answer to the &#34;Voyage 2050&#34; call to prepare the long term plan in the ESA science programme</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.13195">arXiv:1907.13195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.13195">pdf</a>, <a href="https://arxiv.org/format/1907.13195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> CMB Spectral Distortions: Status and Prospects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">A. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abitbol%2C+M+H">M. H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">J. Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">J. Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fixsen%2C+D">D. Fixsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. C. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">S. P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rotti%2C+A">A. Rotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.13195v1-abstract-short" style="display: inline;"> Departures of the energy spectrum of the cosmic microwave background (CMB) from a perfect blackbody probe a fundamental property of the universe -- its thermal history. Current upper limits, dating back some 25 years, limit such spectral distortions to 50 parts per million and provide a foundation for the Hot Big Bang model of the early universe. Modern upgrades to the 1980&#39;s-era technology behind&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13195v1-abstract-full').style.display = 'inline'; document.getElementById('1907.13195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.13195v1-abstract-full" style="display: none;"> Departures of the energy spectrum of the cosmic microwave background (CMB) from a perfect blackbody probe a fundamental property of the universe -- its thermal history. Current upper limits, dating back some 25 years, limit such spectral distortions to 50 parts per million and provide a foundation for the Hot Big Bang model of the early universe. Modern upgrades to the 1980&#39;s-era technology behind these limits enable three orders of magnitude or greater improvement in sensitivity. The standard cosmological model provides compelling targets at this sensitivity, spanning cosmic history from the decay of primordial density perturbations to the role of baryonic feedback in structure formation. Fully utilizing this sensitivity requires concurrent improvements in our understanding of competing astrophysical foregrounds. We outline a program using proven technologies capable of detecting the minimal predicted distortions even for worst-case foreground scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13195v1-abstract-full').style.display = 'none'; document.getElementById('1907.13195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ASTRO2020 APC white paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.00991">arXiv:1904.00991</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.00991">pdf</a>, <a href="https://arxiv.org/format/1904.00991">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.7.4.049">10.21468/SciPostPhys.7.4.049 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstructing the EFT of Inflation from Cosmological Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Durakovic%2C+A">Amel Durakovic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hunt%2C+P">Paul Hunt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarkar%2C+S">Subir Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.00991v2-abstract-short" style="display: inline;"> Reconstructions of the primordial power spectrum (PPS) of curvature perturbations from cosmic microwave background anisotropies and large-scale structure data suggest that the usually assumed power-law PPS has localised features (up to $\sim 10\%$ in amplitude), although of only marginal significance in the framework of $螞$CDM cosmology. On the other hand if the underlying cosmology is assumed to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00991v2-abstract-full').style.display = 'inline'; document.getElementById('1904.00991v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.00991v2-abstract-full" style="display: none;"> Reconstructions of the primordial power spectrum (PPS) of curvature perturbations from cosmic microwave background anisotropies and large-scale structure data suggest that the usually assumed power-law PPS has localised features (up to $\sim 10\%$ in amplitude), although of only marginal significance in the framework of $螞$CDM cosmology. On the other hand if the underlying cosmology is assumed to be Einstein-de Sitter, larger features in the PPS (up to $\sim 20\%$) are required to accurately fit the observed acoustic peaks. Within the context of single clock inflation, we show that any given reconstruction of the PPS can be mapped on to functional parameters of the underlying effective theory of the adiabatic mode within a 2nd-order formalism, provided the best fit fractional change of the PPS, $螖\mathcal{P}_\mathcal{R}/\mathcal{P}_\mathcal{R}$ is such that $(螖\mathcal{P}_\mathcal{R}/\mathcal{P}_\mathcal{R})^3$ falls within the $1\,蟽$ confidence interval of the reconstruction for features induced by variations of either the sound speed $c_\mathrm{s}$ or the slow-roll parameter $蔚$. Although there is a degeneracy amongst these functional parameters (and the models that project onto them), we can identify simple representative inflationary models that yield such features in the PPS. Thus we provide a dictionary (more accurately, a thesaurus) to go from observational data, via the reconstructed PPS, to models that reproduce them to per cent level precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00991v2-abstract-full').style.display = 'none'; document.getElementById('1904.00991v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 appendices. Expanded discussion and references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 7, 049 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.04218">arXiv:1903.04218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.04218">pdf</a>, <a href="https://arxiv.org/format/1903.04218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">J. Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">A. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">S. P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abitbol%2C+M+H">M. H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aghanim%2C+N">N. Aghanim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali-Haimoud%2C+Y">Y. Ali-Haimoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amin%2C+M+A">M. A. Amin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+K">K. Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battye%2C+R">R. Battye</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baumann%2C+D">D. Baumann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ben-Dayan%2C+I">I. Ben-Dayan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">B. Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F+R">F. R. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgess%2C+C+P">C. P. Burgess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burigana%2C+C">C. Burigana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Byrnes%2C+C+T">C. T. Byrnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cabass%2C+G">G. Cabass</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">D. T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clesse%2C+S">S. Clesse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cole%2C+P+S">P. S. Cole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dai%2C+L">L. Dai</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.04218v2-abstract-short" style="display: inline;"> Following the pioneering observations with COBE in the early 1990s, studies of the cosmic microwave background (CMB) have focused on temperature and polarization anisotropies. CMB spectral distortions - tiny departures of the CMB energy spectrum from that of a perfect blackbody - provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoret&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04218v2-abstract-full').style.display = 'inline'; document.getElementById('1903.04218v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.04218v2-abstract-full" style="display: none;"> Following the pioneering observations with COBE in the early 1990s, studies of the cosmic microwave background (CMB) have focused on temperature and polarization anisotropies. CMB spectral distortions - tiny departures of the CMB energy spectrum from that of a perfect blackbody - provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoretical foundation of spectral distortions has seen major advances in recent years, which highlight the immense potential of this emerging field. Spectral distortions probe a fundamental property of the Universe - its thermal history - thereby providing additional insight into processes within the cosmological standard model (CSM) as well as new physics beyond. Spectral distortions are an important tool for understanding inflation and the nature of dark matter. They shed new light on the physics of recombination and reionization, both prominent stages in the evolution of our Universe, and furnish critical information on baryonic feedback processes, in addition to probing primordial correlation functions at scales inaccessible to other tracers. In principle the range of signals is vast: many orders of magnitude of discovery space could be explored by detailed observations of the CMB energy spectrum. Several CSM signals are predicted and provide clear experimental targets, some of which are already observable with present-day technology. Confirmation of these signals would extend the reach of the CSM by orders of magnitude in physical scale as the Universe evolves from the initial stages to its present form. The absence of these signals would pose a huge theoretical challenge, immediately pointing to new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04218v2-abstract-full').style.display = 'none'; document.getElementById('1903.04218v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Astro2020 Science White Paper, 5 pages text, 13 pages in total, 3 Figures, minor update to references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.04108">arXiv:1812.04108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.04108">pdf</a>, <a