CINXE.COM
Search results for: video surveillance camera
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: video surveillance camera</title> <meta name="description" content="Search results for: video surveillance camera"> <meta name="keywords" content="video surveillance camera"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="video surveillance camera" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="video surveillance camera"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1859</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: video surveillance camera</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1859</span> H.263 Based Video Transceiver for Wireless Camera System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won-Ho%20Kim">Won-Ho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20video%20transceiver" title="wireless video transceiver">wireless video transceiver</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera" title=" video surveillance camera"> video surveillance camera</a>, <a href="https://publications.waset.org/abstracts/search?q=H.263%20video%20encoding%20digital%20signal%20processing" title=" H.263 video encoding digital signal processing"> H.263 video encoding digital signal processing</a> </p> <a href="https://publications.waset.org/abstracts/12951/h263-based-video-transceiver-for-wireless-camera-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1858</span> Video Sharing System Based On Wi-fi Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qidi%20Lin">Qidi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinbin%20Huang"> Jinbin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weile%20Liang"> Weile Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition that, it is able to send commands to camera and control the camera’s holder to rotate. The platform can be applied to interactive teaching and dangerous area’s monitoring and so on. Testing results show that the platform can share the live video of mobile phone. Furthermore, if the system’s PC sever and the camera and many mobile phones are connected together, it can transfer photos concurrently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wifi%20Camera" title="Wifi Camera">Wifi Camera</a>, <a href="https://publications.waset.org/abstracts/search?q=socket%20mobile" title=" socket mobile"> socket mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=platform%20video%20monitoring" title=" platform video monitoring"> platform video monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20control" title=" remote control"> remote control</a> </p> <a href="https://publications.waset.org/abstracts/31912/video-sharing-system-based-on-wi-fi-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1857</span> Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mobarok%20Hossain%20Bhuyain">Mobarok Hossain Bhuyain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20detection" title="human detection">human detection</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20tracking" title=" target tracking"> target tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a> </p> <a href="https://publications.waset.org/abstracts/131472/detection-and-tracking-for-the-protection-of-the-elderly-and-socially-vulnerable-people-in-the-video-surveillance-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1856</span> H.264 Video Privacy Protection Method Using Regions of Interest Encryption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Doo">Taekyun Doo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheongmin%20Ji"> Cheongmin Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Manpyo%20Hong"> Manpyo Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Like a closed-circuit television (CCTV), video surveillance system is widely placed for gathering video from unspecified people to prevent crime, surveillance, or many other purposes. However, abuse of CCTV brings about concerns of personal privacy invasions. In this paper, we propose an encryption method to protect personal privacy system in H.264 compressed video bitstream with encrypting only regions of interest (ROI). There is no need to change the existing video surveillance system. In addition, encrypting ROI in compressed video bitstream is a challenging work due to spatial and temporal drift errors. For this reason, we propose a novel drift mitigation method when ROI is encrypted. The proposed method was implemented by using JM reference software based on the H.264 compressed videos, and experimental results show the verification of our proposed methods and its effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.264%2FAVC" title="H.264/AVC">H.264/AVC</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20encryption" title=" video encryption"> video encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20protection" title=" privacy protection"> privacy protection</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20compression" title=" post compression"> post compression</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20of%20interest" title=" region of interest"> region of interest</a> </p> <a href="https://publications.waset.org/abstracts/57651/h264-video-privacy-protection-method-using-regions-of-interest-encryption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1855</span> A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulugeta%20K.