CINXE.COM

Search results for: eigenvalues of the Jacobian

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: eigenvalues of the Jacobian</title> <meta name="description" content="Search results for: eigenvalues of the Jacobian"> <meta name="keywords" content="eigenvalues of the Jacobian"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="eigenvalues of the Jacobian" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="eigenvalues of the Jacobian"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 83</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: eigenvalues of the Jacobian</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Geometric and Algebraic Properties of the Eigenvalues of Monotone Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brando%20Vagenende">Brando Vagenende</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-Anne%20Guerry"> Marie-Anne Guerry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For stochastic matrices of any order, the geometric description of the convex set of eigenvalues is completely known. The purpose of this study is to investigate the subset of the monotone matrices. This type of matrix appears in contexts such as intergenerational occupational mobility, equal-input modeling, and credit ratings-based systems. Monotone matrices are stochastic matrices in which each row stochastically dominates the previous row. The monotonicity property of a stochastic matrix can be expressed by a nonnegative lower-order matrix with the same eigenvalues as the original monotone matrix (except for the eigenvalue 1). Specifically, the aim of this research is to focus on the properties of eigenvalues of monotone matrices. For those matrices up to order 3, there already exists a complete description of the convex set of eigenvalues. For monotone matrices of order at least 4, this study gives, through simulations, more insight into the geometric description of their eigenvalues. Furthermore, this research treats in a geometric and algebraic way the properties of eigenvalues of monotone matrices of order at least 4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20matrices" title="eigenvalues of matrices">eigenvalues of matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20Markov%20chains" title=" finite Markov chains"> finite Markov chains</a>, <a href="https://publications.waset.org/abstracts/search?q=monotone%20matrices" title=" monotone matrices"> monotone matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=nonnegative%20matrices" title=" nonnegative matrices"> nonnegative matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20matrices" title=" stochastic matrices"> stochastic matrices</a> </p> <a href="https://publications.waset.org/abstracts/179294/geometric-and-algebraic-properties-of-the-eigenvalues-of-monotone-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Visual and Chemical Servoing of a Hexapod Robot in a Confined Environment Using Jacobian Estimator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Morin-Duponchelle">Guillaume Morin-Duponchelle</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Nait%20Chabane"> Ahmed Nait Chabane</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Zerr"> Benoit Zerr</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Schoesetters"> Pierre Schoesetters</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial inspection can be achieved through robotic systems, allowing visual and chemical servoing. A popular scheme for visual servo-controlled robotic is the image-based servoing sys-tems. In this paper, an approach of visual and chemical servoing of a hexapod robot using a visual and chemical Jacobian matrix are proposed. The basic idea behind the visual Jacobian matrix is modeling the differential relationship between the camera system and the robotic control system to detect and track accurately points of interest in confined environments. This approach allows the robot to easily detect and navigates to the QR code or seeks a gas source localization using surge cast algorithm. To track the QR code target, a visual servoing based on Jacobian matrix is used. For chemical servoing, three gas sensors are embedded on the hexapod. A Jacobian matrix applied to the gas concentration measurements allows estimating the direction of the main gas source. The effectiveness of the proposed scheme is first demonstrated on simulation. Finally, a hexapod prototype is designed and built and the experimental validation of the approach is presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20servoing" title="chemical servoing">chemical servoing</a>, <a href="https://publications.waset.org/abstracts/search?q=hexapod%20robot" title=" hexapod robot"> hexapod robot</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobian%20matrix" title=" Jacobian matrix"> Jacobian matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20servoing" title=" visual servoing"> visual servoing</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a> </p> <a href="https://publications.waset.org/abstracts/128919/visual-and-chemical-servoing-of-a-hexapod-robot-in-a-confined-environment-using-jacobian-estimator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Qing%20Dai">Chao-Qing Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20sine-Gordon%20equation" title="discrete sine-Gordon equation">discrete sine-Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20coefficient%20Jacobian%20elliptic%20function%20method" title=" variable coefficient Jacobian elliptic function method"> variable coefficient Jacobian elliptic function method</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=equation" title=" equation"> equation</a> </p> <a href="https://publications.waset.org/abstracts/12987/the-application-of-variable-coefficient-jacobian-elliptic-function-method-to-differential-difference-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">668</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Using Eigenvalues and Eigenvectors in Population Growth and Stability