href="https://arxiv.org/format/1812.04108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aaf7a4">10.3847/1538-4357/aaf7a4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-band Optical and Near-infrared Properties of Faint Submillimeter Galaxies with Serendipitous ALMA Detections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Pallavi Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K">Kristina Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacy%2C+M">Mark Lacy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farrah%2C+D">Duncan Farrah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Afonso%2C+J">Jos茅 Afonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barkhouse%2C+W">Wayne Barkhouse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surace%2C+J">Jason Surace</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.04108v1-abstract-short" style="display: inline;"> We present a catalog of 26 faint submillimeter galaxies (SMGs) in the XMM-LSS field identified by cross-matching serendipitously detected sources in archival ALMA Band 6 and 7 data with multi-band near-infrared (NIR) and optical data from the Spitzer Extragalactic Representative Volume Survey, the VISTA Deep Extragalactic Survey, the Canada-France-Hawaii Telescope Legacy Large Survey, and the Hype&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.04108v1-abstract-full').style.display = 'inline'; document.getElementById('1812.04108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.04108v1-abstract-full" style="display: none;"> We present a catalog of 26 faint submillimeter galaxies (SMGs) in the XMM-LSS field identified by cross-matching serendipitously detected sources in archival ALMA Band 6 and 7 data with multi-band near-infrared (NIR) and optical data from the Spitzer Extragalactic Representative Volume Survey, the VISTA Deep Extragalactic Survey, the Canada-France-Hawaii Telescope Legacy Large Survey, and the Hyper Suprime-Cam Subaru Strategic Program. Of the 26 SMGs in our sample, 15 are identified here for the first time. The majority of the sources in our sample (16/26) have faint submm fluxes ($0.1\,{\rm mJy} &lt; S_{\rm 1\,mm} &lt; 1\,{\rm mJy}$). In addition to the 26 SMGs with multi-band optical and NIR detections, there are 60 highly-reliable ($&gt;5蟽$) ALMA sources with no counterpart in any other band down to an IRAC [4.5] $AB$ magnitude of $\approx 23.7$. To further characterize the 26 galaxies with both ALMA and optical/NIR counterparts, we provide 13-band forced photometry for the entire catalog using the Tractor and calculate photometric redshifts and rest-frame colors. The median redshift of our sample is $\langle z \rangle = 2.66$. We find that our sample galaxies have bluer colors compared to bright SMGs, and the UVJ color plot indicates that their colors are consistent with main sequence star-forming galaxies. Our results provide new insights into the nature of the faint population of SMGs, and also highlight opportunities for galaxy evolution studies based on archival ALMA data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.04108v1-abstract-full').style.display = 'none'; document.getElementById('1812.04108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ, 32 pages, 11 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11158">arXiv:1811.11158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.11158">pdf</a>, <a href="https://arxiv.org/format/1811.11158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2019/06/028">10.1088/1475-7516/2019/06/028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Steepest growth of the power spectrum and primordial black holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Byrnes%2C+C+T">Christian T. Byrnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cole%2C+P+S">Philippa S. Cole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11158v3-abstract-short" style="display: inline;"> We derive analytic bounds on the shape of the primordial power spectrum in the context of single-field inflation. In particular, the steepest possible growth has a spectral index of $n_s - 1 = 4$ once transients have died down. Its primary implication is that any constraint on the power spectrum at a particular scale can be extrapolated to an upper bound over an extended range of scales. This is i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11158v3-abstract-full').style.display = 'inline'; document.getElementById('1811.11158v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11158v3-abstract-full" style="display: none;"> We derive analytic bounds on the shape of the primordial power spectrum in the context of single-field inflation. In particular, the steepest possible growth has a spectral index of $n_s - 1 = 4$ once transients have died down. Its primary implication is that any constraint on the power spectrum at a particular scale can be extrapolated to an upper bound over an extended range of scales. This is important for models which generate relics due to an enhanced amplitude of the primordial scalar perturbations, such as primordial black holes. In order to generate them, the power spectrum needs to grow many orders of magnitude larger than its observed value on CMB scales - typically achieved through a phase of ultra slow-roll inflation - and is thus subject to additional constraints at small scales. We plot all relevant constraints including CMB spectral distortions and gravitational waves sourced by scalar perturbations at second order. We show how this limits the allowed mass of PBHs, especially for the large masses of interest following recent detections by LIGO and prospects for constraining them further with future observations. We show that any transition from approximately constant $蔚$ slow-roll inflation to a phase where the power spectrum rapidly rises necessarily implies an intervening dip in power. We also show how to reconstruct a potential that can reproduce an arbitrary time-varying $蔚$, offering a complementary perspective on how ultra slow-roll can be achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11158v3-abstract-full').style.display = 'none'; document.getElementById('1811.11158v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages + appendices, 12 figures. v2: typos corrected and references added. v3: minor changes, matches published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.07527">arXiv:1810.07527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.07527">pdf</a>, <a href="https://arxiv.org/format/1810.07527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Science with an ngVLA: Young Radio AGN in the ngVLA Era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Pallavi Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K">Kristina Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harwood%2C+J+J">Jeremy J. Harwood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kimball%2C+A">Amy Kimball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mukherjee%2C+D">Dipanjan Mukherjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.07527v1-abstract-short" style="display: inline;"> Most massive galaxies are now thought to go through an Active Galactic Nucleus (AGN) phase one or more times. Yet, the cause of triggering and the variations in the intrinsic and observed properties of AGN population are still poorly understood. Young, compact radio sources associated with accreting supermassive black holes (SMBHs) represent an important phase in the life cycles of jetted AGN for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07527v1-abstract-full').style.display = 'inline'; document.getElementById('1810.07527v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.07527v1-abstract-full" style="display: none;"> Most massive galaxies are now thought to go through an Active Galactic Nucleus (AGN) phase one or more times. Yet, the cause of triggering and the variations in the intrinsic and observed properties of AGN population are still poorly understood. Young, compact radio sources associated with accreting supermassive black holes (SMBHs) represent an important phase in the life cycles of jetted AGN for understanding AGN triggering and duty cycles. The superb sensitivity and resolution of the ngVLA, coupled with its broad frequency coverage, will provide exciting new insights into our understanding of the life cycles of radio AGN and their impact on galaxy evolution. The high spatial resolution of the ngVLA will enable resolved mapping of young radio AGN on sub-kiloparsec scales over a wide range of redshifts. With broad continuum coverage from 1 to 116 GHz, the ngVLA will excel at estimating ages of sources as old as $30-40$ Myr at $z \sim 1$. In combination with lower-frequency ($谓&lt; 1$ GHz) instruments such as ngLOBO and the Square Kilometer Array, the ngVLA will robustly characterize the spectral energy distributions of young radio AGN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07527v1-abstract-full').style.display = 'none'; document.getElementById('1810.07527v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, To be published in the ASP Monograph Series, &#34;Science with a Next-Generation VLA&#34; , ed. E. J. Murphy (ASP, San Francisco, CA). arXiv admin note: text overlap with arXiv:1803.02357</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.09282">arXiv:1808.09282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.09282">pdf</a>, <a href="https://arxiv.org/format/1808.09282">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2018)094">10.1007/JHEP12(2018)094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tensor Bounds on the Hidden Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=del+Rio%2C+A">Adrian del Rio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Durrer%2C+R">Ruth Durrer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.09282v3-abstract-short" style="display: inline;"> During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09282v3-abstract-full').style.display = 'inline'; document.getElementById('1808.09282v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.09282v3-abstract-full" style="display: none;"> During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large $N$ resummation. We detour to address certain subtleties regarding loop corrections during inflation, extending the analysis of [1]. Our main result is that one can extract bounds on the hidden field content of the universe from bounds on violations of the consistency relation between the tensor spectral index and