%20Tefera">Mulugeta K. Tefera</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Yang"> Xiaolong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Liu"> Jian Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=background%20modeling" title="background modeling">background modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20model" title=" Gaussian mixture model"> Gaussian mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-frame%20difference" title=" inter-frame difference"> inter-frame difference</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection%20and%20tracking" title=" object detection and tracking"> object detection and tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title=" video surveillance"> video surveillance</a> </p> <a href="https://publications.waset.org/abstracts/78578/a-real-time-moving-object-detection-and-tracking-scheme-and-its-implementation-for-video-surveillance-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1854</span> Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Alavianmehr">M. A. Alavianmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tashk"> A. Tashk</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sodagaran"> A. Sodagaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title="image processing">image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20models" title=" background models"> background models</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title=" video surveillance"> video surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=foreground%20detection" title=" foreground detection"> foreground detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20model" title=" Gaussian mixture model"> Gaussian mixture model</a> </p> <a href="https://publications.waset.org/abstracts/16364/video-foreground-detection-based-on-adaptive-mixture-gaussian-model-for-video-surveillance-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1853</span> Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abe%20Degale%20D.">Abe Degale D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Jian"> Cheng Jian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=violence%20detection" title="violence detection">violence detection</a>, <a href="https://publications.waset.org/abstracts/search?q=faster%20RCNN" title=" faster RCNN"> faster RCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning%20and" title=" transfer learning and"> transfer learning and</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance%20video" title=" surveillance video"> surveillance video</a> </p> <a href="https://publications.waset.org/abstracts/171296/violence-detection-and-tracking-on-moving-surveillance-video-using-machine-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1852</span> Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nada%20Jasim%20Habeeb">Nada Jasim Habeeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Saad%20Mohammed"> Rana Saad Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muntaha%20Khudair%20Abbass"> Muntaha Khudair Abbass </a> </p> <p class="card-text"><strong>Abstract:</strong></p> For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporal%20differencing" title="temporal differencing">temporal differencing</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20summarization" title=" video summarization"> video summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=histogram%20differencing" title=" histogram differencing"> histogram differencing</a>, <a href="https://publications.waset.org/abstracts/search?q=sum%20conditional%20variance" title=" sum conditional variance"> sum conditional variance</a> </p> <a href="https://publications.waset.org/abstracts/54404/surveillance-video-summarization-based-on-histogram-differencing-and-sum-conditional-variance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1851</span> Remote Video Supervision via DVB-H Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanen%20Ghabi">Hanen Ghabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Oudhini"> Youssef Oudhini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassen%20Mnif"> Hassen Mnif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By reference to recent publications dealing with the same problem, and as a follow-up to this research work already published, we propose in this article a new original idea of tele supervision exploiting the opportunities offered by the DVB-H system. The objective is to exploit the RF channels of the DVB-H network in order to insert digital remote monitoring images dedicated to a remote solar power plant. Indeed, the DVB-H (Digital Video Broadcast-Handheld) broadcasting system was designed and deployed for digital broadcasting on the same platform as the parent system, DVB-T. We claim to be able to exploit this approach in order to satisfy the operator of remote photovoltaic sites (and others) in order to remotely control the components of isolated installations by means of video surveillance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title="video surveillance">video surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20video%20broadcast-handheld" title=" digital video broadcast-handheld"> digital video broadcast-handheld</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20sites" title=" photovoltaic sites"> photovoltaic sites</a>, <a href="https://publications.waset.org/abstracts/search?q=AVC" title=" AVC"> AVC</a> </p> <a href="https://publications.waset.org/abstracts/147516/remote-video-supervision-via-dvb-h-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1850</span> Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Hsiang%20Chang">Yuan-Hsiang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-Chi%20Lin"> Pin-Chi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Der%20Jeng"> Li-Der Jeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20detection" title="motion detection">motion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20tracking" title=" motion tracking"> motion tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20analysis" title=" trajectory analysis"> trajectory analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title=" video surveillance"> video surveillance</a> </p> <a href="https://publications.waset.org/abstracts/13650/automatic-motion-trajectory-analysis-for-dual-human-interaction-using-video-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1849</span> A Four-Step Ortho-Rectification Procedure for Geo-Referencing Video Streams from a Low-Cost UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20O.%20Olawale">B. O. Olawale</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20Chatwin"> C. R. Chatwin</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20D.%20Young"> R. C. D. Young</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Birch"> P. M. Birch</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20O.