Obtaining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Sadiq%20Mensah">Abubakar Sadiq Mensah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Knowledge of the population growth of a nation is paramount to national planning. The population of a place is studied and a model developed over a period of time, Matrices is used to form model for population growth. The eigenvalue ƛ of the matrix A and its corresponding eigenvector X is such that AX = ƛX is calculated. The stable age distribution of the population is obtained using the eigenvalue and the characteristic polynomial. Hence, estimation could be made using eigenvalues and eigenvectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title="eigenvalues">eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvectors" title=" eigenvectors"> eigenvectors</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%2Fstability" title=" growth/stability"> growth/stability</a> </p> <a href="https://publications.waset.org/abstracts/49175/using-eigenvalues-and-eigenvectors-in-population-growth-and-stability-obtaining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Inverse Scattering for a Second-Order Discrete System via Transmission Eigenvalues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdon%20Choque-Rivero">Abdon Choque-Rivero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Jacobi system with the Dirichlet boundary condition is considered on a half-line lattice when the coefficients are real valued. The inverse problem of recovery of the coefficients from various data sets containing the so-called transmission eigenvalues is analyzed. The Marchenko method is utilized to solve the corresponding inverse problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20scattering" title="inverse scattering">inverse scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20system" title=" discrete system"> discrete system</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20eigenvalues" title=" transmission eigenvalues"> transmission eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Marchenko%20method" title=" Marchenko method"> Marchenko method</a> </p> <a href="https://publications.waset.org/abstracts/125118/inverse-scattering-for-a-second-order-discrete-system-via-transmission-eigenvalues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Exact Solutions of Discrete Sine-Gordon Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Qing%20Dai">Chao-Qing Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title="exact solutions">exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=variable-coefficient%20Jacobian%20elliptic%20function%20method" title=" variable-coefficient Jacobian elliptic function method"> variable-coefficient Jacobian elliptic function method</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20sine-Gordon%20equation" title=" discrete sine-Gordon equation"> discrete sine-Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20behaviors" title=" dynamical behaviors"> dynamical behaviors</a> </p> <a href="https://publications.waset.org/abstracts/48966/exact-solutions-of-discrete-sine-gordon-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Bounds on the Laplacian Vertex PI Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Kaya">Ezgi Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dilek%20Maden"> A. Dilek Maden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20energy" title=" Laplacian energy"> Laplacian energy</a>, <a href="https://publications.waset.org/abstracts/search?q=laplacian%20vertex%20PI%20eigenvalues" title=" laplacian vertex PI eigenvalues"> laplacian vertex PI eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20vertex%20PI%20energy" title=" Laplacian vertex PI energy"> Laplacian vertex PI energy</a>, <a href="https://publications.waset.org/abstracts/search?q=vertex%20PI%20index" title=" vertex PI index"> vertex PI index</a> </p> <a href="https://publications.waset.org/abstracts/73194/bounds-on-the-laplacian-vertex-pi-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Ogunrinde">R. B. Ogunrinde</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Jibunoh"> C. C. Jibunoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20decomposition" title="spectral decomposition">spectral decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20RHS" title=" linear RHS"> linear RHS</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20linear%20systems" title=" homogeneous linear systems"> homogeneous linear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20the%20Jacobian" title=" eigenvalues of the Jacobian"> eigenvalues of the Jacobian</a> </p> <a href="https://publications.waset.org/abstracts/54215/a-spectral-decomposition-method-for-ordinary-differential-equation-systems-with-constant-or-linear-right-hand-sides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> FPGA Implementation of Novel Triangular Systolic Array Based Architecture for Determining the Eigenvalues of Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumitr%20Sanjay%20Dubey">Soumitr Sanjay Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhajit%20Roy%20Chowdhury"> Shubhajit Roy Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Shrestha"> Rahul Shrestha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have presented a novel approach of calculating eigenvalues of any matrix for the first time on Field Programmable Gate Array (FPGA) using Triangular Systolic Arra (TSA) architecture. Conventionally, additional computation unit is required in the architecture which is compliant to the algorithm for determining the eigenvalues and this in return enhances the delay and power consumption. However, recently reported works are only dedicated for symmetric matrices or some specific case of matrix. This works presents an architecture to calculate eigenvalues of any matrix based on QR algorithm which is fully implementable on FPGA. For the implementation of QR algorithm we have used TSA architecture, which is further utilising CORDIC (CO-ordinate Rotation DIgital Computer) algorithm, to calculate