the tensor to scalar ratio, were primordial tensors ever detected. Such bounds are more competitive than the naive bound inferred from requiring inflation to occur below the strong coupling scale of gravity if deviations from the consistency relation can be bounded to within the sub-percent level. We discuss how one can meaningfully constrain the parameter space of various phenomenological scenarios and constructions that address naturalness with a large number of species (such as `N-naturalness&#39;) with CMB observations up to cosmic variance limits, and possibly future 21cm and gravitational wave observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09282v3-abstract-full').style.display = 'none'; document.getElementById('1808.09282v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, 3 appendices. Version accepted to JHEP; references added, updated bounds on $r$ incorporated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.02357">arXiv:1803.02357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.02357">pdf</a>, <a href="https://arxiv.org/format/1803.02357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aab3d1">10.3847/1538-4357/aab3d1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revolutionizing Our Understanding of AGN Feedback and its Importance to Galaxy Evolution in the Era of the Next Generation Very Large Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nyland%2C+K">Kristina Nyland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harwood%2C+J+J">Jeremy J. Harwood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mukherjee%2C+D">Dipanjan Mukherjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jagannathan%2C+P">Preshanth Jagannathan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rujopakarn%2C+W">Wiphu Rujopakarn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emonts%2C+B">Bjorn Emonts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alatalo%2C+K">Katherine Alatalo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bicknell%2C+G">Geoff Bicknell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davis%2C+T+A">Timothy A. Davis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greene%2C+J">Jenny Greene</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kimball%2C+A">Amy Kimball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacy%2C+M">Mark Lacy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lonsdale%2C+C">Carol Lonsdale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lonsdale%2C+C">Colin Lonsdale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maksym%2C+W+P">W. Peter Maksym</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Molnar%2C+D">Daniel Molnar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morabito%2C+L">Leah Morabito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murphy%2C+E">Eric Murphy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+P">Pallavi Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prandoni%2C+I">Isabella Prandoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sargent%2C+M">Mark Sargent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vlahakis%2C+C">Catherine Vlahakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.02357v1-abstract-short" style="display: inline;"> Energetic feedback by Active Galactic Nuclei (AGNs) plays an important evolutionary role in the regulation of star formation (SF) on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high sensitivity (up to ten times higher than&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02357v1-abstract-full').style.display = 'inline'; document.getElementById('1803.02357v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.02357v1-abstract-full" style="display: none;"> Energetic feedback by Active Galactic Nuclei (AGNs) plays an important evolutionary role in the regulation of star formation (SF) on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high sensitivity (up to ten times higher than the Karl G. Jansky Very Large Array), and superb angular resolution (maximum baselines of at least a few hundred km) of the proposed next generation Very Large Array (ngVLA) are uniquely poised to revolutionize our understanding of AGNs and their role in galaxy evolution. Here, we provide an overview of the science related to AGN feedback that will be possible in the ngVLA era and present new continuum ngVLA imaging simulations of resolved radio jets spanning a wide range of intrinsic extents. We also consider key computational challenges and discuss exciting opportunities for multi-wavelength synergy with other next-generation instruments, such as the Square Kilometer Array and the James Webb Space Telescope. The unique combination of high-resolution, large collecting area, and wide frequency range will enable significant advancements in our understanding of the effects of jet-driven feedback on sub-galactic scales, particularly for sources with extents of a few pc to a few kpc such as young and/or lower-power radio AGNs, AGNs hosted by low-mass galaxies, radio jets that are interacting strongly with the interstellar medium of the host galaxy, and AGNs at high redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02357v1-abstract-full').style.display = 'none'; document.getElementById('1803.02357v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 9 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05192">arXiv:1707.05192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.05192">pdf</a>, <a href="https://arxiv.org/ps/1707.05192">ps</a>, <a href="https://arxiv.org/format/1707.05192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.084033">10.1103/PhysRevD.96.084033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Damping of gravitational waves by matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Baym%2C+G">Gordon Baym</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pethick%2C+C+J">C. J. Pethick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05192v2-abstract-short" style="display: inline;"> We develop a unified description, via the Boltzmann equation, of damping of gravitational waves by matter, incorporating collisions. We identify two physically distinct damping mechanisms -- collisional and Landau damping. We first consider damping in flat spacetime, and then generalize the results to allow for cosmological expansion. In the first regime, maximal collisional damping of a gravitati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05192v2-abstract-full').style.display = 'inline'; document.getElementById('1707.05192v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05192v2-abstract-full" style="display: none;"> We develop a unified description, via the Boltzmann equation, of damping of gravitational waves by matter, incorporating collisions. We identify two physically distinct damping mechanisms -- collisional and Landau damping. We first consider damping in flat spacetime, and then generalize the results to allow for cosmological expansion. In the first regime, maximal collisional damping of a gravitational wave, independent of the details of the collisions in the matter is, as we show, significant only when its wavelength is comparable to the size of the horizon. Thus damping by intergalactic or interstellar matter for all but primordial gravitational radiation can be neglected. Although collisions in matter lead to a shear viscosity, they also act to erase anisotropic stresses, thus suppressing the damping of gravitational waves. Damping of primordial gravitational waves remains possible. We generalize Weinberg&#39;s calculation of gravitational wave damping, now including collisions and particles of finite mass, and interpret the collisionless limit in terms of Landau damping. While Landau damping of gravitational waves cannot occur in flat spacetime, the expansion of the universe allows such damping by spreading the frequency of a gravitational wave of given wavevector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05192v2-abstract-full').style.display = 'none'; document.getElementById('1707.05192v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages (10 pages in journal), published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NORDITA 2017-069 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 96, 084033 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.04516">arXiv:1706.04516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.04516">pdf</a>, <a href="https://arxiv.org/format/1706.04516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2018/04/014">10.1088/1475-7516/2018/04/014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Cosmic Origins with CORE: Survey requirements and mission design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">J. Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F+R">F. R. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ach%C3%BAcarro%2C+A">A. Ach煤carro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+R">R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arroja%2C+F">F. Arroja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Artal%2C+E">E. Artal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashdown%2C+M">M. Ashdown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ballardini%2C+M">M. Ballardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerji%2C+R">R. Banerji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbosa%2C+D">D. Barbosa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartlett%2C+J">J. Bartlett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baselmans%2C+J+J+A">J. J. A. Baselmans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+K">K. Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battye%2C+R">R. Battye</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baumann%2C+D">D. Baumann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bideaud%2C+A">A. Bideaud</a> , et al. (178 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.04516v1-abstract-short" style="display: inline;"> Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology. In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the &#34;M5&#34; call for a medium&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04516v1-abstract-full').style.display = 'inline'; document.getElementById('1706.04516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.04516v1-abstract-full" style="display: none;"> Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology. In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the &#34;M5&#34; call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission&#39;s performance, are of interest to other future CMB mission design studies. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation scienceand cannot be obtained by any other means than a dedicated space mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04516v1-abstract-full').style.display = 'none'; document.getElementById('1706.04516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">79 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.08270">arXiv:1612.08270</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.08270">pdf</a>, <a href="https://arxiv.org/format/1612.08270">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2018/04/016">10.1088/1475-7516/2018/04/016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Cosmic Origins with CORE: Inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=CORE+Collaboration"> CORE Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Finelli%2C+F">Fabio Finelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucher%2C+M">Martin Bucher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ach%C3%BAcarro%2C+A">Ana Ach煤carro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ballardini%2C+M">Mario Ballardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartolo%2C+N">Nicola Bartolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baumann%2C+D">Daniel Baumann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clesse%2C+S">S茅bastien Clesse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Errard%2C+J">Josquin Errard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Handley%2C+W">Will Handley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hindmarsh%2C+M">Mark Hindmarsh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiiveri%2C+K">Kimmo Kiiveri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kunz%2C+M">Martin Kunz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lasenby%2C+A">Anthony Lasenby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liguori%2C+M">Michele Liguori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paoletti%2C+D">Daniela Paoletti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ringeval%2C+C">Christophe Ringeval</a>, <a href="/search/astro-ph?searchtype=author&amp;query=V%C3%A4liviita%2C+J">Jussi V盲liviita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Tent%2C+B">Bartjan van Tent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vennin%2C+V">Vincent Vennin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+R">Rupert Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arroja%2C+F">Frederico Arroja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashdown%2C+M">Marc Ashdown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerji%2C+R">Ranajoy Banerji</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.08270v2-abstract-short" style="display: inline;"> We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60-600 GHz. CORE will have an aggregate noise sensitivity of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.08270v2-abstract-full').style.display = 'inline'; document.getElementById('1612.08270v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.08270v2-abstract-full" style="display: none;"> We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60-600 GHz. CORE will have an aggregate noise sensitivity of $1.7 渭$K$\cdot \,$arcmin and an angular resolution of 5&#39; at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series &#34;Exploring Cosmic Origins with CORE.&#34; We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the $10^{-3}$ level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the $10^{-3}$ level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the $f_{NL}^{\rm local} &lt; 1$ level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.08270v2-abstract-full').style.display = 'none'; document.getElementById('1612.08270v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Latex 107 pages, revised with updated author list and minor modifications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.03297">arXiv:1605.03297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.03297">pdf</a>, <a href="https://arxiv.org/format/1605.03297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2016/08/045">10.1088/1475-7516/2016/08/045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Goldilocks Models of Higher-Dimensional Inflation (including modulus stabilization) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Burgess%2C+C+P">C. P. Burgess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Enns%2C+J+J+H">Jared J. H. Enns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayman%2C+P">Peter Hayman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.03297v3-abstract-short" style="display: inline;"> We explore the mechanics of inflation in simplified extra-dimensional models involving an inflaton interacting with the Einstein-Maxwell system in two extra dimensions. The models are Goldilocks-like in that they are just complicated enough to include a mechanism to stabilize the extra-dimensional size, yet simple enough to solve the full 6D field equations using basic tools. The solutions are not&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.03297v3-abstract-full').style.display = 'inline'; document.getElementById('1605.03297v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.03297v3-abstract-full" style="display: none;"> We explore the mechanics of inflation in simplified extra-dimensional models involving an inflaton interacting with the Einstein-Maxwell system in two extra dimensions. The models are Goldilocks-like in that they are just complicated enough to include a mechanism to stabilize the extra-dimensional size, yet simple enough to solve the full 6D field equations using basic tools. The solutions are not limited to the effective 4D regime with H &lt;&lt; m_KK (the latter referring to the mass splitting of the Kaluza-Klein excitations) because the full 6D Einstein equations are solved. This allows an exploration of inflationary physics in a controlled regime away from the usual 4D lamp-post. The inclusion of modulus stabilization is important as experience with string models teaches that this is usually what makes models fail: stabilization energies dominate the shallow potentials required by slow roll and open up directions to evolve that are steeper than those of the putative inflationary direction. We explore three representative inflationary scenarios within this simple setup. In one the radion is trapped in an inflaton-dependent local minimum whose non-zero energy drives inflation. Inflation ends as this energy relaxes to zero when the inflaton finds its minimum. The others involve power-law solutions during inflation. One is an attractor whose features are relatively insensitive to initial conditions but whose slow-roll parameters cannot be arbitrarily small; the other is not an attractor but can roll much more slowly, until eventually decaying to the attractor. These solutions can satisfy H &gt; m_KK, but when they do standard 4D fluctuation calculations need not apply. When in a 4D regime the solutions predict eta ~ 0 hence r ~ 0.11 when n_s ~ 0.96 and so are ruled out if tensor modes remain unseen. Analysis of general parameters is difficult without a full 6D fluctuation calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.03297v3-abstract-full').style.display = 'none'; document.getElementById('1605.03297v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 1608 (2016) 045 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.06048">arXiv:1604.06048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.06048">pdf</a>, <a href="https://arxiv.org/format/1604.06048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2016/11/009">10.1088/1475-7516/2016/11/009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnon Inflation: Slow Roll with Steep Potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blas%2C+D">Diego Blas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgess%2C+C+P">C. P. Burgess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayman%2C+P">Peter Hayman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.06048v2-abstract-short" style="display: inline;"> We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy the usual slow-roll condition (d V)^2 &lt;&lt; V^2/Mp^2. They evade the usual slow-roll conditions on $V$ because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate durin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06048v2-abstract-full').style.display = 'inline'; document.getElementById('1604.06048v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.06048v2-abstract-full" style="display: none;"> We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy the usual slow-roll condition (d V)^2 &lt;&lt; V^2/Mp^2. They evade the usual slow-roll conditions on $V$ because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides an example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for the background evolution for Chromo-natural inflation. We also show that our EFT can be understood as a multi-field generalization of the single-field Cuscuton models. The multi-field case introduces a new feature, however: the scalar kinetic terms define a target-space 2-form, F_{ab}, whose antisymmetry gives new ways for slow roll to be achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06048v2-abstract-full').style.display = 'none'; document.getElementById('1604.06048v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages plus appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2016-067 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.06759">arXiv:1510.06759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.06759">pdf</a>, <a href="https://arxiv.org/format/1510.06759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The Effective Strength of Gravity, the Scale of Inflation (and how KK gravitons evade the Higuchi Bound) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Antoniadis%2C+I">Ignatios Antoniadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.06759v1-abstract-short" style="display: inline;"> For any given momentum transfer, gravitational interactions have a strength set by a characteristic scale $M_*$ inferred from amplitudes calculated in an effective theory with a strong coupling scale $M_{**}$. These are in general different from each other and $M_{\rm pl}$, the