%20Faithpraise"> F. O. Faithpraise</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Olukiran"> A. O. Olukiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ortho-rectification is the process of geometrically correcting an aerial image such that the scale is uniform. The ortho-image formed from the process is corrected for lens distortion, topographic relief, and camera tilt. This can be used to measure true distances, because it is an accurate representation of the Earth’s surface. Ortho-rectification and geo-referencing are essential to pin point the exact location of targets in video imagery acquired at the UAV platform. This can only be achieved by comparing such video imagery with an existing digital map. However, it is only when the image is ortho-rectified with the same co-ordinate system as an existing map that such a comparison is possible. The video image sequences from the UAV platform must be geo-registered, that is, each video frame must carry the necessary camera information before performing the ortho-rectification process. Each rectified image frame can then be mosaicked together to form a seamless image map covering the selected area. This can then be used for comparison with an existing map for geo-referencing. In this paper, we present a four-step ortho-rectification procedure for real-time geo-referencing of video data from a low-cost UAV equipped with multi-sensor system. The basic procedures for the real-time ortho-rectification are: (1) Decompilation of video stream into individual frames; (2) Finding of interior camera orientation parameters; (3) Finding the relative exterior orientation parameters for each video frames with respect to each other; (4) Finding the absolute exterior orientation parameters, using self-calibration adjustment with the aid of a mathematical model. Each ortho-rectified video frame is then mosaicked together to produce a 2-D planimetric mapping, which can be compared with a well referenced existing digital map for the purpose of georeferencing and aerial surveillance. A test field located in Abuja, Nigeria was used for testing our method. Fifteen minutes video and telemetry data were collected using the UAV and the data collected were processed using the four-step ortho-rectification procedure. The results demonstrated that the geometric measurement of the control field from ortho-images are more reliable than those from original perspective photographs when used to pin point the exact location of targets on the video imagery acquired by the UAV. The 2-D planimetric accuracy when compared with the 6 control points measured by a GPS receiver is between 3 to 5 meters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geo-referencing" title="geo-referencing">geo-referencing</a>, <a href="https://publications.waset.org/abstracts/search?q=ortho-rectification" title=" ortho-rectification"> ortho-rectification</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20frame" title=" video frame"> video frame</a>, <a href="https://publications.waset.org/abstracts/search?q=self-calibration" title=" self-calibration"> self-calibration</a> </p> <a href="https://publications.waset.org/abstracts/33730/a-four-step-ortho-rectification-procedure-for-geo-referencing-video-streams-from-a-low-cost-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1848</span> Video Stabilization Using Feature Point Matching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shamsundar%20Kulkarni">Shamsundar Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20stabilization" title="video stabilization">video stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20feature%20matching" title=" point feature matching"> point feature matching</a>, <a href="https://publications.waset.org/abstracts/search?q=salient%20points" title=" salient points"> salient points</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20quality%20measurement" title=" image quality measurement"> image quality measurement</a> </p> <a href="https://publications.waset.org/abstracts/57341/video-stabilization-using-feature-point-matching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1847</span> Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Sandhya%20Devi">G. Sandhya Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Suvarna%20Kumar"> G. Suvarna Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandini"> S. Chandini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impersonation" title="impersonation">impersonation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20registration" title=" image registration"> image registration</a>, <a href="https://publications.waset.org/abstracts/search?q=incrimination" title=" incrimination"> incrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20evaluation" title=" threshold evaluation"> threshold evaluation</a> </p> <a href="https://publications.waset.org/abstracts/72151/automated-video-surveillance-system-for-detection-of-suspicious-activities-during-academic-offline-examination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1846</span> Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omair%20Ghori">Omair Ghori</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Stadler"> Anton Stadler</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Wilk"> Stefan Wilk</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Effelsberg"> Wolfgang Effelsberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast%20analysis" title="contrast analysis">contrast analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20fire%20detection" title=" early fire detection"> early fire detection</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20smoke%20detection" title=" video smoke detection"> video smoke detection</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title=" video surveillance"> video surveillance</a> </p> <a href="https://publications.waset.org/abstracts/52006/video-based-ambient-smoke-detection-by-detecting-directional-contrast-decrease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1845</span> Content Based Video Retrieval System Using Principal Object Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Thinh%20Bui">Van Thinh Bui</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20Tuan%20Tran"> Anh Tuan Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc%20Viet%20Ngo"> Quoc