various trigonometric and arithmetic functions involved in the procedure. The proposed architecture gives an error in the range of 10−4. Power consumption by the design is 0.598W. It can work at the frequency of 900 MHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate%20rotation%20digital%20computer" title="coordinate rotation digital computer">coordinate rotation digital computer</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20angle%20complex%20rotation" title=" three angle complex rotation"> three angle complex rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20systolic%20array" title=" triangular systolic array"> triangular systolic array</a>, <a href="https://publications.waset.org/abstracts/search?q=QR%20algorithm" title=" QR algorithm "> QR algorithm </a> </p> <a href="https://publications.waset.org/abstracts/40252/fpga-implementation-of-novel-triangular-systolic-array-based-architecture-for-determining-the-eigenvalues-of-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Matrix Valued Difference Equations with Spectral Singularities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serifenur%20Cebesoy">Serifenur Cebesoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelda%20Aygar"> Yelda Aygar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elgiz%20Bairamov"> Elgiz Bairamov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotics" title="asymptotics">asymptotics</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20spectrum" title=" continuous spectrum"> continuous spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20equations" title=" difference equations"> difference equations</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=jost%20functions" title=" jost functions"> jost functions</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20singularities" title=" spectral singularities"> spectral singularities</a> </p> <a href="https://publications.waset.org/abstracts/32256/matrix-valued-difference-equations-with-spectral-singularities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Normalized Laplacian Eigenvalues of Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaowei%20Sun">Shaowei Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a graph with vertex set V(G)={v_1,v_2,...,v_n} and edge set E(G). For any vertex v belong to V(G), let d_v denote the degree of v. The normalized Laplacian matrix of the graph G is the matrix where the non-diagonal (i,j)-th entry is -1/(d_id_j) when vertex i is adjacent to vertex j and 0 when they are not adjacent, and the diagonal (i,i)-th entry is the di. In this paper, we discuss some bounds on the largest and the second smallest normalized Laplacian eigenvalue of trees and graphs. As following, we found some new bounds on the second smallest normalized Laplacian eigenvalue of tree T in terms of graph parameters. Moreover, we use Sage to give some conjectures on the second largest and the third smallest normalized eigenvalues of graph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph" title="graph">graph</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20Laplacian%20eigenvalues" title=" normalized Laplacian eigenvalues"> normalized Laplacian eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20Laplacian%20matrix" title=" normalized Laplacian matrix"> normalized Laplacian matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a> </p> <a href="https://publications.waset.org/abstracts/41326/normalized-laplacian-eigenvalues-of-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Dilek%20Maden">Ayşe Dilek Maden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degree%20Kirchhoff%20index" title="degree Kirchhoff index">degree Kirchhoff index</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20Laplacian%20eigenvalue" title=" normalized Laplacian eigenvalue"> normalized Laplacian eigenvalue</a>, <a href="https://publications.waset.org/abstracts/search?q=spanning%20tree" title=" spanning tree"> spanning tree</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20connected%20graph" title=" simple connected graph"> simple connected graph</a> </p> <a href="https://publications.waset.org/abstracts/13999/some-new-bounds-for-a-real-power-of-the-normalized-laplacian-eigenvalues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> The Second Smallest Eigenvalue of Complete Tripartite Hypergraph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfi%20Y.%20Zakiyyah">Alfi Y. Zakiyyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanni%20Garminia"> Hanni Garminia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salman"> M. Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Irawati"> A. N. Irawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the terminology of the hypergraph, there is a relation with the terminology graph. In the theory of graph, the edges connected two vertices. In otherwise, in hypergraph, the edges can connect more than two vertices. There is representation matrix of a graph such as adjacency matrix, Laplacian matrix, and incidence matrix. The adjacency matrix is symmetry matrix so that all eigenvalues is real. This matrix is a nonnegative matrix. The all diagonal entry from adjacency matrix is zero so that the trace is zero. Another representation matrix of the graph is the Laplacian matrix. Laplacian matrix is symmetry matrix and semidefinite positive so that all eigenvalues are real and non-negative. According to the spectral study in the graph, some that result is generalized to hypergraph. A hypergraph can be represented by a matrix such as adjacency, incidence, and Laplacian matrix. Throughout for this term, we use Laplacian matrix to represent a complete tripartite hypergraph. The aim from this research is to determine second smallest eigenvalues from this matrix and find a relation this eigenvalue with the connectivity of that hypergraph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connectivity" title="connectivity">connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a>, <a href="https://publications.waset.org/abstracts/search?q=hypergraph" title=" hypergraph"> hypergraph</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20matrix" title=" Laplacian matrix"> Laplacian matrix</a> </p> <a href="https://publications.waset.org/abstracts/34000/the-second-smallest-eigenvalue-of-complete-tripartite-hypergraph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getachew%20T.