macroscopic strength of gravity as determined by (laboratory scale) Cavendish experiments. During single field inflation,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.06759v1-abstract-full').style.display = 'inline'; document.getElementById('1510.06759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.06759v1-abstract-full" style="display: none;"> For any given momentum transfer, gravitational interactions have a strength set by a characteristic scale $M_*$ inferred from amplitudes calculated in an effective theory with a strong coupling scale $M_{**}$. These are in general different from each other and $M_{\rm pl}$, the macroscopic strength of gravity as determined by (laboratory scale) Cavendish experiments. During single field inflation, $M_*$ can differ from $M_{\rm pl}$ due to the presence of any number of (hidden) universally coupled species between laboratory and inflationary scales. Although this has no effect on dimensionless (i.e. observable) quantities measured at a fixed scale such as the amplitude and spectral properties of the CMB anisotropies, it complicates the inference of an absolute scale of inflation given any detection of primordial tensors. In this note we review and elaborate upon these facts and address concerns raised in a recent paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.06759v1-abstract-full').style.display = 'none'; document.getElementById('1510.06759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, two appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.08649">arXiv:1507.08649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.08649">pdf</a>, <a href="https://arxiv.org/format/1507.08649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2016)077">10.1007/JHEP02(2016)077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relaxing the Electroweak Scale: the Role of Broken dS Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwaller%2C+P">Pedro Schwaller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.08649v2-abstract-short" style="display: inline;"> Recently, a novel mechanism to address the hierarchy problem has been proposed \cite{Graham:2015cka}, where the hierarchy between weak scale physics and any putative `cutoff&#39; $M$ is translated into a parametrically large field excursion for the so-called relaxion field, driving the Higgs mass to values much less than $M$ through cosmological dynamics. In its simplest incarnation, the relaxion mech&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.08649v2-abstract-full').style.display = 'inline'; document.getElementById('1507.08649v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.08649v2-abstract-full" style="display: none;"> Recently, a novel mechanism to address the hierarchy problem has been proposed \cite{Graham:2015cka}, where the hierarchy between weak scale physics and any putative `cutoff&#39; $M$ is translated into a parametrically large field excursion for the so-called relaxion field, driving the Higgs mass to values much less than $M$ through cosmological dynamics. In its simplest incarnation, the relaxion mechanism requires nothing beyond the standard model other than an axion (the relaxion field) and an inflaton. In this note, we critically re-examine the requirements for successfully realizing the relaxion mechanism and point out that parametrically larger field excursions can be obtained for a given number of e-folds by simply requiring that the background break exact de Sitter invariance. We discuss several corollaries of this observation, including the interplay between the upper bound on the scale $M$ and the order parameter $蔚$ associated with the breaking of dS symmetry, and entertain the possibility that the relaxion could play the role of a curvaton. We find that a successful realization of the mechanism is possible with as few as $\mathcal O (10^3)$ e-foldings, albeit with a reduced cutoff $M \sim 10^6$ GeV for a dark QCD axion and outline a minimal scenario that can be made consistent with CMB observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.08649v2-abstract-full').style.display = 'none'; document.getElementById('1507.08649v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures. Version to appear in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH-2015-179 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.01834">arXiv:1505.01834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.01834">pdf</a>, <a href="https://arxiv.org/format/1505.01834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0218271815300232">10.1142/S0218271815300232 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Features and New Physical Scales in Primordial Observables: Theory and Observation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamann%2C+J">Jan Hamann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.01834v2-abstract-short" style="display: inline;"> All cosmological observations to date are consistent with adiabatic, Gaussian and nearly scale invariant initial conditions. These findings provide strong evidence for a particular symmetry breaking pattern in the very early universe (with a close to vanishing order parameter, $蔚$), widely accepted as conforming to the predictions of the simplest realizations of the inflationary paradigm. However,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01834v2-abstract-full').style.display = 'inline'; document.getElementById('1505.01834v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.01834v2-abstract-full" style="display: none;"> All cosmological observations to date are consistent with adiabatic, Gaussian and nearly scale invariant initial conditions. These findings provide strong evidence for a particular symmetry breaking pattern in the very early universe (with a close to vanishing order parameter, $蔚$), widely accepted as conforming to the predictions of the simplest realizations of the inflationary paradigm. However, given that our observations are only privy to perturbations, in inferring something about the background that gave rise to them, it should be clear that many different underlying constructions project onto the same set of cosmological observables. Features in the primordial correlation functions, if present, would offer a unique and discriminating window onto the parent theory in which the mechanism that generated the initial conditions is embedded. In certain contexts, simple linear response theory allows us to infer new characteristic scales from the presence of features that can break the aforementioned degeneracies among different background models, and in some cases can even offer a limited spectroscopy of the heavier degrees of freedom that couple to the inflaton. In this review, we offer a pedagogical survey of the diverse, theoretically well grounded mechanisms which can imprint features into primordial correlation functions in addition to reviewing the techniques one can employ to probe observations. These observations include cosmic microwave background anisotropies and spectral distortions as well as the matter two and three point functions as inferred from large-scale structure and potentially, 21 cm surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01834v2-abstract-full').style.display = 'none'; document.getElementById('1505.01834v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited review to IJMPD, 101 pages + 2 appendices, 29 figures, references added, matches journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH-2015-096 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.8845">arXiv:1410.8845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.8845">pdf</a>, <a href="https://arxiv.org/format/1410.8845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-015-3411-z">10.1140/epjc/s10052-015-3411-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Effective Planck Mass and the Scale of Inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Antoniadis%2C+I">Ignatios Antoniadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.8845v2-abstract-short" style="display: inline;"> Observable quantities in cosmology are dimensionless, and therefore independent of the units in which they are measured. This is true of all physical quantities associated with the primordial perturbations that source cosmic microwave background anisotropies such as their amplitude and spectral properties. However, if one were to try and infer an absolute energy scale for inflation-- a priori, one&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8845v2-abstract-full').style.display = 'inline'; document.getElementById('1410.8845v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.8845v2-abstract-full" style="display: none;"> Observable quantities in cosmology are dimensionless, and therefore independent of the units in which they are measured. This is true of all physical quantities associated with the primordial perturbations that source cosmic microwave background anisotropies such as their amplitude and spectral properties. However, if one were to try and infer an absolute energy scale for inflation-- a priori, one of the more immediate corollaries of detecting primordial tensor modes-- one necessarily makes reference to a particular choice of units, the natural choice for which is Planck units. In this note, we discuss various aspects of how inferring the energy scale of inflation is complicated by the fact that the effective strength of gravity as seen by inflationary quanta necessarily differs from that seen by gravitational experiments at presently accessible scales. The uncertainty in the former relative to the latter has to do with the unknown spectrum of universally coupled particles between laboratory scales and the putative scale of inflation. These intermediate particles could be in hidden as well as visible sectors or could also be associated with Kaluza-Klein resonances associated with a compactification scale below the scale of inflation. We discuss various implications for cosmological observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8845v2-abstract-full').style.display = 'none'; document.getElementById('1410.8845v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages + 3 appendices, 4 figures. References added, distinction between the strength of gravity and strong coupling scale emphasized. Matches version to appear in EPJC</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH-2014-205 