Viet Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20Bao%20Pham"> The Bao Pham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20retrieval" title="video retrieval">video retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20objects" title=" principal objects"> principal objects</a>, <a href="https://publications.waset.org/abstracts/search?q=keyframe" title=" keyframe"> keyframe</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation%20of%20aggregating%20superpixels" title=" segmentation of aggregating superpixels"> segmentation of aggregating superpixels</a>, <a href="https://publications.waset.org/abstracts/search?q=speeded%20up%20robust%20features" title=" speeded up robust features"> speeded up robust features</a>, <a href="https://publications.waset.org/abstracts/search?q=bag-of-words" title=" bag-of-words"> bag-of-words</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/59753/content-based-video-retrieval-system-using-principal-object-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1844</span> Real-Time Aerial Marine Surveillance System for Safe Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinesh%20Thiruchelvam">Vinesh Thiruchelvam</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20Mumtaz%20Chowdry"> Umar Mumtaz Chowdry</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathish%20Kumar%20Selvaperumal"> Sathish Kumar Selvaperumal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prime purpose of the project is to provide a sophisticated system for surveillance specialized for the Port Authorities in the Maritime Industry. The current aerial surveillance does not have a wide dimensioning view. The channels of communication is shared and not exclusive allowing for communications errors or disturbance mainly due to traffic. The scope is to analyze the various aspects as real-time aerial and marine surveillance is one of the most important methods which could ensure the domain security of the sailors. The system will improve real time data as obtained for the controller base station. The key implementation will be based on camera speed, angle and adherence to a sustainable power utilization module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SMS" title="SMS">SMS</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time" title=" real time"> real time</a>, <a href="https://publications.waset.org/abstracts/search?q=GUI" title=" GUI"> GUI</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20industry" title=" maritime industry "> maritime industry </a> </p> <a href="https://publications.waset.org/abstracts/6760/real-time-aerial-marine-surveillance-system-for-safe-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1843</span> Multiplayer RC-car Driving System in a Collaborative Augmented Reality Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kikuo%20Asai">Kikuo Asai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Sugimoto"> Yuji Sugimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed a prototype system for multiplayer RC-car driving in a collaborative Augmented Reality (AR) environment. The tele-existence environment is constructed by superimposing digital data onto images captured by a camera on an RC-car, enabling players to experience an augmented coexistence of the digital content and the real world. Marker-based tracking was used for estimating position and orientation of the camera. The plural RC-cars can be operated in a field where square markers are arranged. The video images captured by the camera are transmitted to a PC for visual tracking. The RC-cars are also tracked by using an infrared camera attached to the ceiling, so that the instability is reduced in the visual tracking. Multimedia data such as texts and graphics are visualized to be overlaid onto the video images in the geometrically correct manner. The prototype system allows a tele-existence sensation to be augmented in a collaborative AR environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiplayer" title="multiplayer">multiplayer</a>, <a href="https://publications.waset.org/abstracts/search?q=RC-car" title=" RC-car"> RC-car</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20environment" title=" collaborative environment"> collaborative environment</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a> </p> <a href="https://publications.waset.org/abstracts/4359/multiplayer-rc-car-driving-system-in-a-collaborative-augmented-reality-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1842</span> Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Jazouli">Maha Jazouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suicide%20detection" title="suicide detection">suicide detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinect%20azure" title=" Kinect azure"> Kinect azure</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB-D%20camera" title=" RGB-D camera"> RGB-D camera</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=gesture%20recognition" title=" gesture recognition"> gesture recognition</a> </p> <a href="https://publications.waset.org/abstracts/143744/automatic-detection-of-suicidal-behaviors-using-an-rgb-d-camera-azure-kinect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1841</span> Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vignesh">S. Vignesh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Rangasamy"> K. S. Rangasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCD" title="CCD">CCD</a>, <a href="https://publications.waset.org/abstracts/search?q=optics" title=" optics"> optics</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=D3CIP" title=" D3CIP"> D3CIP</a> </p> <a href="https://publications.waset.org/abstracts/1736/detecting-and-disabling-digital-cameras-using-d3cip-algorithm-based-on-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1840</span> Recording Video in the CAVE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mediouni">Mohamed Mediouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluating the performance of a simulator in the CAVE has to be confirmed by encouraging people to live the experience of virtual reality. In this paper, a detailed procedure of recording video is presented. Limitations of the experimental device are firstly