%20Sedebo">Getachew T. Sedebo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20V.%20Joubert"> Stephan V. Joubert</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Y.%20Shatalov"> Michael Y. Shatalov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bryan%E2%80%99s%20effect" title="Bryan’s effect">Bryan’s effect</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20vibrations" title=" bending vibrations"> bending vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20gyroscope" title=" disc gyroscope"> disc gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfunctions" title=" eigenfunctions"> eigenfunctions</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning%20conditions" title=" tuning conditions"> tuning conditions</a> </p> <a href="https://publications.waset.org/abstracts/52286/the-dynamics-of-a-3d-vibrating-and-rotating-disc-gyroscope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Chaos in a Stadium-Shaped 2-D Quantum Dot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roger%20Yu">Roger Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title="quantum dot">quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a> </p> <a href="https://publications.waset.org/abstracts/148129/chaos-in-a-stadium-shaped-2-d-quantum-dot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedict%20Ita">Benedict Ita</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Okoi"> Peter Okoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schrodinger%20equation" title="Schrodinger equation">Schrodinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikoforov-Uvarov%20method" title=" Nikoforov-Uvarov method"> Nikoforov-Uvarov method</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20square%20root%20potential" title=" inverse square root potential"> inverse square root potential</a>, <a href="https://publications.waset.org/abstracts/search?q=diatomic%20molecules" title=" diatomic molecules"> diatomic molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=Python%20programming" title=" Python programming"> Python programming</a>, <a href="https://publications.waset.org/abstracts/search?q=Hellmann-Feynman%20theorem" title=" Hellmann-Feynman theorem"> Hellmann-Feynman theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20order%20differential%20equation" title=" second order differential equation"> second order differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20algebra" title=" matrix algebra"> matrix algebra</a> </p> <a href="https://publications.waset.org/abstracts/192989/exact-energy-spectrum-and-expectation-values-of-the-inverse-square-root-potential-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Extremal Laplacian Energy of Threshold Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ahmad%20Mojallal">Seyed Ahmad Mojallal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a connected threshold graph of order n with m edges and trace T. In this talk we give a lower bound on Laplacian energy in terms of n, m, and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. We also list the first 20 minimal Laplacian energies among threshold graphs. Let σ=σ(G) be the number of Laplacian eigenvalues greater than or equal to average degree of graph G. Using this concept, we obtain the threshold graphs with the largest and the second largest Laplacian energies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20eigenvalues" title="Laplacian eigenvalues">Laplacian eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20energy" title=" Laplacian energy"> Laplacian energy</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20graphs" title=" threshold graphs"> threshold graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=extremal%20graphs" title=" extremal graphs"> extremal graphs</a> </p> <a href="https://publications.waset.org/abstracts/41332/extremal-laplacian-energy-of-threshold-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> A Variant of a Double Structure-Preserving QR Algorithm for Symmetric and Hamiltonian Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salam">Ahmed Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Haithem%20Benkahla"> Haithem Benkahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, an efficient backward-stable algorithm for computing eigenvalues and vectors of a symmetric and Hamiltonian matrix has been proposed. The method preserves the symmetric and Hamiltonian structures of the original matrix, during the whole process. In this paper, we revisit the method. We derive a way for implementing the reduction of the matrix to the appropriate condensed form. Then, we construct a novel version of the implicit QR-algorithm for computing the eigenvalues and vectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20implicit%20QR%20algorithm" title="block implicit QR algorithm">block implicit QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation%20of%20a%20double%20structure" title=" preservation of a double structure"> preservation of a double structure</a>, <a href="https://publications.waset.org/abstracts/search?q=QR%20algorithm" title=" QR algorithm"> QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20and%20Hamiltonian%20structures" title=" symmetric and Hamiltonian structures"> symmetric and Hamiltonian structures</a> </p> <a href="https://publications.waset.org/abstracts/61018/a-variant-of-a-double-structure-preserving-qr-algorithm-for-symmetric-and-hamiltonian-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> A Time-Reducible Approach to Compute Determinant |I-X|</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xingbo">Wang Xingbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computation of determinant in the form |I-<em>X</em>| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-<em>X</em>|. The approach is derived from the Newton&rsquo;s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix <em>X</em>. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=determinant" title=" determinant"> determinant</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue" title=" eigenvalue"> eigenvalue</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20complexity" title=" time complexity"> time complexity</a> </p> <a href="https://publications.waset.org/abstracts/47622/a-time-reducible-approach-to-compute-determinant-i-x" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Majd">Zahra Majd</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Kalantar"> Mohsen Kalantar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microgrid" title="microgrid">microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management%20system" title=" energy management system"> energy management system</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20fluctuations" title=" voltage fluctuations"> voltage fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Jacobian%20matrix" title=" modified Jacobian matrix"> modified Jacobian matrix</a> </p> <a href="https://publications.waset.org/abstracts/168897/energy-management-system-based-on-voltage-fluctuations-minimization-for-droop-controlled-islanded-microgrid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Comparison of Finite Difference Schemes for Numerical Study of Ripa Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidrah%20Ahmed">Sidrah Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20schemes" title="finite difference schemes">finite difference schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=Riemann%20problem" title=" Riemann problem"> Riemann problem</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20water%20equations" title=" shallow water equations"> shallow water equations</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20gradients" title=" temperature gradients"> temperature gradients</a> </p> <a href="https://publications.waset.org/abstracts/77732/comparison-of-finite-difference-schemes-for-numerical-study-of-ripa-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Improvement a Lower Bound of Energy for Some Family of Graphs, Related to Determinant of Adjacency Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saieed%20%20Akbari">Saieed Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Bagheri"> Yousef Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Ghodrati"> Amir Hossein Ghodrati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Saadat%20Akhtar"> Sima Saadat Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a simple graph with the vertex set V (G) and with the adjacency matrix A (G). The energy E (G) of G is defined to be the sum of the absolute values of all eigenvalues of A (G). Also let n and m be number of edges and vertices of the graph respectively. A regular graph is a graph where each vertex has the same number of neighbours. Given a graph G, its line graph L(G) is a graph such that each vertex of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G. In this paper we show that for every regular graphs and also for every line graphs such that (G) 3 we have, E(G) 2nm + n 1. Also at the other part of the paper we prove that 2 (G) E(G) for an arbitrary graph G. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title="eigenvalues">eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20graphs" title=" line graphs"> line graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20number" title=" matching number"> matching number</a> </p> <a href="https://publications.waset.org/abstracts/99652/improvement-a-lower-bound-of-energy-for-some-family-of-graphs-related-to-determinant-of-adjacency-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Design and Development of an Optimal Fault Tolerant 3 Degree of Freedom Robotic Manipulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramish">Ramish</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhan%20%20Khalique%20Awan"> Farhan Khalique Awan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kinematic redundancy within the manipulators presents extended dexterity and manipulability to the manipulators. Redundant serial robotic manipulators are very popular in industries due to its competencies to keep away from singularities during normal operation and fault tolerance because of failure of one or more joints. Such fault tolerant manipulators are extraordinarily beneficial in applications where human interference for repair and overhaul is both impossible or tough; like in case of robotic arms for space programs, nuclear applications and so on. The design of this sort of fault tolerant serial 3 DoF manipulator is presented in this paper. This work was the extension of the author’s previous work of designing the simple 3R serial manipulator. This work is the realization of the previous design with optimizing the link lengths for incorporating the feature of fault tolerance. Various measures have been followed by the researchers to quantify the fault tolerance of such redundant manipulators. The fault tolerance in this work has been described in terms of the worst-case measure of relative manipulability that is, in fact, a local measure of optimization that works properly for certain configuration of the manipulators. An optimum fault tolerant Jacobian matrix has been determined first based on prescribed null space properties after which the link parameters have been described to meet the given Jacobian matrix. A solid model of the manipulator was then developed to realize the mathematically rigorous design. Further work was executed on determining the dynamic properties of the fault tolerant design and simulations of the movement for various trajectories have been carried out to evaluate the joint torques. The mathematical model of the system was derived via the Euler-Lagrange approach after which the same has been tested