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.4927">arXiv:1403.4927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.4927">pdf</a>, <a href="https://arxiv.org/format/1403.4927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.067301">10.1103/PhysRevD.90.067301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Closed String Thermodynamics and a Blue Tensor Spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brandenberger%2C+R+H">Robert H. Brandenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nayeri%2C+A">Ali Nayeri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.4927v2-abstract-short" style="display: inline;"> The BICEP-2 team has reported the detection of primordial cosmic microwave background B-mode polarization, with hints of a suppression of power at large angular scales relative to smaller scales. Provided that the B-mode polarization is due to primordial gravitational waves, this might imply a blue tilt of the primordial gravitational wave spectrum. Such a tilt would be incompatible with standard&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4927v2-abstract-full').style.display = 'inline'; document.getElementById('1403.4927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.4927v2-abstract-full" style="display: none;"> The BICEP-2 team has reported the detection of primordial cosmic microwave background B-mode polarization, with hints of a suppression of power at large angular scales relative to smaller scales. Provided that the B-mode polarization is due to primordial gravitational waves, this might imply a blue tilt of the primordial gravitational wave spectrum. Such a tilt would be incompatible with standard inflationary models, although it was predicted some years ago in the context of a mechanism that thermally generates the primordial perturbations through a Hagedorn phase of string cosmology. The purpose of this note is to encourage greater scrutiny of the data with priors informed by a model that is immediately falsifiable, but which \textit{predicts} features that might be favoured by the data-- namely a blue tensor tilt with an induced and complimentary red tilt to the scalar spectrum, with a naturally large tensor to scalar ratio that relates to both. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4927v2-abstract-full').style.display = 'none'; document.getElementById('1403.4927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH/2014-043 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 067301 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.1476">arXiv:1402.1476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.1476">pdf</a>, <a href="https://arxiv.org/format/1402.1476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2014)010">10.1007/JHEP06(2014)010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Predictiveness of Single-Field Inflationary Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Burgess%2C+C+P">C. P. Burgess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trott%2C+M">Michael Trott</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.1476v4-abstract-short" style="display: inline;"> We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the runni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.1476v4-abstract-full').style.display = 'inline'; document.getElementById('1402.1476v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.1476v4-abstract-full" style="display: none;"> We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for $A_s$, $r$ and $n_s$ are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in principle) for a slightly larger range of Higgs masses. We comment on the origin of the various UV scales that arise at large field values for the SM Higgs, clarifying cut off scale arguments by further developing the formalism of a non-linear realization of $\rm SU_L(2) \times U(1)$ in curved space. We discuss the interesting fact that, outside of Higgs Inflation, the effect of a non-minimal coupling to gravity, even in the SM, results in a non-linear EFT for the Higgs sector. Finally, we briefly comment on post BICEP2 attempts to modify the Higgs Inflation scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.1476v4-abstract-full').style.display = 'none'; document.getElementById('1402.1476v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pp, 4 figures v4: Minor correction to section 3.1. Main arguments and conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH/2014-024 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1406 (2014) 010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.2524">arXiv:1312.2524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.2524">pdf</a>, <a href="https://arxiv.org/format/1312.2524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2014/03/015">10.1088/1475-7516/2014/03/015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmological Perturbations Across an S-brane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brandenberger%2C+R+H">Robert H. Brandenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kounnas%2C+C">Costas Kounnas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partouche%2C+H">Herve Partouche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Toumbas%2C+N">Nicolaos Toumbas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.2524v3-abstract-short" style="display: inline;"> Space-filling S-branes can mediate a transition between a contracting and an expanding universe in the Einstein frame. Following up on previous work that uncovered such bouncing solutions in the context of weakly coupled thermal configurations of a certain class of type II superstrings, we set up here the formalism in which we can study the evolution of metric fluctuations across such an S-brane.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.2524v3-abstract-full').style.display = 'inline'; document.getElementById('1312.2524v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.2524v3-abstract-full" style="display: none;"> Space-filling S-branes can mediate a transition between a contracting and an expanding universe in the Einstein frame. Following up on previous work that uncovered such bouncing solutions in the context of weakly coupled thermal configurations of a certain class of type II superstrings, we set up here the formalism in which we can study the evolution of metric fluctuations across such an S-brane. Our work shows that the specific nature of the S-brane, which is sourced by non-trivial massless thermal string states and appears when the universe reaches a maximal critical temperature, allows for a scale invariant spectrum of curvature fluctuations to manifest at late times via a stringy realization of the matter bounce scenario. The finite energy density at the transition from contraction to expansion provides calculational control over the propagation of the curvature perturbations through the bounce, furnishing a working proof of concept that such a stringy universe can result in viable late time cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.2524v3-abstract-full').style.display = 'none'; document.getElementById('1312.2524v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 3 appendices, typos corrected, references added, matches version to appear in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH/2013-289, CPHT-RR001.0113, LPTENS-13/18 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.5619">arXiv:1211.5619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.5619">pdf</a>, <a href="https://arxiv.org/format/1211.5619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.121301">10.1103/PhysRevD.87.121301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlating features in the primordial spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ach%C3%BAcarro%2C+A">Ana Ach煤carro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gong%2C+J">Jinn-Ouk Gong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palma%2C+G+A">Gonzalo A. Palma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.5619v2-abstract-short" style="display: inline;"> Heavy fields coupled to the inflaton reduce the speed of sound in the effective theory of the adiabatic mode each time the background inflationary trajectory deviates from a geodesic. This can result in features in the primordial spectra. We compute the corresponding bispectrum and show that if a varying speed of sound induces features in the power spectrum, the change in the bispectrum is given b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.5619v2-abstract-full').style.display = 'inline'; document.getElementById('1211.5619v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.5619v2-abstract-full" style="display: none;"> Heavy fields coupled to the inflaton reduce the speed of sound in the effective theory of the adiabatic mode each time the background inflationary trajectory deviates from a geodesic. This can result in features in the primordial spectra. We compute the corresponding bispectrum and show that if a varying speed of sound induces features in the power spectrum, the change in the bispectrum is given by a simple formula involving the change in the power spectrum and its derivatives. In this manner, we provide a uniquely discriminable signature of a varying sound speed for the adiabatic mode during inflation that indicates the influence of heavy fields. We find that features in the bispectrum peak in the equilateral limit and, in particular, in the squeezed limit we find considerable enhancement entirely consistent with the single field consistency relation. From the perspective of the underlying effective theory, our results generalize to a wide variety of inflationary models where features are sourced by the time variation of background quantities. A positive detection of such correlated features would be unambiguous proof of the inflaton&#39;s nature as a single light scalar degree of freedom embedded in a theory that is UV completable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.5619v2-abstract-full').style.display = 'none'; document.getElementById('1211.5619v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH/2012-315, APCTP-Pre2012-016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.5701">arXiv:1209.5701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.5701">pdf</a>, <a href="https://arxiv.org/ps/1209.5701">ps</a>, <a href="https://arxiv.org/format/1209.5701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2013)133">10.1007/JHEP01(2013)133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inflating