exposed. Then, solutions for improving this idea are finally described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAVE" title="CAVE">CAVE</a>, <a href="https://publications.waset.org/abstracts/search?q=stereoscopics" title=" stereoscopics"> stereoscopics</a>, <a href="https://publications.waset.org/abstracts/search?q=camera" title=" camera"> camera</a>, <a href="https://publications.waset.org/abstracts/search?q=recording" title=" recording"> recording</a> </p> <a href="https://publications.waset.org/abstracts/19080/recording-video-in-the-cave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1839</span> A Passive Digital Video Authentication Technique Using Wavelet Based Optical Flow Variation Thresholding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Remya">R. S. Remya</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20Sethulekshmi"> U. S. Sethulekshmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting the authenticity of a video is an important issue in digital forensics as Video is used as a silent evidence in court such as in child pornography, movie piracy cases, insurance claims, cases involving scientific fraud, traffic monitoring etc. The biggest threat to video data is the availability of modern open video editing tools which enable easy editing of videos without leaving any trace of tampering. In this paper, we propose an efficient passive method for inter-frame video tampering detection, its type and location by estimating the optical flow of wavelet features of adjacent frames and thresholding the variation in the estimated feature. The performance of the algorithm is compared with the z-score thresholding and achieved an efficiency above 95% on all the tested databases. The proposed method works well for videos with dynamic (forensics) as well as static (surveillance) background. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title="discrete wavelet transform">discrete wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title=" optical flow"> optical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow%20variation" title=" optical flow variation"> optical flow variation</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20tampering" title=" video tampering"> video tampering</a> </p> <a href="https://publications.waset.org/abstracts/45252/a-passive-digital-video-authentication-technique-using-wavelet-based-optical-flow-variation-thresholding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1838</span> Efficient Utilization of Unmanned Aerial Vehicle (UAV) for Fishing through Surveillance for Fishermen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Ahilan">T. Ahilan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Aswin%20Adityan"> V. Aswin Adityan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kailash"> S. Kailash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> UAV’s are small remote operated or automated aerial surveillance systems without a human pilot aboard. UAV’s generally finds its use in military and special operation application, a recent growing trend in UAV’s finds its application in several civil and non military works such as inspection of power or pipelines. The objective of this paper is the augmentation of a UAV in order to replace the existing expensive sonar (sound navigation and ranging) based equipment amongst small scale fisherman, for whom access to sonar equipment are restricted due to limited economic resources. The surveillance equipment’s present in the UAV will relay data and GPS location onto a receiver on the fishing boat using RF signals, using which the location of the schools of fishes can be found. In addition to this, an emergency beacon system is present for rescue operations and drone recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV" title="UAV">UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=Surveillance" title=" Surveillance"> Surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20signals" title=" RF signals"> RF signals</a>, <a href="https://publications.waset.org/abstracts/search?q=fishing" title=" fishing"> fishing</a>, <a href="https://publications.waset.org/abstracts/search?q=sonar" title=" sonar"> sonar</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20stream" title=" video stream"> video stream</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20of%20fish" title=" school of fish"> school of fish</a> </p> <a href="https://publications.waset.org/abstracts/34394/efficient-utilization-of-unmanned-aerial-vehicle-uav-for-fishing-through-surveillance-for-fishermen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1837</span> User Authentication Using Graphical Password with Sound Signature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devi%20Srinivas">Devi Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sindhuja"> K. Sindhuja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents architecture to improve surveillance applications based on the usage of the service oriented paradigm, with smart phones as user terminals, allowing application dynamic composition and increasing the flexibility of the system. According to the result of moving object detection research on video sequences, the movement of the people is tracked using video surveillance. The moving object is identified using the image subtraction method. The background image is subtracted from the foreground image, from that the moving object is derived. So the Background subtraction algorithm and the threshold value is calculated to find the moving image by using background subtraction algorithm the moving frame is identified. Then, by the threshold value the movement of the frame is identified and tracked. Hence, the movement of the object is identified accurately. This paper deals with low-cost intelligent mobile phone-based wireless video surveillance solution using moving object recognition technology. The proposed solution can be useful in various security systems and environmental surveillance. The fundamental rule of moving object detecting is given in the paper, then, a self-adaptive background representation that can update automatically and timely to adapt to the slow and slight changes of normal surroundings