using the RoboAnalyzer© software. The results have been quite in agreement. From the CAD model and dynamic simulation data, the manipulator was fabricated in the workshop and Advanced Machining lab of NED University of Engineering and Technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant" title="fault tolerant">fault tolerant</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20matrix" title=" Graham matrix"> Graham matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobian" title=" Jacobian"> Jacobian</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics" title=" kinematics"> kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrange-Euler" title=" Lagrange-Euler"> Lagrange-Euler</a> </p> <a href="https://publications.waset.org/abstracts/79710/design-and-development-of-an-optimal-fault-tolerant-3-degree-of-freedom-robotic-manipulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> 1D Klein-Gordon Equation in an Infinite Square Well with PT Symmetry Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suleiman%20Bashir%20Adamu">Suleiman Bashir Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Sani%20Taura"> Lawan Sani Taura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the role of boundary conditions via -symmetric quantum mechanics, where denotes parity operator and denotes time reversal operator. Using the one-dimensional Schrödinger Hamiltonian for a free particle in an infinite square well, we introduce symmetric boundary conditions. We find solutions of the 1D Klein-Gordon equation for a free particle in an infinite square well with Hermitian boundary and symmetry boundary conditions, where in both cases the energy eigenvalues and eigenfunction, respectively, are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eigenvalues" title="Eigenvalues">Eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Eigenfunction" title=" Eigenfunction"> Eigenfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian" title=" Hamiltonian"> Hamiltonian</a>, <a href="https://publications.waset.org/abstracts/search?q=Klein-%20Gordon%20equation" title=" Klein- Gordon equation"> Klein- Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=PT-symmetric%20quantum%20mechanics" title=" PT-symmetric quantum mechanics"> PT-symmetric quantum mechanics</a> </p> <a href="https://publications.waset.org/abstracts/50876/1d-klein-gordon-equation-in-an-infinite-square-well-with-pt-symmetry-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> A Contribution to the Polynomial Eigen Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hariche"> Kamel Hariche</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Clarke"> Tim Clarke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between eigenstructure (eigenvalues and eigenvectors) and latent structure (latent roots and latent vectors) is established. In control theory eigenstructure is associated with the state space description of a dynamic multi-variable system and a latent structure is associated with its matrix fraction description. Beginning with block controller and block observer state space forms and moving on to any general state space form, we develop the identities that relate eigenvectors and latent vectors in either direction. Numerical examples illustrate this result. A brief discussion of the potential of these identities in linear control system design follows. Additionally, we present a consequent result: a quick and easy method to solve the polynomial eigenvalue problem for regular matrix polynomials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%2Feigenvectors" title="eigenvalues/eigenvectors">eigenvalues/eigenvectors</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20values%2Fvectors" title=" latent values/vectors"> latent values/vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20fraction%20description" title=" matrix fraction description"> matrix fraction description</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20space%20description" title=" state space description "> state space description </a> </p> <a href="https://publications.waset.org/abstracts/14247/a-contribution-to-the-polynomial-eigen-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Random Matrix Theory Analysis of Cross-Correlation in the Nigerian Stock Exchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chimezie%20P.%20Nnanwa">Chimezie P. Nnanwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20C.%20Urama"> Thomas C. Urama</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20O.%20Ezepue"> Patrick O. Ezepue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we use Random Matrix Theory to analyze the eigen-structure of the empirical correlations of 82 stocks which are consistently traded in the Nigerian Stock Exchange (NSE) over a 4-year study period 3 August 2009 to 26 August 2013. We apply the Marchenko-Pastur distribution of eigenvalues of a purely random matrix to investigate the presence of investment-pertinent information contained in the empirical correlation matrix of the selected stocks. We use hypothesised standard normal distribution of eigenvector components from RMT to assess deviations of the empirical eigenvectors to this distribution for different eigenvalues. We also use the Inverse Participation Ratio to measure the deviation of eigenvectors of the empirical correlation matrix from RMT results. These preliminary results on the dynamics of asset price correlations in the NSE are important for improving risk-return trade-offs associated with Markowitz’s portfolio optimization in the stock exchange, which is pursued in future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20matrix" title="correlation matrix">correlation matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue%20and%20eigenvector" title=" eigenvalue and eigenvector"> eigenvalue and eigenvector</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20participation%20ratio" title=" inverse participation ratio"> inverse participation ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=portfolio%20optimization" title=" portfolio