in a Trough: Single-Field Effective Theory from Multiple-Field Curved Valleys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Burgess%2C+C+P">C. P. Burgess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horbatsch%2C+M+W">M. W. Horbatsch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.5701v3-abstract-short" style="display: inline;"> We examine the motion of light fields near the bottom of a potential valley in a multi-dimensional field space. In the case of two fields we identify three general scales, all of which must be large in order to justify an effective low-energy approximation involving only the light field, $\ell$. (Typically only one of these -- the mass of the heavy field transverse to the trough -- is used in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5701v3-abstract-full').style.display = 'inline'; document.getElementById('1209.5701v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.5701v3-abstract-full" style="display: none;"> We examine the motion of light fields near the bottom of a potential valley in a multi-dimensional field space. In the case of two fields we identify three general scales, all of which must be large in order to justify an effective low-energy approximation involving only the light field, $\ell$. (Typically only one of these -- the mass of the heavy field transverse to the trough -- is used in the literature when justifying the truncation of heavy fields.) We explicitly compute the resulting effective field theory, which has the form of a $P(\ell,X)$ model, with $X = - 1/2(\partial \ell)^2$, as a function of these scales. This gives the leading ways each scale contributes to any low-energy dynamics, including (but not restricted to) those relevant for cosmology. We check our results with the special case of a homogeneous roll near the valley floor, placing into a broader context recent cosmological calculations that show how the truncation approximation can fail. By casting our results covariantly in field space, we provide a geometrical criterion for model-builders to decide whether or not the single-field and/or the truncation approximation is justified, identify its leading deviations, and to efficiently extract cosmological predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5701v3-abstract-full').style.display = 'none'; document.getElementById('1209.5701v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages + 3 appendices, references added and typos corrected, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH/2012-246, CPHT-RR 021.0512 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1301 (2013) 133 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.0710">arXiv:1205.0710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.0710">pdf</a>, <a href="https://arxiv.org/ps/1205.0710">ps</a>, <a href="https://arxiv.org/format/1205.0710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.86.121301">10.1103/PhysRevD.86.121301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heavy fields, reduced speeds of sound and decoupling during inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Achucarro%2C+A">Ana Achucarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atal%2C+V">Vicente Atal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cespedes%2C+S">Sebastian Cespedes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gong%2C+J">Jinn-Ouk Gong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palma%2C+G+A">Gonzalo A. Palma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.0710v2-abstract-short" style="display: inline;"> We discuss and clarify the validity of effective single field theories of inflation obtained by integrating out heavy degrees of freedom in the regime where adiabatic perturbations propagate with a suppressed speed of sound. We show by construction that it is indeed possible to have inflationary backgrounds where the speed of sound remains suppressed and slow-roll persists for long enough. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.0710v2-abstract-full').style.display = 'inline'; document.getElementById('1205.0710v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.0710v2-abstract-full" style="display: none;"> We discuss and clarify the validity of effective single field theories of inflation obtained by integrating out heavy degrees of freedom in the regime where adiabatic perturbations propagate with a suppressed speed of sound. We show by construction that it is indeed possible to have inflationary backgrounds where the speed of sound remains suppressed and slow-roll persists for long enough. In this class of models, heavy fields influence the evolution of adiabatic modes in a manner that is consistent with decoupling of physical low and high energy degrees of freedom. We emphasize the distinction between the effective masses of the isocurvature modes and the eigenfrequencies of the propagating high energy modes. Crucially, we find that the mass gap that defines the high frequency modes increases with the strength of the turn, even as the naive heavy (isocurvature) and light (curvature) modes become more strongly coupled. Adiabaticity is preserved throughout, and the derived effective field theory remains in the weakly coupled regime, satisfying all current observational constraints on the resulting primordial power spectrum. In addition, these models allow for an observably large equilateral non-Gaussianity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.0710v2-abstract-full').style.display = 'none'; document.getElementById('1205.0710v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, v2: minor changes, typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH/2012-097; CPHT-RR 020.0412 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 86, 121301(R) (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.6630">arXiv:1202.6630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.6630">pdf</a>, <a href="https://arxiv.org/ps/1202.6630">ps</a>, <a href="https://arxiv.org/format/1202.6630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2012/05/012">10.1088/1475-7516/2012/05/012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CMB Imprints of a Pre-Inflationary Climbing Phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dudas%2C+E">E. Dudas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kitazawa%2C+N">N. Kitazawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">S. P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sagnotti%2C+A">A. Sagnotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.6630v2-abstract-short" style="display: inline;"> We discuss the implications for cosmic microwave background (CMB) observables, of a class of pre-inflationary dynamics suggested by string models where SUSY is broken due to the presence of D-branes and orientifolds preserving incompatible portions of it. In these models the would-be inflaton is forced to emerge from the initial singularity climbing up a mild exponential potential, until it bounce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.6630v2-abstract-full').style.display = 'inline'; document.getElementById('1202.6630v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.6630v2-abstract-full" style="display: none;"> We discuss the implications for cosmic microwave background (CMB) observables, of a class of pre-inflationary dynamics suggested by string models where SUSY is broken due to the presence of D-branes and orientifolds preserving incompatible portions of it. In these models the would-be inflaton is forced to emerge from the initial singularity climbing up a mild exponential potential, until it bounces against a steep exponential potential of &#34;brane SUSY breaking&#34; scenarios, and as a result the ensuing descent gives rise to an inflationary epoch that begins when the system is still well off its eventual attractor. If a pre-inflationary climbing phase of this type had occurred within 6-7 e-folds of the horizon exit for the largest observable wavelengths, displacement off the attractor and initial-state effects would conspire to suppress power in the primordial scalar spectrum, enhancing it in the tensor spectrum and typically superposing oscillations on both. We investigate these imprints on CMB observables over a range of parameters, examine their statistical significance, and provide a semi-analytic rationale for our results. It is tempting to ascribe at least part of the large-angle anomalies in the CMB to pre-inflationary dynamics of this type. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.6630v2-abstract-full').style.display = 'none'; document.getElementById('1202.6630v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, LaTeX, 11 eps figures, references added, matches version to appear in JCAP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.6342">arXiv:1201.6342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.6342">pdf</a>, <a href="https://arxiv.org/ps/1201.6342">ps</a>, <a href="https://arxiv.org/format/1201.6342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2012)066">10.1007/JHEP05(2012)066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective theories of single field inflation when heavy fields matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Achucarro%2C+A">Ana Achucarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gong%2C+J">Jinn-Ouk Gong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hardeman%2C+S">Sjoerd Hardeman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palma%2C+G+A">Gonzalo A. Palma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.6342v2-abstract-short" style="display: inline;"> We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.6342v2-abstract-full').style.display = 'inline'; document.getElementById('1201.6342v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.6342v2-abstract-full" style="display: none;"> We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbations. The resulting operator expansion is distinguishable from that of other scenarios, such as standard single inflation or DBI inflation. In particular, we re-derive how certain operators can become transiently strongly coupled along the inflaton trajectory, consistent with slow-roll and the validity of the EFT expansion, imprinting features in the primordial power spectrum, and we deduce the relevant cubic operators that imply distinct signatures in the