is detailed. While the subtraction of the present captured image and the background reaches a certain threshold, a moving object is measured to be in the current view, and the mobile phone will automatically notify the central control unit or the user through SMS (Short Message System). The main advantage of this system is when an unknown image is captured by the system it will alert the user automatically by sending an SMS to user’s mobile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=security" title="security">security</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20password" title=" graphical password"> graphical password</a>, <a href="https://publications.waset.org/abstracts/search?q=persuasive%20cued%20click%20points" title=" persuasive cued click points"> persuasive cued click points</a> </p> <a href="https://publications.waset.org/abstracts/23794/user-authentication-using-graphical-password-with-sound-signature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1836</span> Extraction of Text Subtitles in Multimedia Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amarjit%20Singh">Amarjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a method for extraction of text subtitles in large video is proposed. The video data needs to be annotated for many multimedia applications. Text is incorporated in digital video for the motive of providing useful information about that video. So need arises to detect text present in video to understanding and video indexing. This is achieved in two steps. First step is text localization and the second step is text verification. The method of text detection can be extended to text recognition which finds applications in automatic video indexing; video annotation and content based video retrieval. The method has been tested on various types of videos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video" title="video">video</a>, <a href="https://publications.waset.org/abstracts/search?q=subtitles" title=" subtitles"> subtitles</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=annotation" title=" annotation"> annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=frames" title=" frames"> frames</a> </p> <a href="https://publications.waset.org/abstracts/24441/extraction-of-text-subtitles-in-multimedia-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1835</span> A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%20Liu">Chang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Nash"> John Nash</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20D.%20Prior"> Stephen D. Prior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, the aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infrared video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20system" title="unmanned aerial system">unmanned aerial system</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial-off-the-shelf" title=" commercial-off-the-shelf"> commercial-off-the-shelf</a>, <a href="https://publications.waset.org/abstracts/search?q=extremely%20low-light" title=" extremely low-light"> extremely low-light</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS-denied" title=" GPS-denied"> GPS-denied</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title=" optical flow"> optical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20video" title=" infrared video"> infrared video</a> </p> <a href="https://publications.waset.org/abstracts/37927/a-low-cost-vision-based-unmanned-aerial-system-for-extremely-low-light-gps-denied-navigation-and-thermal-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1834</span> Stereo Motion Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yudhajit%20Datta">Yudhajit Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamsi%20Iyer"> Hamsi Iyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Bandi"> Jonathan Bandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Sethia"> Ankit Sethia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kalman%20filter" title="kalman filter">kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20vision" title=" stereo vision"> stereo vision</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20tracking" title=" motion tracking"> motion tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=matlab" title=" matlab"> matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title=" object tracking"> object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=camera%20calibration" title=" camera calibration"> camera calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision%20system%20toolbox" title=" computer vision system toolbox "> computer vision system toolbox </a> </p> <a href="https://publications.waset.org/abstracts/18999/stereo-motion-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1833</span> Personalized Climate Change Advertising: The Role of Augmented Reality (A.R.) Technology in Encouraging Users for Climate Change Action</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokhlisur%20Rahman">Mokhlisur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing consensus among scientists and world leaders indicates that immediate action should be considered regarding the climate change phenomenon. However, climate change is no more a global issue but a personal one. Thus, individual participation is necessary to address such a significant issue. Studies show that individuals who perceive climate change as a personal issue are more likely to act toward it. This abstract presents augmented reality (A.R.) technology in the social media platform Facebook video advertising. The idea involves creating a video advertisement that enables users to interact with the video by navigating its features and experiencing the result uniquely and engagingly. This advertisement uses A.R. to bring changes, such as people making changes in real-life scenarios by simple clicks on the video and hearing an instant rewarding fact about their choices. The video shows three options: room, lawn, and driveway. Users select one option and engage in interaction based on while holding the camera in their personal spaces: Suppose users select the first option, room, and hold their camera toward spots such as by the