optimization"> portfolio optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20matrix%20theory" title=" random matrix theory"> random matrix theory</a> </p> <a href="https://publications.waset.org/abstracts/68007/random-matrix-theory-analysis-of-cross-correlation-in-the-nigerian-stock-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> A Combined Error Control with Forward Euler Method for Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vigneswaran">R. Vigneswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Thilakanathan"> S. Thilakanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptivity" title="adaptivity">adaptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20point" title=" fixed point"> fixed point</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20time%20simulations" title=" long time simulations"> long time simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20system" title=" linear system"> linear system</a> </p> <a href="https://publications.waset.org/abstracts/48246/a-combined-error-control-with-forward-euler-method-for-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=BenedictI%20Ita">BenedictI Ita</a>, <a href="https://publications.waset.org/abstracts/search?q=Etido%20P.%20Inyang"> Etido P. Inyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schr%C3%B6dinger%20equation" title="Schrödinger equation">Schrödinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikiforov-Uvarov%20method" title=" Nikiforov-Uvarov method"> Nikiforov-Uvarov method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20screened%20Kratzer" title=" modified screened Kratzer"> modified screened Kratzer</a>, <a href="https://publications.waset.org/abstracts/search?q=inversely%20quadratic%20Yukawa%20potential" title=" inversely quadratic Yukawa potential"> inversely quadratic Yukawa potential</a>, <a href="https://publications.waset.org/abstracts/search?q=diatomic%20molecules" title=" diatomic molecules"> diatomic molecules</a> </p> <a href="https://publications.waset.org/abstracts/152962/analytical-solutions-to-the-n-dimensional-schrodinger-equation-with-a-collective-potential-model-to-study-energy-spectra-andthermodynamic-properties-of-selected-diatomic-molecules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Wang">Feng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shencheng%20Ni"> Shencheng Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuying%20Han"> Shuying Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanhong%20You"> Shanhong You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on&ndash;off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20%28ANN%29" title="artificial neural network (ANN)">artificial neural network (ANN)</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatic%20dispersion%20%28CD%29" title=" chromatic dispersion (CD)"> chromatic dispersion (CD)</a>, <a href="https://publications.waset.org/abstracts/search?q=delay-tap%20sampling%20%28DTS%29" title=" delay-tap sampling (DTS)"> delay-tap sampling (DTS)</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20signal-to-noise%20ratio%20%28OSNR%29" title=" optical signal-to-noise ratio (OSNR)"> optical signal-to-noise ratio (OSNR)</a> </p> <a href="https://publications.waset.org/abstracts/126931/optical-signal-to-noise-ratio-monitoring-based-on-delay-tap-sampling-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Genetic Variation among the Wild and Hatchery Raised Populations of Labeo rohita Revealed by RAPD Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fayyaz%20Rasool">Fayyaz Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakeela%20Parveen"> Shakeela Parveen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studies on genetic diversity of Labeo rohita by using molecular markers were carried out to investigate the genetic structure by RAPAD marker and the levels of polymorphism and similarity amongst the different groups of five populations of wild and farmed types. The samples were collected from different five locations as representatives of wild and hatchery raised populations. RAPAD data for Jaccard’s coefficient by following the un-weighted Pair Group Method with Arithmetic Mean (UPGMA) for Hierarchical Clustering of the similar groups on the basis of similarity amongst the genotypes and the dendrogram generated divided the randomly selected individuals of the five populations into three classes/clusters. The variance decomposition for the optimal classification values remained as 52.11% for within class variation, while 47.89% for the between class differences. The Principal Component Analysis (PCA) for grouping of the different genotypes from the different environmental conditions was done by Spearman Varimax rotation method for bi-plot generation of the co-occurrence of the same genotypes with similar genetic properties and specificity of different primers indicated clearly that the increase in the number of factors or components was correlated with the decrease in eigenvalues. The Kaiser Criterion based upon the eigenvalues greater than one, first two main factors accounted for 58.177% of cumulative variability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variation" title="variation">variation</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=wild" title=" wild"> wild</a>, <a href="https://publications.waset.org/abstracts/search?q=hatchery" title=" hatchery"> hatchery</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPAD" title=" RAPAD"> RAPAD</a>, <a href="https://publications.waset.org/abstracts/search?q=Labeo%20rohita" title=" Labeo rohita"> Labeo rohita</a> </p> <a href="https://publications.waset.org/abstracts/5744/genetic-variation-among-the-wild-and-hatchery-raised-populations-of-labeo-rohita-revealed-by-rapd-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20the%20Jacobian&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20the%20Jacobian&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20the%20Jacobian&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10