primordial bispectrum which may soon be constrained by observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.6342v2-abstract-full').style.display = 'none'; document.getElementById('1201.6342v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(v1) 25 pages, 1 figure; (v2) references added and typos corrected, to appear in Journal of High Energy Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH/2011-222; CPHT-RR 055.0711; LPTENS-11-27 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1205 (2012) 066 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.3693">arXiv:1010.3693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.3693">pdf</a>, <a href="https://arxiv.org/format/1010.3693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2011/01/030">10.1088/1475-7516/2011/01/030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Features of heavy physics in the CMB power spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ach%C3%BAcarro%2C+A">Ana Ach煤carro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gong%2C+J">Jinn-Ouk Gong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hardeman%2C+S">Sjoerd Hardeman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palma%2C+G+A">Gonzalo A. Palma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.3693v4-abstract-short" style="display: inline;"> The computation of the primordial power spectrum in multi-field inflation models requires us to correctly account for all relevant interactions between adiabatic and non-adiabatic modes around and after horizon crossing. One specific complication arises from derivative interactions induced by the curvilinear trajectory of the inflaton in a multi-dimensional field space. In this work we compute the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.3693v4-abstract-full').style.display = 'inline'; document.getElementById('1010.3693v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.3693v4-abstract-full" style="display: none;"> The computation of the primordial power spectrum in multi-field inflation models requires us to correctly account for all relevant interactions between adiabatic and non-adiabatic modes around and after horizon crossing. One specific complication arises from derivative interactions induced by the curvilinear trajectory of the inflaton in a multi-dimensional field space. In this work we compute the power spectrum in general multi-field models and show that certain inflaton trajectories may lead to observationally significant imprints of `heavy&#39; physics in the primordial power spectrum if the inflaton trajectory turns, that is, traverses a bend, sufficiently fast (without interrupting slow roll), even in cases where the normal modes have masses approaching the cutoff of our theory. We emphasise that turning is defined with respect to the geodesics of the sigma model metric, irrespective of whether this is canonical or non-trivial. The imprints generically take the form of damped superimposed oscillations on the power spectrum. In the particular case of two-field models, if one of the fields is sufficiently massive compared to the scale of inflation, we are able to compute an effective low energy theory for the adiabatic mode encapsulating certain relevant operators of the full multi-field dynamics. As expected, a particular characteristic of this effective theory is a modified speed of sound for the adiabatic mode which is a functional of the background inflaton trajectory and the turns traversed during inflation. Hence in addition, we expect non-Gaussian signatures directly related to the features imprinted in the power spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.3693v4-abstract-full').style.display = 'none'; document.getElementById('1010.3693v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 6 figures, references updated, minor modifications. Version to appear in JCAP. v4: Equations (4.28) and (4.30) and Figures 5 and 6 corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LPTENS-10-36, CPHT-RR-080.0910 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 1101:030,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.3848">arXiv:1005.3848</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.3848">pdf</a>, <a href="https://arxiv.org/format/1005.3848">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.043502">10.1103/PhysRevD.84.043502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass hierarchies and non-decoupling in multi-scalar field dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ach%C3%BAcarro%2C+A">Ana Ach煤carro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gong%2C+J">Jinn-Ouk Gong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hardeman%2C+S">Sjoerd Hardeman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palma%2C+G+A">Gonzalo A. Palma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.3848v2-abstract-short" style="display: inline;"> In this work we study the effects of field space curvature on scalar field perturbations around an arbitrary background field trajectory evolving in time. Non-trivial imprints of the &#39;heavy&#39; directions on the low energy dynamics arise when the vacuum manifold of the potential does not coincide with the span of geodesics defined by the sigma model metric of the full theory. When the kinetic energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.3848v2-abstract-full').style.display = 'inline'; document.getElementById('1005.3848v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.3848v2-abstract-full" style="display: none;"> In this work we study the effects of field space curvature on scalar field perturbations around an arbitrary background field trajectory evolving in time. Non-trivial imprints of the &#39;heavy&#39; directions on the low energy dynamics arise when the vacuum manifold of the potential does not coincide with the span of geodesics defined by the sigma model metric of the full theory. When the kinetic energy is small compared to the potential energy, the field traverses a curve close to the vacuum manifold of the potential. The curvature of the path followed by the fields can still have a profound influence on the perturbations as modes parallel to the trajectory mix with those normal to it if the trajectory turns sharply enough. We analyze the dynamical mixing between these non-decoupled degrees of freedom and deduce its non-trivial contribution to the low energy effective theory for the light modes. We also discuss the consequences of this mixing for various scenarios where multiple scalar fields play a vital role, such as inflation and low-energy compactifications of string theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.3848v2-abstract-full').style.display = 'none'; document.getElementById('1005.3848v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 2 figures, typeset in PRD style. v2: Minor changes throughout to emphasize that the analysis also applies to sharp and/or prolonged turns. References added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CPHT-RR 039.0510,LPTENS-10/20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D84:043502,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.3010">arXiv:1003.3010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1003.3010">pdf</a>, <a href="https://arxiv.org/ps/1003.3010">ps</a>, <a href="https://arxiv.org/format/1003.3010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> On Semi-classical Degravitation and the Cosmological Constant Problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">Subodh P. Patil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.3010v2-abstract-short" style="display: inline;"> In this report, we discuss a candidate mechanism through which one might address the various cosmological constant problems. We first observe that the renormalization of gravitational couplings (induced by integrating out various matter fields) manifests non-local modifications to Einstein&#39;s equations as quantum corrected equations of motion. That is, at the loop level, matter sources curvature th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.3010v2-abstract-full').style.display = 'inline'; document.getElementById('1003.3010v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.3010v2-abstract-full" style="display: none;"> In this report, we discuss a candidate mechanism through which one might address the various cosmological constant problems. We first observe that the renormalization of gravitational couplings (induced by integrating out various matter fields) manifests non-local modifications to Einstein&#39;s equations as quantum corrected equations of motion. That is, at the loop level, matter sources curvature through a gravitational coupling that is a non-local function of the covariant d&#39;Alembertian. If the functional form of the resulting Newton&#39;s `constant&#39; is such that it annihilates very long wavelength sources, but reduces to $1/M^2_{pl}$ ($M_{pl}$ being the 4d Planck mass) for all sources with cosmologically observable wavelengths, we would have a complimentary realization of the degravitation paradigm-- a realization through which its non-linear completion and the corresponding modified Bianchi identities are readily understood. We proceed to consider various theories whose coupling to gravity may a priori induce non-trivial renormalizations of Newton&#39;s constant in the IR, and arrive at a class of non-local effective actions which yield a suitably degravitating filter function for Newton&#39;s constant upon subsequently being integrated out. We motivate this class of non-local theories through several considerations, discuss open issues, future directions, the inevitable question of scheme dependence in semi-classical gravitational calculations and comment on connections with other meditations in the literature on relaxing of the cosmological constant semi-classically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.3010v2-abstract-full').style.display = 'none'; document.getElementById('1003.3010v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 2 appendices. References added.</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CPHT-RR 138.1209, LPTENS-10/13 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Patil%2C+P&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Patil%2C+P&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Patil%2C+P&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10