windows, balcony, corners, and even walls. In that case, the A.R. offers users different plants appropriate for those unoccupied spaces in the room. Users can change the options of the plants and see which space at their house deserves a plant that makes it more natural. When a user adds a natural element to the video, the video content explains a piece of beneficiary information about how the user contributes to the world more to be livable and why it is necessary. With the help of A.R., if users select the second option, lawn, and hold their camera toward their lawn, the options are various small trees for their lawn to make it more environmentally friendly and decorative. The video plays a beneficiary explanation here too. Suppose users select the third option, driveway, and hold their camera toward their driveway. In that case, the A.R. video option offers unique recycle bin designs using A.I. measurement of spaces. The video plays audio information on anthropogenic contribution to greenhouse gas emission. IoT embeds tracking code in the video ad on Facebook, which stores the exact number of views in the cloud for data analysis. An online survey at the end collects short qualitative answers. This study helps understand the number of users involved and willing to change their behavior; It makes personalized advertising in social media. Considering the current state of climate change, the urgency for action is increasing. This ad increases the chance to make direct connections with individuals and gives a sense of personal responsibility for climate change to act <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motivations" title="motivations">motivations</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=iot" title=" iot"> iot</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized-advertising" title=" personalized-advertising"> personalized-advertising</a>, <a href="https://publications.waset.org/abstracts/search?q=action" title=" action"> action</a> </p> <a href="https://publications.waset.org/abstracts/166104/personalized-climate-change-advertising-the-role-of-augmented-reality-ar-technology-in-encouraging-users-for-climate-change-action" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1832</span> Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Alqahtani">Hamed Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Manolya%20Kavakli-Thorne"> Manolya Kavakli-Thorne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disentanglement" title="disentanglement">disentanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20detection" title=" face detection"> face detection</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20networks" title=" generative adversarial networks"> generative adversarial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title=" video surveillance"> video surveillance</a> </p> <a href="https://publications.waset.org/abstracts/108319/adversarial-disentanglement-using-latent-classifier-for-pose-independent-representation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1831</span> Video Summarization: Techniques and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaynab%20El%20Khattabi">Zaynab El Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youness%20Tabii"> Youness Tabii</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Benkaddour"> Abdelhamid Benkaddour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, huge amount of multimedia repositories make the browsing, retrieval and delivery of video contents very slow and even difficult tasks. Video summarization has been proposed to improve faster browsing of large video collections and more efficient content indexing and access. In this paper, we focus on approaches to video summarization. The video summaries can be generated in many different forms. However, two fundamentals ways to generate summaries are static and dynamic. We present different techniques for each mode in the literature and describe some features used for generating video summaries. We conclude with perspective for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20summarization" title="video summarization">video summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20summarization" title=" static summarization"> static summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20skimming" title=" video skimming"> video skimming</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20features" title=" semantic features"> semantic features</a> </p> <a href="https://publications.waset.org/abstracts/27644/video-summarization-techniques-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1830</span> Video Based Automatic License Plate Recognition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ganoun">Ali Ganoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Algablawi"> Wesam Algablawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasim%20BenAnaif"> Wasim BenAnaif </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video based traffic surveillance based on License Plate Recognition (LPR) system is an essential part for any intelligent traffic management system. The LPR system utilizes computer vision and pattern recognition technologies to obtain traffic and road information by detecting and recognizing vehicles based on their license plates. Generally, the video based LPR system is a challenging area of research due to the variety of environmental conditions. The LPR systems used in a wide range of commercial applications such as collision warning systems, finding stolen cars, controlling access to car parks and automatic congestion charge systems. This paper presents an automatic LPR system of Libyan license plate. The performance of the proposed system is evaluated with three video sequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=license%20plate%20recognition" title="license plate recognition">license plate recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition" title=" recognition"> recognition</a> </p> <a href="https://publications.waset.org/abstracts/9958/video-based-automatic-license-plate-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=video%20surveillance%20camera&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>